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Abstract

Stochastic volatility models are increasingly important in practical derivatives pricing
applications, yet relatively little work has been undertaken in the development of practical
Monte Carlo simulation methods for this class of models. This paper considers several new
algorithms for time-discretization and Monte Carlo simulation of Heston-type stochastic
volatility models. The algorithms are based on a careful analysis of the properties of affine
stochastic volatility diffusions, and are straightforward and quick to implement and exe-
cute. Tests on realistic model parameterizations reveal that the computational efficiency
and robustness of the simulation schemes proposed in the paper compare very favorably to
existing methods.

1 Introduction

Square-root diffusions take a central role in several important models in finance, including the
CIR interest rate model [CIR], the Heston stochastic volatility model [Hes], and the general
affine model in [DKP]. Of particular interest to us here is the Heston model, where a recent
reformulation of the original Fourier integrals in [Hes] (see [Lew] and [Lip], and also [CM]
and [Lee]) has made computations of European option prices numerically stable and efficient,
allowing for quick model calibration to market prices. Partly as a result of this development,
there has been much interest recently in embedding the Heston diffusion dynamics (or variations
thereof) in derivatives pricing models, as a means to capture volatility smiles and skews in
quoted markets for options. For interest rate applications, see e.g. [AA], [AB] and [Pit]; for
foreign exchange see [Andr]; for equity options, see the aforementioned [Lew] and [Lip].

Many practical applications of models with Heston-dynamics involve the pricing and hedg-
ing of path-dependent securities, which, in turn, nearly always requires the introduction of
Monte Carlo methods. Despite the fact that the Heston model is nearly 15 years old, there has
been remarkably little research into efficient discretization of the continuous-time Heston dy-
namics for purposes Monte Carlo simulation. Recently, however, a few papers have emerged.
[JK] propose application of an implicit Milstein scheme for the square-root diffusion of the
variance process, coupled with a particular discretization for the asset process; the scheme is

1leif.andersen@bofasecurities.com. The author is indebted to Jesper Andreasen, Victor Piterbarg,
and Vladimir Piterbarg for insights and assistance.
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designed to work particularly well for cases where there is significant negative correlation be-
tween the asset process and the variance process. [BK] develop a completely bias2-free scheme
based on acceptance-rejection sampling of the variance process coupled with certain Fourier
inversion computations. While elegant, the [BK] scheme has a number of practical drawbacks,
including complexity and lack of computational speed. Also, the usage of acceptance-rejection
sampling will “scramble” random paths when parameters are perturbed, introducing consider-
able Monte Carlo noise in bump-and-reprice computation of sensitivities to model parameters.
To get around some of these drawbacks, [LKD] consider an Euler scheme equipped with cer-
tain rules to deal with the fact that the variance process can become negative in a direct Euler
discretization. The authors conclude that the computational efficiency of the scheme exceeds
that of the more complicated schemes in [JK] and [BK]. While this conclusion overall ap-
pears sound, the resulting discretization scheme is largely heuristic and uses essentially none
of known analytical results for the Heston model. For many cases of practical interest, the re-
sulting discretization bias in the Euler scheme is, as we shall see later, quite high at a practical
number of time steps.

The contribution of this paper is two-fold. First, we propose a number of simple schemes
designed to extract selected elements of the full-blown Broadie-Kaya [BK] scheme, yet retain
the speed and inherent simplicity of the Euler scheme. Second, we provide numerical tests of
the resulting schemes on realistic – and challenging – market data. In our opinion, most of the
tests done in previous literature are far too easy to pass, typically involving at-the-money options
with short maturities and overly benign model parameters (low correlations, low volatility-of-
variance, and high variance mean reversion). In practical applications on interest rate and FX
markets, implied model parameters are often quite extreme, and option maturities can easily
stretch to 15-20 years or more.

The paper is organized as follows. In Section 2 we outline the basic Heston dynamics and
summarize a few relevant facts about the processes involved. We also briefly introduce existing
discretization schemes from the literature, for later comparative experiments. In Section 3 we
consider two different schemes to discretize the variance process, throughout paying attention
to computational issues. Section 4 discusses how to combine the variance process discretization
with a discretization for the asset process, with an emphasis on techniques for the case where the
variance process and the asset process have correlation far from zero. Numerical comparisons
can be found in Section 5, and a brief discussion of extensions is in Section 6. Finally, Section
7 concludes the paper.

2We remind the reader that approximating the expectation of a (function of a) continuous-time diffusion process
by Monte Carlo methods involve two types of errors: 1) the statistical error (“noise”) common to all Monte Carlo
applications; and 2) a bias caused by the specific way the continuous-time diffusion process is approximated by a
discrete-time process. See Section 5 for further details.



Heston Simulation 3

2 Heston Model Basics

2.1 SDE and basic properties

The Heston model is defined by the coupled two-dimensional SDE

dX(t)/X(t) =
√

V (t)dWX(t), (1)

dV (t) = κ(θ −V (t))dt + ε
√

V (t)dWV (t), (2)

where κ,θ ,ε are strictly positive constants, and where WX and WV are scalar Brownian motions
in some probability measure; we assume that dWX(t) ·dWY (t) = ρdt, where the correlation ρ is
some constant in [−1,1]. X(t) represents an asset price process (e.g. a stock, an FX rate, and so
forth) and is assumed to be a martingale in the chosen probability measure; adding a drift to X
is trivial and is omitted for notational simplicity. V (t) represents the instantaneous variance of
relative changes to X(t), in the sense that the quadratic variation of dX(t)/X(t) over [t, t +dt]
is V (t)dt. V (t) is modeled as a mean-reverting square-root diffusion, with dynamics similar to
the celebrated interest rate model of [CIR].

Several analytical results exist for the behavior of the process (1)-(2), see e.g. [AP], [Duf],
and [CIR]. We list a few of these results here.

Proposition 1 Let Fχ ′2(y;ν,λ ) be the cumulative distribution function for the non-central chi-
square distribution with ν degrees of freedom and non-centrality parameter λ :

Fχ ′2(z;ν,λ ) = e−λ/2
∞

∑
j=0

(λ/2) j

j!2ν/2+ jΓ(ν/2+ j)

∫ z

0
zν/2+ j−1e−x/2 dx.

For the process (2) define

d = 4κθ/ε2; n(t,T) =
4κe−κ(T−t)

ε2
(
1− e−κ(T−t)

) , T > t.

Let T > t. Conditional on V (t), V (T ) is distributed as e−κ(T−t)/n(t,T) times a non-central chi-
square distribution with d degrees of freedom and non-centrality parameter V (t)n(t,T). That
is,

Pr (V (T ) < x|V (t)) = Fχ ′2

(
x ·n(t,T)
e−κ(T−t) ;d,V (t) ·n(t,T)

)
.

From the known properties of the non-central chi-square distribution, the following Corol-
lary easily follows.

Corollary 1 Let T > t. Conditional on V (t), V (T ) has the following first two moments:

E(V (T )|V(t)) = θ +(V (t)−θ)e−κ(T−t);

Var (V (T )|V(t)) =
V (t)ε2e−κ(T−t)

κ

(
1− e−κ(T−t)

)
+

θε2

2κ

(
1− e−κ(T−t)

)2
.
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We note that the variance of V (T ) grows with increasing ε (volatility of variance) and de-
creasing κ (mean reversion speed). For reference, Appendix A lists the exact moments of lnX ,
as well as the covariance between lnX and V.

Proposition 2 Assume that V (0) > 0. If 2κθ ≥ ε 2 then the process for V can never reach zero.
If 2κθ < ε2, the origin is accessible and strongly reflecting.

In typical applications 2κθ is often significantly below ε 2, so the likelihood of hitting zero
is often quite significant. Indeed, the process for V often has a strong affinity for the area
around the origin, as is evident from the distribution graph in Figure 1. For comparison, we
have superimposed Gaussian and lognormal distributions matched to the first two moments of
V ; evidently neither of these distributions are particularly good proxies for the true distribution
of V.

Figure 1: Cumulative Distribution of V
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Notes: The figure shows the cumulative distribution function for V (T ) given V (0), with T = 0.1. Model
parameters were V (0) = θ = 4%, κ = 50%, and ε = 100%. The lognormal and Gaussian distributions
in the graph were parameterized by matching mean and variances to the exact distribution of V (T ).

Conditional on X(t), the characteristic function for lnX(T ) is known in closed form; see
e.g. [Hes]. As a consequence, Fourier-based expressions for the price of European call and
put options can be worked out. The following formulation is the most convenient for practical
computations.

Proposition 3 Consider a call option paying (X(T )−K)+ at time T . The time zero (undis-
counted) price of the the call option is

E
(
(X(T )−K)+

)
= X(0)− K

2π

∫ ∞

−∞

exp
(
(1/2− ik) ln(X(0)/K)+h1 −

(
k2 +1/4

)
h2
)

V (0)
k2 +1/4

dk,
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where i is the complex unit, and

h1 = −κθ
ε2

(
∂+T +2ln

(
∂− +∂+e−ξT

2ξ

))
, h2 =

1− e−ξT

∂− +∂+e−ξT
, κ̂ = κ −ρε/2,

∂± = ξ ∓ (ikρε + κ̂) , ξ =
√

k2ε2 (1−ρ2)+2ikερκ̂ + κ̂2 + ε2/4.

For numerical work, it is generally useful to recognize that the process for for X(t) is often
relatively close to geometric Brownian motion, making it sensible to work with logarithms of
X(t), rather than X(t) itself. An application of Ito’s Lemma shows that (1)-(2) is equivalent to

d lnX(t) = −1
2

V (t)dt +
√

V (t)dWX(t), (3)

dV (t) = κ(θ −V (t))dt + ε
√

V (t)dWV (t). (4)

All of our numerical works shall center on this formulation of the model dynamics.

2.2 Path Simulation

Given some arbitrary set of discrete times T = {ti}N
i=1, consider now the problem of generating

random paths of the pair (X(t),V(t)) for all t ∈ T . This would be required, for instance, in
the pricing of path-dependent securities with payout functions that depend on observations of
X(t) at a given finite set of dates. To device such a scheme, it suffices to contemplate the more
fundamental question of how, for an arbitrary increment ∆, to generate a random sample of
(X(t +∆),V (t +∆)) given (X(t),V(t)); repeated application of the resulting one-period scheme
(with ∆ generally different at each date in T ) will produce a full path (X(t),V(t))t∈T . Below,
we outline a few previously proposed techniques for updating X and V from time t to time t +∆.

2.3 Euler Scheme

Using X̂ and V̂ to denote discrete-time approximations to X and V , respectively, a basic Euler
scheme for (3)-(4) would take the form

ln X̂(t +∆) = ln X̂(t)− 1
2

V̂ (t)∆+
√

V̂ (t)ZX

√
∆,

V̂ (t +∆) = V (t)+κ(θ − V̂ (t))∆+ ε
√

V̂ (t)ZV

√
∆, (5)

where ZX and ZV are standardized Gaussian variables with correlation ρ . Note that generation
of ZX and ZV on a computer can be done by setting

ZV = Φ−1 (U1) ,

ZX = ρZV +
√

1−ρ2Φ−1 (U2) ,
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where U1 and U2 are independent uniform samples, and where Φ−1 is the inverse cumulative
Gaussian distribution function. Computation of Φ−1 can be accomplished, for instance, by the
algorithm in [Moro], at relatively small computational cost.

