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1 Affine term-structure interest rate models 

The success of models such as Vasicek [1977] and Cox, Ingersoll and Ross [1985] is mainly 
due to their ability to analytically evaluate bonds and bond options. 

The dynamic of Vasicek model (𝑑𝑟 (𝑡)  =  𝑘 [𝜃 − 𝑟(𝑡)]𝑑𝑡 + 𝜎𝑑𝑊(𝑡)) is interesting from an 
analytical point of view. The equation is linear and can be solved explicitly. The distribution 
of the short rate is Gaussian and the prices of bonds and some options can be expressed in 
analytical form. 

In addition, the general equilibrium approach proposed by Cox, Ingersoll and Ross [1985] 
introduces a "square root" term into the diffusion coefficient of instantaneous short rate 
dynamic proposed by Vasicek [1977].  

The resulting model has been a reference for many years because of its ease of analysis 
and the fact that, unlike Vasicek [1977] model, the instantaneous short rate is always 
positive. The dynamic of the model under the risk-neutral measure is written as: 

𝑑𝑟(𝑡) = 𝑘(𝜃 − 𝑟(𝑡))𝑑𝑡 + 𝜎√𝑟(𝑡) 𝑑𝑊(𝑡) 

where 𝑟(0) = 𝑟0 and 𝑟0, 𝑘, 𝜃, 𝜎 are positive constants. 

In order for the instantaneous short rate to remain strictly positive, the parameters of the 
model must meet the Feller condition: 

2𝑘𝜃 > 𝜎2 

While interesting from an analytical perspective, the initial term structure of the interest 
rates produced by these models does not necessarily correspond to that observed in the 
market, regardless of the choice of parameters. 

In order for these models to reproduce the term structure of interest rates, the financial 
literature offers at least two possibilities: 

- Make the parameters time-dependent (Hull & White extension, see section 2.1.8.1); 

- Introduce additively a deterministic function (see section 1.2). 

Note also that the Vasicek [1977] and CIR models are models with an affine term structure. 
In order to ease the reading of Armel and Planchet [2020], we present in the following 
some generalities on the family of affine term-structure interest rate models and their 
extension by deterministic functions in order to take into account the initial yield curve. 

We have relied mainly on Brigo and Mercurio [2007] for the writing of this section. 

1.1 Affine models: definition and generalities 

The continuous compounded spot interest rate evaluated at the date 𝑡 for maturity 𝑇 
denoted 𝑅(𝑡, 𝑇) is the constant rate at which an investment of 𝑃(𝑡, 𝑇) monetary units at 
the date 𝑡 accumulates continuously to reach one unit of currency at the date 𝑇. If 𝑃(𝑡, 𝑇) 
denotes the price of a zero-coupon bond valued at the date 𝑡 maturing on the date 𝑇 then: 

𝑃(𝑡, 𝑇) = 𝑒−𝑅 (𝑡,𝑇)(𝑇−𝑡). 
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Affine term-structure interest rate models are models where the continuous compound 
spot interest rate evaluated at the date 𝑡 for maturity 𝑇 is an affine function of the 
instantaneous short spot rate, denoted (𝑡) : 

𝑅(𝑡, 𝑇) = 𝛼(𝑡, 𝑇) + 𝛽(𝑡, 𝑇)𝑟(𝑡) 

where 𝛼 and 𝛽 are deterministic functions. 

This condition is always satisfied when the price of the zero-coupon bond valued at the 
date 𝑡 maturing on the date 𝑇 is written: 

𝑃(𝑡, 𝑇) = 𝐴(𝑡, 𝑇)𝑒−𝐵(𝑡,𝑇)𝑟(𝑡) 

where 𝐴 and 𝐵 are deterministic functions. 

We can wright in fact: 

- 𝛼(𝑡, 𝑇)  =  −𝑙𝑛( 𝐴(𝑡, 𝑇))/(𝑇 − 𝑡) ; 

- 𝛽(𝑡, 𝑇)  =  𝐵(𝑡, 𝑇)/(𝑇 −  𝑡).  

Suppose that the instantaneous short rate follows the following dynamic: 

𝑑𝑟(𝑡) = 𝑏(𝑡, 𝑟(𝑡))𝑑𝑡 + 𝜎(𝑡, 𝑟(𝑡))𝑑𝑊(𝑡) 

The model characterized by this dynamic is affine when the deterministic functions 𝑏 and 
𝜎2 are affine. 

If the coefficients 𝑏 and 𝜎2 are of the form: 

{
𝑏(𝑡, 𝑥) = 𝜆(𝑡) × 𝑥 + 𝜂(𝑡)

𝜎2(𝑡, 𝑥) = 𝛾(𝑡) × 𝑥 + 𝛿(𝑡)
 

where 𝜆, 𝜂, 𝛾and 𝛿 are appropriate deterministic functions, then the model has an affine 
term structure. 

The functions 𝐴 and 𝐵  (respectively 𝛼 and 𝛽) can be obtained from the coefficients 𝜆, 𝜂, 𝛾 
and 𝛿 by solving the following differential equations: 

𝜕

𝜕𝑡
𝐵(𝑡, 𝑇) + 𝜆(𝑡)𝐵(𝑡, 𝑇)–

1

2
𝛾(𝑡)𝐵(𝑡, 𝑇)2 + 1 = 0 𝑎𝑛𝑑 𝐵(𝑇, 𝑇) = 0 

𝜕

𝜕𝑡
[ln(𝐴(𝑡, 𝑇))] − 𝜂(𝑡)𝐵(𝑡, 𝑇) +

1

2
𝛿(𝑡)𝐵(𝑡, 𝑇)2 = 0 𝑎𝑛𝑑 𝐴(𝑇, 𝑇) = 1 

In the particular case of the CIR model the above equations admit a solution and it is 
sufficient to take: 

{
 

 
𝜆(𝑡) = −𝑘
𝜂 (𝑡) = 𝑘𝜃

𝛾(𝑡) = 𝜎2

𝛿 (𝑡) = 0

 

Therefore, the affinity in the coefficients implies the affinity in the term structure. The 
opposite is also true in the case where the functions b and σ2 are time-homogeneous: 
𝑏(𝑡, 𝑥) = 𝑏(𝑥) and 𝜎(𝑡, 𝑥) = 𝜎(𝑥). 
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Indeed, it is possible to prove that if a model has an affine term-structure and time-
homogeneous coefficients (𝑏(𝑡, 𝑥) = 𝑏(𝑥) and 𝜎(𝑡, 𝑥) = 𝜎(𝑥))then these coefficients are 
necessarily affine as a function of x : 

{
𝑏 (𝑥) = 𝜆𝑥 + 𝜂 

𝜎2(𝑥) = 𝛾𝑥 + 𝛿
 

for appropriate constants λ, η, γ and δ. 

1.2 Extension of affine term-structure interest rate models by deterministic functions 

This section presents a method for extending instantaneous short-term rate models with 
an affine term structure in order to replicate the observed yield curve while preserving the 
analytical characteristics of the reference model. 

1.2.1 Notations and assumptions 

Let 𝑥𝛼  be a stochastic process whose coefficients are time-homogeneous and whose 
dynamic under a given measure 𝑄𝑥 is written:  

𝑑𝑥𝑡
𝛼 = 𝜇(𝑥𝑡

𝛼; 𝛼)𝑑𝑡 + 𝜎 (𝑥𝑡
𝛼;  𝛼)𝑑𝑊𝑡

𝑥 

where 𝑊𝑥 is a standard Brownian motion, 𝑥0
𝛼  is a given real number, 𝛼 = {𝛼1, . . . , 𝛼𝑛} ∈

𝐼𝑅𝑛, 𝑛 ≥ 1 is a vector of parameters, and 𝜇 and 𝜎 are appropriate real functions. 

We assume that the process 𝑥𝛼  describes the evolution of the instantaneous spot interest 
rate under the measure 𝑄𝑥. Let 𝐹𝑡

𝑥 be the sigma-algebra generated by {𝑥𝑖
𝛼}𝑖≤𝑡. 

The price at time 𝑡, denoted 𝑃𝑥(𝑡, 𝑇), of a zero-coupon bond maturing at time 𝑇 is: 

𝑃𝑥(𝑡, 𝑇)  =  𝐸𝑄
𝑥
(𝑒𝑥𝑝 [− ∫ 𝑥𝑠

𝛼𝑑𝑠
𝑇

𝑡

 ] |𝐹𝑡
𝑥) 

We also assume that there is an analytical form, a real function denoted 𝛱𝑥, defined on an 
appropriate subset of 𝐼𝑅𝑛+3 such as 𝑃𝑥(𝑡, 𝑇) = 𝛱𝑥(𝑡, 𝑇, 𝑥𝑡

𝛼; 𝛼). 

