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In this paper, we compare two one-factor short rate models: the Hull White 

model and the Black-Karasinski model. Despite their inherent shortcomings the 

short rate models are being used quite extensively by the practitioners for risk-

management purposes.  The research, as part of students’ projects in 

collaboration with the Asset-Liability-Management (ALM) Group of ABN 

AMRO Bank, provides detail procedures on the implementation, and assesses 

model performance from an ALM perspective.  In particular, we compare the 

two models for pricing and hedging Bermudan swaptions because of its 

resemblance to prepayment option in typical mortgage loans.  To our 

knowledge, the implementation of the two short rate models (and the Black-

Karasinski model in particular) is not well documented.  We implemented the 

two models using interest rate derivatives on Euro and US rates over the period 

February 2005 to September 2007 and with the Hull-White trinomial tree.  Our 

results show that in terms of the in-sample pricing tests, the one-factor Hull-

White model outperforms the Black-Karasinski model. The estimated 

parameters of Hull-White model are also more stable than those of the Black-

Karasinski model. On the other hand, the tests for the hedging performance 

show that the Black-Karasinski model is more effective in hedging the interest 

rate risk of the at-the-money 10x1 co-terminal Bermudan swaption. 

  



Short Rate Models: Hull-White or Black-Karasinski?
Implementation Note and Model Comparison

1 Introduction

In this paper, we study the choice of short rate models for asset-liability management

in a global bank. In particular, we compare the performance of two one-factor short

rate models, viz. Hull-White and Black-Karasinski, for hedging a 10x1 Bermudan

swaption on an annual basis over a one and a half year period. The 10x1 Bermudan

swaption is chosen because it resembles a loan portfolio with early redemption fea-

ture, an important product for most banks. Unlike the short-term pricing problem,

the one-factor model is often preferred for the longer term ALM purpose because

of its simplicity. For long horizon hedging, the multi-factor model could produce

more noise as it requires more parameters input. Pricing performance measures

a model�s capability of capturing the current term structure and market prices of

interest rate sensitive instruments. Pricing performance can always be improved, in

an almost sure sense, by adding more explanatory variable and complexities to the

dynamics. However, pricing performance alone cannot re�ect the model�s ability in

capturing the true term structure dynamics. To assess the appropriateness of model

dynamics, one has to study model forecasting and hedging performance.

The last few decades have seen the development of a great variety of interest

rate models for estimating prices and risk sensitivities of interest rate derivatives.

These models can be broadly divided into short rate, forward rate and market

models. The class of short-rate models, among others, includes Vasicek (1977),

Hull and White (1990), and Black and Karasinski (1991). The Ho-Lee model is

an early example of forward-rate modelling. A generalized framework for arbitrage

free forward-rate modelling originates from the work of Heath, Jarrow and Morton

(HJM, 1992). Market models are a class of models within the HJM framework that

model the evolution of rates that are directly observable in the market. Example

of such models are the Libor Market Model by Brace, Gatarek, and Musiela (1997)
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and the Swap Market Model by Jamshidian (1997). All these models have their own

strengths and weaknesses. Short-rate models are tractable, easy to understand and

implement but do not provide complete freedom in choosing the volatility structure.

The HJM framework is popular due to its �exibility in terms of the number of factors

that can be used and it permits di¤erent volatility structures for di¤erent maturity

forward rates. Despite these attractions the key problem associated with the HJM

is that instantaneous forward rates are not directly observable in the market and

hence models under this framework are di¢ cult to calibrate. The market models

overcome these limitations but are complex and compositionally expensive when

compared with e.g. the short rate models. The question is whether one should use

the Gaussian HW model or the lognormal BK model. In this paper, we look at the

di¤erence between the Hull-White and the Black-Karasinski short rate models for

longer term asset liability management in two interest rate regimes (i.e. Euro and

USD). The choice of HW and BK is simple; at the time of writing, they are the

most important and popular short rate models used by the industry.

2 Previous Studies

Signi�cant e¤ort has been placed on developing pricing models for interest rate

claims. However, the empirical evaluation of these models, especially in the swaption

market, has lagged behind the theoretical advances made in this area. Much of the

literature on multi-factor term structure models has focused on explaining bond

yield and swap rates, as outlined in Dai and Singleton (2003). Therefore, despite

the importance of caps and swaptions, there is still wide divergence of opinion on

how to best value these claims. It is widely believed that since the term structure

of interest rates is driven by multiple factors, interest rate claims should be valued

using multi-factor models.

Amin and Morton (1994) implement and test six HJM interest rate models

using an implied volatility technique with Eurodollar futures and Eurodollar futures

options data. They �nd that two-parameter models tend to �t prices better, but
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their parameter estimates are less stable and they earn less from the perceived

mispricings. Although the one-parameter models �t slightly less well, their implied

parameter values are more stable over time and they are able to earn signi�cantly

larger and more consistent abnormal pro�ts from the mispricings they detect. Using

caplet data, where maturities ranged from 1 year to 10 years, Ritchken and Chuang

(1999) show that generalized Vasicek model captures the hump in the volatility of

forward rates, leads to signi�cant improvements on pricing. The interest rate claims

are priced in the Heath-Jarrow-Morton paradigm and the structure of volatilities is

captured without using time varying parameters. As a result, the volatility structure

is stationary. Gupta and Subrahmanyam (2005) examine many one- and two-factor

models (HW, HJM and LMM) for pricing and hedging interest rate caps and �oors.

Unlike Amin and Morton, they conclude that a one-factor lognormal forward rate

model outperforms other competing one-factor models in pricing accuracy, with

two factor models improving pricing performance only marginally. However, for

hedging, they �nd a signi�cant advantage in moving from one to two-factor models.

The caplets (four maturities: 2-, 3-, 4-, and 5-year) in their paper are hedged using

Eurodollar futures contracts up to a maturity of 10 years, in increments of 3 months.

The hedging rebalancing interval is 5-day and 20-day. Buhler, Uhrig, Walter and

Weber (1999) test di¤erent one- and two-factor models (four forward rate models

and three spot rate models) in the German �xed-income warrants market. They

found that the one-factor forward rate model with linear proportional volatility and

the two spot-rate models with two factors outperform the other models. Unlike

Gupta and Subrahmanyam (2005), they �nd no advantage in moving beyond a

one-factor model. Using 3 years of interest rate caps price data accross strikes,

Jarrow, Li, and Zhao (2007) show that even a three-factor model with stochastic

volatility and jumps cannot completely capture the smile/skew patterns observed

in this market.

In contrast to the cap/�oor market, few empirical studies have been conducted

on swaptions. Longsta¤, Santa-Clara, Schwartz (LSS, 2001a) use a string model to
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test the relative valuation of caps and swaptions using at-the-money cap and swap-

tions data, and �nd support for using model with at least four factors for pricing

swaptions. They use 34 swaptions data where the �nal maturity dates of the under-

lying swap are less than or equal to 10 years and the interest rate cap data consists

of weekly midmarket implied volatility for 2-, 3-, 4-, 5-, 7- and 10 years. Their

criterion for evaluating models is based on the sum of squared percentage pricing

errors. In other words, their criterion is based on pricing accuracy, not on hedging

precision. Peterson, Stapleton and Subrahmanyam (2003) develop an extension of

the lognormal model of Black and Karasinski (1991) to multiple factors and provide

evidence that the addition of a third factor is helpful in pricing swaptions.

Not all studies, however, indicate that multiple factors are necessary for im-

proving pricing performance for swaptions. For example, Driessen, Klaassen, and

Melenberg (2003) (hereafter DKM) investigate the performance of several Gaussian

models, where volatility structures are deterministic functions of their maturities.

They show that the out-of-sample pricing performance of swaption pricing models

does not necessarily improve as the number of factors increases. Indeed, one of

their one-factor models prices swaptions no worse than their multi-factor models

and to the same degree of accuracy as LSS�s multi-factor model. Jagannathan,

Kaplin and Sun (2003) investigate the pricing of swaptions using multifactor Cox,

Ingersoll and Ross models. Their preliminary conclusions suggest that increasing

the number of factors does not necessarily improve pricing performance. Indeed,

adding factors makes the pricing of short term contracts worse. Fan, Gupta and

Ritchken (2007) compare the pricing performance of several single and multi-factor

models with di¤erent volatility structures and identify those models that eliminate

most of the pricing biases in the swaption market. In this regard, their paper is

closely related to DKM and LSS. They �nd that for pricing swaptions, the bene�t

of increasing the number of factors beyond one is minor. Their results also show

that incorporating level dependence in the volatility structure is extremely impor-

tant for away-from-the-money caps, and that proportional dependent structures are
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better than both square root and level independent structures. For at-the-money

swaptions, the level dependence issue is minor.

Very few studies have compared the abilities of di¤erent models for hedging

swaptions. LSS brie�y consider hedging, in the context of their four-factor model,

relative to the Black model. The most related studies on swaptions hedging are

by DKM (2003) and Fan, Gupta and Ritchken (2003). DKM uses the caps with

maturities ranging from 1 to 10 years. For the swaptions, the option maturities

range from one month to �ve years while the swaps maturities range from 5 to 10

years. The hedging interval is two weeks, i.e., the value of the hedge portfolio is

calculated two weeks after the hedge portfolio is constructed. DKM use the HJM

model to demonstrate that if the number of hedge instruments (zero coupon bonds

with di¤erent maturities) is equal to the number of factors, multi-factor models

outperform one-factor models in hedging caps and swaptions. However, they claim

that by using a large set of hedge instruments, their one-factor models perform

as well as multi-factor models. This last �nding is the opposite of what Gupta

and Subrahmanyam (2005) �nd in the cap market. In the context of Unspanned

Stochastic Volatility (USV), Fan, Gupta, and Ritchken (2003) show that even swap-

tion straddles can be well hedged using Libor bonds alone if at least a three factor

model is used. HJM is used as the basic model in the hedging test. The volatilities

of U.S. dollar swaptions with expiration dates of six months and one, two, three,

four, and �ve years, with underlying swap maturities of two, three, four, and �ve

years. Di¤erent Libor discount bonds are used as the (factor) hedging instruments.

The hedge position is maintained unchanged for one week, and the hedged and un-

hedged residuals are obtained and stored. They then repeat this analysis for holding

periods of two, three, and four weeks. Fan, Gupta and Ritchken (2007) �nd that

multifactor models are essential for reducing the risk in hedged positions. They also

demonstrate that allowing additional hedging instruments in a one and two factor

model does not improve the results. Their main conclusion is that while accurate

swaption prices can be obtained from a one-factor model, one- and even two-factor
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models cannot hedge swaptions well, and the bene�ts of multifactor models are

signi�cant. The data for the study consists of USD swaption and cap prices. The

swaptions data set comprises volatilities of swaptions of maturities 6 months, 1-, 2-,

3-, 4-, and 5-years, with the underlying swap maturities of 1-, 2-, 3-, 4, and 5-years

each. The cap prices are for a ten-month period (March 1 - December 31, 1998),

across four di¤erent strikes (6.5%, 7%, 7.5%, and 8%) and four maturities (2-, 3-,

4-, and 5-year).

