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Abstract

In this note we use doubly stochastic processes (or Cox processes) in order to model the
evolution of the stochastic force of mortality of an individual aged x. These processes have been
widely used in the credit risk literature in modelling the default arrival, and in this context have
proved to be quite flexible and useful. We investigate the applicability of these processes in
describing the individual’s mortality, and provide a calibration to the Italian case. Results from
the calibration are twofold. Firstly, the stochastic intensities seem to better capture the devel-
opment of medicine and long term care which is under our daily observation. Secondly, when
pricing insurance products such as life annuities, we observe a remarkable premium increase,
although the expected residual lifetime is essentially unchanged.
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1 Introduction

The issue of mortality risk – and, in particular, of longevity risk – has been largely addressed in
recent years when dealing with the pricing of insurance products. It is well known from the basics
of actuarial science that the price of any insurance product on the duration of life depends on two
main basis: demographical and financial assumptions. Traditionally, actuaries have been treating
both the demographic and the financial assumptions in a deterministic way, by considering available
mortality tables for describing the future evolution of mortality of the individual over time and by
setting the so-called “best estimate” of the rate of interest for discounting cash flows over time.
However, in recent years solvency problems have emerged in many insurance companies: one of the
most remarkable examples has been, for instance, the case of the oldest British insurance company,
Equitable, which had to be “closed to new business”. This has made evident how demographical
and financial risks have been underestimated through the adoption of the deterministic approach.
In particular, the dramatic drop in interest rates experienced in the late 1990’s, together with a
remarkable improvement in mortality rates, led to insufficient mathematical reserves for backing
guaranteed annuity options (GAO); the latter are insurance policies that give the right of buying
in the future an annuity at guaranteed conditions regarding mortality and financial assumptions.
Many articles have appeared recently, that show how differently GAO’s should have been priced
when allowing for stochastic interest rates (see, for example, Ballotta and Haberman (2003), Biffis
and Millossovich (2004)).

A different and more appropriate approach to the pricing of insurance policies includes the adoption
of stochastic models to describe the uncertainty linked to mortality and financial factors. In this
note, we focus on mortality risk and on modelling the survival function of the individual, leaving to
future research the modelling of both mortality and financial risks with a stochastic approach (as
in Biffis (2004)).

2 Modelling mortality risk

In the last decades significant improvements in the duration of life have been experienced in most
developed countries. Two indicators are typically used to describe the mortality of an individual:
the survival function and the “death curve”.

The survival function, denoted with S(t), is defined as follows:

S(t) = P (T0 > t) = 1− P (T0 ≤ t) = 1− FT0(t)

where T0 is the random variable that describes the duration of life of a new-born individual, and
FT0 is its distribution function. The survival function indicates the probability that a new-born
individual will survive at least t years. Via the survival function, one can easily derive the distribu-
tion function of the duration of life of an individual aged x, given that he/she is alive at that age
(see, for instance, Bowers, Gerber, Hickman, Jones and Nesbitt (1986), Gerber (1997)).

The death curve, x/1q0, is defined as follows:

x/1q0 =
S(x)− S(x + 1)

S(0)

and indicates the probability for a new-born individual of dying in year of age [x, x + 1].
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An easy way of capturing the mortality trend observed in the past decades consists in looking
at the graphs of the survival function and the death curves of a population in different years (for an
accurate report about mortality trends, see Pitacco (2004a)). One can notice that the shape of the
survival function becomes more and more “rectangular” (and this phenomenon is called “rectangu-
larization”) and the mode of the death curve moves towards right (and this phenomenon is called
“expansion”). The rectangularization shows that the volatility of the duration of life around the
mode of death decreases, leading to lower dispersion of ages of death around the most likely age
of death. The expansion shows that the age when death is most likely to occur increases as time
passes (due to improvements in economic and social conditions, medicine progresses etc.).

It is clear that continuous improvements in the mortality rates have to be allowed for when pricing
insurance products that heavily depend on the duration of life at old ages (like annuities), since
strong and unexpected reductions in mortality rates can lead to mispricing of these products and
can affect the solvency of the insurance company.