The Vasicek [1977] and Cox-Ingersoll-Ross [1985] models are examples of interest rate 
models for which such a function exists. 

Let 𝑟𝑡 be the instantaneous short interest rate under the risk-neutral measure 𝑄 defined 
by: 

𝑟𝑡 = 𝑥𝑡 + 𝜑(𝑡; 𝛼), 𝑡 ≥ 0 

where 𝑥 is a stochastic process that has, under 𝑄, the same dynamic as 𝑥𝛼  under 𝑄𝑥 and 𝜑 
is a deterministic function, dependent on the parameter vector (𝛼, 𝑥0) that is integrable 
over closed intervals. 

The process 𝑟 depends on the parameters 𝛼1, . . . , 𝛼𝑛, 𝑥0 and the function φ can be chosen 
to reproduce the term-structure of interest rates. 

Note 𝐹𝑡 the sigma-algebra generated by {𝑥𝑖
𝛼}𝑖≤𝑡.  
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If 𝜑 is differentiable, the instantaneous short rate stochastic differential equation is 
written: 

𝑑𝑟𝑡 = [
𝑑𝜑(𝑡; 𝛼)

𝑑𝑡
 + 𝜇(𝑟𝑡 − 𝜑(𝑡; 𝛼); 𝛼)] 𝑑𝑡 + 𝜎(𝑟𝑡 −  𝜑(𝑡; 𝛼); 𝛼)𝑑𝑊𝑡 

As discussed in section 1.1, for time-homogeneous coefficients, an affine term structure of 
short-term interest rates is equivalent to an affine structure of the drift and the squared 
diffusion coefficients. It follows that if the reference model has an affine term-structure, 
so does the extended model. We can then anticipate that extended Vasicek model 
(equivalent to the Hull and White model) and extended CIR (CIR ++) model are affine 
models. 

1.2.2 Reproduction of the initial yield curve 

By replacing 𝑥𝑡 by 𝑟𝑡 − 𝜑(𝑡; 𝛼) we can prove that the price at time 𝑡 of a zero-coupon bond 
with a maturity of 𝑇 is written: 

𝑃(𝑡, 𝑇) = 𝑒𝑥𝑝 (−∫ 𝜑(𝑠; 𝛼)𝑑𝑠
𝑇

𝑡

)𝛱𝑥(𝑡, 𝑇, 𝑟𝑡 − 𝜑(𝑡; 𝛼); 𝛼) 

Let 𝑓𝑥(0, 𝑡; 𝛼) be the instantaneous forward rate at time 0 for a maturity 𝑡 associated with 
the bond price denoted 𝑃𝑥(0, 𝑡) then: 

𝑓𝑥(0, 𝑡; 𝛼) = −
𝜕 ln(𝑃𝑥(0, 𝑡))

𝜕𝑡
 = −

𝜕 ln(𝛱𝑥(0, 𝑡, 𝑥0;  𝛼))

𝜕𝑡
 

Let 𝑓𝑀(0, 𝑡) be the instantaneous forward rate of the market observed at time 0 for 
maturity  𝑡: 

𝑓𝑀(0, 𝑡)  =  −
𝜕 ln(𝑃𝑀(0, 𝑡))

𝜕𝑡
 

then the model reproduces the observed interest rates term structure if and only if: 

𝜑 (𝑡;  𝛼) = 𝜑∗(𝑡;  𝛼) = 𝑓𝑀(0, 𝑡) − 𝑓𝑥(0, 𝑡; 𝛼) 

which means: 

𝑒𝑥𝑝 (−∫ 𝜑(𝑠; 𝛼)𝑑𝑠
𝑇

𝑡

) = 𝛷∗(𝑡, 𝑇, 𝑥0;  𝛼) =
PM(0, T)

Πx(0, T, x0;  α)
.
Πx(0, t, x0; α)

PM(0, t)
  

The price of a zero-coupon bond at time t is given by: 

𝑃(𝑡, 𝑇) = 𝛱(𝑡, 𝑇, 𝑟𝑡; 𝛼) 

where 𝛱(𝑡, 𝑇, 𝑟𝑡; 𝛼) = 𝛷∗(𝑡, 𝑇, 𝑥0; 𝛼)𝛱
𝑥(𝑡, 𝑇, 𝑟𝑡 − 𝜑

∗(𝑡;  𝛼); 𝛼). 

1.2.3 Explicit formulas for valuing European options 

The extension presented in section 1.2.1 is even more interesting when the reference model 
proposes analytical formulas for valuing European options on zero-coupon bonds. The 
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generalized model can preserve the possibility to price options by closed formulas using 
analytical correction factors that are functions of φ. 

The price at time 𝑡 of a European call option with maturity 𝑇 and a strike 𝐾 on a zero-coupon 
bond with a maturity 𝜏 is:  

𝑉𝑥(𝑡, 𝑇, 𝜏, 𝐾) = 𝐸𝑥 {𝑒𝑥𝑝 [−∫ 𝑥𝑠
𝛼𝑇

𝑡
𝑑𝑠] (𝑃𝑥(𝑇, 𝜏) −  𝐾)+|𝐹𝑡

𝑥} 

Suppose there is an analytical form, an explicit real function denoted 𝛹𝑥, defined on an 
appropriate subset of 𝐼𝑅𝑛+5 such that 

𝑉𝑥(𝑡, 𝑇, 𝜏, 𝐾)  =  𝛹𝑥(𝑡, 𝑇, 𝜏, 𝐾, 𝑥𝑡
𝛼; 𝛼) 

The Vasicek [1977] and Cox-Ingersoll-Ross [1985] models are examples of short interest 
rate models for which such a function exists. 

Under the framework described in section 1.2.1 the price at time 𝑡 of a European call option 
with a maturity date 𝑇 and a strike 𝐾 on a zero-coupon bond with a maturity 𝜏 is: 

𝑍𝐵𝐶(𝑡, 𝑇, 𝜏, 𝐾)

= exp (− ∫  𝜑 (𝑠;  𝛼)𝑑𝑠
𝜏

𝑡

)

· 𝛹𝑥 (𝑡, 𝑇, 𝜏, 𝐾𝑒𝑥𝑝 [∫ 𝜑(𝑠;  𝛼)𝑑𝑠
𝜏

𝑇

] , 𝑟𝑡 − 𝜑(𝑡; 𝛼);  𝛼) 

The price of a European put option can be obtained via the call-put parity. 

Caps and floors can also be priced analytically. 

Moreover, if the Jamshidian [1989] decomposition for evaluating swaptions can be applied 
to the reference model, the same decomposition is also applicable to the extended model. 
Swaptions can therefore be evaluated by analytical formulas. 

2 CIR models: definition, properties and extensions 

This section presents the dynamics and analytical properties of:  

- The reference one-factor CIR model and the extended one factor CIR++ model; 

- The reference two-factor CIR model and the extended two-factor CIR2++ model. 

We have mainly relied on Cox, Ingersoll and Ross [1985] and Brigo and Mercurio [2007] for 
the writing of this section. 
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2.1 One factor CIR reference model 

2.1.1 Model dynamic 

The CIR model generalizes the Vasicek [1977] model and introduces a square-root term of 
the instantaneous short rate into the dynamics allowing the model to produce positive 
interest rates. 

The differential equation of the model under the risk-neutral measure 𝑄 is: 

𝑑𝑟(𝑡) = 𝑘(𝜃– 𝑟(𝑡))𝑑𝑡 + 𝜎√𝑟(𝑡) 𝑑𝑊(𝑡) 

with 𝑟(0) = 𝑟0 and 𝑘, 𝜃 and 𝜎 are positive constants.  

The instantaneous short rate remains strictly positive if the parameters of the model meet 
the Feller condition: 

2𝑘𝜃 > 𝜎2 

2.1.2 Solution of the differential equation 

Let 𝑝𝑌 denote the probability density function of the random variable 𝑌, then the density 
of 𝑟(𝑡) conditionally to 𝑟(𝑠) is written: 

𝑝𝑟(𝑡)|𝑟(𝑠)(𝑥) = 𝑐𝑡−𝑠 × 𝑝𝜒2(𝑣,𝜆𝑡,𝑠)(𝑐𝑡−𝑠𝑥) = 𝑝𝜒2(𝑣,𝜆𝑡,𝑠)/𝑐𝑡−𝑠(𝑥) 

where: 

- 𝑐𝑡−𝑠 =
4𝑘

𝜎2(1−𝑒𝑥𝑝(−𝑘(𝑡−𝑠)))
 ; 

- 𝑣 =  4𝑘𝜃/𝜎2 ; 

- 𝜆𝑡,𝑠 = 𝑐𝑡−𝑠𝑟𝑠𝑒𝑥𝑝(−𝑘(𝑡 − 𝑠)). 