Some research has also been done regarding the importance of factors for pric-

ing Bermudan swaptions. Longsta¤, Santa-Clara and Schwartz (2001b) show that

exercise strategies based on one-factor models understate the true option value for

Bermudans. They contend that the current market practice of using one-factor

models leads to suboptimal exercise policies and a signi�cant loss of value for the

holders of these contracts. However, Andersen and Andreasen (2001) conclude that

the standard market practice of recalibrating one-factor models does not necessarily

understate the price of Bermudan swaptions. The authors do not investigate any

hedging issues however. Pietersz and Pelsser (2005) compare single factor Markov-

function and multifactor market models for hedging Bermudan swaptions. They

�nd that on most trade days the Bermudan swaption prices estimated from these

two models are similar and co-move together. Their results also show that delta and

delta-vega hedging performances of both models are comparable. The delta hedge

in their study is set up in terms of discount bonds, one discount bond for each tenor

associated with the deal. In the case of 10Y Bermudan with annual coupon, there

are 11 such discount bonds. The hedging is carried out daily. For the swaptions,

the option maturities range from one month to �ve years while the swaps maturities

range from 1 to 30 years.

3 The short rate models

Short rate model speci�es the behaviour of short-term interest rate, r. Short rate

model, as it evloved in the literature, can be classi�ed into equilibrium and no-
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arbitrage models. Equilibrium models are also referred to as �endogenous term

structure models� because the term structure of interest rates is an output of,

rather than an input to these models. If we have the initial zero-coupon bond

curve from the market, the parameters of the equilibrium models are chosen such

that the models produce a zero-coupon bond curve as close as possible to the one

observed in the market. Vasicek (1977) is the earliest and most famous general

equilibrium short rate model. Since the equilibrium models cannot reproduce exactly

the initial yield curve, most traders have very little con�dence in using these models

to price complex interest rate derivatives. Hence, no-arbitrage models designed to

exactly match the current term structure of interest rates are more popular. It

is not possible to arbitrage using simple interest rate instruments in this type of

no-arbitrage models. Two of the most important no-arbitrage short-rate models

are the Hull-White model (1990) and the Black-Karasinski (1991) model.

3.1 The Vasicek model

In the Vasicek (1977) model, the risk neutral process for r is

drt = k[� � rt]dt+ �dz;

where r0 (at t = 0), k, � and � are positive constants. This model is an Ornstein-

Uhlenbeck process, where the distribution of the short rate is Gaussian with mean

and variance,

E (rt) = rse
�k(t�s) + �

�
1� e�k(t�s)

�
; (1)

V ar (rt) =
�2

2k

h
1� e�2k(t�s)

i
for s � t: (2)

From equation (1), we can see that as t ! 1, E (rt) ! �. Thus short rate r is

mean reverting and � can be regarded as the long-term average rate. This is the �rst

interest rate model that incorporates mean reversion. With the normal distribution

assumption, short rates can be negative with positive probability, which is a major

drawback of the Vasicek model. However, the analytic tractability resulting from

the Gaussian distribution is the biggest attraction of this model.
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3.2 The Hull-White Model

Hull and White (1990) propose an extension of the Vasicek model so that it can

be consistent with both the current term structure of spot interest rates and the

current term structure of interest-rate volatilities. According to the Hull-White

model, also referred to as the extended-Vasicek model, the instantaneous short-rate

process evolves under the risk-neutral measure as follows:

drt = [�t � atrt]dt+ �tdz; (3)

where �, a and � are deterministic functions of time. The function �t is chosen so

that the model �ts the initial term structure of interest rates. The other two time-

varying parameters, at and �t, enable the model to be �tted to the market derivative

prices.1Hull and White (1994) note, however, that while at and �t allow the model

to be �tted to the volatility structure at time zero, the resulting volatility term

structure could be non-stationary in the sense that the future volatility structure

implied by the model can be quite di¤erent from the volatility structure today. On

the contrary, when these two parameters are kept constant, the volatility structure

stays stationary but model�s consistency with market prices of e.g. caps or swaptions

can su¤er considerably. Thus there is a trade-o¤ between tighter �t and model

stationarity. We will return to this issue again in Section 8,Page 25.

Hull and White (1994) introduce a constant parameter version of the model in

(3) as follows:

dr = [�t � a r]dt+ �dz; (4)

where a and � are positive constants and, as before, the function �t is chosen so

that the model �ts the initial term structure of interest rates. The parameter �t

here can be analytically computed as

�t = f(0; t) + a f(0; t) +
�2

2a
(1� e�2at); (5)

P (0; t) = e�f(0;t);

1The initial volatility of all rates depends on �(0) and a(t). The volatility of short rate at

future times is determined by �(t) (Hull and White 1996, p.9).
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where P (0; t) is the zero coupon bond price for maturity t.

The mean and variance of r(t) are given by

E (rt) = rse
�a(t�s) + �t � �se�a(t�s);

V ar (rt) =
�2

2a

h
1� e�2a(t�s)

i
;

for s � t, and

�t = f(0; t) +
�2

2a2
(1� e�at)2:

The Hull-White (1994) model has a great deal of analytic tractability. Under this

model, the price at time t of a discount bond maturing at time T is given by2

P (t; T ) = A(t; T )e�B(t;T )rt ;

where

B(t; T ) =
1

a

h
1� e�a(T�t)

i
;

A(t; T ) =
P (0; T )

P (0; t)
exp

�
B(t; T ) F (0; t)� �

2

4a

�
1� e�2at

�
B(t; T )2

�
:

The price at time t of a European option on a pure discount bond is given by

ZBO = z fP (t; s) N(zh)�X P (t; T ) N [z(h� �P )]g ; (6)

where s > T is the maturity date of the bond, T > t is the maturity date of the

option, X is the strike price, with z = 1 for call and z = �1 for put, and

h =
1

�P
ln

P (t; s)

P (t; T ) X
+
�P
2
;

�2P =
�2

2k
(1� e�2a(T�t)) B(T; S)2:

Equation (6) can also be used to price caplets and �oorlets since they can be viewed

as option on zero coupon bonds (see Appendix I). In HW model the distribution

of short rate is Gaussian. Gaussian distribution leads to a theoretical possibility of

short rate going below zero. Like the Vasicek model the possibility of a negative

interest rate is a major drawback of this model.
2For the corresponding formulas, when the two parameters are time-dependent see Hull-White

(1990, p. 577-579).
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3.3 The Black-Karasinski Model:

A model that addresses the negative interest rate issue of the Hull-White model is

the Black and Karasinski (1991) model. In this model, the risk neutral process for

logarithm of the instantaneous spot rate, ln rt is

d ln rt = [�t � at ln rt] dt+ �tdz; (7)

where r0 (at t = 0) is a positive constant, �t, at and �t are deterministic functions

of time. Equation (7) shows that the instantaneous short rate evolves as the ex-

ponential of an Ornstein-Uhlenbeck process with time-dependent coe¢ cients. The

function �t is chosen so that the model �ts the initial term structure of interest

rates. Functions at and �t are chosen so that the model can be �tted to some mar-

ket volatility curves. Based on the arguments given in Section 3.2, we can also have

the constant parameter version of (7) by setting at = a and �t = �; which leads to

d ln rt = [�t � a ln rt]dt+ �dz:

As before, the coe¢ cient a measures the speed at which ln rt tends towards its

long-term value, �t; and � is the volatility of the instantaneous spot rate. Unlike

the Hull-White model, the Black and Karasinski model does not yield analytical

formulas for discount bonds and interest rate options. Therefore, under this model,

pricing has to be performed through numerical procedure.

4 Research Design and Data

Let t denote a particular month in the period from February 2005 to September

2007. The procedure for calibrating, hedging and unwinding a 10 � 1 Bermudan

swaption are as follows:

(i) At month t, the short rate model is calibrated to 10 ATM co-terminal Euro-

pean swaptions underlying the 10�1 ATM Bermudan swaption by minimising

the root mean square of the pricing errors.
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(ii) The calibrated model from (i) is then used to price the 10�1 ATM Bermudan

swaption at t, and to calculate the hedge ratios using, as hedge instruments,

1-year, 5-year and 11-year swaps, all with zero initial swap value at time t.

(iii) A delta hedged portfolio is formed by minimising the amount of delta mis-

match.

(iv) At time t+12 (i.e. one year later), the short rate model is calibrated to 9 co-

terminal ATM European swaptions (9� 1; 8� 2; :::) underlying the Bermudan

swaption from (ii) which is now 9� 1.

(v) The calibrated model from (iv) is used to price the 9� 1 Bermudan swaption,

and the time t+ 12 yield curve is used to price the three swaps in (ii), which

are now 0 year, 4 years and 10 years to maturity.

(vi) The pro�t and loss is calculated for the delta hedged portfolio formed at t and

unwound at t+ 12.

(vii) Steps (i) to (vi) are repeated every month for t+1; t+2; � � � till T � 12 where

T is the last month of the sample period.

To perform the valuation and hedging analyses described above, the following

data sets are collected from Datastream:

(a) Monthly prices (quoted in Black implied volatility) of ATM European swap-

tions in Euro and USD. Two sets of implied vol were collected: from Febru-

ary 2005 to September 2006, prices of co-terminal ATM European swaptions

underlying the 10 � 1 Bermudan swaption, and from Fenruary 2006 to Sep-

tember 2007, prices of co-terminal ATM European swaptions underlying the

9�1 Bermudan swaption. These prices are quoted in Black implied volatility.

The implied vol matrix downloaded has a number of missing entries especially

in the earlier part of the sample period. The missing entries were �lled in

using log-linear interpolation following Brigo and Morini (2005, p 9, 24 and

25).
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(b) Annual yields, R0;t, for maturities up to 11 years are downloaded from Datas-

tream.3All other yields needed for producing the trinomial tree are calculated

using linear interpolation. These annual yields are converted to continuously

compounded yields, r0;t = ln(1 +R0;t).

(c) Monthly data of the annual yield curve for the period January 1999 to July

2007, i.e. total 103 observations are downloaded for Euro and USD. This

data was transformed into discrete forward rates (as in LMM) for use in the

principal component analysis.

(iv) Monthly data of 1-month yield for the period January 2000 to July 2007 was

downloaded for estimating the �mean-reversion�parameter. In the implemen-

tation, a time step (�t) of 0.1 year is used for constructing the trinomial tress,

which means that the rates on nodes of the tree are continuously compounded

�t-period rates. Here we have used the one-month yield as a proxy for the

�rst 0.1-year short rate.