One immediate problem with the scheme above is that the discrete process for V can become
negative with non-zero probability, which in turn would make computation of

√
V̂ impossible

and cause the time-stepping scheme to fail. To get around this problem, several remedies have
been proposed in the literature; see [LKD] for a review of various “fixes”. The scheme that
appears to produce the smallest discretization bias can be written on the form

ln X̂(t +∆) = ln X̂(t)− 1
2

V̂ (t)+∆+
√

V̂ (t)+ ZX

√
∆, (6)

V̂ (t +∆) = V̂ (t)+κ
(
θ −V̂ (t)+)∆+ ε

√
V̂ (t)+ ZV

√
∆, (7)

where we use the notation x+ = max(x,0). In [LKD] this scheme is denoted “full truncation”;
its main characteristic is that the process for V is allowed to go below zero, at which point the
process for V becomes deterministic with an upward drift of κθ .

2.4 Kahl-Jackel Scheme

[JK] suggest discretizing the V -process using an implicit Milstein scheme, coupled with their
“IJK” discretization for the stock process. Specifically, they propose the scheme

ln X̂(t +∆) = ln X̂(t)− ∆
4

(
V̂ (t +∆)+V̂ (t)

)
+ρ
√

V̂ (t)ZV

√
∆

+
1
2

(√
V̂ (t +∆)+

√
V̂ (t)

)(
ZX

√
∆−ρZV

√
∆
)

+
1
4

ερ∆
(
Z2

V −1
)
, (8)

V̂ (t +∆) =
V̂ (t)+κθ∆+ ε

√
V̂ (t)ZV

√
∆+ 1

4ε2∆
(
Z2

V −1
)

1+κ∆
. (9)

It is easy to verify that this discretization scheme will result in positive paths for the V process if
4κθ > ε2. As argued earlier in connection with Proposition 2, this restriction is rarely satisfied
in practice, and one typically finds that the sampling scheme for V will produce negative values
with substantial probability. Unfortunately [JK] do not provide a solution for this problem, but
it seems reasonable to use a truncation scheme similar to that behind (6)-(7). That is, whenever
V̂ drops below zero, we use (7), and simultaneously make sure to use V̂ (t + ∆)+ and V̂ (t)+,
rather than V̂ (t +∆) and V̂ (t), in (8).

2.5 Broadie-Kaya scheme

In [BK], V (t +∆) is sampled directly from the known distribution in Proposition 1. As direct
inversion of the distribution function for V (t + ∆) is numerically expensive, an acceptance-
rejection technique is used instead. Loosely, the scheme involves sampling from a Poisson
distribution followed by an acceptance-rejection sample from a central chi-square distribution
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with its degree-of-freedom parameter determined by the outcome of the Poisson draw. See [BK]
or [Glass] for details.With V being drawn from its exact probability distribution, the resulting
sampling scheme for the V process is completely bias-free.

To obtain a bias-free scheme for sampling the asset price process, first integrate the SDE for
V (t), to yield

V (t +∆) = V (t)+
∫ t+∆

t
κ (θ −V (u)) du+ ε

∫ t+∆

t

√
V (u)dWV (u)

or, equivalently,

∫ t+∆

t

√
V (u)dWV (u) = ε−1

(
V (t +∆)−V (t)−κθ∆+κ

∫ t+∆

t
V (u)du

)
. (10)

A Cholesky decomposition shows that

d lnX(t) = −1
2

V (t)dt +ρ
√

V (u)dWV (u)+
√

1−ρ2
√

V (u)dW (u)

where W is a Brownian motion independent of WV . In integral form,

lnX(t +∆) = lnX(t)+
ρ
ε

(V (t +∆)−V (t)−κθ∆)

+
(

κρ
ε

− 1
2

)∫ t+∆

t
V (u)du+

√
1−ρ2

∫ t+∆

t

√
V (u)dW (u). (11)

where we have used (10). Conditional on V (t +∆) and
∫ t+∆

t V (u)du, it is clear that the distribu-
tion of lnX(t +∆) is Gaussian with easily computable moments. After first sampling V (t +∆)
from the non-central chi-square distribution (as described above), one then performs the follow-
ing steps:

1. Conditional on V (t +∆) (and V (t)) draw a sample
∫ t+∆

t V (u)du.

2. Conditional on V (t +∆) and
∫ t+∆

t V (u)du, use (11) to draw a sample of lnX(t +∆) from
a Gaussian distribution

While execution of the second step is straightforward, the first one is not, as the neces-
sary conditional distribution of

∫ t+∆
t V (u)du is not known in closed form. [BK] are, however,

able to derive the characteristic function, which they can numerically Fourier-invert to generate
the conditional cumulative distribution function for

∫ t+∆
t V (u)du. Numerical inversion of this

distribution function over a uniform random variable finally allows for generation of a sample
of
∫ t+∆

t V (u)du. The total algorithm requires great care in numerical discretization to prevent
introduction of noticeable biases and is further complicated by the fact that the characteris-
tic function

∫ t+∆
t V (u)du contains two modified Bessel functions (each of which represent an

infinite series).
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The Broadie-Kaya algorithm is bias-free by construction, but its complexity and lack of
speed often limits its practical use to benchmarking of theoretical values against which more
practical schemes can be measured; see [LKD] for numerical cost-benefit comparison against
the Euler scheme (6)-(7)3. Also, as mentioned earlier, the use of an acceptance-rejection scheme
in the simulation of V (t +∆) is inconvenient in many risk management applications, as pertur-
bation of model parameters will typically alter the total number of pseudo-random uniform
numbers needed to generate a path of X and V. Even if a common random number generator
seed is used for the pre- and post-perturbation paths, the resulting correlation between sample
path payouts before and after perturbation will be low, resulting in a noisy estimate of the ef-
fect of the perturbation. For the specific case of sensitivities to infinitesimal moves in X(0) (as
needed for delta and gamma computations) there are technical ways to overcome this problem
– see [BK2] for details – but they add to the already considerable complexity of the standard
Broadie-Kaya scheme, and it is questionable whether the resulting scheme is truly practical in
a standard trading system environment.

2.6 Other discretization schemes

For the special case of zero correlation, [AB] use an Euler scheme for lnX and suggest approx-
imating the process for V as a log-normal variable, with moments fitted to the true moments
given in Corollary 1. Unlike a standard Euler scheme in V , this scheme insures that the V
process stays strictly positive. Still, we know from Figure 1 that the distribution for V is not
particularly close to log-normal, and we typically find that the computational performance of
the scheme in [AB] is comparable to that of the Euler scheme (6)-(7).

The textbook [Glass] briefly considers applications of a standard Milstein scheme (see e.g.
[KP]) on the Heston model; the results demonstrate somewhat erratic convergence behavior for
European call option pricing. The test case considered in [Glass] has quite benign parameters,
as ε is only 30%, about three times lower than values typically used in practice; if one increases
ε to 100%, it can be verified that the Milstein scheme essentially breaks apart. This is not
surprising, given that the drift-term (i.e. the term that multiplies ∆) contains a factor V (t)−1/2,
which leads to poor numerical performance for the cases where there is a high likelihood of the
V -process reaching zero. As also pointed out in [Glass], applications of the Milstein scheme
lacks theoretical support as the SDE for V fails to satisfy certain smoothness conditions. We
cannot recommend application of the standard Milstein scheme as a way to discretize the V -
process, and shall not discuss it further here. We do, however, consider the implicit Milstein
scheme suggested in [JK] in the numerical tests in Section 5.

3 Proposed discretization schemes for V

Before commencing on the description of the new V -discretization schemes we shall test in
this paper, let us briefly consider a few qualitative properties of the true distribution for V (see

3[BK] also compare their method to an Euler scheme, but one with a sub-optimal way of handling negative
values of V .
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Proposition 1). First, it is known (see [JKB], p. 450) that the non-central chi-square distribu-
tion approaches a Gaussian distribution as the non-centrality parameter approaches ∞. From
Proposition 1, we know that V (t + ∆) is proportional to a non-central chi-square distribution
with non-centrality parameter V (t) ·n(t, t +∆), where n is independent of V (t). In other words,
for sufficiently large4 V (t) a good proxy for V (t + ∆) would be a Gaussian variable with the
first two moments fitted to match those given in Corollary 1.

For small V (t), on the other hand, the non-centrality parameter approaches zero, and the
distribution of V (t + ∆) becomes proportional to that of an ordinary (central) chi-square dis-
tribution with 4κθ/ε 2 degrees of freedom. We recall that the density of a central chi-square
distribution with ν degrees of freedom is

fχ2(x;ν) =
1

2ν/2Γ(ν/2)
e−x/2xν/2−1. (12)

For many cases of practical relevance, 4κθ/ε2 � 2, so the presence of the term xν/2−1 in (12)
implies that, for small V (t), the density of V (t +∆) will be very large around 0; see Figure 1 for
visual confirmation. It should be clear that approximation of V (t +∆) with a Gaussian variable
is typically not accurate when V (t) is close to zero.

3.1 Scheme TG

In this scheme the idea is to sample from a moment-matched Gaussian density where all prob-
ability mass below zero is inserted into a delta-function at the origin. For large values of V (t)
(where the likelihood of reaching zero is low) this scheme will automatically reproduce the
asymptotic behavior of V (t + ∆) described earlier. For small V (t), the resulting scheme will
approximate the chi-square density in (12) by a mass in 0 combined with an upper density tail
proportional to e−x2/2. Given the near-singular behavior of (12) around the origin, this does not
seem like an unreasonable approximation, as shown in Figure 2 below (compare to Figure 1).

In summary, the TG (for Truncated Gaussian) scheme writes

V̂ (t +∆) = (µ +σ ·ZV )+ (13)

where ZV is a standard Gaussian random variable, and µ and σ are constants that will depend
on the the time-step ∆ and V̂ (t), as well as the parameters in the SDE for V .

3.1.1 Computing µ and σ

To set µ and σ , we will proceed to match both E
(
V̂ (t +∆)

)
and E

(
V̂ (t +∆)2

)
to the exact

values of E
(
V (t +∆)|V (t) = V̂ (t)

)
and E

(
V (t +∆)2|V (t) = V̂ (t)

)
as computed from Corollary

1. The result is listed in the proposition below.

4Note that n(t,t + ∆) goes to infinity for ∆ ↓ 0, so what constitutes a large enough value of V (t) for the distri-
bution of V (t + ∆) to be well-approximated by a Gaussian depends on the size of the time-step, of course.
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Figure 2: Cumulative Distribution of V
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Notes: The figure shows the cumulative distribution function for V (T ) given V (0), with T = 0.1. Model
parameters were as in Figure 1. The TG approximating distribution was computed by moment-matching
a truncated Gaussian distribution, as described in Section3.1.1.

Proposition 4 Let φ(x) = (2π)−1/2e−x2/2 be the standard Gaussian density, and define a func-
tion r : R → R by the relation

r(x)φ (r(x))+Φ(r(x))
(
1+ r(x)2)= (1+ x) (φ (r(x))+ r(x)Φ(r(x)))2 .

Also set m ≡ E
(
V (t +∆)|V (t) = V̂ (t)

)
, s2 ≡ Var

(
V (t +∆)|V (t) = V̂ (t)

)
, and ψ ≡ s2/m2 > 0.