The probability density of a non-central chi-square distribution with 𝑣 degrees of freedom 
and non-centrality parameter 𝜆 is: 

𝑝𝜒2(𝑣,𝜆)(𝑧) =∑
𝑒−

𝜆
2 (
𝜆
2)

𝑖

 𝑖!

∞

𝑖=0

pΓ(i + 𝑣/2,1/2)(z) 

where 

𝑝
𝛤(𝑖 +

𝑣
2
,
1
2
)
(𝑧) =

(
1
2)

𝑖+
𝑣
2

𝛤 (𝑖 +
𝑣
2)
× 𝑧𝑖−1+

𝑣
2 × 𝑒−

𝑧
2 = 𝑝𝜒2(𝑣 +2𝑖)(𝑧) 

The function 𝑝𝜒2(𝑣 +2𝑖)(𝑧) is the probability density of a central chi-square distribution with 

𝑣 + 2𝑖 degrees of freedom. 

The mean and the variance of 𝑟(𝑡) conditionally to Fs are given by: 

𝐸{𝑟(𝑡)|𝐹𝑠} = 𝑟(𝑠)𝑒
−𝑘(𝑡−𝑠) + 𝜃(1 − 𝑒−𝑘(𝑡−𝑠)) 
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𝑉𝑎𝑟{𝑟(𝑡)|𝐹𝑠} =
𝑟(𝑠)𝜎2

𝑘
(𝑒−𝑘(𝑡−𝑠) − 𝑒−2𝑘(𝑡−𝑠)) + 𝜃

𝜎2

2𝑘
 (1 − 𝑒−𝑘(𝑡−𝑠))

2
 

2.1.3 Conditional density of the instantaneous short rate and the dynamic of the 
compound forward rate 

Let 𝑄𝑇 be the T-forward3 measure and let 𝑊𝑇 be the variable defined by: 𝑑𝑊𝑇(𝑡) =

𝑑𝑊(𝑡) + 𝜎𝐵(𝑡, 𝑇)√𝑟(𝑡)𝑑𝑡. 𝑊𝑇 is a standard Brownian motion under 𝑄𝑇. 

It can be shown that under 𝑄𝑇the distribution of the short rate 𝑟(𝑡) conditionally to the 
rate 𝑟(𝑠), 𝑠 ≤  𝑡 ≤  𝑇 is given by: 

𝑝
(𝑟(𝑡)|𝑟(𝑠))
𝑇 (𝑥) = 𝑞(𝑡, 𝑠)𝑝𝜒2(𝑣,𝛿(𝑡,𝑠))(𝑞(𝑡, 𝑠)𝑥) 

where:  

- 𝑞(𝑡, 𝑠) = 2[𝜌(𝑡 − 𝑠) + 𝜓 + 𝐵(𝑡, 𝑇)]; 

- 𝛿(𝑡, 𝑠) =
4𝜌(𝑡−𝑠)2𝑟(𝑠)𝑒ℎ(𝑡−𝑠)

𝑞(𝑡,𝑠)
. 

Let 𝐹(𝑡; 𝑇, 𝑆) be the simply compounded forward rate, observed at the time 𝑡 whose term 
is 𝑇 and the maturity is 𝑆, defined by: 

𝐹 (𝑡; 𝑇, 𝑆) =
1

𝛾(𝑇, 𝑆)
 (
𝑃(𝑡, 𝑇)

𝑃(𝑡, 𝑆)
 – 1) 

where 𝛾(𝑇, 𝑆) is the fraction of a year between 𝑇 and 𝑆. 

Under the forward measure 𝑄𝑆 the forward rate is written: 

𝑑𝐹(𝑡; 𝑇, 𝑆) = 𝜎 × (𝐹 (𝑡;  𝑇, 𝑆) +
1

𝛾(𝑇, 𝑆)
)

× √(𝐵(𝑡, 𝑆) − 𝐵 (𝑡, 𝑇)) 𝑙𝑛 [
(𝛾 (𝑇, 𝑆)𝐹 (𝑡;  𝑇, 𝑆) +  1)𝐴(𝑡, 𝑆)

𝐴(𝑡, 𝑇)
]  𝑑𝑊𝑆(𝑡) 

Note that this differential equation is quite different from the log-normal dynamic of the 
forward rate in the LMM model, where typically 𝑑𝐹(𝑡; 𝑇, 𝑆) = 𝜎(𝑡)𝐹(𝑡; 𝑇, 𝑆)𝑑𝑊𝑆(𝑡) for a 
deterministic function σ. 

2.1.4 Price of a zero-coupon bond 

The price at time 𝑡 of a zero-coupon bond with a maturity 𝑇 is: 

𝑃(𝑡, 𝑇) = 𝐴(𝑡, 𝑇)𝑒− 𝐵 (𝑡,𝑇)𝑟 (𝑡) 

 

3𝑄𝑇  is the probability measure defined by the Radon-Nikodym derivative: 
𝑑𝑄𝑇

𝑑𝑄
=

𝑒𝑥𝑝(−∫ 𝑟(𝑢)𝑑𝑢
𝑇
0 )

𝑃(0,𝑇)
. 
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where  

𝐴 (𝑡, 𝑇) = [
2ℎ 𝑒𝑥𝑝 {

(𝑘 +  ℎ)(𝑇 −  𝑡)
2 }

2ℎ + (𝑘 + ℎ)(𝑒𝑥𝑝{(𝑇 − 𝑡)ℎ} − 1)
]

2𝑘𝜃
𝜎2

  

𝐵 ( 𝑡, 𝑇)  =
2(𝑒𝑥𝑝 {(𝑇 −  𝑡)ℎ} −  1)

2ℎ + (𝑘 +  ℎ)(𝑒𝑥𝑝 {(𝑇 −  𝑡)ℎ} −  1)
  

ℎ = √𝑘2 + 2𝜎2 

By using Itô's formula one can write:  

𝑑𝑃(𝑡, 𝑇) = 𝑟(𝑡)𝑃(𝑡, 𝑇)𝑑𝑡 − 𝐵(𝑡, 𝑇)𝑃(𝑡, 𝑇)𝜎√𝑟(𝑡)𝑑𝑊(𝑡) 

By reversing the price formula, 𝑃(𝑡, 𝑇), thus deducting r from P, we can write: 

𝑑 ln(𝑃(𝑡, 𝑇)) = (
1

𝐵(𝑡, 𝑇)
−
1

2
𝜎2𝐵(𝑡, 𝑇)) [ln(𝐴(𝑡, 𝑇)) − ln(𝑃(𝑡, 𝑇))]𝑑𝑡 

− 𝜎√𝐵(𝑡, 𝑇)[𝑙𝑛(𝐴(𝑡, 𝑇)) − ln(𝑃(𝑡, 𝑇))] 𝑑𝑊(𝑡) 

We note that the volatility relative to the zero-coupon bond price is not a deterministic 
function, but depends on the current price level. 

2.1.5 Price of a European zero-coupon bond option 

Let 𝑟(𝑡) denote the instantaneous short rate at time 𝑡. The price at time 𝑡 of a European 
call option, with maturity 𝑇 >  𝑡 and strike 𝑋, issued on a zero-coupon bond with a maturity 
𝑆 > 𝑇, is (cf. Cox, Ingersoll and Ross [1985] and Brigo and Mercurio [2007])4: 

𝑍𝐵𝐶(𝑡, 𝑇, 𝑆, 𝑋)

= 𝑃(𝑡, 𝑆)𝐹𝜒2 (2𝑟̅ [𝜌 + 𝜓 + 𝐵 (𝑇, 𝑆)];
4𝑘𝜃

𝜎2
,
2𝜌2𝑟(𝑡) exp{ℎ (𝑇 −  𝑡)}

𝜌 + 𝜓 + 𝐵 (𝑇, 𝑆)
 )

−  𝑋𝑃(𝑡, 𝑇)𝐹𝜒2 (2𝑟̅ [𝜌 + 𝜓];
4𝑘𝜃

𝜎2
,
2𝜌2𝑟(𝑡) exp{ℎ (𝑇 −  𝑡)}

𝜌 + 𝜓
) 

where 

- 𝜌 =  𝜌 (𝑇 − 𝑡) =
2ℎ

𝜎2(𝑒𝑥𝑝[ℎ(𝑇−𝑡)]−1)
 ; 

- 𝜓 =
𝑘 + ℎ 

𝜎2
 ; 

- 𝑟̅  =  𝑟̅ (𝑆 − 𝑇) =
𝑙𝑛(

𝐴(𝑇,𝑆)

𝑋
)

𝐵(𝑇,𝑆)
 . 