5 Implementation of the one-factor short-rate models

Hull and White (1994) outline a trinomial tree building procedure for implementing

the one-factor constant parameter (a and �) model in equation (4). This proce-

dure can be adapted conveniently to implement the Ho-Lee model and the Black-

Karasinski model (with �a� and ��� constant). Later, Hull and White (2001)

extended the model to incorporate time varying parameters. If the time step used

for constructing tree is �t, then the rates on nodes of the tree are continuously

compounded �t-period rates. Thus the assumption is that the �t-period rate on

any node of the tree, follows the same stochastic short rate process in (4).

3The time step (�t) for the trinomial tress in the C++ program is 0.1 year. The C++ program

linearly interpolates all the required yields.
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5.1 Building trinomial tree for the one-factor Generalised Hull-

White model

In the generalised Hull-White model, the risk neutral process for some function of

the short-rate r, f(r), is

df(r) = [�t � at f(r)]dt+ �tdz:

When f (r) = r, the model becomes the Hull-White and when f(r) = ln r the model

becomes the Black-Karasinski model. Next, de�ne a new deterministic function g

and a new variable x,

dg = [�t � at gt]dt;

x(r; t) = f(r)� gt:

The process followed by this new variable x is

dx(r; t) = df(r)� dgt

= [�t � at f(r)]dt+ �tdz � (�t � at gt) dt

= �at xdt+ �tdz:

The initial value of g is chosen so that the initial value of x is 0. Since, the process

followed by x is mean reverting to 0 and the initial value of x is 0. Therefore, the

unconditional expected value of x at all future times is 0.

The construction of the Hull-White tree involves two stages: the �rst stage

builds a tree for x (as opposed to f(r)), while the second stage shifts the nodes of x

tree by the value of g at each point in time to produce the tree for f (r). Building a

tree for x requires the selection of (i) the spacing of the nodes in the time dimension,

(ii) the spacing of the nodes in the interest-rate dimension, and (iii) the branching

process for x(r; t) through the grid of nodes.

In selecting the time spacing, it is critical to ensure that the tree has placed

nodes at all cash �ow payment dates. Extra nodes can be added later to increase
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its precision. Then at time step ti, nodes are placed at ��xi;�2�xi; :::::::;�mi�xi,

where �mi are the indices of the highest and lowest nodes at each time step with

�xi = �(ti�1)
p
3(ti � ti�1): (28)

This value of �xi ensures that the spacing of the nodes at time ti is wide enough

to represent the volatility of x at that time.

Suppose that we are at node j�xi at time step i and the three successor nodes

at time step i+1 are (k+1)�xi+1; k�xi+1, and (k� 1)�xi+1: with probability of

branching pu; pm, and pd respectively. From the di¤usion process for x4

E(dx) =M = �x ati(ti+1 � ti) = �j�xi ati(ti+1 � ti)

and

E(dx2) = V +M2 = �2ti(ti+1 � ti) +M
2:

Matching the mean and variance gives

j�xi +M = k�xi+1 + (pu � pd)�xi+1; (29)

V + (j�xi +M)
2 = k2�x2i+1 + 2k(pu � pd)�x2i+1 + (pu + pd)�x2i+1:

Solving this gives

pu =
V

2�x2i+1
+
�2 + �

2
; (8)

pd =
V

2�x2i+1
+
�2 � �
2

;

pm = 1� V

�x2i+1
� �2;

where

� =
j�xi +M � k�xi+1

�xi+1
:

Hull and White (2001, p7) show that the following choice of k ensures that all the

probabilities stay positive.

k = round

�
j�xi +M

�xi+1

�
(9)

4When a and � are constant more accurate values are given by equation (18) and (19).
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where round(!) denotes ! round to the nearest integer. Using the procedures de-

scribed above, we determine the branches and branching probabilities for all nodes.

The procedure also determines the indices of the highest and lowest nodes at each

time step. The indices of the highest/lowest nodes at step i+1 i.e. �mi+1, depends

on the branching from the highest/lowest nodes at step i, i.e. on �mi. At step

0 there is only one node m0 = 0. Using equations (8) and (9) we determine the

branching process for the root node and thereby �m1, i.e. the index of highest and

lowest nodes at step 1. From this, iteratively, we can determine the indices of the

highest/lowest nodes for all the subsequent steps of the tree.

5.1.1 Adjusting the tree

Once the tree for the simpli�ed process is constructed, the next stage is to addgt

back to all the nodes in the x-tree to retrieve the �nal interest rate tree.5 From

equation (25), gt is a function of �t, and according to model speci�cation the func-

tion �t is chosen so that the model �ts the given term structure of interest rates.

Therefore all the nodes of the x-tree are adjusted so that prices of discount bonds

of all maturities should be consistent with the initial term structure observed in the

market. We illustrate below how gt is computed for each time step using forward

induction technique. To facilitate computations of gt, Hull and White introduces

a new variable Q(i; jjh; k) known as the Arrow-Debreu (AD) price. Q(i; jjh; k) is

de�ned as the value at node (h; k) of a security that pays $1 at node (i; j) and zero

otherwise. To simplify the notations Q(i; jj0; 0), referred to as the root AD price

for node (i; j) i.e. the value at node (0,0) of a security that pays $1 at node (i; j),

5From equation (26), f(r) = x(r; t) + gt.
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is denoted by Qi;j . Thus

Q0;0 = 1;

Q(i; jji� 1; k) = p(i; jji� 1; k) exp[�ri�1;k(ti � ti�1)]

Qij =
X
k

Q(i; jji� 1; k)Qi�1;k

=
X
k

p(i; jji� 1; k) exp[�ri�1(ti � ti�1)]Qi�1;k; (32)

where the summation is over all nodes at time step ti�1. Here, p(i; jjh; k) is the

probability of branching from node (h; k) to node (i; j), and ri;j is the interest rate

at node (i; j). Thus

ri;j = f
�1(xij + gti)

where xij is the value of x at node (i; j). This show that Qi;j can be calculated

once the root AD prices for all the nodes placed at time ti�1 have been calculated.

If Pi+1 is the price at node (0,0) of a discount bond that pays $1 at every node

at time step i+1 and Vij is the value of this bond at node (i; j), then

Vij = exp[�rij(ti+1 � ti)] = exp[�f�1(xij + g(ti))(ti+1 � ti)], and

Pi+1 =
X
j

QijVij =
X
j

Qij exp
�
�f�1(xij + gi)(ti+1 � ti)

�
; (33)

where the summation is over all nodes at time step ti�1. The value of gti is chosen so

that the value of discount bond computed using equation (33), i.e. the model price

matches the price of the discount bond computed from the current term structure,

i.e.

PM (0; ti+1) = Pi+1

PM (0; ti+1) =
X
j

Qij exp[�f�1(xij + gi)(ti+1 � ti)]; (34)

where PM (0; ti+1) is the market observed price at time 0 for the discount bond of

maturity ti+1 that can be calculated as

PM (0; ti+1) = e
�R(0;ti+1)ti+1 ;
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where R(t; T ) is market observed continuously compounded yield at time t on a

zero coupon bond (face value 1) that matures at T . In case of Hull-White model

f�1(xij + gi) = (xij + gi):

The solution to equation (34) is

gti =

ln
P
j
Qi;je

�xij � lnPM (0; ti+1)

(ti+1 � ti)
: (35)

For Black-Karasinski model

f�1(xij + gi) = exp(xij + gi);

and thus equation (34) takes the form

PMti+1 =
X
j

Qij [� exp(xij + gti)(ti+1 � ti)]: (36)

This equation can be solved using the Newton-Raphson procedure. Thus the steps

in stage two can be summarised as:

(i) Knowing the fact that Q00 = 1, we apply equations (35) and (36), depending

on the model to be implemented, and compute g0 and therefore r00.

(ii) This allows us to compute Q1js for every node j at step 1 using equation (33).

Once Q1js are calculated by solving equations (35) and (36), we can compute

g1, r1js and so on. This completes the construction of the interest rate tree that has

been �tted exactly to the current term structure. In this procedure the functional

form of the model, f(r), comes into play only when we �t the tree to the given term

structure. Before that step the tree building process is completely generic.

5.2 Pricing interest rate derivatives using trees

Trees are particularly useful for pricing early-exercise products such as the Bermudan-

style swaption. Once the tree is constructed we know the value of the payo¤ at each
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of the �nal node, and we can move backward in time, thus updating the value

of continuation through discounting. At each node of the tree we compare the

�backwardly-cumulated� value of continuation with the payo¤ evaluated at that

node (�immediate-exercise value�), thus deciding whether exercise is to be consid-

ered or not at that point. Once this exercise decision has been taken, the backward

induction restarts and we continue to propagate backwards. Upon reaching the

initial node of the tree (at time 0) we have the approximated price of our early-

exerciseproduct.

6 Interest Rate Derivatives

In this Section we discuss the payo¤s and important formulae for the European and

Bermudan swaptions. A European payer swaption is an option giving the right (and

no obligation) to enter a payer interest rate swap [IRS] at a given future time, the

swaption maturity. The underlying IRS length (T� � T� in our case) is called the

tenor of the swaption. The payo¤ of this swaption at time T� i.e. at time when

the option matures is,

SwaptionT� = A

 
�X

i=�+1

P (T�; Ti)�(fT�;Ti�1;Ti � k)
!+

(40)

where A is the notional principal, (x)+ � max(x; 0) is the positive-part operator

and ft;T;S is the discretely-compounded (Libor) forward rate prevailing at time t for

the expiry T and maturity S, and k is the �xed rate for the underlying swap.

According to market convention, the prices of swaptions are quoted in volatility

form and Black formula is used to convert swaptions�implied volatilities to its prices.