If V̂ (t +∆) is generated by the TG scheme (13), with parameter settings

µ =
m

φ (r(ψ))r(ψ)−1 +Φ(r(ψ))
, σ =

m
φ (r(ψ))+ r(ψ)Φ(r(ψ))

, (14)

then E
(
V̂ (t +∆)

)
= m and Var

(
V̂ (t +∆)

)
= s2.

Proof: For (13), an easy computation shows that

E
(
V̂ (t +∆)

)
=

∫ ∞

−µ/σ
(µ +σx)φ(x)dx = µΦ(µ/σ)+σφ (µ/σ) (15)

E
(
V̂ (t +∆)2) =

∫ ∞

−µ/σ
(µ +σx)2 φ(x)dx = E

(
V̂ (t +∆)

)
µ +σ 2Φ(µ/σ) (16)

Due to the non-linear form of the equations (15)-(16), the moment-matching exercise cannot be
done analytically, so we will have to rely on numerical methods. For reasons of computation
efficiency, however, a naive brute-force approach that employs a two-dimensional root-search
routine at each time-step in the scheme is obviously out of the question. Instead, we proceed by
defining the ratio r = µ/σ . Matching the mean (15) to m results in

µ =
m

r−1φ(r)+Φ(r)
; σ = r−1µ =

m
φ(r)+ rΦ(r)

.
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Inserting this expression into (16), along with σ = rµ , we get, after a few rearrangements,

E
(
V̂ (t +∆)2)= m2

(
1

r−1φ(r)+Φ(r)
+

Φ(r)

(φ(r)+ rΦ(r))2

)
.

Matching (16) to s2 +m2 then yields

s2 +m2 = m2

(
1

r−1φ(r)+Φ(r)
+

Φ(r)

(φ(r)+ rΦ(r))2

)
.

With ψ = s2/m2 > 0, this equation can be rearranged to

rφ(r)+Φ(r)
(
1+ r2)= (1+ψ)(φ(r)+ rΦ(r))2 .

Clearly, then, r is only a function of ψ , i.e. r = r(ψ).

Recovery of the function r must be done by numerical root-search, but the function is generic
and can be mapped out once and for all, completely independent of any model or simulation
setup. In practice, we would do this mapping on a discrete, equidistant grid for ψ (to allow for
easy look-up), on a bounded domain. To determine the limits of this domain, we notice, from
Corollary 1, that

m = θ +
(
V̂ (t)−θ

)
e−κ∆; (17)

s2 =
V̂ (t)ε2e−κ∆

κ

(
1− e−κ∆

)
+

θε2

2κ

(
1− e−κ∆

)2
, (18)

such that

ψ =
s2

m2 =
V̂ (t)ε2e−κ∆

κ
(
1− e−κ∆)+ θε2

2κ
(
1− e−κ∆)2(

θ +
(
V̂ (t)−θ

)
e−κ∆

)2 . (19)

Differentiating this expression with respect to V̂ (t) shows that ∂ψ/∂V̂ (t) < 0 for all V̂ (t) ≥ 0,
such that the largest possible value for ψ is obtained for V̂ (t) = 0, and the smallest possible
value for V̂ (t) = ∞. Inserting these values for V̂ (t) into (19 shows that ψ ∈ (0,ε2/(2κθ)].

In practice, there is no need to map r(ψ) all the way down to ψ = 0; if the probability of
V̂ (t +∆) reaching 0, is negligible, we can skip the moment-fitting step entirely and simply set
µ = m and σ = s. If we introduce a confidence multiplier α (a number around 4 or 5), we can
decide to skip the fitting step when m/s = ψ−1/2 > α . In practice, the relevant domain for ψ
on which we, as a minimum, need to map the function r (ψ) is thus

ψ ∈ [1/α2,ε2/(2κθ)]. (20)

As a final computational trick, note that once we have established the function r, we can
write, from (14),

µ = fµ(ψ) ·m, fµ(ψ) =
r(ψ)

φ(r(ψ))+ r(ψ)Φ(r(ψ))
(21)
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σ = fσ (ψ) · s, fσ (ψ) =
ψ−1/2

φ(r(ψ))+ r(ψ)Φ(r(ψ))
. (22)

The two functions fµ(ψ) and fσ (ψ) are ultimately what we should cache on a computer once
and for all, on an equi-distant grid for ψ large enough to span the domain (20). Figure 3 shows
the functions fµ(ψ) and fσ (ψ). Intuitively, shifting the left tail mass of a Gaussian into a
delta-function at zero will, all things equal, raise the mean and lower the variance relative to
the original Gaussian distribution. To counter these effects, for large values of ψ (which cor-
responds to small values of V ) fµ becomes significantly negative and fσ becomes substantially
larger than one. For instance, for the model parameters used in Figure 2, when V̂ (t) = 0 we
get fµ = −49.4 and fσ = 6.65. Naive truncation schemes (such as certain Euler schemes) that
assume fµ ≈ fσ ≈ 1 not surprisingly have large biases.

Figure 3: Functions fµ and fσ
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3.1.2 Summary of TG algorithm.

Assume now that we have proceeded to map out fµ(ψ) and fσ (ψ) on a domain for ψ at least as
large as (20). The detailed algorithm for the TG simulation step from V̂ (t) to V̂ (t +∆) is then,
as follows:

1. Given V̂ (t), compute5 m and s2 from equations (17) and (18).

2. Compute ψ = s2/m2 and look up fµ(ψ) and fσ (ψ) from cache

5Notice that these computations involve an exponential exp(−κ∆). Needless to say, this exponential – which
only depends on the size of the time-step – should be computed outside the Monte Carlo loop. For extra effi-
ciency, we could go further and consider writing ψ =

(
V̂ (t)k1 + k2

)2 (
V̂ (t)k3 + k4

)−1
, where the four ∆-dependent

constants k1, . . . ,k4 can be computed before the Monte Carlo simulation starts. To the extent that the time-grid is
non-equidistant, and/or the parameters in the SDE for V are functions of time, we will need to cache such data for
each time-step. The computational overhead to do this is trivial, of course.
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3. Compute µ and σ according to equations (21) and (22)

4. Draw a uniform random number UV

5. Compute ZV = Φ−1 (UV ), e.g. using the algorithm in [Moro]

6. Use (13), i.e. set V̂ (t +∆) = (µ +σZV )+ .

If implemented intelligently, apart from the computation of ZV a step in the TG scheme
should only involve a handful of simple algebraic operations (+,-,/, and *) and should have
speed comparable to the Euler step (6)-(7).

3.2 Scheme QE

The TG scheme models the upper tail of the density for V̂ (t + ∆) as proportional to e−x2/2.
For low values of V̂ (t), however, this density decay is too fast, as is obvious from (12). We
now introduce a scheme that is designed to address this issue; as an added benefit, the resulting
scheme will not require the same amount of pre-caching as was necessary for the TG scheme.

We derive our new scheme in steps. The first step is based on an observation that a non-
central chi-square with moderate or high non-centrality parameter can be well-represented by a
power-function applied to a Gaussian variable. See [Pat], [Pe], and [Pit0], as well as the survey
in [JK]. While there is evidence that a cubic transformation of a Gaussian variable is preferable,
such a scheme could not preserve non-negative values for the V process and we abandon it in
favor of a quadratic representation, along the lines of [Pat]. Specifically, for sufficiently large6

values of V̂ (t), we write
V̂ (t +∆) = a(b+ZV )2 (23)

where ZV is a standard Gaussian random variable, and a and b are certain constants, to be
determined by moment-matching. a and b will depend on the the time-step ∆ and V̂ (t), as well
as the parameters in the SDE for V.

The scheme (23) does not work well for low values of V̂ (t) – in fact the moment-matching
exercise fails to work – so we supplement it with a scheme to be used for low values of V̂ (t). For
this, we take inspiration from the asymptotic density in (12) and use an approximated density
for V̂ (t +∆) of the form

Pr
(
V̂ (t +∆) ∈ [x,x+dx]

) ≈ (pδ (0)+β (1− p)e−βx
)

dx, x ≥ 0, (24)

where δ is a Dirac delta-function, and p and β are non-negative constants to be determined. As
in the TG scheme, we have a probability mass at the origin, but now the strength of this mass
(p) is explicitly specified, rather than implied from other parameters. The mass at the origin is
supplemented with an exponential tail, qualitatively similar to that of the density (12). It can be
verified that if p ∈ [0,1] and β ≥ 0, then (24) constitutes a valid density function. Figure 4 in

6Recall that the non-centrality parameter in the exact distribution for V (t +∆) is proportional to V (t). We shall
make it precise shortly what we mean with “sufficiently large”.
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Section 3.2.3 below demonstrate the quality of the approximations (23) and (24); generally the
QE approximations are more accurate than the TG approximations.

Sampling according to (24) is straightforward and efficient. To see this, first we integrate
(24) to generate a cumulative distribution function

Ψ(x) = Pr
(
V̂ (t +∆) ≤ x

)
= p+(1− p)

(
1− e−βx

)
, x ≥ 0.

We notice that the inverse of Ψ is readily computable:

Ψ−1(u) = Ψ−1(u; p,β ) =

{
0, 0 ≤ u ≤ p,

β−1 ln
(

1−p
1−u

)
, p < u ≤ 1.

(25)

By the standard inverse distribution function method, we thus get the simple sampling scheme

V̂ (t +∆) = Ψ−1 (UV ; p,β ) (26)

where UV is a draw from a uniform distribution. Note that this scheme is extremely fast to
execute.

Equations (23) and (26) together define our QE (for Quadratic-Exponential) discretization
scheme. What remains is the determination of the constants a, b, p, and β , as well as a rule for
when to switch from (23) to (26).

3.2.1 Computing a and b

Our strategy is again to determine a and b by moment-matching techniques.

Proposition 5 Let m and s be as defined in Proposition 4 (equations (17) and (18)), and set
ψ = s2/m2. Provided that ψ ≤ 2, set

b2 = 2ψ−1 −1+
√

2ψ−1
√

2ψ−1 −1 ≥ 0 (27)

and
a =

m
1+b2 . (28)

Let V̂ (t +∆) be as defined in (23); then E
(
V̂ (t +∆)

)
= m and Var

(
V̂ (t +∆)

)
= s2.

Proof: We first recognize that (23) describes V̂ (t + ∆) as being distributed as a times a non-
central chi-square distribution with one degree of freedom and non-centrality parameter b2 (see,
e.g., [JKB]). From known results, it follows that

E
(
V̂ (t +∆)

)
= a

(
1+b2) , Var

(
V̂ (t +∆)

)
= 2a2 (1+2b2) .

Equating these moments to the exact values m and s2 gives the equation system

a
(
1+b2)= m; 2a2 (1+2b2)= s2.
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Set x = b2 and ψ = s2/m2. Elimination of a yields

x2 +2x(1−2ψ−1)+1−2ψ−1 = 0.

Evaluation of the discriminant of this second-order equation shows that a solution is only pos-
sible if ψ ≤ 2. Under this constraint, the solution for x = b2 is (27).

We emphasize that the values of a and b in Proposition 5 only apply for the case where
ψ ≤ 2. For higher values of ψ (corresponding to low values of V̂ (t)), the scheme will fail.