 
4𝐹𝜒2(. ; 𝑢, 𝑣) is the cumulative distribution function of a non-centeral chi-square distribution with u degrees 

of freedom and a non-centrality  parameter of v. 
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The put option price is obtained by the put-call parity and is denoted 𝑍𝐵𝑃: 

𝑍𝐵𝑃(𝑡, 𝑇, 𝜏, 𝐾) = 𝑍𝐵𝐶(𝑡, 𝑇, 𝜏, 𝐾) − 𝑃(𝑡, 𝜏) + 𝐾𝑃(𝑡, 𝑇) 

2.1.6 Prices of caps and floors 

The price, at time 𝑡, of a capelet with an expiry date denoted 𝑇, a date of payment denoted 
𝑇 + 𝜏, a strike denoted 𝑋 and a notional amount denoted 𝑁 is written: 

𝐶𝑝𝑙(𝑡, 𝑇, 𝑇 + 𝜏,𝑁, 𝑋) = 𝑁(1 + 𝑋𝜏) × 𝑍𝐵𝑃 (𝑡, 𝑇, 𝑇 + 𝜏,
1

1 + 𝑋𝜏
) 

Note 𝜁 = {𝑡0, 𝑡1, . . . , 𝑡𝑛} the set of all payments maturities of caps or floors plus the 
initialization date 𝑡0. Let 𝜏𝑖 be the difference between 𝑡𝑖−1 and 𝑡𝑖.  

The price at time 𝑡 < 𝑡0 of a cap with a strike denoted 𝑋, a nominal denoted 𝑁 and defined 
on the set 𝜁 = {𝑡0, 𝑡1, . . . , 𝑡𝑛} is given by: 

𝐶𝑎𝑝(𝑡, 𝜁, 𝑁, 𝑋) = 𝑁∑(1 +  𝑋𝜏𝑖)

𝑛

𝑖=1

× 𝑍𝐵𝑃 (𝑡, 𝑡𝑖−1, 𝑡𝑖 ,
1

1 + 𝑋𝜏𝑖
) 

The price of the floor is given by: 

𝐹𝑙𝑟(𝑡, 𝜁, 𝑁, 𝑋) = 𝑁∑(1 +  𝑋𝜏𝑖)

𝑛

𝑖=1

× 𝑍𝐵𝐶 (𝑡, 𝑡𝑖−1, 𝑡𝑖,
1

1 + 𝑋𝜏𝑖
) 

2.1.7 Swaption prices 

The analytical form of the price of a European swaption evaluated using the CIR model can 
be explicitly formulated using the Jamshidian [1989] decomposition (see Brigo and 
Mercurio [2007]).  

Let's consider a payer swaption with a strike 𝑋, a maturity 𝑇 and a nominal 𝑁. It gives its 
holder the right to contract at time 𝑡0 = 𝑇 an interest rate swap with payment dates  𝜁 =
{𝑡1, . . . , 𝑡𝑛} , 𝑡1 > 𝑇 where he pays a fixed rate 𝑋 and receives the variable rate.  

Let τi be the fraction of a year from 𝑡𝑖−1 to 𝑡𝑖, 𝑖 = 1, . . . , 𝑛 and let 𝑐𝑖 = 𝑋𝜏𝑖 for 𝑖 = 1, . . . , 𝑛 −
1 and 𝑐𝑛 = 1 + 𝑋𝜏𝑛.  

Let 𝑟∗ be the spot rate at time 𝑇 for which ∑ 𝑐𝑖𝐴̅(𝑇, 𝑡𝑖) × 𝑒
−𝐵(𝑇,𝑡𝑖)𝑟

∗𝑛
𝑖=1 = 1 and let 𝑋𝑖 =

𝐴̅(𝑇, 𝑡𝑖) × 𝑒
−𝐵(𝑇,𝑡𝑖)𝑟

∗
.  

The price of the payer swaption at time t < T is then given by: 

𝑃𝑆(𝑡, 𝑇, 𝜁, 𝑁, 𝑋) = 𝑁 ∑𝑐𝑖 × 𝑍𝐵𝑃(𝑡, 𝑇, 𝑡𝑖, 𝑋𝑖)

𝑛

𝑖=1

 

Symmetrically, the price of the receiver swaption is: 

𝑅𝑆(𝑡, 𝑇, 𝜁, 𝑁, 𝑋) = 𝑁 ∑𝑐𝑖 × 𝑍𝐵𝐶(𝑡, 𝑇, 𝑡𝑖, 𝑋𝑖)

𝑛

𝑖=1
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2.1.8 What is the extension of the CIR model? 

The reference CIR model cannot reproduce the term structure of interest rates observed 
in the market. The financial literature suggests at least two methods of extending this 
model in order to reproduce the initial market yield curve: 

- Make all model parameters time-dependent (Hull & White type extension) ; 

- Introduce additively a deterministic function. 

Other extensions, which we will not detail here, are proposed by the literature. We can cite, 
for example, the one presented in Shiu and Yao [1999] who propose closed formulas to 
value zero coupon bonds assuming that the instantaneous interest rate is described by the 
following equations: 

𝑑𝑟(𝑡) = 𝜑(𝑡)𝑑𝑡 + 𝑘[𝜃(𝑡) − 𝑟(𝑡)]𝑑𝑡 + 𝜎√𝑟(𝑡) 𝑑𝑊(𝑡) 

𝑑𝜃(𝑡) = 𝛽(𝑟(𝑡) − 𝜃(𝑡))𝑑𝑡 

The deterministic function 𝜑(𝑡) allows to replicate the initial yield curve. 

2.1.8.1 Extension of the CIR model by Hull & White 

In addition to the extension of Vasicek [1977] model, Hull & White [1990] have proposed an 
extension of Cox, Ingersoll and Ross's [1985] model which is based on the same principle: 
making the coefficients time-dependent.  

The dynamic of the short rate are then given by : 

𝑑𝑟(𝑡) = [ϑ(𝑡) − 𝑎(𝑡)𝑟(𝑡)]𝑑𝑡 + 𝜎(𝑡)√𝑟(𝑡)𝑑𝑊(𝑡) 

where 𝑎, 𝜗 and 𝜎 are deterministic functions.  

However, the analytical characteristics of such an extension are limited.  

Indeed, it can be shown that, for 𝑡 < 𝑇, the price of a zero-coupon bond can be written as  

𝑃(𝑡, 𝑇) = 𝐴(𝑡, 𝑇)𝑒−𝐵(𝑡,𝑇)𝑟(𝑡)   

The function 𝐵 is a solution of a Riccati equation and 𝐴 is the solution of a linear differential 
equation subject to certain conditions. 

The same analytical limits are observed for the simplified dynamic where the volatility 
parameter is constant: 

𝑑𝑟(𝑡) = [ϑ(𝑡) − 𝑎 × 𝑟(𝑡)]𝑑𝑡 + 𝜎√𝑟(𝑡)𝑑𝑊(𝑡) 

where 𝑎 and 𝜎 are positive constants and only the function 𝜗 is assumed to be time-
dependent in order to reproduce the term structure of interest rates. 

To our knowledge, no general analytical expression of 𝜗(𝑡) has been proposed in the 
financial literature. When we assume that the report 𝜗(𝑡)/𝜎2(𝑡) is equal to a positive 

constant 𝛿 above 
1

2
  to make the origin inaccessible, the CIR model extended by Hull & 

White [1990], has more extensive analytical features. These analytical properties are not 
developed further in this paper, the interested reader can refer to Brigo and Mercurio 
[2007]. 



 

13 

The following section presents an extension of the CIR model that is more interesting from 
an analytical point of view. It allows in particular to reproduce the observed yield curve and 
to take into account negative rates. 

2.1.8.2 Extension by a deterministic function: CIR++ model  

The application of the developments presented in section 1 allows to extend the reference 
CIR model to the model called CIR++. The instantaneous short rate process 𝑟 is therefore  
the sum of a deterministic function and a reference CIR process. 

The following section presents the dynamic of the CIR++ model as well as the analytical 
formulas for valuing zero-coupon bonds, caps, floors and swaptions.  

2.2 One factor extended CIR model 

2.2.1 Extension of the CIR reference model by a deterministic function: CIR++ model 

The application of the developments presented in section 1 allows the CIR model to be 
extended to the CIR++ model. The instantaneous short rate process 𝑟 is therefore the sum 
of a deterministic function 𝜑 and a reference CIR process 𝑥, whose parameter vector is 
denoted 𝛼 = (𝑘, 𝜃, 𝜎), defined as follows: 

𝑑𝑥(𝑡) = 𝑘(𝜃 − 𝑥(𝑡))𝑑𝑡 + 𝜎√𝑥(𝑡)𝑑𝑊(𝑡) ;  𝑥(0) = 𝑥0 

and we have: 

𝑟 (𝑡) = 𝑥(𝑡) + 𝜑(𝑡) 

where 𝑥0, 𝑘, 𝜃 and 𝜎 are positive constants such as 2𝑘𝜃 > 𝜎2, ensuring that the origin is 
inaccessible for the variable 𝑥, so that this process remains positive.  