The Black option pricing formula for this payer swaption at time zero is

PSBlack0 = Az [S�;�(0)N(zd1)s� kN(zd2)]
�X

i=�+1

�P (0; Ti) (41)
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where

d1 =

ln

 
S�;�(0)

k
+
�2�;�T�

2

!
��;�

p
T�

d2 = d1 � ��;�
p
T� and z = 1

here ��;� is the volatility parameter quoted in the market and S�;�(0) is the forward

start swap rate at time 0. By substituting z = �1, we get Black formula for

equivalent receiver swaption. A swaption, either payer or receiver is said to be

at-the-money (ATM) if and only if

k = kATM := S�;�(0) =
P (0; T�)� P (0; T�)

�P
i=�+1

�P (0; Ti)

(42)

Substituting k from equation (42) in equation (41), we get following expression for

the payo¤ of the ATM payer swaption at time T�,

SwaptionT� = A

 
�X

i=�+1

P (T�; Ti)�fT�;Ti�1;Ti �
�X

i=�+1

P (T�; Ti)�k

!+
(43)

Putting in the value of fT�;Ti�1;Ti from footnote 8, equation (43) becomes

SwaptionT� = A

 
�X

i=�+1

P (T�; Ti)�

�
1

�

�
P (T�; Ti�1)

P (T�; Ti)
� 1
��

� �k
�X

i=�+1

P (T�; Ti)

!+

= A

 
�X

i=�+1

fP (T�; Ti�1)� P (T�; Ti)g � �k
�X

i=�+1

P (T�; Ti)

!+
: (44)

Now

�X
i=�+1

fP (T�; Ti�1)� P (T�; T )g

= fP (T�; T�)� P (T�; T�+1)g+ fP (T�; T�+1)� P (T�; T�+2)g

+::::: fP (T�; T��1)� P (T�; T�)g

= fP (T�; T�)� P (T�; T�)g

= f1� P (T�; T�)g
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Putting the value of
�X

i=�+1

fP (T�; Ti�1)� P (T�; T )g

as calculated above, in equation (44) we get

SwaptionT� = A

 
1�

(
P (T�; T�)� �k

�X
i=�+1

P (T�; Ti)

)!+
(45)

This is identical to the payo¤ of a put option on a coupon bond with coupon rate

k payable at times Ti i.e. the reset dates of the IRS underlying the swaption, with

strike 1. The coupon face value is $1. An equivalent relation can be derived for

receiver swaption using call option on a coupon bond. Therefore, we can conclude

that the task of pricing a swaption is identical to that of pricing a suitable option

on a coupon bond.

7 Calibration

The �mean reversion rate�parameter for the two models has been extracted from

historical interest rate data. Practitioners and econometricians often use historical

data for inferring the �rate of mean reversion� (Bertrand Candelon and Luis A.

Gil-Alana (2006)). In this study we calibrate the two models with time-dependent

short- rate volatility, �(t), and constant rate of mean reversion, a.

7.0.1 Parameterisation of �(t)

There can be di¤erent ways to parameterise the time-dependent parameter: it can

be piecewise linear, piecewise constant or some other parametric functional form can

be chosen. In this study, the volatility parameter has been parameterised as follows:

The last payo¤ for the all the instruments that need to be priced in this study would

be at 11 years point of their life. We explicitly decided these three points, because

values of �(t), t = 0; 3; 11 on these three points can be interpreted as instantaneous,

short term and long term volatility. These three volatility parameters are estimated
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through the calibration process. The volatilities for the time periods in between

these points are linearly interpolated.

7.0.2 Choosing calibration instruments

A common �nancial practice is to calibrate the interest rate model using the instru-

ments that are as similar as possible to the instrument being valued and hedged,

rather than attempting to �t the models to all available market data. In this study

the problem at hand is to price and hedge 10 � 1 Bermudan. For this 10 � 1

Bermudan swaption the most relevant calibrating instruments are the 1� 10, 2� 9,

3�8; � � � :; 10�1 co-terminal European swaptions. (A n�m swaption is an n-year

European option to enter into a swap lasting for m years after option maturity.)

The intuition behind this strategy is that the model when used with the parame-

ters that minimise the pricing error of these individual instruments would price any

related instrument correctly. Therefore these 10 European swaptions are used for

calibrating the two models for pricing 10�1 Bermudan swaption.6 When the mod-

els are used for pricing 9� 1 Bermudan swaption we use nine European swaptions;

1 � 9, 2 � 8; � � � :; 9 � 1 for calibrating the models. (�0, �3 and �11 for the 10x1

Bermudan swaption and �0, �2 and �10 for the 9x1 Bermudan swaption)

7.0.3 Goodness-of-�t measure for the calibration

The models are calibrated by minimising the sum of squared percentage pricing

errors between the model and the market prices of the co-terminal European swap-

tions, i.e. the goodness-of-�t measure is

min
nP
i=1

�
Pi;n;model
Pi;n;market

� 1
�2

where Pi;n;market is the market price and Pi;n;model is the model generated price of

the i � (n� i) European swaptions, with n = 11 when models are calibrated to

price 10 � 1 year Bermudan swaption and n = 10 when models are calibrated to

6Pietersz and Pelsser (2005) followed the same approach.
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price 9 � 1 year Bermudan swaption. Instead of minimising the sum of squared

percentage price errors alternatively we could have minimised the sum of squared

errors in prices. However, such a minimisation strategy would place more weight

on the expensive instruments. Minimisation of squared percentage pricing error is

typically used as a goodness-of-�t measure for similar calibrations in literature and

by practitioners.

7.0.4 NAG routine used for calibration

We need to use some optimization technique to solve the minimization problem

mentioned in the last section. Various o¤-the shelf implementations are available

for the commonly uses optimization algorithms. We have used an optimisation

routine provided by the Numerical Algorithm Group (NAG) C library.

The NAG routine (e04unc) solves the non-linear least-squares problems using

the sequential quadratic programming (SQP) method. The problem is assumed to

be stated in the following form:

min
x2Rn

F (x) =
1

2

nX
i=1

fyi � fi(x)g2

where F (x) (the objective function) is a nonlinear function which can be repre-

sented as the sum of squares of m sub-functions (y1 � f1 (x)), (y2 � f2 (x)), � � � ,

(yn � fn (x)). The ys are constant. The user supplies an initial estimate of the so-

lution, together with functions that de�ne f(x) = (f1 (x) ; f2 (x) ; � � � ; fn (x)) and as

many �rst partial derivatives as possible; unspeci�ed derivatives are approximated

by �nite di¤erences.

In order to use this routine, for our calibration purpose we did following:

(i) Set �s to 1.

(ii) n = 10/9 , depending on the number of calibration instruments

(iii) fi (x) =
Pi;n;model
Pi;n;market

(iv) Set initial estimates for all the three parameters as 0.01 i.e. 1%.
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(v) Set a lower bound of 0.0001 and upper bound of 1 for the three parameters

to be estimated.

Because of the complexity of our objective function partial derivatives are not

speci�ed and therefore the routine itself approximates partial derivatives by �nite

di¤erences.

7.1 Estimating mean reversion parameter (a)

As stated in the start of this section, the mean-reversion parameter has been es-

timated from historical data of interest rates. To measure the presence of mean

reversion in interest rates we need large data set. This study spans over a period of

one year, and within this one-year period models are calibrated every month. Hence

it does not make sense to estimate this parameter for any economy on a monthly

basis. Therefore, using historical data, once we estimate the value of this parameter

and then use this value in all the tests.

For the rate of mean reversion parameter �a��rst order autocorrelation of the

1 month interest rate series has been used. Here we present the basic idea be-

hind the estimation procedure used. Under the HW model, the continuous time

representation of the short rate process is

drt = [�t � a rt]dt+ �tdz;

The discrete-time version of this process would be

rt+1 � rt = [�t � art] + "t+1;

rt+1 = �t + (1� a)rt + "t+1 (46)

where "t+1 is a drawing from a normal distribution. Equation (46) represents an

AR(1) process.

An autoregressive (AR) process is one, where the current values of a variable

depends only upon the values that variable took in previous periods plus an error

24



term. A process yt is autoregressive of order p if

yt = �0 + �1yt�1 + �2yt�2 + ::::+ "t; "t � N(0; �2):

An ordinary least square (OLS) estimate of coe¢ cient (1 � a) in equation (46) �̂

would be7

1� a = �̂ =
��(rt+1)�(rt)

�2(rt)
= �

a = 1� �

where � is the correlation coe¢ cient between rt+1 and rt and can be easily calculated

using Excel. For the BK model we perform this regression using time series of ln(r),

where as before r, is 1M interest rate.

8 Hedging Bermudan Swaption

Changes in the term structure can adversely a¤ect the value of any interest rate

based asset or liability. Therefore, protecting �xed income securities from un-

favourable term structure movements or hedging is one of the most demanding

tasks for any �nancial institutions and for the ALM group in particular. Ine¢ cient

hedging strategies can cost big prices to these institutes. In order to protect a

liability from possible future interest rate changes �rst one need to generate real-

istic scenarios and then need to know how the impacts of these scenarios can be

neutralised. Thus, two important issues to be addressed by any interest rate risk

management strategy are: (i) how to perturb the term structure to imitate pos-

sible term structure movements (ii) how to immunise the portfolio against these

movements.

Next sections explain the methodologies applied in this study for

7For the regression yi = �+ �xi + "i;, the OLS estimate of � is

�̂xy =
�xy�x�y

�2xy
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(i) estimating the perturbations by which the input term structure had been

bumped to simulate the possible future changes in the input term structure

(ii) selecting hedge instruments

(iii) delta-hedging the underlying Bermudan swaption using the selected instru-

ments.

(iv) calculating possible pro�ts and losses (P&L).

In each section we have examples from literature have been referred to justify

the choices made.

8.1 Perturbing the term structure

Over the years researchers and practitioners have been using duration analysis for

interest rate risk management, i.e. they shift the entire yield curve upward and

downward in a parallel manner and then estimate how the value of their portfolio

is a¤ected as a result of these parallel perturbations. They then hedge themselves

against these risks. Parallel shifts are unambiguously the most important kind of

yield curve shift but alone cannot explain completely explain the variations of yield

curve observed in market. Three most commonly observed term structure shifts are:

Parallel Shift where the entire curve goes up or down by same amount; Tilt, also

known as slope shift, in which short yields fall and long yields rise (or vice versa);

Curvature shift in which short and long yields rise while mid-range yields fall (or

vice versa). These three shifts together can explain almost all the variance present

in any term-structure and thus and one should not completely rely on duration

and convexity measures for estimating the risk sensitivity of a �xed income secu-

rity. There are numerous examples in literature to support this argument. Here,

we mention a few studies that lead to this conclusion. Litterman and Scheikman

(1991) performed principal components analysis (PCA) and found that on average

three factors, referred to as level (roughly parallel shift), slope, and curvature, can
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explain 98.4% of the variation on Treasury bond returns. They suggested that �by

considering the e¤ects of each of these three factors on a portfolio, one can achieve

a better hedged position than by holding a only a zero-duration portfolio�.8 Knez,

Litterman, and Scheikman (1994) investigated the common factors in money mar-

kets and again they found that on average three-factors can explain 86% of the total

variation in most money market returns whereas on average four factors can explain

90% of this variation. Chen and Fu (2002) performed a PCA on yield curve and

found that the �rst four factors capture over 99.99% of the yield curve variation.

They too claimed that hedging against these factors would lead to a more stable

portfolio and thus superior hedging performance.

Based on the �ndings of these studies, in this study we performed PCA on

historical data for estimating more realistic term structure shifts. In this study

we performed PCA on annual changes of the forward rates and used scores of the

�rst three principal components for estimating the shifts by which we bumped the

forward rate curves. There are not many examples of estimating price sensitivities

w.r.t. multiple factors (like 3 principal components here) with a one-factor term

structure model. Generally risk sensitivities are calculated by perturbing only the

model intrinsic factors i.e. for the one-factor model, only one-factor is perturbed

and so on.