3.2.2 Computing p and β

Proposition 6 Let m, s, and ψ be as defined in Proposition 4. Assume that ψ ≥ 1 and set

p =
ψ −1
ψ +1

∈ [0,1), (29)

and

β =
1− p

m
=

2
m(ψ +1)

> 0. (30)

Let V̂ (t +∆) be as defined in (26); then E
(
V̂ (t +∆)

)
= m and Var

(
V̂ (t +∆)

)
= s2.

Proof: By direct integration of the density (24), it is easy to show that

E
(
V̂ (t +∆)

)
=

1− p
β

; Var
(
V̂ (t +∆)

)
=

1− p2

β 2 .

Enforcing the moment-matching conditions results in the equation system

1− p
β

= m;
1− p2

β 2 = s2.

Elimination of β yields
(1+ψ) p2 −2ψ p+ψ −1 = 0,

where ψ = s2/m2. This system will always have exactly one solution for p less than 1, namely
that in (29). (30) then immediately follows. We stress that for the solution (29)-(30) to make
sense, we need for p be non-negative. That is, we must demand ψ ≥ 1.

3.2.3 Switching rule

With ψ = Var
(
V (t +∆)|V (t) = V̂ (t)

)×E
(
V (t +∆)|V (t) = V̂ (t)

)−2
, we have shown that the

quadratic sampling scheme (23) can only be moment-matched for ψ ≤ 2. On the other hand, the
exponential scheme (26) can only be moment-matched for ψ ≥ 1. Fortunately, these domains
of applicability overlap, such that at least one of the two schemes can always be used. A
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natural procedure is to introduce some critical level ψc ∈ [1,2], and use (23) if ψ ≤ ψc and
(26) otherwise. The exact choice for ψc appears to have relatively small effects on the quality
of the overall simulation scheme; we use ψc = 1.5 in our numerical tests. We note from (19)
that, for any fixed value of V̂ (t), lim∆↓0 ψ = 0, so as the time-step is reduced, the need to use
(26) becomes increasingly remote. For practical-sized values of the time-steps, however, the
switching likelihood is often very substantial.

At this point, it may be worth considering whether one could dispense of the switching
rule by, say, relaxing the requirements that both first and second moments of the V -process be
matched exactly. [Pit0], for instance, uses a quadratic scheme similar to (23) but only fits the
first moment when ψ > 2 (an event that in many practically relevant model settings will have
significant probability). There are, however, no speed benefits to such a scheme, and, as one
would intuitively expect, numerical tests generally show a marked deterioration in numerical
performance relative to our full switching scheme.

To illustrate the quality of the QE approximation to the true distribution of V , we consider
two different cases, one on each side of the trigger condition for ψ . See Figure 4 for the results.

Figure 4: Cumulative Distribution of V
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Notes: The figures above show the cumulative distribution function for V (T ) given V (0), with T = 0.1.
Model parameters are as in Figure 1, but V (0) has been lowered to V (0) = 1% in the figure on the left
and raised to V (0) = 9% in the figure on the right.

3.2.4 Summary of QE algorithm

Assume that some arbitrary level ψc ∈ [1,2] has been selected. The detailed algorithm for the
QE simulation step from V̂ (t) to V̂ (t +∆) is then:

1. Given V̂ (t), compute m and s2 from equations (17) and (18).

2. Compute ψ = s2/m2

3. Draw a uniform random number UV
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4. If ψ ≤ ψc :

(a) Compute a and b from equations (28) and (27)

(b) Compute ZV = Φ−1 (UV ), e.g. using the algorithm in [Moro]

(c) Use (23), i.e. set V̂ (t +∆) = a(b+ZV )2

5. Otherwise, if ψ > ψc :

(a) Compute β and p according to equations (30) and (29)

(b) Use (26), i.e. set V̂ (t +∆) = Ψ−1 (UV ; p,β ), where Ψ−1 is given in (25).

As before, exponentials used in computation of m and s2 should be pre-cached; see Footnote 5.

3.2.5 Extensions

Schemes TG and QE both capture the near-singular behavior of V around the origin by inserting
a Dirac mass at V = 0. The real V density, however, does not have such a mass, and one wonders
whether a more careful characterization of the behavior at V = 0 may be possible. Inspection
of the limiting chi-square density (12) shows that, for example, one could consider replacing
in (24) the Dirac mass in 0 with a term of the form const · xq, for some constant q between -1
and 0. This idea indeed leads to a tractable sampling scheme, of particular use when a very
accurate approximation for small V is required; see Appendix B for some details. For most
practical applications, scheme QE as listed above is accurate enough, so we do not pursue
further extensions in the main paper.

4 Proposed discretization schemes for X

We start our discussion about the discretization of the X process by considering a scheme that
does not work well. The rationale for the failure of this scheme, however, is quite illuminating
and will guide us to a better scheme, proposed in Section 4.2.

4.1 How not to discretize the X -process

For concreteness, assume first that we have chosen to use the TG scheme in Section 3.1 as
our method of choice for the generation of random paths for the variance process V . That is,
advancement of V on the time interval [t, t +∆] takes the form

V̂ (t +∆) = (µ +σZV )+

where µ and σ are certain moment-matched constants, and ZV is a Gaussian random variable.
Suppose that we combine this scheme with an Euler scheme in lnX (as in (7), but with no need
to truncate V at 0)

ln X̂(t +∆) = ln X̂(t)− 1
2

V̂ (t)∆+
√

V̂ (t)ZX

√
∆, (31)
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where ZX is another Gaussian random variable. It is quite tempting to set the correlation be-
tween ZX and ZV equal to ρ – that is, the correlation between the driving Brownian motions
in the SDE (3)-(4) – but is this, in fact, reasonable? To analyze this, we first notice that the
strongly non-linear relationship between V̂ (t + ∆) and ZV will imply that the effective cor-
relation between ln X̂(t + ∆) and V̂ (t + ∆) will be closer to zero than ρ for the cases where
Pr (µ +σZV < 0) is significant, as it would be if V̂ (t) was close to zero. In reality, however, it
can be verified from the results in Appendix A that the true correlation between lnX(t +∆) and
V (t + ∆) (conditioned on V (t) and X(t)) will always be close to ρ, even for large values of ∆
and when V (t) is close to the origin.

If one were to nevertheless ignore the problem of “leaking correlation” and insist on us-
ing (31), at practical levels of ∆ one would experience a strong tendency for the Monte Carlo
simulation to generate too feeble effective correlation and, consequently, paths of X with poor
distribution tails. In call option pricing terms, this would manifest itself in an overall poor
ability to price options with strikes away from at-the-money.

4.2 Discretization scheme for X

In light of the problems highlighted above, we abandon naive Euler discretization for lnX , and
instead turn our focus on the exact representation (11),

lnX(t +∆) = lnX(t)+
ρ
ε

(V (t +∆)−V (t)−κθ∆)

+
(

κρ
ε

− 1
2

)∫ t+∆

t
V (u)du+

√
1−ρ2

∫ t+∆

t

√
V (u)dW (u).

In the expression for lnX(t + ∆) the term ρ
ε V (t + ∆) is the key driver of correlation between

X(t +∆) and V (t +∆); any discretization scheme for lnX should attempt to keep this term.
To use (11) in discretization of lnX , we need to consider how to handle the time-integral of

V . Rather than using Fourier methods, we here simply write

∫ t+∆

t
V (u)du ≈ ∆ [γ1V (t)+ γ2V (t +∆)] (32)

for certain constants γ1 and γ2. There are multiple ways for setting γ1 and γ2, the simplest being
the Euler-like setting: γ1 = 1, γ2 = 0. A central discretization, on the other hand, would set
γ1 = γ2 = 1

2 . A more sophisticated approach could be based on moment-matching; the interested

reader can find the exact moments for
∫ t+∆

t V (u)du in [Duf], p. 16.
As W is independent of V , conditional on V (t) and

∫ t+∆
t V (u)du, the Ito integral

∫ t+∆

t

√
V (u)dW (u)

is Gaussian with mean zero and variance
∫ t+∆

t V (u)du. With our approximation (32), this leads
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us to propose the following natural discretization scheme

ln X̂(t +∆) = ln X̂(t)+
ρ
ε
(
V̂ (t +∆)−V̂ (t)−κθ∆

)
+∆

(
κρ
ε

− 1
2

)(
γ1V̂ (t)+ γ2V̂ (t +∆)

)
+
√

∆
√

1−ρ2
√

γ1V̂ (t)+ γ2V̂ (t +∆) ·Z

= ln X̂(t)+K0 +K1V̂ (t)+K2V̂ (t +∆)+
√

K3V̂ (t)+K4V̂ (t +∆) ·Z, (33)

where Z is a standard Gaussian random variable, independent of V̂ , and K0, . . . ,K4 are given by

K0 = −ρκθ
ε

∆, K1 = γ1∆
(

κρ
ε

− 1
2

)
− ρ

ε
,

K2 = γ2∆
(

κρ
ε

− 1
2

)
+

ρ
ε

, K3 = γ1∆(1−ρ2), K4 = γ2∆(1−ρ2).

Note that the Ki, i = 0, . . . ,4 depend on the time-step as well as on the constants γ1 and γ2.
For given values of γ1 and γ2, the scheme constitutes our proposed discretization scheme for

lnX . It is to be combined with a simulation scheme for V , in the following fashion:

1. Given V̂ (t), generate V̂ (t +∆) using one of the time-stepping schemes in Section 3

2. Draw a uniform random number U , independent of all random numbers used for V̂ (t +∆)

3. Set Z = Φ−1(U), e.g. using the algorithm in [Moro]

4. Given ln X̂(t), V̂ (t), and the value for V̂ (t +∆) computed in Step 1, compute ln X̂(t +∆)
from (33).

4.3 Martingale correction. Regularity.

The scheme (33) is equivalent to

X̂(t +∆) = X̂(t)exp
(
K0 +K1V̂ (t)

)
exp

(
K2V̂ (t +∆)+

√
K3V̂ (t)+K4V̂ (t +∆) ·Z

)
. (34)

As discussed in [AP], the continuous-time process for X may not have finite higher moments,
but will always be a martingale. That is,

E(X(t +∆)|X(t)) = X(t) < ∞.

In contrast, (33) will not satisfy an equivalent discrete-time martingale condition7, i.e.

E
(
X̂(t +∆)|X̂(t)

) �= X̂(t).

7The Euler scheme (6)-(7) satisfies E
(
X̂(t + ∆)|X̂(t)

)
= X̂(t), whereas the Kahl-Jackel scheme (8)-(9) does

not.
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The practical relevance of this is often minor, as the net drift away from the martingale is
typically very small and controllable by reduction in the time-step. Also, the ability to hit the
mean of the distribution for X does not necessarily translate itself into better prices for options.
Nevertheless, in the spirit of the paper [GZ], let us examine whether it is possible to modify our
sampling scheme for X to strictly enforce E

(
X̂(t +∆)|X̂(t)

)
= X̂(t). As part of this, we will

also examine whether there might be parameter settings where the X process blows up, in the
sense that E

(
X̂(t +∆)|X̂(t)

)
= ∞.

Proposition 7 Let Ki, i = 1, . . . ,4 be as defined in equation (33). Define

M = E
(

eAV̂ (t+∆)|V̂ (t)
)

> 0, A = K2 +
1
2

K4 =
ρ
ε

(1+κγ2∆)− 1
2

γ2∆ρ2.