The analytical formulas presented in the following sections  result directly from the 
developments presented in section 1. 

2.2.2 Price of a zero-coupon bond 

By denoting  𝜑(𝑡) = 𝜑𝐶𝐼𝑅(𝑡; 𝛼), we have: 

𝜑𝐶𝐼𝑅(𝑡; 𝛼) =  𝑓𝑀(0, 𝑡) − 𝑓𝐶𝐼𝑅(0, 𝑡;  𝛼) 

where 

𝑓𝐶𝐼𝑅(0, 𝑡; 𝛼) =
2𝑘𝜃(𝑒𝑥𝑝{𝑡ℎ} − 1)

2ℎ + (𝑘 + ℎ)(𝑒𝑥𝑝 {𝑡ℎ} − 1)
 + 𝑥0  

4ℎ2𝑒𝑥𝑝{𝑡ℎ}

[2ℎ + (𝑘 + ℎ)(𝑒𝑥𝑝{𝑡ℎ} − 1)]2
 

with h =  √k2 + 2σ2.  

The price at time 𝑡 of a zero-coupon bond with a maturity 𝑇 is: 

𝑃(𝑡, 𝑇) = 𝐴̅ (𝑡, 𝑇)𝑒−𝐵(𝑡,𝑇)𝑟(𝑡) 
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where 

𝐴̅(𝑡, 𝑇) =
𝑃𝑀(0, 𝑇)𝐴(0, 𝑡)𝑒𝑥𝑝{−𝐵(0, 𝑡)𝑥0}

𝑃𝑀(0, 𝑡)𝐴(0, 𝑇)𝑒𝑥𝑝{−𝐵(0, 𝑇)𝑥0}
𝐴(𝑡, 𝑇)𝑒𝐵(𝑡,𝑇)𝜑

𝐶𝐼𝑅(𝑡;𝛼) 

- 𝐴(𝑡, 𝑇) and 𝐵(𝑡, 𝑇) are defined in section 2.1.4.  

- 𝑃𝑀(0, 𝑇) is the market price of the risk-free zero-coupon bond observed at time 0. 

The interest rate at the time 𝑡 for the maturity 𝑇 is therefore: 

𝑅 (𝑡, 𝑇) =
1

𝑇 − 𝑡
 (ln (

𝑃𝑀(0, 𝑡)𝐴(0, 𝑇)𝑒𝑥𝑝{−𝐵(0, 𝑇)𝑥0}

𝐴(𝑡, 𝑇)𝑃𝑀(0, 𝑇)𝐴(0, 𝑡) 𝑒𝑥𝑝{−𝐵(0, 𝑡)𝑥0}
) − 𝐵(𝑡, 𝑇)𝜑𝐶𝐼𝑅(𝑡;  𝛼)

+ 𝐵(𝑡, 𝑇)𝑟(𝑡)) 

One can notice that the interest rate 𝑅(𝑡, 𝑇) is an affine function of 𝑟(𝑡). 

2.2.3 Price of a European zero-coupon bond option 

The price at time 𝑡 of a European call option, expiring on time 𝑇 >  𝑡 with a strike 𝐾 on a 
zero-coupon bond with a maturity denoted 𝜏 > 𝑇 is: 

𝑍𝐵𝐶(𝑡, 𝑇, 𝜏, 𝐾)

=
𝑃𝑀(0, 𝜏)𝐴(0, 𝑡)𝑒𝑥𝑝{−𝐵(0, 𝑡)𝑥0}

𝑃𝑀(0, 𝑡)𝐴(0, 𝜏)𝑒𝑥𝑝{−𝐵(0, 𝜏)𝑥0}

× 𝛹𝐶𝐼𝑅 (𝑡, 𝑇, 𝜏, 𝐾
𝑃𝑀(0, 𝑇)𝐴(0, 𝜏)𝑒𝑥𝑝{−𝐵(0, 𝜏)𝑥0}

𝑃𝑀(0, 𝜏)𝐴(0, 𝑇)𝑒𝑥𝑝{−𝐵(0, 𝑇)𝑥0}
, 𝑟(𝑡) − 𝜑𝐶𝐼𝑅(𝑡; 𝛼); 𝛼) 

where 𝛹𝐶𝐼𝑅(𝑡, 𝑇, 𝜏, 𝑋, 𝑥; 𝛼) is the option price evaluated by the CIR model as defined in 
section 2.1.4. 

By simplifying this formula, we can write: 

𝑍𝐵𝐶(𝑡, 𝑇, 𝜏, 𝐾)

= 𝑃(𝑡, 𝜏)𝐹𝜒2 (2𝑟̂[𝜌 + 𝜓

+ 𝐵(𝑇, 𝜏)];
4𝑘𝜃

𝜎2
,
2𝜌2[𝑟(𝑡) − 𝜑𝐶𝐼𝑅(𝑡;  𝛼)]𝑒𝑥𝑝{ℎ(𝑇 − 𝑡)}

𝜌 + 𝜓 + 𝐵(𝑇, 𝜏)
) 

− 𝐾𝑃(𝑡, 𝑇)𝐹𝜒2 (2𝑟̂[𝜌 + 𝜓];
4𝑘𝜃

𝜎2
,
2𝜌2[𝑟(𝑡) − 𝜑𝐶𝐼𝑅(𝑡;  𝛼)]𝑒𝑥𝑝{ℎ(𝑇 − 𝑡)}

𝜌 + 𝜓
) 

With 

𝑟̂  =
1

𝐵(𝑇, 𝜏)
[ln (

𝐴(𝑇, 𝜏)

𝐾
) − ln (

𝑃𝑀(0, 𝑇)𝐴(0, 𝜏)𝑒𝑥𝑝{−𝐵(0, 𝜏)𝑥0}

𝑃𝑀(0, 𝜏)𝐴(0, 𝑇)𝑒𝑥𝑝{−𝐵(0, 𝑇)𝑥0}
)] 

The put option price is obtained by the put-call parity and is denoted  : 

𝑍𝐵𝑃(𝑡, 𝑇, 𝜏, 𝐾) = 𝑍𝐵𝐶(𝑡, 𝑇, 𝜏, 𝐾) − 𝑃(𝑡, 𝜏) + 𝐾𝑃(𝑡, 𝑇) 
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2.2.4 Prices of caps and floors 

Caps and floors can be considered as portfolios of options on zero-coupon bonds. The price 
on time 𝑡 of a caplet with an expiry date denoted 𝑇, a payment date denoted 𝑇 + 𝜏, a strike 
denoted 𝑋 and a notional amount denoted 𝑁 is written: 

𝐶𝑝𝑙(𝑡, 𝑇, 𝑇 + 𝜏,𝑁, 𝑋) = 𝑁(1 + 𝑋𝜏) × 𝑍𝐵𝑃 (𝑡, 𝑇, 𝑇 + 𝜏,
1

1 + 𝑋𝜏
) 

Let 𝜁 = {𝑡0, 𝑡1, . . . , 𝑡𝑛} be the set of all payment maturities of caps or floors increased by 𝑡0 
corresponding to the initialization time. Let τi be the difference between 𝑡𝑖−1 and 𝑡𝑖.  

The price at time 𝑡 < 𝑡0 of a cap with a strike 𝑋, a nominal 𝑁 and defined on the time set 
ζ = {t0, t1, . . . , tn} is given by: 

𝐶𝑎𝑝(𝑡, 𝜁, 𝑁, 𝑋) = 𝑁∑(1 +  𝑋𝜏𝑖)

𝑛

𝑖=1

× 𝑍𝐵𝑃 (𝑡, 𝑡𝑖−1, 𝑡𝑖 ,
1

1 + 𝑋𝜏𝑖
) 

The price of the floor is given by: 

𝐹𝑙𝑟(𝑡, 𝜁, 𝑁, 𝑋) = 𝑁∑(1 +  𝑋𝜏𝑖)

𝑛

𝑖=1

× 𝑍𝐵𝐶 (𝑡, 𝑡𝑖−1, 𝑡𝑖,
1

1 + 𝑋𝜏𝑖
) 

2.2.1 Swaption prices 

As with the CIR model, the analytical form of the price of a European swaption valued using 
the CIR++ model can be explicitly formulated using the Jamshidian decomposition [1989] 
(see Brigo and Mercurio [2007]).  