PCA has been performed on annual changes of forward Libor rates. Annual

changes have been used because each hedge is maintained for one year. The reason

for using forward rates rather than yield curve for doing PCA is two folds: �rst

forward Libor rates are directly observable in market. Second using forward curves

easily we can construct zero-curve and swap curve (needed for estimating interest

rate sensitivities of swaps that are used for hedging). Without going into the math-

ematical details of this procedure, here, we brie�y describe how PCA has been done

for estimating the term structure shifts/bumps in the study:9

8Litterman and Scheikman (1991, 54)
9For details on PCA refer http://csnet.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
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Monthly observations of 11 forward Libor rates (f0;0;1; f0;1;2; f0;2;3; :::; f0;10;11) for

the period Jan 1999 to Dec 2006 have been used for PCA. Explicitly these

rates have been used because we give annual zero curve of maturity till 11

years as input to our short rat models and we want to estimate bumps for all

these maturities.10

Using these monthly observations of the 11 forward rates we calculate annual

changes for each of the 11 forward rates as follows. Suppose we have monthly

observations of the 11 forward rates for a period of n years i.e. in total we

have 12� n monthly observations of forward Libor rates f0;�j ;�j+1(ti), where

i = 1; 2; � � � ; 12�n and � j = 0; 1; 2; ::; 10. When the observations are arranged

in ascending order (by date) then annual change for the forward Libors can

be calculated as

cLi;j = f0;�j ;�j+1(ti + 12)� f0;�j ;�j+1(ti)

now i = 1; 2; : : : ; 12�(n�1). These values would form a 12�(n-1) x 11 matrix

i.e. we have 12 less entries. To clear this, say ti= Jan 1999, and � j = 0. Then

f0;0;1(ti)is value of f0;0;1 on Jan 1999; f0;0;1(ti+12)is the value of f0;0;1 on Jan

2000 and cL is the one-year change in the market observed value of f0;0;1.

The matrix cLi;j is given as input to the NAG routine (g03aac) that performs

�principal component analysis�on the input data matrix and returns princi-

pal component loadings and the principal component scores. The other im-

portant statistics of the principal component analysis reported by the routine

are : the eigen values associated with each of the principal components in-

cluded in analysis and the proportion of variation explained by each principal

component.

We used the scores of �rst three factors to calculate the three types of shifts for

10As we know that this dissertation is a part of a big project. The models to be implemented

are LMM and SMM. These maturity forward rates are also needed by these two models.
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the 11 forward Libor rates using following regression:

�f0;�j ;�j+1 = �+ ��j ;1P1 + ��j ;2P2 + ��j ;2P3 + "

Where � j = 0; 1; 2; ::; 10 and Pk is the vector of scores for the kth factor

k = 1; 2; 3. Nag routine (g02dac) has been employed to perform this regres-

sion. The routine computes parameter estimates, the standard errors of the

parameter estimates, the variance�covariance matrix of the parameter esti-

mates and the residual sum of squares.

After performing the regressions speci�ed above, the 11 forward rates are bumped

by shocks corresponding to the �rst three factors as:

f�0;�j ;�j+1 = f0;�j ;�j+1 � ��j;k�Pk

where � j = 0; 1; 2; ::; 10; and k = 1; 2; 3.

This gives us 6 new sets of term structure, along with the original input term

structure for each of the days on which we will hedge the Bermudan swaption

8.2 Choosing the hedge instruments

Selecting appropriate hedge instruments is a critical part of a successful hedging

strategy. In literature there are evidences of two hedging strategies, factor hedging

and bucket hedging. For factor hedging, in a K-factor model, K di¤erent instruments

(together with the money market account) are used to hedge any derivative. The

choice of hedge instruments is independent of the derivative to be hedged i.e., the

same K hedging instruments can be used for hedging any derivative in a K-factor

model, and depend only on the number of factors in the model. For bucket hedging

the choice of hedge instruments depend on the instrument to be hedged and not on

the factors in the model. In this hedging strategy number of hedge instruments is

equal to the number of total payo¤s provided by the instrument. The hedge instru-

ments are chosen so their maturities correspond to di¤erent payment or decision

dates of the underlying derivative.
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On using any other criteria for selecting the hedge instruments, the number of

hedge instruments will lie between the numbers of hedge instruments for these two

hedging strategies. Before discussing the instruments that are used to delta-hedge

the Bermudan swaption in this study, in this section �rst we brie�y discuss a few

examples from literature. Driessen, Klaassen and Melenberg (2002) used (delta-)

hedging of caps and swaptions as criteria for comparing the hedge performance of

HJM class models and Libor market models. They used zero coupon bonds as hedge

instruments. For each model, they considered factor and bucket hedging strategies.

DKM show that when bucket strategies are used for hedging, the performance of the

one-factor models improves signi�cantly Fan, Gupta and Ritchken (2006) also used

e¤ectiveness of delta neutral hedges (for swaptions) as criteria for comparing the

hedging performance of single factor and multi-factor factor term structure models.

They used discount bonds to delta-hedge swaptions. In this study they �rst applied

factor hedging for choosing the hedge instruments and found that in context of

hedging performance, multifactor models outperform single factor models. Next in

light of the DKM results, they repeated their experiments using additional hedging

instruments. They found that for the one-factor and two factor models adding more

instruments did not result into better hedge results. Pietersz and Pelsser (2005)

compared joint delta-vega hedging performance (for 10x1 Bermudan swaption) of

single factor Markov-functional and multi-factor market models. They used the

bucket hedging strategy and set up hedge portfolios using 11 discount bonds, one

discount bond for each tenor time associated with the deal. They found that joint

delta-vega hedging performance of both models is comparable

The general implications of these examples are:

(i) E¤ectiveness of delta neutral hedges is often used to evaluate the hedging

performance of term structure models.

(ii) Using multiple instruments can improve the hedge performance of one factor

models. Practitioners also favour this practice
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Therefore, in this study, we decide to use two di¤erent swaps of maturities 5 and

11years as hedge instruments. Maturity of 11-year swap coincides with the maturity

of the co-terminal Bermudan swaption to be hedged and the length of other swap

is almost half way the life of this Bermudan swaption. We could have used discount

bonds to hedge this Bermudan swaption11 but use of swap is more in line with the

general practitioners practice. Studies suggest that large banks tend to use interest

rate swaps more intensively for hedging.

8.3 Constructing delta hedged portfolio

To illustrate the idea behind deltas�calculations we �rst present a simple example

that uses a call option on a stock. The delta (�) of an option is de�ned as the

rate of change of the option price with respect to the price of the underlying asset.

Mathematically, delta is the partial derivative of the option�s value with respect to

the price of the underlying stock.

� =
@C

@S

where C is the price of the call option and S is the stock price. From the Taylor

expansion

C(S + ") = C(s) + "C 0(S) +
1

2
"2C 00(S) + :::::

where C (S + ") is the option price when value of the underlier has been changed

by ". When " is small, the second-order term can be ignored and delta can be

calculated as

� = C 0(S) =
C(S + ")� C(S)

"
(46)

Delta hedging is the process of keeping the delta of a portfolio equal to or as close

as possible to zero. Since delta measures the exposure of a derivative to changes in

the value of the underlying, the overall value of a portfolio remains unchanged for

small changes in the price of its underlying instrument. A delta hedged portfolio

is established by buying or selling an amount of the underlier that corresponds to

11Pietersz and Pelsser (2005) used discount bonds to hedge Bermudan swaption
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the delta of the portfolio. For example if the call option in this example has a delta

of 0.25 then a delta neutral portfolio would consist of: Long 1 call and Short 0.25

shares. In this case the value of portfolio =1� C � 0:25� S.

If the price of stock rises by $1.0, then according to de�nition of delta, the price

of the call will rise by $0.25. In this case the value of portfolio is

1� (C + 0:25)� 0:25� (S + 1:0) = C � 0:25� S:

Thus, the total value of the portfolio remains.

The same idea can be applied for estimating the interest rate risk sensitivity of

a �xed income security. If the entire initial term structure is perturbed by same

amount say " (parallel shift), then like in equation (46) the risk sensitivity of a �xed

income security w.r.t. this perturbation can be estimated as

V (")� V
"

where V is the value of the derivative calculated using initial term structure and

V (") is the value of the derivative after the initial term structure is perturbed by

". If we �rst increase the entire initial term structure by " and then next decrease

it by ", then the risk sensitivity can estimated as

V ("+)� V ("�)
2"

(47)

where V ("+) is the value of the derivative calculated after initial term structure

has been shifted up by " and V ("�) is the value of the derivative after the initial

term structure has been shifted down by ". In our case we have bumped the initial

forward rate curve by three factors. Also for each factor, we have bumped the

forward rate curve both up and down. Using the idea presented in equation (47),

we estimate the sensitivity (delta) of the Bermudan swaption and the two swaps
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w.r.t the three factors as follows

�Bermk =
@BSwn

@Pk
=
BSwn+k �BSwn

�
k

2�Pk

�S1k =
@S1
@Pk

=
(S1)

+
k � (S1)

�
k

P+k � P
�
k

=
(S1)

+
k � (S1)

�
k

2�Pk

�S5k =
@S5
@Sk

=
(S5)

+
k � (S5)

�
k

P+k � P
�
k

=
(S5)

+
k � (S5)

�
k

2�Pk

�S11k =
@S11
@Pk

=
(S11)

+
k � (S11)

�
k

P+k � P
�
k

=
(S11)

+
k � (S11)

�
k

2�Pk

for k = 1; 2; 3, and (:)+k and (:)
�
k respectively are the prices of derivative after the

initial forward curve has been bumped up and down by the kth factor. Now if we

consider a portfolio, consisting of one 10 � 1 Bermudan swaption, x11 units of 11-

year swap and x5 units of 5-year swap, then total delta mismatch of this portfolio

w.r.t. kth factor, "k is

�"k = �
BSwn
k � x11�S11k � x5�S5k � x1�S1k (10)

assuming that x11, x5 and x1 need not to be whole numbers. From equation (10), we

can see that when we use more than one hedging instrument in a one-factor model,

the hedge ratios would not be unique, and some rule must be applied for constructing

the hedge portfolio using the chosen hedge instruments. Here, to obtain the hedge

ratios, x11, x5 and x1, we use the basic idea behind the delta hedging. The three

hedge ratios x11, x5 and x1 are obtained by minimizing the total delta-mismatch of

the portfolio with respect to the �rst three PCA factors, i.e.

min
x11;x5;x1

3X
k=1

(�"k)
2

where �"k is given by equation (10).