If M < ∞, then E
(
X̂(t +∆)|X̂(t)

)
< ∞. Assuming that M is finite, set

K∗
0 = − lnM−

(
K1 +

1
2

K3

)
V̂ (t). (35)

and

ln X̂(t +∆) = ln X̂(t)+K∗
0 +K1V̂ (t)+K2V̂ (t +∆)+

√
K3V̂ (t)+K4V̂ (t +∆) ·Z, (36)

where Z is a standard Gaussian random variable. In this case, E
(
X̂(t +∆)|X̂(t)

)
= X̂(t).

Proof: By iterated conditional expectations, from (36) we note that (suppressing the implicit
conditioning on V̂ (t))

E
(
X̂(t +∆)|X̂(t)

)
= E

(
E
(
X̂(t +∆)|X̂(t),V̂(t +∆)

))
= X̂(t)eK∗

0+K1V̂ (t)E
(

eK2V̂ (t+∆)E
(

e
√

K3V̂ (t)+K4V̂ (t+∆)·Z
∣∣∣ X̂(t),V̂(t +∆)

))
= X̂(t)eK∗

0+(K1+ 1
2 K3)V̂ (t)E

(
eAV̂ (t+∆)

)
, (37)

where the third step uses a known result for log-normal distributions, and where we have defined
A = K2 + 1

2K4. For E
(
X̂(t +∆)|X̂(t)

)
to equal X̂(t), we evidently require

eK∗
0 +(K1+ 1

2 K3)V̂ (t)M = 1,

which is (35).

To summarize, the martingale corrected scheme in Proposition 7 involves substituting K∗
0

for K0 in the basic scheme (33). As stated in the proposition, for this to be possible – and indeed
for (33) to be meaningful in the first place – we require that M = E

(
exp(AV̂ (t +∆)|V̂ (t)

)
be

finite. Assuming that γ2 ≥ 0 (which would always be the case in practice), and V̂ (t + ∆) ≥ 0
(which is always the case for the schemes in Section 3), it can be verified that A ≤ 0 for ρ ≤ 0,
which in turn shows that

ρ ≤ 0 ⇒ M < ∞. (38)
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This is an obvious consequence of the fact that eAV̂ (t+∆) is here bounded to the interval [0,1].
In practical applications, we virtually always have ρ ≤ 0, in which case (33) is safe to

use. Positive correlations may occur, of course, in which case we will need to examine the
discretization scheme for V in more detail. We proceed to do so below.

4.3.1 Scheme TG

Proposition 8 Let V̂ (t +∆) = (µ +σZV )+ (scheme TG). Then, for any value of A, we have

E
(

eAV̂ (t+∆)|V̂ (t)
)

= eAµ+ 1
2 A2σ2

Φ(d+)+Φ(−d−), (39)

with
d+ =

µ
σ

+Aσ ; d− =
µ
σ

.

Proof: Here V̂ (t +∆) = (µ +σZV )+ where µ and σ depend on V̂ (t). For A ≥ 0,we have

E
(

eAV̂ (t+∆)|V̂ (t)
)

= E(max(exp(Aµ +AσZV ) ,1))

= 1+E(max(exp(Aµ +AσZV )−1,0)) , A ≥ 0.

For A < 0, on the other hand, the same arguments lead to

E
(

eAV̂ (t+∆)|V̂ (t)
)

= 1−E(max(1− exp(Aµ +AσZV ) ,0)) .

Irrespective of the sign for A, the variable exp(Aµ +AσZV ) is log-normal (as ZV is Gaussian),
so standard results can be used to compute the above expectation. The final result, which is
always finite irrespective of the value of A, is (39).

While the result for E
(

eAV̂ (t+∆)|V̂ (t)
)

is available in closed form, it is rather complicated

and not particularly efficient to compute inside a discretization loop, as required in martingale
correction by (35). Caching techniques can help, of course, but become cumbersome for general
(non-equidistant) time-grids.

4.3.2 Scheme QE

Proposition 9 Let scheme QE be as given in Section 3.2, and characterized by constants a, b,
β , and p computed from Propositions 5 and 6. Let ψ = s2/m2, with m and s given in (17) and
(18). Also, let ψc ∈ [1,2] be given. If ψ ≤ ψc, then

E
(

eAV̂ (t+∆)|V̂ (t)
)

=
exp
(

Ab2a
1−2Aa

)
√

1−2Aa
, (40)

where A must satisfy

A <
1

2a
. (41)



Heston Simulation 22

If, on the other hand, ψ > ψc, then

E
(

eAV̂ (t+∆)|V̂ (t)
)

=
β (1− p)

β −A
, (42)

provided that
A < β . (43)

Proof: For ψ ≤ ψc, we recall that scheme QE sets V̂ (t + ∆) = a(b + ZV )2, the distribution
of which is a times a non-central chi-squared distribution with one degree of freedom and
non-centrality parameter b2 (see Section 3.2.1). From known results for the non-central chi-
square distribution (specifically, its moment-generating function), we get the result (40). For
this expectation to exist, we must demand that aA < 1/2.

For ψ > ψc, we have

E
(

eAV̂ (t+∆)|V̂ (t)
)

= p+β (1− p)
∫ ∞

0
e[A−β ]udu =

β (1− p)
β −A

,

provided that A < β (otherwise the expectation does not exist).

We emphasize that for scheme QE the expectation E
(

eAV̂ (t+∆)|V̂ (t)
)

does not exist for all

values of A. Of the two regularity conditions (41) and (43), the first is, in practice, the most re-
strictive8. To get a feeling for how restrictive (41) is, we recall that A = ρ

ε (1+κγ2∆)− 1
2γ2∆ρ2.

We also notice that definition of a in (28) guarantees that always a ≥ 4κ−1ε2
(
1− e−κ∆), so

(41) will certainly be satisfied if

ρ
ε

(1+κγ2∆)− 1
2

γ2∆ρ2 <
2κ

ε2 (1− e−κ∆)
.

If ρ > 0, this imposes a limit on the size of the time-step, roughly ρε∆ < 2. As ε is normally
around 50%-150%, the resulting restriction on the time-step is not likely to be a practical prob-
lem, even for quite large positive values of ρ .

Application of the result of Proposition7 to enforce the martingale condition in the dis-
cretization of X is here straightforward and convenient. Specifically, in (36) we simply set

K∗
0 =

{
− Ab2a

1−2Aa + 1
2 ln(1−2Aa)− (K1 + 1

2∆γ1
)
, ψ ≤ ψc,

− ln
(

β (1−p)
β−A

)
−(K1 + 1

2∆γ1
)
, ψ > ψc.

.

4.4 Convergence Considerations

A formal analysis of the convergence properties for the schemes proposed in this paper is diffi-
cult and complicated by the fact that the X process may not have any high-order moments. As
such, the usual examination of (weak) convergence of expectations of polynomials of X is not

8Recall that β = 2/(m(ψ + 1))≈ m−1, where m is typically a small number for ψ > ψc.
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always meaningful. While we could, in principle, undertake an examination of the convergence
of expectations on selected slow-growing payouts of X (e.g. call options), the technicalities
of such an analysis are considerable and we skip it. (See [LKD] for examples of this type of
analysis). Instead, we focus on a simpler concept, namely that of weak consistency. As shown
in [KP], p. 328 there is a strong link between weak consistency and weak convergence.

Proposition 10 Assume that γ1 + γ2 in (33) approach 1 for ∆ → 0. Schemes TG and QE are
then both weakly consistent. That is, conditional on X̂(t) and V̂ (t), we have for both schemes

lim
∆→0

E

(
ln X̂(t +∆)− ln X̂(t)

∆

)
= −1

2
V̂ (t), lim

∆→0
Var

(
ln X̂(t +∆)− ln X̂(t)√

∆

)
= V̂ (t), (44)

lim
∆→0

E

(
V̂ (t +∆)−V̂ (t)

∆

)
= κ

(
θ −V̂ (t)

)
, lim

∆→0
Var

(
V̂ (t +∆)−V̂ (t)√

∆

)
= ε2V̂ (t), (45)

lim
∆→0

Cov

(
V̂ (t +∆)−V̂ (t)√

∆
,
ln X̂(t +∆)− ln X̂(t)√

∆

)
= ρεV̂ (t). (46)

Proof: Both conditions in (45) are clearly satisfied, as schemes TG and QE are based on exact
matches of the first two conditional moments of V̂ (t +∆). From (33) we also have (suppressing
conditioning on X̂(t) and V̂ (t))

E
(
ln X̂(t +∆)

)− ln X̂(t)
∆

=
ρ
ε
(
E
(
V̂ (t +∆)

)−V̂ (t)−κθ∆
)

∆
+
(

κρ
ε

− 1
2

)(
γ1V̂ (t)+ γ2E

(
V̂ (t +∆)

))
→ ρ

ε
(
κ
(
θ −V̂ (t)

)−κθ
)
+
(

κρ
ε

− 1
2

)
V̂ (t) = −1

2
V̂ (t).

The second part of (44) is proved the same way. Equation (46) follows from the observation
that the form of (33) implies that

Cov
(
V̂ (t +∆), ln X̂(t +∆)

)
= Cov

(
V̂ (t +∆),

ρ
ε

V̂ (t +∆)
)

=
ρ
ε

Var
(
V̂ (t +∆)

)
.

5 Numerical Tests

To test our discretization schemes, we turn to the pricing of European call options in the Heston
model. This constitutes a standard test case, as prices can be computed with great precision
from the analytical result in Proposition 3. We consider a call option C maturing at time T
with strike K; let the exact option price at time 0 be C(0). Using a discretization scheme that
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approximates X(T ) with X̂(T ), we can establish an approximation Ĉ(0) to the option price by
computing the expectation

Ĉ(0) = E
((

X̂(T )−K
)+)

.

Due to the errors introduced by the discretization of time, Ĉ(0) is generally not equal to C(0).
We define the bias e of a discretization scheme as

e = C(0)−Ĉ(0). (47)

Clearly, e is a function of the time-step ∆ used in the discretization scheme; we are interested in
establishing the function e(∆) for the schemes outlined in previous chapters.

In (47), C(0) can be computed by the technique in Proposition 3. To estimate Ĉ(0), we
use Monte Carlo methods. Specifically, for a given discretization scheme for X̂ , we draw N
independent samples of X̂ (1)(T ), X̂ (2)(T ), . . . , X̂ (N)(T ) using an equidistant time-grid with fixed
step ∆; Ĉ(0) is then estimated in standard Monte Carlo fashion as

Ĉ(0) ≈ 1
N

N

∑
i=1

(
X̂ (i)(T )−K

)+
.

The right-hand side of this equation is a random variable with mean Ĉ(0) and a standard devia-
tion (“Monte Carlo error”) of order O(N−1/2). Using a sufficiently high number N of samples,
we can keep the standard deviation low and obtain a high-accuracy estimate for Ĉ(0).

Having outlined the basic procedure to measure bias, let us set up some specific test cases.
As discussed in Section 1, in our tests we wish to use parameters and option characteristics
that are challenging and practically relevant. For this, we consider three quite different settings,
listed in Table 1 below

Case I Case II Case III
ε 1 0.9 1
κ 0.5 0.3 1
ρ -0.9 -0.5 -0.3
T 10 15 5

V (0),θ 4% 4% 9%

Table 1: Test cases for numerical experiments. In all cases V (0) = θ and X(0) = 100.