Let's consider a payer swaption with a strike 𝑋, a maturity 𝑇 and a nominal value 𝑁. It gives 
its holder the right to contract, at time 𝑡0 = 𝑇, an interest rate swap with payment dates 
𝜁 = {𝑡1, . . . , 𝑡𝑛} , 𝑡1 > 𝑇, where he pays a fixed rate 𝑋 and receives the variable rate.  

We denote by 𝜏𝑖 the fraction of a year from 𝑡𝑖−1 to 𝑡𝑖, 𝑖 = 1, . . . , 𝑛 and let 𝑐𝑖 = 𝑋𝜏𝑖 for 𝑖 =
1, . . . , 𝑛 − 1 and 𝑐𝑛 = 1 + 𝑋𝜏𝑛.  

Let r∗ be the spot rate at time 𝑇 for which ∑ 𝑐𝑖𝐴̅(𝑇, 𝑡𝑖) × 𝑒
−𝐵(𝑇,𝑡𝑖)𝑟

∗𝑛
𝑖=1 = 1 and let 𝑋𝑖 =

𝐴̅(𝑇, 𝑡𝑖) × 𝑒
−𝐵(𝑇,𝑡𝑖)𝑟

∗
.  

The price of the payer swaption at time 𝑡 < 𝑇 is then given by: 

𝑃𝑆(𝑡, 𝑇, 𝜁, 𝑁, 𝑋) = 𝑁 ∑𝑐𝑖 × 𝑍𝐵𝑃(𝑡, 𝑇, 𝑡𝑖, 𝑋𝑖)

𝑛

𝑖=1
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Symmetrically, the price of the receiver swaption is: 

𝑅𝑆(𝑡, 𝑇, 𝜁, 𝑁, 𝑋) = 𝑁 ∑𝑐𝑖 × 𝑍𝐵𝐶(𝑡, 𝑇, 𝑡𝑖, 𝑋𝑖)

𝑛

𝑖=1

 

2.3 Two-factor extended CIR model 

The CIR2++ model is a two-factor short rate model that adds a deterministic function to the 
sum of two independent CIR processes. This model can be viewed as the natural two-factor 
extension of the CIR++ model presented in section 2.2. 

The CIR2++ model is of the form: 𝑟𝑡 = 𝑥𝑡 + 𝑦𝑡 +𝜑(𝑡) where 𝜑 is a deterministic function 
allowing to reproduce the initial observed yield curve and 𝑥 and 𝑦 are two independent CIR 
processes. 

In the following, we first present the reference two-factor CIR model (non-shifted) and 
then present the CIR2++ model. 

2.3.1 The reference two-factor CIR model  

2.3.1.1 Model dynamic 

The two-factor CIR model defines the instantaneous interest rate as the sum of two 
independent CIR processes under the risk-neutral measure. 

Let 𝑥 and 𝑦 be two processes defined by: 

𝑑𝑥(𝑡) = 𝑘1(𝜃1 − 𝑥(𝑡))𝑑𝑡 + 𝜎1√𝑥(𝑡)𝑑𝑊1(𝑡) 

𝑑𝑦(𝑡) = 𝑘2(𝜃2 − 𝑦(𝑡))𝑑𝑡 + 𝜎2√𝑦(𝑡)𝑑𝑊2(𝑡) 

where 𝑊1 and 𝑊2 are independent Brownian motions under the risk neutral measure, and 
𝑘1, 𝜃1, 𝜎1, 𝑘2, 𝜃2 and 𝜎2 are positive constants such as 2𝑘1𝜃1 > 𝜎1

2 and 2𝑘2𝜃2 > 𝜎2
2. 

Positives real numbers 𝑥(0) = 𝑥0 and 𝑦(0) = 𝑦0 are respectively the initial values of 
processes 𝑥 and 𝑦. 

The instantaneous short rate is then defined as follows:  

𝜉𝑡
𝛼 = 𝑥(𝑡) + 𝑦(𝑡) 

with 𝛼 = (𝛼1, 𝛼2), 𝛼1 = (𝑘1, 𝜃1, 𝜎1) and 𝛼2 = (𝑘2, 𝜃2, 𝜎2).  

The short rate can therefore be assimilated to a linear sum of two independent, non-central 
chi-square variables.  

2.3.1.2 Price of a zero-coupon bond 

Due to the independence of the factors, the price of a zero-coupon bond is directly derived 
from the analytical pricing formula of the one factor reference CIR model. The price at time 
𝑡 of a zero-coupon bond with a maturity 𝑇 is: 

𝑃𝜉(𝑡, 𝑇; 𝑥(𝑡), 𝑦(𝑡), 𝛼) = 𝑃1(𝑡, 𝑇; 𝑥(𝑡), 𝛼1) × 𝑃
1(𝑡, 𝑇; 𝑦(𝑡), 𝛼2) 
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where 𝑃1 denotes the price of a zero-coupon bond valued by the one-factor CIR model (see 
section 2.1.4). Recall that if 𝑧 is a one-factor CIR process with parameters (𝑘𝑖, 𝜃𝑖 , 𝜎𝑖), the 
price of a zero-coupon is given by: 

𝑃1(𝑡, 𝑇; 𝑧(𝑡), 𝑘𝑖 , 𝜃𝑖 , 𝜎𝑖) = 𝐴𝑧(𝑡, 𝑇)𝑒
− 𝐵𝑧 (𝑡,𝑇)𝑧(𝑡) 

where  

- 𝐴𝑧 (𝑡, 𝑇) = [
2ℎ𝑖𝑒𝑥𝑝 {

(𝑘𝑖 + ℎ𝑖)(𝑇 − 𝑡)

2
}

2ℎ𝑖+(𝑘𝑖+ℎ𝑖)(𝑒𝑥𝑝 {(𝑇−𝑡)ℎ𝑖}−1)
]

2𝑘𝑖𝜃𝑖

𝜎𝑖
2

; 

- 𝐵𝑧 ( 𝑡, 𝑇 )  =
2(𝑒𝑥𝑝 {(𝑇 − 𝑡)ℎ𝑖}− 1)

2ℎ𝑖 + (𝑘𝑖 + ℎ𝑖)(𝑒𝑥𝑝 {(𝑇 − 𝑡)ℎ𝑖}− 1)
 ; 

- ℎ = √𝑘𝑖
2 + 2𝜎𝑖

2 ; 

- 𝑧 ∈ {𝑥, 𝑦} and 𝑖 = 1 if 𝑧 = 𝑥, 𝑖 = 2 otherwise. 

The forward interest rate at time 𝑡 for maturity 𝑇 is given by: 

𝑅𝜉(𝑡, 𝑇; 𝑥(𝑡), 𝑦(𝑡), 𝛼) = 𝑅1(𝑡, 𝑇; 𝑥(𝑡), 𝛼1) + 𝑅
1(𝑡, 𝑇; 𝑦(𝑡), 𝛼2) 

where 𝑅1 denotes the forward interest rate valued by the one-factor CIR model obtained 
from 𝑃1.  

Under the risk neutral measure, the dynamic of bond prices are written:  

𝑑𝑃𝜉(𝑡, 𝑇; 𝛼) = 𝑃𝜉(𝑡, 𝑇; 𝛼) [𝜉𝑡
𝛼𝑑𝑡 − 𝐵(𝑡, 𝑇; 𝛼1)𝜎1√𝑥(𝑡) 𝑑𝑊1(𝑡)

− 𝐵(𝑡, 𝑇; 𝛼2)𝜎2√𝑦(𝑡)𝑑𝑊2(𝑡)] 

where deterministic function 𝐵 is defined as in section 2.1.4. 

2.3.1.3 Price of a European zero-coupon bond option 

The price of a call option evaluated at time 𝑡 with a maturity 𝑇 > 𝑡 and a strike 𝐾 on a zero-
coupon bond with a maturity 𝑆 > 𝑇 and a nominal value 𝑁, is given by: 

𝐶𝜉(𝑡, 𝑇, 𝑆, 𝑁, 𝐾; 𝑥(𝑡), 𝑦(𝑡), 𝛼)  

=  𝑃𝜉(𝑡, 𝑇; 𝑥(𝑡), 𝑦(𝑡), 𝛼)∫ ∫ [𝑁 × 𝑃1(𝑇, 𝑆; 𝑥1, 𝛼1) × 𝑃
1(𝑇, 𝑆; 𝑥2, 𝛼2)

+∞

0

+∞

0

−𝐾]+  × 𝑝𝑥(𝑇)|𝑥(𝑡)
𝑇 (𝑥1)𝑝𝑦(𝑇)|𝑦(𝑡)

𝑇 (𝑥2)𝑑𝑥1𝑑𝑥2  

Note the presence in this expression of a double integral on the product of two non-central 
chi-square densities. The analytical expressions of these conditional densities under the T-
forward measure were presented in section2.1.3.  