8.4 Calculating P&L

Once hedge has been established on say day t, the hedge error can be evaluated one

year later on day t+1 as followsOnce the hedging portfolio has been established on
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date t, the hedging error can be evaluated one year later at t+ 1 as follows:

P&Lt+1 = (BSwnt � x11;tS11;t � x5;tS5;t � x1;tS1;t)� (1 + y0;t)

�(BSwnt+1 � x11;tS10;t+1 � x5;tS4;t+1 � x1;tS0;t+1) (11)

where BSwnt is the value of the Bermudan swaption on day t; x�;t are units of

� -year swap in the hedge portfolio; S�;t is the value of � -year swap on day t; and

y0;t is the current 1-year yield at t.

Since, at the point of initiation, the value of any swap is zero, this means that

S11;t = S5;t = S1;t = 0: Therefore, equation (11) can be written as

P&Lt+1 = BSwnt�(1+y0;t)�BSwnt+1+x11;tS10;t+1+x5;tS4;t+1+x1;tS0;t+1: (12)

To calculate the price of BSwnt+1, which is now a 9 � 1 Bermudan swaption, we

recalibrate at t+ 1, the interest rate models and use the new calibrated parameter

values to calculate the model price of this possibly away-from-money 9�1 Bermudan

swaption BSwnt+1: Strike rate for this 9� 1 Bermudan swaption is kept the same

as it was for the 10� 1 Bermudan swaption on day t, as the objective is to �nd the

current value of that old swaption. We also use the t+1 term structure to calculate

the values of the three swaps at t+ 1.

where Bt is the value of a 10� 1 Bermudan swaption on day t; xk;t are units of

k-year swap in the hedge portfolio; Sk;t is the value of k-year swap on day t; and

i0;t: is the forward Libor f0;0;1 on day t.

At the point of initiation the value of any swap is zero. This means S11;t = 0

and also S5;t = 0: Therefore, equation (49) can be written as

P&Lt+1 = BSwnt�(1+y0;t)�BSwnt+1+x11;tS10;t+1+x5;tS4;t+1+x1;tS0;t+1: (13)

One year later, on day t+1, when hedge portfolio is unwound the 10�1 Bermudan

swaption is a 9 � 1 Bermudan swaption. On day t + 1, we recalibrate the model

and using new parameters calculate the model price of this away-from-money 9� 1

Bermudan swaption Bt+1: Strike rate for the 9�1 Bermudan swaption is kept same
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as it was for the 10 � 1 Bermudan swaption on day t, as objective is to �nd the

current value of that old swaption. We also calculate the values of the two swaps on

day t+1 Using the example of 5-year swap we show, how the swaps are re-evaluated

one year later on day t+ 1.

At the time of swap initialisation, i0;t is known

i0;t =

�
1

P (0; 1)
� 1
�

and the swap rate k5;t for a 5-year swap on day t and can be calculated as

k5;t =
1� P (0; 5)

P (0; 1) + P (0; 2) + :::+ P (0; 5)

At time t+1, this 5-year swap is just a 4-year swap and also �oating rate i0;t+1 for

the next reset is now known. The value of this swap at t+ 1 would be

S5;t+1 = (i0;t � k5) + (i0;t+1 � k5)P (0; 1) + (~{1;t+1 � k5)P (0; 2)

+(~{2;t+1 � k5)P (0; 3) + (~{3;t+1 � k5)P (0; 4)

= (i0;t � k5) +
��

1

P (0; 1)
� 1
�
� k5

�
P (0; 1)

+

��
P (0; 1)

P (0; 2)
� 1
�
� k5

�
P (0; 2) +

��
P (0; 2)

P (0; 3)
� 1
�
� k5

�
P (0; 3)

+

��
P (0; 3)

P (0; 4)
� 1
�
� k5

�
P (0; 4)

= (i0;t � k5) + [1� P (0; 4)]� k5 [P (0; 1) + P (0; 2) + P (0; 3) + P (0; 4)]

= (i0;t � k5) +
��

1� P (0; 4)
P (0; 1) + P (0; 2) + P (0; 3) + P (0; 4)

�
� k5

�
[P (0; 1) + P (0; 2) + P (0; 3) + P (0; 4)]

= (i0;t � k5) + [k4;t+1 � k5] [P (0; 1) + P (0; 2) + P (0; 3) + P (0; 4)]

where k4;t+1 would be the swap rate for any 4-year swap that would be initiated on

day t+1. When the swap is re-evaluated on day t+1 all the discount bonds�prices

are computed using the yield curve observed on that day.
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9 Results

In this section, we report the results of our study. The notional principal is 1 for

all the contracts considered in this study.

9.1 Calibration

In this study we have used the two short rate models with time varying volatility

parameter. In Section 6 we have discussed the pros and cons of such a parameteri-

sation in detail. In Table 1 and Figure 2 we present one set of pricing errors for the

European swaptions obtained by using two alternative parameterisations.

As expected, we can see that introducing an extra time-vary parameter signi�-

cantly improves the �t. This, thereby support our parameterisation. In the rest of

this section we only report results for the models with time�varying � parameter.

The �mean-reversion�parameter is kept constant for the two models.

Though neither of the two models could be tuned to exactly replicate the market

prices of the instruments that have been used for the calibration but the RMSE are

quite low for both models. But as compared to the BK model, the HW model has

been better �tted to the market observed prices of European swaptions.

9.2 Parameter estimates

9.2.1 Rate of mean-reversion

For both models the rate of mean reversion parameter (a) has been estimated us-

ing historical data of 1 M yields for Euro and USD. The estimated values of this

parameter are:

HW BK

EUR 0.01 0.0087

USD 0.006 0.006
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Table 1: Root mean square error to European co-terminal swaptions (11Y and 10Y)

in EUR and USD markets from February 2005 to September 2007
EUR 11Y USD 11Y 

Date HW BK Date HW BK
2005-2-28 0.4% 0.4% 2005-2-28 0.6% 0.7%
2005-3-31 0.5% 0.6% 2005-3-31 0.5% 0.7%
2005-4-29 0.5% 0.7% 2005-4-29 0.5% 0.7%
2005-5-31 0.6% 0.7% 2005-5-31 0.6% 0.6%
2005-6-30 0.3% 0.3% 2005-6-30 0.0% 0.8%
2005-7-29 0.3% 0.5% 2005-7-29 0.9% 0.8%
2005-8-31 0.5% 0.8% 2005-8-31 0.6% 0.7%
2005-9-30 0.6% 0.8% 2005-9-30 0.6% 0.7%
2005-10-31 0.9% 1.1% 2005-10-31 0.4% 0.5%
2005-11-30 0.5% 0.7% 2005-11-30 0.6% 0.6%
2005-12-30 0.4% 0.5% 2005-12-30 0.5% 0.5%
2006-1-31 0.6% 0.6% 2006-1-31 0.5% 0.5%
2006-2-28 0.5% 0.5% 2006-2-28 0.8% 0.8%
2006-3-31 0.4% 0.5% 2006-3-31 0.7% 0.7%
2006-4-28 0.6% 0.7% 2006-4-28 0.7% 0.8%
2006-5-31 0.4% 0.5% 2006-5-31 0.9% 0.9%
2006-6-30 0.5% 0.5% 2006-6-30 0.6% 0.7%
2006-7-31 0.4% 0.5% 2006-7-31 0.8% 0.8%
2006-8-31 0.4% 0.6% 2006-8-31 0.9% 0.9%
2006-9-29 0.3% 0.2% 2006-9-29 1.0% 1.0%
Total 9.3% 11.9% Total 12.8% 14.5%

EUR 10Y USD 10Y
Date HW BK Date HW BK
2006-2-28 0.3% 0.3% 2006-2-28 0.8% 0.8%
2006-3-31 0.2% 0.3% 2006-3-31 0.7% 0.7%
2006-4-28 0.5% 0.6% 2006-4-28 0.5% 0.6%
2006-5-31 0.3% 0.3% 2006-5-31 0.7% 0.9%
2006-6-30 0.4% 0.5% 2006-6-30 0.6% 0.6%
2006-7-31 0.3% 0.3% 2006-7-31 0.8% 0.9%
2006-8-31 0.4% 0.5% 2006-8-31 0.7% 0.7%
2006-9-29 0.2% 0.2% 2006-9-29 0.7% 0.8%
2006-10-31 0.7% 0.6% 2006-10-31 0.8% 0.8%
2006-11-30 0.4% 0.4% 2006-11-30 0.4% 0.4%
2006-12-29 0.6% 0.5% 2006-12-29 0.5% 0.6%
2007-1-30 0.4% 0.6% 2007-1-30 0.2% 0.3%
2007-2-28 0.3% 0.3% 2007-2-28 0.3% 0.3%
2007-3-31 0.3% 0.2% 2007-3-31 0.4% 0.0%
2007-4-30 0.3% 0.3% 2007-4-30 0.4% 0.5%
2007-5-31 0.3% 0.3% 2007-5-31 0.7% 0.8%
2007-6-30 0.3% 0.3% 2007-6-30 0.2% 0.2%
2007-7-29 0.4% 0.4% 2007-7-29 0.3% 0.3%
2007-8-31 0.7% 0.7% 2007-8-31 0.2% 0.3%
2007-9-28 0.6% 0.6% 2007-9-28 0.5% 0.6%
Total 8.2% 8.3% Total 10.6% 11.1%

Note: HW stands for Hull-White model, BK stands for Black-Karasinski
model. '11Y' denotes calibration results  for 11Y co-terminal ATM
European swaptions from Feburary 2005 to September 2006; '10Y' denotes
calibration results  for 10Y co-terminal European swaptions from Feb 2006
to Sep 2007.  'EUR' denotes Euro market and 'USD' denotes US-dollar
market.

37



F
ig
ur
e
1:
R
oo
t
m
ea
n
sq
ua
re
er
ro
r
of
pr
ic
es
by
da
te
fr
om

ca
lib
ra
ti
on
to
11
Y
co
-t
er
m
in
al
E
ur
op
ea
n
sw
ap
ti
on
s
ov
er
th
e
p
er
io
d

of
Fe
br
ua
ry
20
05
to
Se
pt
em
b
er
20
06

N
ot

e:
 H

W
 st

an
ds

 fo
r H

ul
l-W

hi
te

 m
od

el
; B

K
 st

an
ds

 fo
r B

la
ck

-K
ar

as
in

sk
i m

od
el

.