The actuarial literature about modelling and forecasting mortality rates is vaste and has a long
history (for a detailed survey of the most significant models proposed in the literature, see Pitacco
(2004b)).
Traditionally, a central role has been played by the “force of mortality”, defined as the opposite of
the derivative of the logarithm of the survival function:

µx = − d

dx
log S(x)

The force of mortality is a good tool for approximating the mortality of the individual at age x,
since it can be shown that:

P (x < T0 ≤ x + ∆x|T0 > x) = µx∆x + o(∆x), (2.1)

i.e. the probability of dying in a short period of time after x, between age x and age x+∆x, can be
well approximated by µx∆x (when ∆x is small). The force of mortality is obviously increasing as
x increases, as the probability of imminent death increases when ageing (with some exceptions, like
very small values of x – due to the infant mortality – and values around 20-25 – due to the young
mortality hump).

When allowing for mortality trends over time, it is evident that the force of mortality has to
show a dependence also on calendar year, and not only on age. Thus, the force of mortality can be
described by a two variable function µx(y), where y indicates the calendar year. As time y increases
and the age x remains fixed, the decreasing mortality rates over time translate into a decreasing
function µx(y).

Several contributions have been proposed in the last decade in order to model and forecast the
year- and age-dependent mortality, i.e. the “dynamic mortality”. One of the seminal works is the
Lee-Carter method (Lee and Carter (1992) and Lee (2000)), that models the central death rate (an
actuarial indicator, similar to the force of mortality) as a two variables function. Many authors
have modified the Lee-Carter method, proposing their adjustments. Among these, are the exten-
sions proposed by Renshaw and Haberman (2003) and Brouhns, Denuit and Vermunt (2002). The
latter propose a fairly simple model for the force of mortality:

ln(µx(y)) = αx + βxky

where the coefficients αx, βx and ky are to be determined by maximization of the log-likelihood
based on the assumption that the number of deaths at age x in year y follows a Poisson distribution.
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Another way of dealing with mortality trends, largely adopted by insurance companies, is the use
of the so-called “projected mortality tables”, that incorporate (forecasts of) survival probabilities
at any age for different calendar years.

3 Modelling the random duration of life: the mathematical frame-
work

The theory of stochastic intensities, doubly stochastic processes and affine processes underlying
the actuarial application presented here is enormous and covered in many texts about stochastic
processes. A detailed and thorough treatment is clearly beyond the scope of this note, and we limit
ourselves to present a brief summary of the mathematical tools used, sacrificing scientific rigor and
omitting all the proofs. However, we refer the interest reader to Brémaud (1981) and Duffie (2001).

The reason why such a sophisticated mathematical framework has been used in describing the
mortality risk is the great analytical tractability of the models presented, once some useful and not
too restrictive assumptions are made about the processes used. These mathematical tools have been
extensively used in the credit risk literature, when modelling the default time. The pioneering works
in this field are Lando (1994) and Lando (1998). The similarity with the remaining duration of life is
strong, and, although the factors underlying the death of an individual and the default of a firm are
obviously completely different, the mathematical tools used are the same. An extensive application
of this mathematical framework to dynamic mortality modelling and to insurance products pricing
can be found in Biffis (2004).

3.1 Counting processes

In describing the mathematical tools, we will mainly follow Duffie (2002). We are given a complete
filtered probability space (Ω,F ,P) and a filtration {Gt : t ≥ 0} of sub-σ-algebras of F satisfying the
usual conditions.

A process Y is said to be predictable if Y : Ω × [0,∞) → R is measurable w.r.t. the σ−algebra
on Ω× [0,∞) generated by the set of all left-continuous adapted processes. The intuition behind a
predictable processes is that it is possible to “foretell” the value of the process at time t with all the
information available at any time before t but not including t. Any left-continuous adapted process
is predictable, as well as any continuous adapted process.