Loosely, the data of Case I are representative of the market for long-dated FX options, such
as the ones that are embedded in the popular power-reverse dual contract. Case II could be con-
sidered representative for a long-dated interest rate option, and Case III has model parameters
that may be encountered in equity options markets. Case III is similar to test cases prevalent in
the existing literature; we expect it to here be the most straightforward to handle numerically.
For all test cases, we examine option prices at three levels of the strike: K = 70, K = 100, and
K = 140.
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In our numerical results, we use the following discretization schemes: the Euler scheme
(6)-(7); the Kahl-Jackel scheme (9)- (8), denoted “IM-IJK”; the TG scheme of Section 3.1;
and the QE scheme of Section 3.2. For the latter two schemes, we use (33) to discretize lnX ,
using central discretization (γ1 = γ2 = 1/2). In (33), we work both with and without martingale
corrections (see (36)); we use “TG-M” and “QE-M” to label the martingale-corrected versions
of schemes TG and QE, respectively. To keep the sample standard deviation low, all tests were
run using a high9 number of paths, N = 106.

5.1 Results for Case I

For Case I, Table 2 below lists Monte Carlo estimates of the bias e(∆), for values of ∆ ranging
from 1/32 year to 1 year.

Euler IM+IJK TG QE TG-M QE-M
∆ K=100
1 -6.394 (0.029) -57.648 (0.107) -1.290 (0.013) -1.022 (0.013) -0.338 (0.012) -0.233 (0.013)

1/2 -3.685 (0.021) -32.977 (0.070) -0.606 (0.013) -0.311 (0.013) -0.262 (0.013) -0.133 (0.013)
1/4 -2.048 (0.017) -18.427 (0.046) -0.321 (0.013) -0.049 (0.013) -0.165 (0.013) -0.002 * (0.013)
1/8 -1.051 (0.015) -10.121 (0.033) -0.231 (0.013) -0.002 * (0.013) -0.138 (0.013) 0.006 * (0.013)

1/16 -0.516 (0.014) -5.327 (0.024) -0.158 (0.013) 0.004 * (0.013) -0.089 (0.013) 0.005 * (0.013)
1/32 -0.243 (0.014) -2.717 (0.020) -0.126 (0.013) -0.009 * (0.013) -0.062 (0.013) -0.009 * (0.013)

K=140
1 -4.273 (0.019) -51.611 (0.094) 0.091 (0.002) 0.077 (0.002) 0.108 (0.002) 0.086 (0.002)

1/2 -1.913 (0.010) -28.153 (0.057) 0.027 (0.002) 0.023 (0.002) 0.043 (0.002) 0.025 (0.003)
1/4 -0.756 (0.006) -14.785 (0.033) 0.011 (0.003) 0.004 * (0.003) 0.023 (0.002) 0.004 * (0.003)
1/8 -0.269 (0.004) -7.527 (0.020) 0.007 * (0.003) -0.002* (0.003) 0.016 (0.002) -0.002 * (0.003)

1/16 -0.105 (0.003) -3.608 (0.012) 0.007 * (0.003) 0.000* (0.003) 0.013 (0.002) 0.000 * (0.003)
1/32 -0.045 (0.003) -1.636 (0.007) 0.001 * (0.003) 0.000* (0.003) 0.005* (0.003) 0.000* (0.003)

K=70
1 -3.955 (0.038) -52.570 (0.116) -1.203 (0.023) -0.853 (0.023) -0.231 (0.022) -0.114 (0.022)

1/2 -2.180 (0.030) -28.333 (0.078) -0.593 (0.023) -0.172 (0.023) -0.181 (0.022) 0.012 * (0.023)
1/4 -1.222 (0.026) -14.535 (0.055) -0.398 (0.022) 0.003 * (0.023) -0.171 (0.022) 0.025 * (0.022)
1/8 -0.603 (0.024) -7.242 (0.041) -0.306 (0.022) 0.006 * (0.023) -0.147 (0.022) 0.008 * (0.022)

1/16 -0.268 (0.023) -3.530 (0.033) -0.202 (0.022) 0.004 * (0.022) -0.069* (0.023) 0.003* (0.022)
1/32 -0.109 (0.023) -1.786 (0.028) -0.172 (0.022) -0.020 * (0.022) -0.042* (0.023) -0.021* (0.022)

Table 2: Estimated bias (e) in test Case I. Numbers in parenthes are sample standard deviations.
Starred results are those that are not statistically significant at the level of three sample standard
deviations.

From the table, we see that:

9Ideally, we would have liked to use an even higher number of sample paths, as the biases of our new schemes
are quite low (as we shall see). Practical computing limitations, however, makes it difficult to increase the number
of paths: at 32 steps per year pricing a 15-year option in the Heston model requires drawing 960 random numbers
for each path, so at 106 paths we already need about a billion random numbers (and associated manipulation of
these numbers to increment X and V ) to compute a single option price.
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• Schemes TG and, in particular, QE both have biases that are substantially lower than that
of the Euler scheme: for ATM or out-of-the-money options, the bias of TG/QE at a value
of ∆ = 1 or ∆ = 1/2 is roughly comparable to that of the Euler scheme at ∆ = 1/32.

• Scheme QE outperforms TG and has a bias that converges very rapidly as the time-step is
reduced: for all strikes in the table, a simulation step of ∆ = 1/2 or ∆ = 1/4 is sufficient
to render the bias for scheme QE statistically insignificant, even at 106 paths.

• Schemes TG and QE are robust with respect to option moneyness, with particularly strong
performance for out-of-the money options.

• Adding a martingale correction to schemes TG and QE generally lowers the bias further
relative to the basic schemes, particularly (and not surprisingly) for the in-the-money
options with K = 70.

• The Euler scheme becomes increasingly competitive relative to scheme TG when the
strike is lowered. This is a consequence of the fact that the Euler scheme by construction
is bias-free for the case K = 0, whereas TG is not (but TG-M is).

• The IM-IJK scheme does poorly, with biases that are substantially larger than those of the
Euler scheme.

The poor performance of the IM-IJK scheme is surprising, given that this scheme is sup-
posed to be particularly efficient for the setup that we consider in Case I, namely strong negative
correlation ρ . To investigate whether the poor performance was caused by either the Milstein
scheme (for the V process) or the IJK scheme (for X ), we ran a series of tests where we com-
bined an Euler scheme for V with the IJK scheme for X ; the results were similar to those for
IM-IJK in Table 2, suggesting that the IJK scheme for X is the main reason for the large biases.

To visualize some of the results in Table 2, consider the case K = 100, say, and let us convert
biases in the table into errors in implied Black-Scholes volatility. The left panel of Figure 5
below shows some of the results; the superior performance of our new discretization techniques
relative to the Euler scheme should be obvious. Graphs for other values of K are similar.

One might at this point consider the problem of establishing empirical convergence order10

for the various schemes covered in Table 2. An immediate problem is here the fact that our new
schemes (QE and QE-M in particular) have biases that are so low that the bulk of the numbers
in Table 2 are not statistically significant, and to make them so would require an impractical
amount of computing effort. Instead, additional runs were undertaken with coarser time-steps
than those in the table, in the hope that a bias pattern might emerge from these runs. The results
are listed in the right panel of Figure 5. The Euler scheme has a convergence order of 1 (as
expected), whereas scheme QE/QE-M converges at a rate that is substantially higher than linear,
but – at least for the values of ∆ in the graph – no fixed convergence rate can be established. The
convergence rate for scheme TG/TG-M is lower than for the other two schemes, and appears to
be around 0.5. As a consequence, when the step-size is reduced further than in the figure, the

10Recall that a discretization scheme has order n if the absolute value of the bias e decays as const ·∆ n
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Euler scheme will (in all likelihood) eventually produce less biased results than the TG/TG-M
scheme. This, however, will often be of limited practical relevance, as the precision of scheme
TG/TG-M is often adequate for applications long before the convergence “cross-over” point is
reached. In particular, when running a practical number of paths (� 106), Monte Carlo noise
for a practical number of paths will often overwhelm the bias of the TG/TG-M scheme, even
when only a handful of time steps per year is used. A more penetrating analysis of the various
trade-offs between bias and Monte Carlo noise could be performed along the lines of [DG],
but we skip it here as scheme QE is so obviously the winner for the tests above. For notes on
computation times, see Section 5.3 below.

Figure 5: Convergence of bias
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Notes: For test Case I and K = 100, the figures above show the convergence of the estimated call option
price bias (e) as the time-step ∆ is reduced. The figure on the left converts the bias into an error in
implied Black-Scholes volatility, and has the total number of time-steps (=T/∆) on the x-axis. The figure
on the right graphs the logarithm of the absolute value of the bias against the logarithm of the time-
step. The “Noise” graph indicates the approximate level of the logarithmic bias below which it becomes
statistically insignificant at the level of three sample standard deviations.

5.2 Results for Case II and Case III

Tables 3 and 4 list estimated call option price biases for test cases II and III. Results for Case
II are qualitatively and quantitatively very similar to those of Case I, with schemes TG and
QE outperforming the Euler scheme, which in turn outperforms the IM-IJK scheme. Of the
schemes proposed in this paper, scheme TG is again slightly worse than scheme QE, which
here performs very strongly with all biases being statistically insignificant with just 2 steps per
year. Adding martingale correction to schemes TG and QE here appears to yield less benefits
than for test Case I above, although some improvements can be seen for K = 70.

For the less challenging Case III, our new schemes still perform significantly better than
both the Euler and IM-IJK scheme, but now the IM-IJK scheme produces somewhat reasonable
results, although the convergence of the bias is rather erratic. Thus, while there apparently are
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Euler IM+IJK TG QE TG-M QE-M
∆ K=100
1 -7.039 (0.073) -22.496 (0.073) 0.516 (0.046) 0.459 (0.041) 0.694 (0.045) 0.528 (0.041)

1/2 -4.184 (0.064) -12.231 (0.069) 0.249 (0.061) 0.108 * (0.044) 0.357 (0.059) 0.118 * (0.045)
1/4 -2.187 (0.050) -6.590 (0.053) 0.102 * (0.058) 0.019* (0.047) 0.178 (0.056) 0.019 * (0.047)
1/8 -1.104 (0.044) -3.178 (0.044) 0.056 * (0.045) 0.019* (0.046) 0.100* (0.045) 0.019 (0.046)

1/16 -0.664 (0.073) -1.674 (0.089) 0.029 * (0.062) -0.051* (0.050) 0.061* (0.062) -0.042* (0.050)
1/32 -0.277 (0.042) -0.711 (0.042) 0.072 * (0.042) 0.026* (0.041) 0.074* (0.042) 0.026* (0.041)

K=140
1 -6.067 (0.067) -17.579 (0.062) 0.452 (0.040) 0.362 (0.035) 0.486 (0.040) 0.324 (0.035)

1/2 -3.351 (0.058) -8.621 (0.061) 0.196 (0.057) 0.021 * (0.039) 0.248 (0.055) 0.006 * (0.039)
1/4 -1.611 (0.043) -4.093 (0.045) 0.078 * (0.054) -0.001* (0.041) 0.123* (0.052) -0.006* (0.041)
1/8 -0.749 (0.038) -1.706 (0.036) 0.063 * (0.039) 0.009* (0.041) 0.093* (0.039) 0.007* (0.041)