11
Y

 E
U

R

0.
0%

0.
2%

0.
4%

0.
6%

0.
8%

1.
0%

1.
2% Feb

-05

Apr-
05

Jun
-05

Aug
-05

Oct-
05

Dec-
05

Feb
-06

Apr-
06

Jun
-06

Aug
-06

H
W

B
K

11
Y

 U
SD

0.
0%

0.
2%

0.
4%

0.
6%

0.
8%

1.
0%

1.
2%

Feb
-05

Apr-
05

Jun
-05

Aug
-05

Oct-
05

Dec-
05

Feb
-06

Apr-
06

Jun
-06

Aug
-06

H
W

B
K

10
Y

 E
U

R

0.
0%

0.
1%

0.
2%

0.
3%

0.
4%

0.
5%

0.
6%

0.
7%

0.
8% Feb

-06
Apr-

06

Jun
-06

Aug
-06

Oct-
06

Dec-
06

Feb
-07

Apr-
07

Jun
-07

Aug
-07

H
W

B
K

10
Y

 U
SD

0.
0%

0.
1%

0.
2%

0.
3%

0.
4%

0.
5%

0.
6%

0.
7%

0.
8%

0.
9%

1.
0% Feb

-06
Apr-

06

Jun
-06

Aug
-06

Oct-
06

Dec-
06

Feb
-07

Apr-
07

Jun
-07

Aug
-07

H
W

B
K

38



9.2.2 Volatility

To compare the stability of the parameters, the results for the HW and BK models

in EUR and USD market are displayed in Table 2 and Table 3 respectively. To

further facilitate the comparison, summary statistics are reported in Figure 2.

At �rst glance, we can note that the magnitudes of the volatility parameter

for the BK model are a lot higher than for the HW model. This is due to the

di¤erent functional forms of the two models. In case of the HW model the volatility

parameter corresponds to the standard deviation of annual changes in the short-

term interest rate, whereas in case of the BK model the volatility parameter is the

standard deviation of proportional changes in the rate. As explained by Hull-White

(2000, p15), �if interest rates are about 7%, a 1.4% annual standard deviation

roughly corresponds to an annual standard deviation of proportional changes of

20%�.

For the Hull-While model, except for a few days like date February 28, 2005 and

June 2005, the three volatility parameters as seen on each day are very close to each

other. Also with time, i.e. on di¤erent days the parameters stay relatively constant.

In contrast, for the BK model the parameters are not that stable, especially �(0)

has been changing by big amounts. For both models, parameters are more stable

in year 2006.

The objective of this empirical study is to compare the two models from the

ALM perspective. Parameter stability is an important attribute from the ALM�s

perspective. As far as ALM is concerned, ceteris paribus, a good model should

not lead to frequent drastic scenario changes. For our sample period, based on the

stability of parameters, we can conclude that the Hull-White model is better that

the lognormal BK model.
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Table 4: PCA factor loadings of Libor rates from January 2000 to September 2007.

EUR USD
Rates PCA1(EUR) PCA2(EUR) PCA3(EUR) PCA1(USD) PCA2(USD) PCA3(USD)

1 0.36 -0.63 0.64 0.47 -0.69 0.49
2 0.43 -0.34 -0.29 0.46 -0.22 -0.39
3 0.41 -0.09 -0.40 0.38 0.03 -0.41
4 0.35 0.05 -0.28 0.30 0.13 -0.34
5 0.32 0.13 -0.14 0.28 0.22 -0.09
6 0.28 0.21 -0.02 0.25 0.23 -0.01
7 0.27 0.26 0.12 0.23 0.25 0.15
8 0.20 0.31 0.14 0.20 0.27 0.21
9 0.20 0.29 0.19 0.20 0.27 0.28

10 0.19 0.29 0.29 0.17 0.27 0.33
11 0.18 0.28 0.32 0.17 0.27 0.26

Table 5: Explainary power of the �rst three principle components.
E U R

P e rc e n ta g e
v a r ia n c e

C u m u la t iv e
v a r ia n c e

U S D
P e rc e n ta g e
v a ra r ia n c e

C u m u la tiv e
v a ra r ia n c e

P C A 1 8 2 .3 7 % 8 2 .3 7 % P C A 1 7 4 .2 2 % 7 4 .2 2 %
P C A 2 1 3 .8 7 % 9 6 .2 4 % P C A 2 2 0 .5 9 % 9 4 .8 1 %
P C A 3 2 .8 1 % 9 9 .0 5 % P C A 3 2 .9 6 % 9 7 .7 7 %

9.3 Principal Component Analysis

The statistics indicate that the �rst three factors explain about 99.24% of the for-

ward rates curve changes, and the �rst �ve factors explain about 97.77% of the total

variance of the forward rates curve.

Table 4 and 5 and Figure 3 and 4 display the loadings of the �rst three factors.

We have used absolute of mean of scores for computing the shocks. We could

have used mean of scores or standard deviation of scores or some other statistical

criteria. Litterman and Scheikman (1991) used one standard deviation to compute

the shocks. The values show that for our data set the standard deviations are quite

large and can estimate rather unrealistic shocks, thereby we used mean absolute of

scores for estimating the forward rate bumps.

9.4 Bermudan Swaption Prices and Hedging Results

In this section, �rst we report the Bermudan swaption prices computed on the �rst

seven trading days of our sample period. The Bermudan swaption used for the
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Figure 3: Factor loadings for the �rst three principle components of forward rates

term structure in the EUR and USD markets
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Figure 4: PCA factor loadings (mean of the absolute change) for the �rst three

principle components in EUR and USD markets.
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comparison test is a 10� 1 payer�s Bermudan swaption which is exercisable yearly,

i.e. it can be exercised at f1yr; 2yr; � � � ; 10yrg points at its life. Notional principal

is 1. When started these Bermudan swaptions are at-the-money, so strike equals the

�rate on a forward start swap starting in year one and terminating in year eleven�

i.e. S1;11(0).

The Bermudan swaption prices are given in Table 6 for Euro market and 7 for

USD market. As can be seen, the prices produced from the two models, stay quite

close to each other on all trade days. Also in all the observations, the Hull-White

model prices are higher than the Black-Karasinski model prices. A price comparison

has also been displayed in Figure 5.

As explained in Section 8.1, on all the seven trade days the forward curve is

bumped up and down by the shocks corresponding to �rst three factors. From the

bumped forward curves, we calculate bumped discount factors and from there we

extract the continuously compounded zero yields. Using these six new sets of zero

curves, for each day, we calculate the six bumped Bermudan swaption prices. We

also compute the sensitivities of the two swaps w.r.t. the three factors. To do

this we re-evaluate 5 year and 11 year swaps on each of these days, corresponding

to these six bumps. The idea of delta-hedging the underlying Bermudan swaption

implies that we need to construct a swaps�portfolio that can o¤set the Bermudan

swaption value change caused by the perturbations. Using the price sensitivities of

Bermudan swaption, and of the two swaps with respect to the three factors, hedge

ratios are computed using the procedure explained in Section 8.3.

Each of the seven 10 � 1 Bermudan swaptions are re-evaluated one year after

their trade day. At this time all these Bermudan swaptions are away-from-money

and are now 9 � 1 Bermudan swaptions. In order to compute these 9 x 1 Bermu-

dan swaptions� prices models are re-calibrated using the latest market prices of

f1� 9; 2� 8; � � � ; 9� 1g ATM European swaptions. These Bermudan swaptions

are reported in Table 6, 7 and Figure 5.

A year later, swaps used for the hedging are also re-evaluated. To calculate P&L
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Table 6: 11Y and 10Y Bermudan swaption prices in EUR market from February

2005 to September 2007.

DATE(11Y) HW BK AVERAGE
2005-2-28 0.0465 0.0441 0.0453
2005-3-31 0.0467 0.0441 0.0454
2005-4-29 0.0476 0.0447 0.0462
2005-5-31 0.0491 0.0460 0.0475
2005-6-30 0.0508 0.0474 0.0491
2005-7-29 0.0485 0.0455 0.0470
2005-8-31 0.0486 0.0455 0.0471
2005-9-30 0.0464 0.0438 0.0451

2005-10-31 0.0459 0.0437 0.0448
2005-11-30 0.0452 0.0432 0.0442
2005-12-30 0.0429 0.0414 0.0422
2006-1-31 0.0411 0.0398 0.0404
2006-2-28 0.0396 0.0384 0.0390
2006-3-31 0.0386 0.0376 0.0381
2006-4-28 0.0387 0.0377 0.0382
2006-5-31 0.0396 0.0384 0.0390
2006-6-30 0.0386 0.0376 0.0381
2006-7-31 0.0387 0.0376 0.0382
2006-8-31 0.0389 0.0379 0.0384
2006-9-29 0.0381 0.0373 0.0377

DATE(10Y) HW BK Strike
2006-2-28 0.0271 0.0272 0.0402
2006-3-31 0.0379 0.0367 0.0395
2006-4-28 0.0534 0.0510 0.0377
2006-5-31 0.0610 0.0582 0.0363
2006-6-30 0.0744 0.0720 0.0344
2006-7-31 0.0610 0.0584 0.0356
2006-8-31 0.0600 0.0573 0.0339
2006-9-29 0.0545 0.0522 0.0344

2006-10-31 0.0417 0.0404 0.0369
2006-11-30 0.0390 0.0378 0.0371
2006-12-29 0.0563 0.0543 0.0357
2007-1-31 0.0526 0.0508 0.0377
2007-2-28 0.0443 0.0427 0.0378
2007-3-30 0.0379 0.0332 0.0409
2007-4-30 0.0308 0.0301 0.0431
2007-5-31 0.0391 0.0380 0.0433
2007-6-29 0.0476 0.0461 0.0442
2007-7-31 0.0487 0.0471 0.0428
2007-8-31 0.0510 0.0492 0.0408
2007-9-28 0.0578 0.0557 0.0401

Note: HW stands for Hull-White model, BK stands for Black-Karasinski model. 11-y Bermudan swaption are
priceed as at-the-money from February 2005 to September 2006; 10 year Bermudan swaptions are priced with
the corresponding 11-y ATM strikes one year ago.10-y Bermudan swaption are priced  from February 2006 to
September 2007.

47



Table 7: 11Y and 10Y Bermudan swaption prices in USD market from February

2005 to September 2007.