A counting process (or point process) N is defined using a sequence of increasing random vari-
ables {T0, T1, ...}, with values in [0,∞), s.t. T0 = 0 and Tn < Tn+1 whenever Tn < ∞, in the
following way:

Nt = n for t ∈ [Tn, Tn+1)

and Nt = ∞ if t ≥ T∞ = limn→∞ Tn. It is easy to see Tn as the time of the nth jump of the process
N and Nt as the number of jumps occurred up to time t, including time t (hence the definition
“counting” process). The counting process is said to be nonexplosive if T∞ = ∞ almost surely.
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3.2 Stochastic intensity

The definition of random intensity is not uniform in the literature. We will follow Duffie (2001).

If N is a nonexplosive adapted counting process and λ is a nonnegative predictable process s.t.∫ t
0 λsds < ∞ almost surely, then N is said to admit the intensity λ if the compensator of N admits

the representation
∫ t
0 λsds, i.e. if Mt = Nt −

∫ t
0 λsds is a local martingale. If the stronger condition

E(
∫ t
0 λsds) < ∞ is satisfied, Mt = Nt −

∫ t
0 λsds is a martingale1.

The intensity can be related also to stopping times. A stopping time τ has an intensity λ if τ
is the first event time of a nonexplosive counting process. This happens only if τ is totally inac-
cessible(see Meyer (1966)): intuitively, if a latent variable cannot “foretell” its arrival. A stopping
time can also not have an intensity (see Duffie (2002) and Duffie and Lando (2001)). The crucial
point is the filtration with respect to which the process Mt is a (local) martingale. If the filtration is
the standard filtration of a Brownian motion B, then M can be represented as a stochastic integral
w.r.t B and cannot jump. In order to let M jump at time τ , the filtration under which the counting
process has an intensity cannot be too “rich”. Usually, the definition of intensity is considered
w.r.t. to a filtration {Ft}, satisfying the usual conditions and such that {Ft} is “poorer” than {Gt}:
Ft ⊂ Gt.

In what follows, we will be particularly interested in stopping times which have an intensity, because
this will allow us to describe the time of death in an analytically tractable way.

From the definition of intensity, one gets:

E(Nt+∆t −Nt|Ft) = E

(∫ ∆t

t
λsds|Ft

)

which, after a few passages and under technical conditions, leads to:

E(Nt+∆t −Nt|Ft) = λt∆t + o(∆t) (3.1)

Equation 3.1 (see the analogy with equation 2.1) stresses the importance of the process λ in giving
information about the average number of jumps of the process under observation in a small period
of future time. Observe that conditioning is made on the smallest filtration, therefore on the
availability of poorer information. The idea is that the information at time t can give insight about
the expected number of jumps in the next future or, in other words, about the likelihood of a jump
in the immediate future. It cannot predict the actual occurrence of a jump, that comes as a “sudden
surprise”.

3.3 Doubly stochastic processes

Suppose N is a nonexplosive counting process with intensity λ and {Ft : t ≥ 0} is a filtration
satisfying the usual conditions, with Ft ⊂ Gt. The process N is said to be doubly stochastic driven
by {Ft : t ≥ 0}, if λ is (Ft)-predictable and for all t, s, with t < s, conditional on the σ−algebra
Gt∨Fs, generated by Gt∪Fs, the process Ns−Nt has Poisson distribution with parameter

∫ s
t λudu.

1The requirement of predictability allows us to consider the intensity as essentially unique. In fact, it can be shown
(see Brémaud (1981) and Duffie (2001)) that if λ and λ̃ are two intensities for N , then

∫∞
0
|λs − λ̃s|λsds = 0 a.s.,

which implies that if λ is strictly positive, we have λ = λ̃ almost everywhere.
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As an example, we observe that any Poisson process is a doubly stochastic process driven by the
filtration Ft = (∅,Ω) = F0 for any t ≥ 0, in that the intensity is deterministic.

A stopping time τ is said to be doubly stochastic with intensity λ if the underlying counting process
whose first jump time is τ is doubly stochastic with intensity λ.