2.3.2 Dynamic of the two-factor extended CIR model 

In perfect analogy with the developments presented in section 1.2, used in section 2.2 for 
the one-factor case, the instantaneous interest rate of the CIR2++ model, under the risk-
neutral measure is defined by: 
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𝑟𝑡 = 𝜑(𝑡; 𝛼) + 𝜉𝑡
𝛼 = 𝜑(𝑡; 𝛼) + 𝑥(𝑡) + 𝑦(𝑡) 

where 𝑥(0) = 𝑥0, 𝑦(0) = 𝑦0 and where 𝜑(𝑡; 𝛼) is a deterministic function depending on 
the parameter vector 𝛼 = (𝑥0, 𝑦0, 𝑘1, 𝜃1, 𝜎1, 𝑘2, 𝜃2, 𝜎2).  

In order to reproduce exactly the yield curve observed in the market, it is sufficient that: 

𝜑(𝑡; 𝛼) = 𝑓𝑀(0, 𝑡) − 𝑓1(0, 𝑡; 𝑥0, 𝛼1) − 𝑓
1(0, 𝑡; 𝑦0, 𝛼2) 

where 𝑓1 is the instantaneous forward rate evaluated by the one-factor reference CIR 
model, as indicated in section 2.2.2, and 𝑓𝑀 is the instantaneous forward market interest 
rate. 

In the following, it is useful to define the function: 

𝛷ξ(𝑢, 𝑣;  𝛼) = 𝑒𝑥𝑝 [− ∫ 𝜑(𝑡; 𝛼)𝑑𝑠
𝑣

𝑢

 ] =
𝑃𝑀(0, 𝑣)𝑃𝜉(0, 𝑢; 𝛼)

𝑃𝑀(0, 𝑢)𝑃𝜉(0, 𝑣; 𝛼)
 

= exp{[𝑅𝜉(0, 𝑣; 𝛼) − 𝑅𝑀(0, 𝑣)]𝑣 − [𝑅𝜉(0, 𝑢; 𝛼) − 𝑅𝑀(0, 𝑢)]𝑢} 

which is entirely defined from observed prices (𝑃𝑀(0, 𝑇)) and the analytical expression of 

𝑃𝜉. 

2.3.3 Valuation of a zero-coupon bond using the two-factor extended CIR model 

The two-factor CIR process ξα allows zero-coupon bond pricing by closed formulas. This 
analytical property is preserved in the CIR2++ model. 

The price at time 𝑡 of a zero-coupon bond with a maturity 𝑇 is written as the product of the 
exponential of the primitive of the shift function 𝜑 and the price of a zero-coupon bond 
valued by the reference non-shifted two-factor CIR model (see Section 2.3.1.2). This price 
is:  

𝑃(𝑡, 𝑇; 𝑥(𝑡), 𝑦(𝑡), 𝛼) = 𝛷𝜉(𝑡, 𝑇; 𝛼) × 𝑃𝜉(𝑡, 𝑇; 𝑥(𝑡), 𝑦(𝑡), 𝛼) 

2.3.4 Valuation of caps and floors by the two-factor extended CIR model 

The price at time 𝑡 of a European call option with a maturity denoted 𝑇 > 𝑡  and a strike 
denoted 𝐾 on a zero-coupon bond with a nominal denoted 𝑁 and a maturity denoted 𝑆 >
𝑇 is: 

𝑍𝐵𝐶(𝑡, 𝑇, 𝑆, 𝑁, 𝐾; 𝑥(𝑡), 𝑦(𝑡), 𝛼)

= 𝑁 × 𝛷𝜉(𝑡, 𝑆; 𝛼) × 𝐶𝜉 (𝑡, 𝑇, 𝑆, 𝑁,
𝐾

𝛷𝜉(𝑇, 𝑆; 𝛼)
; 𝑥(𝑡), 𝑦(𝑡), 𝛼) 

where 𝐶𝜉  is the price function of a call option valued by the two-factor CIR model (see 
section 2.3.1.3). 

The price of a put option is obtained from the put-call parity and is written as follows: 

𝑍𝐵𝑃(𝑡, 𝑇, 𝑆, 𝑁, 𝐾; 𝑥(𝑡), 𝑦(𝑡), 𝛼)  
= 𝑍𝐵𝐶(𝑡, 𝑇, 𝑆, 𝑁, 𝐾; 𝑥(𝑡), 𝑦(𝑡), 𝑎) − 𝑁 × 𝑃(𝑡, 𝑆; 𝑥(𝑡), 𝑦(𝑡), 𝑎)
+ 𝐾 × 𝑃(𝑡, 𝑇; 𝑥(𝑡), 𝑦(𝑡), 𝛼) 
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As with the reference two-factor CIR model, the valuation of an option on a zero-coupon 
bond requires the resolution of a double integral. 

Caps and floors are written as a series of options on zero-coupon bonds (see for example 
section 2.1.6). The valuation of these instruments can therefore be achieved using the semi-
closed formula presented in section 2.3.1.3 or by other methods such as Monte Carlo 
simulation.  

2.3.5 Valuation of swaptions using the two-factor extended CIR model 

Unlike the one-factor CIR model, the Jamshidian [1989] decomposition to value swaptions 
is not applicable for the case of the two-factor CIR model. Therefore, the price of swaptions 
is valued by other methods, such as Monte Carlo simulation. 

3 Non-central chi-square distributions: definition and properties 

The purpose of this section is to: 

- Define the family of non-central chi-square distributions and present their 
characteristics; 

- Present a method for simulating non-central chi-square distributions; 

- Present some Gaussian approximations to the non-central chi-square distributions. 

We have relied on the following three references to write this section: Johnson et al [1970], 

Devroye [1986] and Patel & Read [1982]. 

3.1 Definition and properties 

A random variable 𝑋 follows a central chi-square distribution χ2 with v > 0 degrees of 
freedom if the probability density of 𝑋 is given by: 

𝑝𝜒2(𝑣)(𝑥) =
𝑒−

𝑥
2

2𝛤 (
𝑣
2)
(
𝑥

2
)

𝑣
2
−1

; 𝑥 > 0 

where Γ is the Gamma function. 

When 𝑣 = 0 then 𝑝𝜒2(0)(𝑥) = 0 and the distribution function 𝐹𝜒2(0)(𝑥) = 1 for every 𝑥 >

0. 

The distribution of a central χ2 is a special case of Gamma distributions. Indeed, if 𝑋 follows 
a Gamma distribution with parameters (𝑎, 𝑏) then its probability density is written: 

𝑝𝑎,𝑏(𝑥) =
𝑥𝑎−1𝑒−

𝑥
𝑏

𝑏𝑎𝛤(𝑎)
; 𝑥 > 0 
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For 𝑎 = 𝑣/2 and 𝑏 = 2 we find exactly the probability density of a central χ2 distribution 
with 𝑣 degrees of freedom. 

The random variable 𝑋 follows a non-central χ2 distribution with 𝑣 ≥ 0 degrees of freedom 
and non-centrality parameter 𝜆 if its distribution function is written: 

𝐹𝜒2(𝑣,𝜆)(𝑥) = ∑
exp (−

𝜆
2)

𝑘!
(
𝜆

2
)
𝑘+∞

𝑘=0

𝐹𝜒2(𝑣+2𝑘)(𝑥) 

The density is written as follows: 

𝑃𝜒2(𝑣,𝜆)(𝑥) = ∑
exp (−

𝜆
2)

𝑘!
(
𝜆

2
)
𝑘+∞

𝑘=0

𝑃𝜒2(𝑣+2𝑘)(𝑥) 

 

Note that the function 𝑃𝜒2(𝑣,𝜆) is written as the sum of density-functions of central χ2 

distributions weighted by Poisson's distribution probabilities. 

When 𝑣 is a positive integer, the cumulative distribution function of a non-central χ2 
distribution with 𝑣 degrees of freedom and non-centrality parameter λ is naturally written 
as the cumulative distribution function of the quadratic sum of normal distributions. More 
precisely, let 𝑋1, . . . , 𝑋𝑣 be independent normal distributed random variables with means 
µ𝑘, 𝑘 = 1, . . . , 𝑣 and unit variances. Then the probability density of the random variable 
∑ 𝑋𝑘

2𝑣
𝑘=1  is  𝑝𝜒2(𝑣,𝜆) with: 𝜆 = ∑ 𝜇𝑘

2𝑣
𝑘=1 . 