1/16 -0.481 (0.070) -0.853 (0.086) 0.045 * (0.058) -0.053* (0.044) 0.047* (0.057) -0.054* (0.044)
1/32 -0.172 (0.036) -0.297 (0.035) 0.082 * (0.035) 0.010* (0.034) 0.056* (0.036) 0.010* (0.034)

K=70
1 -4.565 (0.078) -19.482 (0.080) -0.337 (0.050) -0.161 (0.046) -0.114 * (0.050) -0.070* (0.046)

1/2 -2.698 (0.069) -9.866 (0.075) -0.172 * (0.064) -0.090* (0.049) -0.037* (0.063) -0.076* (0.050)
1/4 -1.326 (0.055) -4.999 (0.059) -0.151 * (0.062) -0.016* (0.052) -0.049* (0.060) -0.015* (0.052)
1/8 -0.632 (0.050) -2.246 (0.050) -0.115 * (0.050) 0.021* (0.051) -0.060* (0.050) 0.021* (0.051)

1/16 -0.413 (0.077) -1.229 (0.092) -0.147 * (0.066) -0.053* (0.054) -0.065* (0.065) -0.054* (0.054)
1/32 -0.150 (0.048) -0.517 (0.047) -0.032 * (0.047) 0.033* (0.047) 0.049* (0.047) 0.033* (0.047)

Table 3: Estimated bias (e) in test Case II. Numbers in parenthes are sample standard deviations.
Starred results are those that are not statistically significant at the level of three sample standard
deviations.

parameter combinations for which the IM-IJK scheme can be used, the scheme is not robust.
In particular, as the variance of the V -process is increased – through a decrease of κ and/or an
increase in ε – the IM-IJK scheme performs increasingly poorly.

5.3 Computational Times

In comparing the numerical efficiency of discretization schemes, one need to consider both the
bias of the individual schemes, as well as the time it takes to compute a sample path. A scheme
that computes very fast but has a large bias, may in fact be preferable to a slower scheme with
a low bias, to the extent that one can use a substantially smaller time-step in the former scheme
than in the latter for a fixed computational budget. For reference, the table below lists computing
times for all schemes used in Sections 5.1 and 5.2, measured relative to the computing time of
the Euler scheme11. The numbers were averages for all runs in Tables 1-4. As the QE scheme is
here only marginally slower than the Euler scheme, the strong results of Scheme QE in Sections
5.1 and 5.2 makes it clearly preferable to the Euler scheme and should be the method of choice.
Martingale correction of scheme QE (that is, scheme QE-M) takes only a little extra time, and
can be expected to yield some modest benefit for in-the-money options.

11The computer used was a standard laptop PC with a Pentium CPU running at 1.6 GHz.
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Euler IM+IJK TG QE TG-M QE-M
∆ K=100
1 -4.365 (0.074) 0.258 (0.049) 0.483 (0.054) 0.372 (0.052) 0.634 (0.055) 0.492 (0.053)

1/2 -2.277 (0.062) 0.940 (0.050) 0.235 (0.053) 0.123 * (0.054) 0.291 (0.053) 0.144 * (0.054)
1/4 -1.119 (0.057) 0.955 (0.054) 0.078 * (0.055) -0.084* (0.057) 0.104* (0.055) -0.077* (0.057)
1/8 -0.439 (0.054) 0.862 (0.053) 0.116 * (0.054) 0.024* (0.053) 0.121* (0.054) 0.025* (0.053)

1/16 -0.235 (0.053) 0.534 (0.052) 0.079 * (0.053) -0.078* (0.054) 0.087* (0.053) -0.077* (0.054)
1/32 -0.060* (0.055) 0.308 (0.054) 0.024 * (0.055) 0.023* (0.055) 0.028* (0.055) 0.023* (0.055)

K=140
1 -4.495 (0.066) 0.924 (0.040) 0.728 (0.046) 0.557 (0.044) 0.707 (0.047) 0.529 (0.045)

1/2 -2.264 (0.054) 1.104 (0.042) 0.332 (0.045) 0.164 (0.046) 0.334 (0.045) 0.132 * (0.046)
1/4 -1.092 (0.048) 0.967 (0.046) 0.151 (0.047) -0.071 * (0.049) 0.159 (0.047) -0.074 * (0.049)
1/8 -0.432 (0.045) 0.808 (0.045) 0.169 (0.046) 0.020 * (0.044) 0.176 (0.046) 0.019 * (0.044)

1/16 -0.209 (0.045) 0.507 (0.044) 0.094 * (0.045) -0.067* (0.046) 0.098* (0.045) -0.067* (0.046)
1/32 -0.076* (0.047) 0.269 (0.046) 0.030 * (0.046) 0.005* (0.047)* 0.032 (0.046) 0.005* (0.047)

K=70
1 -2.957 (0.080) 0.219 (0.056) -0.328 (0.060) -0.188 (0.058) -0.113 * (0.061) -0.010* (0.059)

1/2 -1.522 (0.068) 0.832 (0.057) -0.136 * (0.060) -0.100* (0.060) -0.058* (0.060) -0.052* (0.061)
1/4 -0.737 (0.063) 0.714 (0.060) -0.134 * (0.061) -0.124* (0.063) -0.098* (0.061) -0.113* (0.063)
1/8 -0.245 (0.061) 0.636 (0.059) 0.020 * (0.060) 0.028* (0.059) 0.039* (0.060) 0.031* (0.059)

1/16 -0.166* (0.060) 0.358 (0.059) -0.006 * (0.060) -0.100* (0.061) 0.006* (0.060) -0.099* (0.061)
1/32 -0.011* (0.061) 0.208 (0.060) -0.022 * (0.061) 0.044* (0.062) -0.015* (0.061) 0.044* (0.062)

Table 4: Estimated bias (e) in test Case III. Numbers in parenthes are sample standard devia-
tions. Starred results are those that are not statistically significant at the level of three sample
standard deviations.

IM-IJK TG QE TG-M QE-M
1.23 1.28 1.21 2.92 1.38

Table 5: Average computation times, relative to Euler scheme

We note that the martingale-corrected TG scheme is here slower than the other schemes by
a factor larger than 2, a consequence of the fact that the martingale correction for scheme TG is
rather involved (and also, in part, a consequence of the fact that we did not bother to attempt to
cache or otherwise optimize the algorithm). In light of the often modest gains associated with
martingale correction, in most cases it should not be activated for scheme TG.

6 Extensions

Before we conclude the paper, let us consider a few possible extensions.
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6.1 Displacement

In interest rate applications, it is often technically convenient to assume that ρ = 0 in the Heston
model. As this generally does not produce option prices that calibrate well to the market,
a separate “local volatility” mechanism is introduced into the model to mimic the effect of
negative correlation between X and V . A standard model (see e.g. [AA] or [Pit]) replaces (2) in
the Heston SDE with

dX(t) = (hX(t)+ k)
√

V (t)dWX(t),

where h and k are positive constants. Let X ∗(t) = hX(t)+k and V ∗(t) = h2V (t). An application
of Ito’s lemma then shows that

dX∗(t) = X∗(t)
√

V ∗(t)dWX(t),

dV ∗(t) = κ
(
h2θ −V ∗(t)

)
dt +hε

√
V ∗(t)dWV (t).

This vector SDE can be discretized with the methods in this paper; the resulting path for X ∗(t)
can be translated into paths of X(t) by the relation X(t) = (X ∗(t)− k)/h.

It is equally easy to introduce a displacement in the process for V , which allows us to work
with processes of the form

dV (t) = κ (θ −V (t))dt + ε
√

h+V (t)dWV (t)

where h is some constant. We leave the details to the reader.

6.2 Time-dependent parameters

In some applications, certain parameters of the Heston SDE are functions of time. One such
application can be found in [AA], where the process for X(t) is written

dX(t)/X(t) = λ (t)
√

V (t)dWX(t) (48)

where λ is a bounded deterministic function of time. In [AA], the process for V (t) has constant
parameters and can easily be discretized by the schemes in Section 3. To handle (48), we
could assume that λ can be approximated as being piecewise flat on [t, t + ∆] with value λ̄ ;
for instance, we could set λ̄ to (λ (t)+λ (t +∆))/2. This leads to a trivial modification of the
sampling scheme for lnX :

ln X̂(t +∆) = ln X̂(t)+
ρ
ε

λ̄
(
V̂ (t +∆)−V̂ (t)−κθ∆

)
+∆λ̄

(
κρ
ε

− λ̄
2

)(
γ1V̂ (t)+ γ2V̂ (t +∆)

)
+ λ̄

√
1−ρ2

√
γ1V̂ (t)+ γ2V̂ (t +∆) ·Z,

where notation is the same as in (33). For the more general case where the parameters of the
process for V (t) may also depend on time (as in [Pit]), we proceed in the same fashion and
approximate all parameters as piecewise flat on the discretization grid; this, in turn, allows for
application of all schemes in this paper. See [Glass], p. 130 for similar ideas.
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6.3 Jumps in Stock Price and Variance

Both [BK] and [LKD] consider a model where a Poisson jump term is added to the basic Heston
dynamics of the X -process. Specifically, we write

d lnX = −1
2

V (t)dt−ηµdt +
√

V (t)dWX(t)+ J(t)dN(t),

where N(t) is a Poisson process with intensity η , and J(t) is Gaussian. Both N and J are
assumed independent of the Brownian motions for V and X . Adding the term J(t)dN(t) to the
process of lnX will induce jumps: if N(t) increments at time t, the X process jumps to X(t)eJ(t).
Note that we have added a martingale compensation drift ηµ to keep X a martingale; µ̄ is given
by µ̄ = E(eJ)−1.

Simulation in the model is trivial, due to the independence assumption. Specifically, we can
write

lnX(t) = lnX ∗(t)+Z(t), Z(t) =
∫ T

0
J(t)dN(t),

where lnX∗(t) is governed by a standard jump-free Heston model. The simulation techniques
developed in this paper can be used to generate paths for lnX ∗(t) (incorporation of the drift ηµ
is trivial), and paths of Z(t) can be done by overlaying samples from a Poisson distribution with
Gaussian jumps.

In some applications, jumps may also be added to the variance process V. The proper way
to generate paths in this case is to first draw all the jump times of the V process, and then use
one of the discretization schemes for V (see Section3) between these jump dates. We trust that
the user can intuitively grasp how this is done; [BK] contains further details.

7 Conclusion

In this paper, we have considered two new discretization schemes – denoted TG and QE – to
be used in Monte Carlo simulation of Heston (and Heston-like) models. The schemes also have
applications for simulation of affine models in more generality. Our proposed discretization
schemes are based on careful analysis of the true – and often rather problematic – behavior
of affine square-root processes, combined with a mechanism to generate the correct amount of
co-dependence between the variance process and the asset process. The schemes introduced in
this paper are simple to implement and generally yield very substantial efficiency improvements
over existing methods. Of the schemes considered, the QE scheme should be the default choice,
due to its simplicity and strong performance; martingale correction (scheme QE-M) is optional.
The TG scheme has considerable intuitive appeal, but has sub-linear convergence and generally
performs somewhat worse than QE at practically relevant time-steps. In the TG scheme, the
variance process is simulated by applying a guaranteed monotonic transformation to a Gaussian
random variable; this may make this scheme more natural to use than scheme QE in multi-asset
applications that involve several correlated variance processes. Examination of such multi-
dimensional applications is left for future research.
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Computational performance tests of the proposed schemes were done using realistic and
challenging model parameters and payout characteristics. While all our new schemes were
robust under changes to model parameters and option moneyness, some schemes in the existing
literature did not do as well as expected. The “fixed” Euler scheme of [LKD] has acceptable
behavior but generally requires substantially more time-steps than any of our new schemes
before biases are reduced to acceptable levels. The scheme in [JK] was not robust in our tests,
and returned very high biases in some cases. Even with benign model parameters, the scheme
did not do better than Euler stepping.