The mathematical arsenal presented so far is now sufficient to present the first interesting result
that will be used in the applications. If τ is a stopping time doubly stochastic with intensity λ, it
can be shown, by using the law of iterated expectations, that:

P (τ > s|Gt) = E
[
e−

∫ s
t λ(u)du|Gt

]
(3.2)

Readers who are familiar with mathematical finance can easily see in the r.h.s. of equation (3.2) the
price at current time t of a unitary default-free zero-coupon bond with maturity at time s > t, if
the short-term interest rate model is given by the process λ. All the mathematical finance literature
about interest rate models can thus be retrieved in this setting.

Another interesting result that can be used relates to the density function of a doubly stochas-
tic stopping time τ . If we let p(t) = P (τ > t) be the survival function, the density function of τ , if
it exists, is given by −p′(t). Under certain conditions (see for example Grandell (1976)), that are
satisfied in many applications, we have:

p′(t) = E
[
−e−

∫ t
0 λ(u)duλ(t)

]
(3.3)

which can be used in order to find the density function of the stopping time τ .

It is clear how these results can be naturally applied in the actuarial context: if one sees τ as
the future lifetime of an individual aged x, Tx, equations 3.2 and 3.3 can be applied to find the
survival function and the density function of Tx, so relevant for pricing purposes (see section 2).

3.4 Affine processes

Our next step will be to show how equations like 3.2 and 3.3 can be approached. It turns out that
it is convenient to specify the form of the stochastic intensity λ as a function Λ of another process
Xt in R, whose dynamics are given by the SDE:

dXt = µ(Xt)dt + σ(Xt)dBt (3.4)

for some Brownian motion Bt in R and for µ(·) and σ(·) satisfying enough regularity conditions for
the equation 3.4 to have a unique strong solution. The survival probability 3.2 becomes:

P (τ > s|Gt) = E
[
e−

∫ s
t Λ(X(u))du|X(t)

]
= f(X(t), t) (3.5)

Under regularity conditions, equation 3.5 can be tackled with the Feynman-Kac approach, that
reduces 3.5 to the solution of the PDE:

Af(x, t)− ft(x, t)− Λ(x)f(x, t) = 0 (3.6)

(where A is the usual infinitesimal generator of X) with the boundary condition f(x, s) = 1.
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The difficulty inherent in solving the PDE 3.6 can be reduced by choosing appropriately the process
X. Here is where affine processes come at help. Interest readers can find a thorough treatment of
affine processes in Duffie, Filipovič and Schachermayer (2003). Here we limit ourselves to observe
that if X is an affine process, then it is a jump-diffusion process:

dXt = µ(Xt)dt + σ(Xt)dBt + dJt (3.7)

where J is a pure jump process and where the drift µ(Xt), the covariance matrix σ(Xt)σ(Xt)′ and
the jump measure associated with J have affine dependence on Xt.

The financial literature on interest rate modelling is full of examples of affine processes: the Ornstein-
Uhlenbeck process, used by Vasicek (1977) for modelling interest rates, is affine, as is the Feller
process, used by Cox, Ingersoll and Ross (1985).

The convenience of adopting affine processes in modelling the intensity lies in the fact that, under
technical conditions (see Duffie et al. (2003)), it yields:

Et

[
e
∫ s

t −Λ(X(u))du+wX(s)
]

= eα(s−t)+β(s−t)X(t) (3.8)

where w ∈ R and the coefficients α(·) and β(·) satisfy generalized Riccati ODEs, that can be solved
at least numerically and in some cases analytically. Therefore, the difficult problem of finding the
survival function (3.5) can be transformed in a tractable problem, whenever affine processes are
employed.

4 The actuarial application

Turning back to our initial problem of modelling adequately the dynamic mortality, we will now
use some of the mathematical tools presented in the previous section.

We consider an individual aged x and model his/her random future lifetime Tx as a doubly stochas-
tic stopping time with intensity λx driven by the sub-filtration {Ft : t ≥ 0}, where Ft ⊂ Gt

2. In
other words, Tx is the first jump time of a nonexplosive counting process N with intensity λx.
Intuitively, the counting process N may be seen as a process that jumps whenever the individual
dies: for example Nt = 0 if t < Tx, Nt = 1 if t ≥ Tx.