DATE(11Y) HW BK AVERAGE
2005-2-28 0.0543 0.0528 0.0535
2005-3-31 0.0526 0.0516 0.0521
2005-4-29 0.0552 0.0539 0.0545
2005-5-31 0.0545 0.0532 0.0539
2005-6-30 0.0557 0.0546 0.0552
2005-7-29 0.0512 0.0508 0.0510
2005-8-31 0.0537 0.0531 0.0534
2005-9-30 0.0522 0.0518 0.0520
2005-10-31 0.0517 0.0515 0.0516
2005-11-30 0.0543 0.0541 0.0542
2005-12-30 0.0525 0.0526 0.0525
2006-1-31 0.0517 0.0517 0.0517
2006-2-28 0.0470 0.0475 0.0472
2006-3-31 0.0487 0.0486 0.0487
2006-4-28 0.0470 0.0465 0.0467
2006-5-31 0.0485 0.0483 0.0484
2006-6-30 0.0465 0.0464 0.0465
2006-7-31 0.0480 0.0477 0.0478
2006-8-31 0.0488 0.0484 0.0486
2006-9-29 0.0493 0.0489 0.0491

DATE(10Y) HW BK Strike
2006-2-28 0.0472 0.0468 0.0496
2006-3-31 0.0507 0.0497 0.0522
2006-4-28 0.0741 0.0713 0.0482
2006-5-31 0.0848 0.0817 0.0464
2006-6-30 0.0926 0.0899 0.0454
2006-7-31 0.0696 0.0670 0.0486
2006-8-31 0.0716 0.0688 0.0456
2006-9-29 0.0534 0.0519 0.0492
2006-10-31 0.0422 0.0419 0.0520
2006-11-30 0.0369 0.0372 0.0517
2006-12-29 0.0464 0.0453 0.0503
2007-1-31 0.0467 0.0455 0.0512
2007-2-28 0.0393 0.0388 0.0514
2007-3-30 0.0337 0.0336 0.0548
2007-4-30 0.0271 0.0277 0.0573
2007-5-31 0.0308 0.0311 0.0577
2007-6-29 0.0385 0.0381 0.0585
2007-7-31 0.0460 0.0453 0.0566
2007-8-31 0.0447 0.0437 0.0538
2007-9-28 0.0506 0.0491 0.0525

Note: HW stands for Hull-White model, BK stands for Black-Karasinski model.11-y Bermudan
swaption are priceed as at-the-money from February 2005 to September 2006; 10 year Bermudan
swaptions are priced with the corresponding 11-y ATM strikes one year ago. 10-y Bermudan
swaption are priced  from February 2006 to September 2007.
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Figure 5: 11Y and 10Y Bermudan swaption prices in EUR and USD markets from

February 2005 to September 2007.

Note: HW stands for Hull-White model, BK stands for Black-Karasinski model.
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values we also need to know the one-year market observed interest rates on the days

when the delta-hedge portfolios were computed. The numbers in Table 8 are the

seven P&L values computed for the two models. A perfectly hedged portfolio should

have a zero P&L value. Non-zero values, whether positive or negative indicates

hedge error. A descriptive statistics of absolute values of P&Ls are recorded in

Figure 6.

Table 8 together with Figure 6 present the hedging results for the two models.

Overall, in terms of descriptive statistics Black-Karasinski model has produced bet-

ter hedge results than the Hull-White model. Descriptive statistics appear more

favourable for the BK model because of one large di¤erence in results for the two

models observed on Feb 28, 2006. Therefore, based on our results we can say that

in terms of hedging BK model performs marginally better than the HW model.

Though BK model show better hedging performance, but if we look at the indi-

vidual results we can see that the P&Ls for both models are really small. Thus

our results that show that both models can be adequately used to risk manage this

Bermudan swaption. However, while making this claim we cannot ignore the fact

that Bermudan swaption prices reported in this study are very small (due to the

principal) and thus the P&Ls estimates are relative to these Bermudan swaption

prices.

10 Conclusions

The need for the management of banks�interest rate risk stemming from a mismatch

between assets and liabilities has driven bank mangers to use new �nancial tools.

In the past few decades, interest rate derivatives market has seen an enormous

expansion. Consequently, past few decades have seen the development of a large

variety of models and techniques that can be used for estimating prices and risk

sensitivities of these interest rate derivatives. When a wide selection of models is

available it become important to compare analyse and compare their pros and cons.
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Table 8: Hedging pro�t and loss in EUR and USD Markets.

EUR HW BK
2006-02-28 -0.0003 -0.0051
2006-03-31 0.0026 0.0004
2006-04-28 0.0006 0.0006
2006-05-31 0.0007 0.0019
2006-06-30 -0.0027 -0.0008
2006-07-31 0.0008 0.0021
2006-08-31 0.0013 0.0027
2006-09-29 0.0022 0.0033
2006-10-31 0.0061 0.0056
2006-11-30 0.0068 0.0060
2006-12-29 0.0035 0.0063
2007-01-31 0.0036 0.0059
2007-02-28 0.0060 0.0076
2007-03-30 0.0050 0.0090
2007-04-30 0.0075 0.0070
2007-05-31 0.0067 0.0071
2007-06-29 0.0030 0.0045
2007-07-31 0.0017 0.0033
2007-08-31 0.0036 0.0060
2007-09-28 0.0037 0.0075

RMSS 0.0041 0.0053

USD HW BK
2006-02-28 0.0047 0.0030
2006-03-31 0.0054 0.0041
2006-04-28 0.0047 0.0079
2006-05-31 -0.0004 0.0044
2006-06-30 -0.0024 0.0032
2006-07-31 0.0048 0.0086
2006-08-31 0.0064 0.0108
2006-09-29 0.0097 0.0105
2006-10-31 0.0115 0.0099
2006-11-30 0.0140 0.0110
2006-12-29 0.0156 0.0163
2007-01-31 0.0174 0.0185
2007-02-28 0.0133 0.0132
2007-03-30 0.0118 0.0109
2007-04-30 0.0069 0.0039
2007-05-31 0.0128 0.0114
2007-06-29 0.0104 0.0107
2007-07-31 0.0060 0.0066
2007-08-31 0.0073 0.0078
2007-09-28 0.0059 0.0076

RMSS 0.0433 0.0443

Note:  HW stands for Hull-White modle, BK stands for Black-Karasinski model.
All numbers are in real value. RMSS is the root mean sum of sqaure of all P&L in
each period.
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In this paper, we presented an empirical comparison of two one-factor short rate

models. Despite their inherent shortcomings these models attract the attention of

practitioners and are being used quite extensively for risk-management purposes

The emphasis was on comparing the performance of these two models from ALM

perspective. Therefore, we compared one factor Hull-White and Black Karasin-

ski models for pricing and hedging an at-the-money 10x1 co-terminal Bermudan

swaption. Because of its long maturity and resemblance to prepayment option this

instrument is an appropriate candidate for the test from ALM perspective. The

two models are examined based on (i) accuracy of in-sample pricing of European

swaptions (ii) stability of parameters and (iii) their ability to hedge the chosen

Bermudan swaption. We used Euro data for the period of Feb 2005 to September

2007 to conduct our test. We implemented the two models using Hull-White gen-

eralised trinomial tee building procedure and calibrated the two models to a set of

�core European swaptions� for the 10 � 1 Bermudan swaption. For both models

we kept the volatility parameter time-dependent and the mean-reversion parameter

constant. We delta-hedged this 10 � 1 co-terminal Bermudan swaption using two

di¤erent swaps: (i) 5-year swap and (ii) 11 year swap. Overall, in terms of the

in-sample price tests, the one-factor Hull-White model outperformed the lognormal

Black-Karasinski model. Also the estimated parameters of this model are more

stable than of the Black-Karasinski model. On the other hand, the tests for the

hedging performance of these two models show that the Black-Karasinski model is

more e¤ective in hedging the interest rate risk of the at-the-money 10x1co-terminal

Bermudan swaption. Our results also show that pricing errors grew signi�cantly

when we kept the volatility parameter constant. Our results clearly show that for

our data and our instrument both models, in terms of delta hedging, the perfor-

mance of both models is quite good.

So what are the implications of these results? The �nal result has to be based

on the joint results. From ALM perspective, hedging is an important criterion

for judging the goodness of some model. But in addition to hedging performance,
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model and parameter stability are important attributes of a model from the ALM�s

perspective. As far as ALM is concerned, ceteris paribus, a good model should not

lead to frequent drastic scenario changes.

Therefore putting the three metrics: pricing performance, stability of parameters

and hedging performance together, based on our results we can say that Hull-

White model is marginally better than the Black-Karasinski model. Also based on

our �ndings we conclude that these one-factor short rate models can be used to

risk manage Bermudan swaption. There are evidences available in literature that

supports this conclusion.12

Conclusions are based on a very small set of data. We are judging the hedging

performance of two models based on mere seven observations. The results are

based on one market. As mentioned in the introduction section large global banks

have huge interest rate businesses around the world. Therefore, it would be really

interesting to see that a model that performs well in one market would be how

much stable in completely di¤erent economic conditions like Brazilian or Turkish

or maybe Australian market. These markets are considered to be good test cases

because they are high interest rate environments and people are interested in �nding

out how di¤erent models will react under such environments.

We could not verify the Bermudan swaption prices estimated using the two

models, as we did not have their market prices or any other benchmarks. The hedge

re-balancing period is too long. Both researchers and practitioners rebalance their

hedge portfolios more frequently. The results are based on a very speci�c instrument.

Therefore based on our �ndings we cannot ensure whether these results would be

applicable to some other class of �xed income securities or to some other type

of Bermudan swaption (say a 10 year co-terminal Bermudan swaption exercisable

monthly) or not. We have tried to immunise a single liability at time. Such a test

can be used as an indicative of the relative performance of two models but from

ALM perspective the scope of such a test is very limited. A more practical approach

12See Pietersz & Pelsser (2005) and Andersen & Andreasen (2001)
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would be to hedge a collection of several types of liabilities.

It would be interesting to see the hedge performance of the both two models

when both �a�and ���are kept constant. It is well proven fact in literature that

adding more time-varying parameters improve the pricing performance of one factor

models, however there are evidences in literature that making the parameters time-

varying leads to larger hedging errors.13 We used only �core�European swaptions

to calibrate the two models. Andersen and Andreasen (2005) show that the set of

core swaptions is not su¢ cient to adequately calibrate a one-factor model. They

recommend including caps or swaptions on non-core rates in the calibration set. The

results of our principal component analysis reveal that there are multiple factors

that driving the evolution of the term structure. Therefore, it is de�nitely worth

testing the hedge performance of multi-factor short rate models.

13Gupta, A., & M. Subrahmanyam, (2005)
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Appendix: Caplet as Option on Zero Coupon Bond

Let�s assume following caplet with cap rate to be RK , which will prevail over a

period [(T + �)� T ] > 0. This caplet leads to a payo¤ at time T + � of

A�max(RT;� �RK ; 0) (14)

where RT;� is the interest rate for the period between T and T+�. A is the principal.

The payo¤ in equation (14) at time T + � is equivalent to

A�

1 + �RT;�
max(RT;� �RK ; 0) (15)

at time T .

Equation (15) can be written as

A�max
�
1� (1 + �RK)

1 + �RT;�
; 0

�
(16)

The expression
(1 + �RK)

1 + �RT;�

is the value at time T of a zero-coupon bond that pays o¤ (1 + �RK) at time

T + �. The expression in equation (16) is therefore the payo¤ from a put option

with maturity T on a zero-coupon bond with maturity T + � , when the face value

of the bond is (1+RK�) multiplied by the principal. It follows that an interest rate

caplet can be regarded as European put options on zero-coupon bond. Likewise an

interest rate �oorlet can be regarded as European call options on zero-coupon bond.
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