While the schemes in this paper are already significant improvements over existing meth-
ods, we do not doubt that additional performance can be teased out of the fundamental ideas of
the paper. Experiments with better approximations to time integrals of the variance process –
perhaps along the lines of moment matching suggested in Section 4.2 – may be one avenue to
pursue in future research. Suitable applications of the results in Appendix B when the V process
is close to zero might also reduce bias even further, as might, say, more complicated switching
rules in the QE/QE-M schemes. For such high-precision results to have much practical rele-
vance, however, methods must be introduced to reduce Monte Carlo noise below the levels we
encountered in this paper. Construction of such variance reduction methods is yet another topic
that may be pursued in future research.

A Appendix: Moments of V and lnX

Proposition 11 For some T > 0, consider the joint characteristic function

ϕ(u,v) = E
(

eiuV (T )+ivx(T )
)

, x(T ) = lnX(T )/X(0),

where X and V are characterized by the vector SDE (3)-(4). Define

d(v) =
√

(ivρε −κ)2 + v2ε2 + ε2iv,

Q(u,v) =
α+(v)− iu
α−(v)− iu

, α±(v) =
κ − ivρε ±d(v)

ε2 .

Then
ϕ(u,v) = eC(T ;u,v)+D(T ;u,v)V (0), (49)

with

D(T ;u,v) = α+(v)
1−Q(u,v)ed(v)T α−(v)

α+(v)

1−Q(u,v)ed(v)T ,

C(τ;u,v) = κθ

[
α+(v)τ +

α−(v)−α+(v)
d(v)

ln

(
Q(u,v)ed(v)τ −1

Q(u,v)−1

)]
.

Proof: Let
q(t,V,x;u,v) = E

(
eiuV (T )+ivx(T )|V (t) = V,x(t) = x

)
,
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such that ϕ(u,v) = q(0,V (0),0;u,v). From standard results for diffusion processes, q must
satisfy a PDE

∂q
∂ t

− 1
2

V
∂q
∂x

+κ(θ −V )
∂q
∂V

+ρεV
∂ 2q

∂V ∂x
+

1
2

V
∂ 2q
∂x2 +

1
2

ε2V
∂ 2q
∂V 2 = 0,

subject to the terminal boundary condition q(T,V,x;u,v) = eiuV+ivx. The affine form of our
equations suggest that

q(t,V,x;u,v) = eC(T−t;u,v)+D(T−t;u,v)V+ivx.

Insertion of this expression into the PDE above yields a Ricatti system of ordinary ODEs for C
and D which can be solved by separation of variables. The result (49) then follows.

Equipped with the characteristic function ϕ(u,v) as listed computed in (49), we can (assisted
by a symbolic calculus computer package) establish various moments of lnX(T ) and V (T ) by
differentiation. First, let us define a few auxiliary variables:

Ω1 = e−2κT ε2 +4e−κT ((1+κT )ε2 −2ρκε (2+κT )+2κ2)
+(2κT −5)ε2 −8ρκε (κT −2)+8κ2 (κT −1)

Ω2 = −e−2κT ε2 +2e−κT (−κT ε2 +2ρεκ (1+κT )−2κ2)+ ε2 −4κρε +4κ2

Ω3 = e−2κT +2κe−κT
(

T − 2ρ
ε

(1+κT )
)

+
4κρ − ε

ε

Ω4 = e−κT
(

1−κT +
2ρκ2T

ε

)
− e−2κT

With these definitions, we have the following results:

Moment Value o(T ) limit
E(lnX(T )) lnX(0)+ 1

2κ (θ −V (0))
(
1− e−κT

)− 1
2θT lnX(0)− 1

2V (0)T
Var (lnX(T )) θ

8κ3 Ω1 + V (0)
4κ3 Ω2 V (0)T

E(V (T )) θ +(V (0)−θ)e−κT V (0)+κ (θ −V (0))T

Var (V (T )) V (0)ε2

κ
(
e−κT − e−2κT

)
+ θε2

2κ
(
1− e−κT

)2
V (0)ε2T

Cov(lnX(T ),V(T )) θε2

4κ2 Ω3 + V (0)ε2

2κ2 Ω4 ρV (0)εT

Table 6: Exact and first-order moments

B Appendix: Refinement of Scheme QE for small V

First, let us consider a pure central chi-square distribution with ν degrees of freedom; the rele-
vant density is given in (12). We assume that ν ≤ 2, and wish to approximate the true density
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by an expression of the form

h(x) =
{

C1xq, 0 ≤ x < xc,

C2e−βx, x ≥ xc.
(50)

The following result establishes the constants C1, C2, β , and xc by moment-matching.

Proposition 12 Let Q be a random variable with chi-square density (12), where 0 < ν ≤ 2. Let
Yν be a variable with density h in (50), and define q = ν/2−1 ∈ (−1,0). Set xc = −q, and

k2 =
2q2

(q+3)(q+2)2 ,

k1 = q2

(
q+1
q+3

−2
(q+1)(3q+4)

(q+2)2

)
−4(q+1)(q+2),

k0 = 2

(
(q+1)(3q+4)

q+2

)2

,

y =
−k1 −

√
k2

1 −4k2k0

2k2
.

For Yν and Q to have identical first and second moments, we must have

C1 = (1− y)(q+1) · (−q)−(q+1), (51)

β =
((

2q+2− C1

q+2
(−q)q+2

)
y−1 +q

)−1

, (52)

C2 = yβe−βq. (53)

At these parameter values, h(x) is a proper density.

Proof: By direct computation, we notice that the cumulative distribution corresponding to
density h is

H(x) = Pr(Yν ≤ x) =

{ C1
q+1xq+1, 0 ≤ x ≤ xc,
C1

q+1xq+1
c + C2

β

(
e−βxc − e−βx

)
, x > xc.

(54)

In particular,

H(∞) =
C1

q+1
xq+1

c +
C2

β
e−βxc .

Straightforward integration shows that

E(Yν) =
C1

q+2
xq+2

c +
C2

β
e−βxc

(
xc +β−1) ,

E
(
Y 2

ν
)

=
C1

q+3
xq+3

c +
C2

β
e−βxc

(
x2

c +2xcβ−1 +2β−2) .
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To establish a reasonable value for xc, let us first note that for ν = 2 and ν → 0, the form
of h(x) becomes exactly identical to that of a central chi-square density, provided that we set
xc = 0 and xc → 1, respectively. Assuming linearity, a pragmatic general choice for xc is then
to set

xc = 1−ν/2 = −q.

To find the remaining constants (C1,C2,β ), we match the first two moments against those of the
true chi-square distribution. As a chi-square distribution with ν degrees of freedom has mean
ν and variance 2ν , we get, after inclusion of the condition H(∞) = 1, the following system of
equations:

C1

q+1
xq+1

c + y = 1, (55)

C1

q+2
xq+2

c +
(
xc +β−1)y = ν, (56)

C1

q+3
xq+3

c +
(
x2

c +2xcβ−1 +2β−2)y = ν2 +2ν. (57)

Here, we have defined y = y(C2,β ) = C2
β e−βxc .

To solve (55)-(57), we eliminate C1 and β , to yield a single equation in y. Specifically, (55)
allows us to write C1 as a function of y, and equation (56) then allows us to also write β as
a function of y. Insertion of the resulting expressions for C1 and β in (57) then yields, after
several trivial rearrangements and use of xc = −q,

k2y2 + k1y+ k0 = 0, (58)

where the constants k0, k1, and k2 were defined above. Solution of (58) yields the result for y
listed in the proposition; it can be verified that the solution always exists for the range of q cov-
ered in the proposition. Inserting y in (55)-(57) (with xc = −q) yields the results of (51)-(53).

Having established a workable approximation for a chi-square distribution with low degrees
of freedom, let us consider how we can use this in an approximation for a non-central chi-square
distribution.

Proposition 13 Let the random variable R be distributed according to a non-central chi-square
distribution with d degrees of freedom and non-centrality parameter λ . Set c = (d +2λ )/(d +
λ ),and assume that (d +λ )/c ≤ 2. The distribution of R can be approximated by

Pr (R ≤ x) = Pr (Yν ≤ x/c) (59)

where ν = (d +λ )/2c and the distribution of Yν is given by the density h in Proposition 12. In
particular, the first two moments of Yν and R coincide.

Proof: Following the ansatz in [Pat], one can approximate R is being distributed as c times a
central chi-square distribution with ν degrees of freedom. Appropriate values for c and ν can
be found by moment-matching to be

c = (d +2λ )/(d +λ ), ν = (d +λ )/c.
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Assuming that ν ≤ 2, the result in in Proposition can then be used to establish the result (59).

With the result in Proposition 13, we immediately get the following result.

Proposition 14 Consider the Heston variance process (2). For some positive time-step ∆, de-
fine k = e−κ∆n(t, t + ∆)−1, where n(t, t + ∆) is defined in Proposition 1. Set d = 4κθ/ε2,
λ = V̂ (t)n(t, t +∆), c = (d+2λ )/(d+λ ), and q = (d+λ )/(2c)−1. Assuming that q∈ (−1,0),
then, as an approximation,

Pr (V (t +∆) ≤ x|V (t))≈ H
( x

kc

)
, (60)

where H(x) is given in (54) with xc = −q, and C1,C2,β are computed as prescribed in Propo-
sition 12. In particular, with V (t +∆) distributed according to (60), E(V (t +∆)|V (t)) = m and
Var(V (t +∆)|V (t)) = s2, where m and s are the true moments given in (17) and (18).

Proof: We recall from Proposition 1 that, conditional on V (t), V (t +∆) is k times a non-central
chi-square distributed with d degrees of freedom and non-centrality parameter λ . The result of
the proposition then follows directly from Proposition 13 above.

The result above hinges on the condition q∈ (−1,0), or, equivalently, 0 < (d +λ )/(2c) < 1.
Only the upper bound of 1 is here relevant; it translates into (d +λ )2/(d +2λ ) < 2. Insertion
of the definitions of d and λ followed by a few rearrangements reduce this to the requirement
ψ > 1, where ψ = s2/m2. This restriction coincides (not surprisingly) with that of the scheme
(26), allowing us to substitute in the scheme QE (26) with sampling from the distribution (60).

Sampling from (60) requires inversion of the cumulative distribution function H. The form
of H, however, allows this to be done in closed form. Specifically, we have

H−1(u) =

⎧⎨
⎩
(

(q+1)u
C1

)1/(q+1)
, 0 ≤ u ≤ uc,

−β−1 ln
(

eβq − u−uc
C2

)
, uc < u ≤ 1,

uc ≡ C1

q+1
(−q)q+1.
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