According to (3.2) the survival probability is:

Sx(t) = P (Tx > t|G0) = E
[
e−

∫ t
0 λx(u)du|G0

]
(4.1)

The similarity with the actuarial survival probability for t years for an individual aged x, tpx,
expressed in terms of the force of mortality, is strong (see for instance Gerber (1997)):

tpx = e−
∫ t
0 µx+sds

The specification of the intensity process λx is now crucial for the solution of equation 4.1.

2As above, the uncertainty is described by a complete filtered probability space (Ω,F ,P) and a filtration {Gt : t ≥ 0}
of sub-σ-algebras of F satisfying the usual conditions.
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Recent studies on the firm’s mortality (as reported in Duffie and Singleton (2003)) indicate the
suitability of the following affine processes for modelling the intensity λx(t):

CIR process : dλx(t) = k(γ − λx(t))dt + σ
√

λx(t)dW (t)

mean reverting with jumps (m.r.j.) : dλx(t) = k(γ − λx(t))dt + dZ(t)

where W (t) is a standard Brownian motion and Z(t) is a compound Poisson process with intensity c
and jumps exponentially distributed with expected value J (we notice that in both cases, according
to the notation introduced before, the choice is Λ(x) = x: the intensity λ is itself an affine process).
The difference between the two models is that the former does not allow for jumps in the mortality
rates, while the latter does.

Using the result 3.8 and solving the Riccati ODEs, one gets the survival probabilities in closed
form for both specifications of the intensity process (this is a standard result, see Duffie and Single-
ton (2003)):

CIR tpx = ea(t,k,γ,σ)+b(t,k,σ)λx(0) (4.2)

m.r.j. tpx = ef(t,k,γ,c,J)+g(t,k)λx(0) (4.3)

where

a(t, k, γ, σ) =
−2kγ ln

(
1+eb1(k,σ)t

2

)

b1(k, σ)c1(k, σ)
+ kγ

t

c1(k, σ)

b(t, k, σ) =
1− eb1(k,σ)t

c1(k, σ)(1 + eb1(k,σ)t)

b1(k, σ) = c1(k, σ) +
σ2

2c1(k, σ)

c1(k, σ) = −k +
√

k2 + 2σ2

2

f(t, k, J, c, γ) = −γ(t + g(t, k))− c
Jt− ln(1− Jg(t, k))

J + k

g(t, k) =
e−kt − 1

k

It is possible to calibrate the values of the parameters starting from a time series or a cross section
of data on the survival probabilities.

4.1 Calibration to the Italian population

As an application, we have calibrated the model to the Italian population. We have considered the
survival probability of a male and a female aged x = 65 according to the projected mortality table
RG48 (which is the most recent generation table available, that considers individuals born in 1948).

The calibration has been done by minimizing the sum of the squared differences between the survival
probabilities of the table RG48 and the ones implied by the model. It gives the following values of
the parameters:
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CIR process
Males Females

k 0.015 0.015
γ 0.518 0.371
σ 0 0

We observe that for both males and females, the calibration gives a value of σ equal to 0, implying
a deterministic intensity. With our data, when imposing the constraint σ > 0, the fit of the model
worsens. We therefore accept the solution with σ = 0 which cancels the diffusive component of the
process. The long-run average γ is higher for males than for females, consistently with the higher
mortality observed in males. The speed of convergence is the same.

m.r.j. process
Males Females

k 0.0037 0.006
γ 1.002 0.473
c 0.0025 0.0025
J -0.0025 -0.0025

Again, the long-run average is higher for males than for females, while the speed of convergence
is higher for females than for males. This latter result is interesting and might imply that further
improvements that expected to occur in the future are likely to be more substantial for males than
for females. This interpretation can be supported by the evidence that every census of the Italian
population produces mortality tables that show improvements for males that are superior to the
corresponding improvements for females. This phenomenon is not captured by the CIR model.

The negative value for J is an expected result, for it shows the improvement in mortality rates
over time. The same parameter values for the two sexes in the jump part of the process (c and J)
can be explained by the fact that jumps correspond to discontinuity points of the intensity process,
which may be related to medicine progresses or other general factors, that affect in the same way
the global population.