The distributional properties of a non-central χ2 distribution may be difficult to obtain 
because the density is not in a closed form. Another expression of the density 
𝑝𝜒2(𝑣,𝜆) which is not necessarily simpler, is: 

𝑝𝜒2(𝑣,𝜆)(𝑥) =
1

2
exp (−

𝑥 + 𝜆

2
) (
𝑥

𝜆
)

𝑣−2
4
𝐼𝑣−2
2
(√𝜆𝑥) 

The function 𝐼𝑣(𝑥) is the modified Bessel function of the first kind defined by: 

𝐼𝑣(𝑥) = ∑
(
𝑥
2)

2𝑘+𝑣

𝑘! 𝛤(𝑣 + 𝑘 + 1)

+∞

𝑘=0

 

Moreover, if 𝑁 is a Poisson-distributed random variable with a mean λ/2 whose cumulative 
distribution function is defined by:  

𝐹(𝑘) =
exp (−

𝜆
2)

𝑘!
(
𝜆

2
)
𝑘

; 𝑘 = 0, 1, … 

then the random variable following a central χ2 distribution with 𝑣 + 2𝑁 degrees of 
freedom follows a non-central χ2 distribution with 𝑣 degrees of freedom and a non-
centrality parameter of 𝜆. 

Indeed, we can note that: 
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∑𝑃(𝑁 = 𝑘)

+∞

𝑘=0

𝑃(𝜒2(𝑣 + 2𝑁) < 𝑥|𝑁 = 𝑘) =∑
exp (−

𝜆
2)

𝑘!
(
𝜆

2
)
𝑘+∞

𝑘=0

𝐹𝜒2(𝑣+2𝑘)(𝑥) = 𝐹𝜒2(𝑣,𝜆)(𝑥) 

3.2 Simulation of a non central 𝛘𝟐 distribution 

Let 𝑋(𝑣,𝜆) be a non-central χ2 distributed random variable. Thus the variable 𝑋(𝑣,𝜆) can be 

written as the sum of two independent random variables 𝑋𝑣 and 𝑋𝜆: 𝑋(𝑣,𝜆) = 𝑋𝑣 + 𝑋𝜆 with 

(Johnson et al [1970]): 

- The variable 𝑋𝑣 follows a central 𝜒2 distribution with 𝑣 degrees of freedom; 

- The variable Xλ follows a non-central χ2 distribution with 0 degrees of freedom and 
a non-centrality parameter equal to 𝜆. This is the purely eccentric part of the variable 
𝑋(𝑣,𝜆). The variable 𝑋𝜆 follows therefore a central χ2 distribution with 2𝑁 degrees of 

freedom, where 𝑁 is a Poisson-distributed random variable with a mean of λ/2. Its 
cumulative distribution function is written:  

𝐹𝜒2(0,𝜆)(𝑥) = ∑
exp (−

𝜆
2)

𝑘!
(
𝜆

2
)
𝑘+∞

𝑘=0

𝐹𝜒2(2𝑘)(𝑥) 

This decomposition of a non-central 𝜒2 random variable in two variables, isolating the 
degree of freedom in a central 𝜒2 distribution and the non-centrality parameter in a non-
central χ2 distribution with 0 degrees of freedom, allows to simulate the non-central 𝜒2 
distribution using Gamma and Poisson distributed random variables. The Gamma or 
Poisson random number generators are generally available in classical statistical tools and 
software. 

Indeed: 

- The variable 𝑋𝑣 follows a Gamma distribution with parameters (𝑣/2,2) and can be 
generated directly by simulating a Gamma distribution; 

- The variable 𝑋𝜆 follows a central 𝜒2 with 2𝑁 degrees of freedom, where 𝑁 is 
Poisson-distributed with a mean of λ/2. It can be generated by first drawing a 
random number 𝐾 following a Poisson distribution and then drawing a Gamma 
distributed number with parameters (𝐾, 2). 

3.1 Approximating a non-central 𝛘𝟐 distribution by normal distributions 

The distributional properties of a non-central χ2 distribution may be difficult to obtain 
because the density is not in a closed form. The approximation of a non-central 𝜒2 
distribution by normal distributed random variables may be of interest. Patel and Read 
[1982] synthesize a set of approximations which we present in the following.  

Let us denote by 𝑦 → 𝐹(𝑦 ; 𝑣 , 𝜆) the cumulative distribution function of a non-central χ2 
distribution with parameters (v, λ). The following list presents some approximating 
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methods of the function 𝐹 by the cumulative distribution function of a centred reduced 
normal distribution denoted 𝛷. 

1. Linear approximations: two simple normal approximations, having an error of the 

order of 𝑂(1/√𝜆) when 𝜆 → +∞: 

a. 𝐹(𝑦 ; 𝑣 , 𝜆) ≈ 𝛷 (
𝑦−𝑣−𝜆

√2(𝑣+2 𝜆)
); 

b. 𝐹(𝑦 ; 𝑣 , 𝜆) ≈ 𝛷 (
𝑦−𝑣−𝜆+1

√2(𝑣+2 𝜆)
). 

2. Non-linear approximations: 

a. This approximation is more suitable when the non-centrality parameter is 
small (and therefore when the distribution is more like the distribution of the 
central χ2 distribution) and deteriorates as the parameter λ increases: 

𝐹(𝑦 ; 𝑣, 𝜆) ≈ 𝛷(𝑢) 

with: 

𝑢 =

({
𝑦

𝑣 +  𝜆
}

1
3
− 1 +

2(𝑣 + 2𝜆)
9(𝑣 + 𝜆)2

)

(
2(𝑣 + 2𝜆)
9(𝑣 + 𝜆)2

)

1
2

 

b. An approximation whose error is comparable to that of linear 
approximations: 

𝐹(𝑦 ; 𝑣 , 𝜆) ≈ 𝛷(𝑢) 

with: 

𝑢 = √
2𝑦(𝑣 +  𝜆)

𝑣 + 2𝜆
− (

2(𝑣 +  𝜆)2

𝑣 + 2𝜆
− 1)

1
2

 

c. Approximation without constraints on the degree of freedom and the non-
centrality parameter. It remains appropriate even when the degree of 
freedom is low. The error is of the order of 𝑂(1/𝜆2). Although complicated, 
this approximation is the best of all the approximations listed here. Armel 
and Planchet [2020] illustrate its quality for a set of parameters. The 
distribution function is written: 

F(y ; v , λ) ≈ Φ(
((

y
v +  λ

)
h

− a)

b
) 

with:  

ℎ =  1 −
2(𝑣 + 𝜆)(𝑣 + 3𝜆)

3(𝑣 + 2𝜆)2
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𝑎 =  1 +
ℎ(ℎ − 1)(𝑣 + 2𝜆)

(𝑣 + 𝜆)2
−
ℎ(ℎ − 1)(2 − ℎ)(1 − 3ℎ)(𝑣 + 2𝜆)2

2(𝑣 + 𝜆)4
 

𝑏 =
ℎ√2(𝑣 + 2𝜆)

𝑣 + 𝜆
(1 −

(1 − ℎ)(1 − 3ℎ)(𝑣 + 2𝜆)

2(𝑣 + 𝜆)2
) 

d. A similar approximation as 2.c but the error is of the order of 𝑂(1/𝜆). Indeed, 
the distribution function is written: 

𝐹(𝑦 ; 𝑣 , 𝜆) ≈ 𝛷(
((

𝑦
𝑣 +  𝜆

)
ℎ

− 𝑎′)

𝑏′
) 

with: 

ℎ =  1 −
2(𝑣 + 𝜆)(𝑣 + 3𝜆)

3(𝑣 + 2𝜆)2
 

𝑎′ =  1 +
ℎ(ℎ − 1)(𝑣 + 2𝜆)

(𝑣 + 𝜆)2
 

𝑏′ =
ℎ√2(𝑣 + 2𝜆)

𝑣 + 𝜆
 

3. Quantile approximations: let 𝑦𝑝 and 𝑧𝑝 be the quantiles of order 1 − p such as 

𝐹(𝑦𝑝 , 𝑣 , 𝜆) = 1 − 𝑝 = 𝛷(𝑧𝑝). Using the notations in point 2, we can approximate 

𝑦𝑝 by 𝑧𝑝 as follows: 

a. 𝑦𝑝 ≈ (𝑣 + 𝜆)(𝑧𝑝√𝐶 + 1 − 𝐶)
3
 ;  𝐶 =

2(𝑣+2𝜆)

9(𝑣+𝜆)2
 ; 

b. 𝑦𝑝 ≈ (𝑣 + 𝜆)(𝑎 + 𝑏𝑧𝑝)
1

ℎ ; 

c. 𝑦𝑝 ≈ (𝑣 + 𝜆)(𝑎′ + 𝑏′𝑧𝑝)
1

ℎ . 
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