4.2 Survival function, expected residual lifetime and annuity price

Graphs 1 and 2 show the value of the survival probability for males and females tpx with x = 65,
respectively. They report the survival probability for the two processes analyzed (CIR and m.r.j.)
and the tables RG48 and SIM/F92, to facilitate the comparison.
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Males, tpx, x=65
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Females, tpx, x=65
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Graph 1 Graph 2

Observing the graphs, one can notice that the survival probability with the CIR and the m.r.j.
processes at very old ages is higher than in both the RG48 and SIM/F92: in this sense, the stochas-
tic intensities seem to better capture the development of medicine and long term care which is under
our daily observation. With respect to the SIM/F92 we observe improvement at all ages. This does
not happen w.r.t. the RG48, which has higher survival probabilities at younger ages, and seems to
better describe the rectangularization phenomenon.

Other two indicators of the mortality trend are the expected residual lifetime and the price of
the lifetime annuity. We have computed these indexes for an individual aged 65, adopting the
different survival probabilities derived from the calibration process and comparing them with the
corresponding values from RG48 and SIM/F92. In the calculation of the price of the annuity we
have taken the interest rate equal to i = 2.5% (the technical rate usually adopted these days by
Italian insurance companies).

Graph 3 shows the values of the expected residual lifetime for an individual aged x = 65, for
both sexes and for the four mortality assumptions.
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Expected residual lifetime for a head aged x=65
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Graph 3

Graph 4 shows the values of the price of a lifetime annuity for an individual aged x = 65, with
interest rate i = 2.5% for both sexes and for the four mortality assumptions.

Annuity price (i = 2.5%) for a head aged x=65
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Graph 4

The expected residual lifetime with the CIR and the m.r.j. processes does not differ too much
from the value of the RG48, the mortality table used for the calibration. A remarkable difference
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is to be noticed with the mortality tables SIM/F92. These results are to be explained with the
observations made on the survival probabilities of graphs 1 and 2. Comparing with the RG48, the
high probability at very old ages is counterbalanced by low probabilities at younger ages and gives
almost the same result in terms of expected duration of life. Comparing with the SIM/F92, the
higher probabilities at all ages lead to a higher expected residual lifetime.

However, considering the annuity price, the mortality described with the CIR and the m.r.j. pro-
cesses leads to significantly higher prices for the lifetime annuity than with both RG48 and SIM/F92.
As for females, the price increases by around 30% w.r.t. RG48, by 60% w.r.t. SIF92. As for males,
the corresponding figures are 20% and 40%. The higher probability of surviving at very old ages
seems to dominate the lower probability of surviving at lower ages. This result underlines the risk
of underestimating the mortality (longevity) risk when pricing insurance products on the duration
of life based on deterministic mortality tables, such as the RG48 and SIM/F92 ones. Since the final
interest of insurance companies is the correct pricing (and the consequent hedging) of annuities and
other life insurance products, this is the point on which the usefulness of the Cox approach has to
be appreciated.

5 Conclusions

In this note, we have described the evolution of mortality by using doubly stochastic (or Cox) pro-
cesses. The time of death has been modelled as a doubly stochastic stopping time, or the first jump
time of a doubly stochastic counting process. The intensity has been described as an affine process,
with two different specifications: the CIR model and a mean reverting process with jumps. For
these two models the survival probabilities are known in closed form.

The model has been calibrated to the Italian population, considering an individual aged 65 and
using the table RG48 for the calibration. The survival probabilities have been calculated and com-
pared with the corresponding ones taken from the tables RG48 and SIM/F92. The expected residual
lifetime has been computed, as well as the price of a lifetime annuity. Results show that, although
the expected residual lifetime is essentially unchanged when describing the mortality using Cox pro-
cesses, the annuity price shows a significant increase. This highlights the importance of mortality
risk when pricing insurance policies on the duration of life and the extent to which this risk can be
underestimated.

For future research, the robustness of results w.r.t. the interest rate chosen for the annuity price
can be interesting. Furthermore, the investigation of other affine processes can be worth, as well as
the calibration to different mortality tables. Finally, the inclusion of stochastic interest rates in the
model is certainly of the greatest importance.
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