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Résumé

Mots clés : Variable Annuities, Dupire, Hull et White, Pricing, Hedge Cost, Sensibilité, Value
at Risk, CPPI

Les Variable Annuities sont des produits d'assurance en unités de compte assortis de garanties
portant sur le capital, très populaires sur le marché Nord-Américain et à fort potentiel sur le
marché européen. Comme pour tout produit dans lequel l'épargne du client est investie sur
les marchés �nanciers, la modélisation des Variable Annuities implique l'utilisation de modèles
�nanciers stochastiques. En e�et, ces modèles sont destinés à simuler l'évolution des di�érents
supports sur lesquels le client décide de répartir son épargne (actions, obligations, monétaire).

Il existe à l'heure actuelle une multitude de modèles �nanciers disponibles et plus ou moins
bien documentés pour chacun de ces marchés. Mais bien souvent les services utilisent des modèles
classiques et faciles d'accès (Black et Scholes et Vasicek notamment). Or certains de ces modèles
se basent sur des hypothèses simpli�catrices qui ne sont pas toujours en adéquation avec le
marché, parfois même de manière assez grossière. L'étude des modèles �nanciers est donc un
vecteur important de l'amélioration des méthodes de pricing et de suivi des risques.

Lorsque le choix des modèles est e�ectué, l'actuaire en charge de la tari�cation est en mesure
de simuler l'évolution des actifs du produit. Il lui reste néanmoins à proposer une méthode de
pricing des garanties à partir de ces di�érents scénarios de l'évolution de l'épargne (Monte-Carlo).
Surtout il est primordial pour lui de savoir comment le prix de la garantie évolue en fonction des
hypothèses (actuarielles et �nancières) qu'il prend.

Avec l'avènement prochain des directives européennes de Solvabilité 2, des problématiques
de provisionnement, et donc de suivi du risque, se posent également. Il est donc légitime de se
poser la question de la méthode à adopter pour mettre su�samment en réserve pour faire face
aux pertes potentielles liées à ce type de contrat.

En�n, il serait di�cile dans le contexte actuel de ne pas aborder les impacts de la crise
�nancière et de la chute conséquente des marchés �nanciers sur la dernière année écoulée. Les
Variable Annuities proposant des garanties �nancières, elles ont engendré d'importantes pertes
pour de nombreux assureurs qui cherchent depuis à réduire leur exposition au risque de marché.
Il existe di�érentes manières de réduire ce risque et nous en évoquerons une particulière en guise
de sujet d'ouverture : la structuration de l'actif via les fonds de type CPPI.
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Abstract

Key words : Variable Annuities, Dupire, Hull and White, Pricing, Hedge Cost, Sensitivity,
Value at Risk, CPPI

In the �eld of insurance, Variable Annuities belong to the large family of Unit Linked pro-
ducts, and bene�t in addition from guarantees on the capital. Variable Annuities are very popular
in the United States and are really likely to expand on the european market. As in any Unit
Linked product, actuaries needs some �nancial models to simulate the path of client's savings.
These models are designed to evaluate the evolution of several markets (equity, bond, money).

Nowadays there is a large range of stochastic models available for each market. All these
models are not equally described in the �nancial literature, but most of the time we use the
traditional models as Black and Scholes or Vasicek. These ones are built on assumptions which
are sometimes really far from the market reality. So studies on �nancial models are essential in
order to improve pricing and risk management methods.

When models are chosen, the actuarial pricing team is able to simulate several paths of all
assets of the product. Nevertheless actuaries have to propose a pricing method to evaluate the
cost of the guarantee from these patterns using the Monte-Carlo method. Especially it is essential
for them to be aware of evolutions of the Hedge Cost when �nancial or actuarial assumptions
vary.

In the close future under the european laws of Solvency 2, some questions and problems are
bound to rise, mainly in the �eld of reserving and risk management. So it is logic to wonder
which method has to be chosen by the insurer in order to put enough money in its reserves.

Anyway in the current economic situation it should be di�cult to occult the consequences of
the global �nancial crisis due to the fall of markets last year. Since Variable Annuities provide
�nancial guarantees, these products have been sources of important losses and insurers are now
searching for di�erent ways to reduce the market risk. Several methods already exist to cut this
risk and we will evoke one of these methods in the end of the report : the asset's structuring in
CPPI funds. The aim of this part is just to propose an outbreak topic.
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Chapitre 1

Présentation du sujet

Dans le cadre de la troisième année de formation à l'Institut de Statistique de l'Université
Pierre et Marie Curie (ISUP) et pour l'obtention du diplôme de Statisticien mention Actuariat,
j'ai e�ectué mon stage de �n d'études pendant 6 mois chez BNP Paribas Assurance à Rueil
Malmaison (92). Au sein du service Actuariat Finance du département Direction Epargne Monde
(DEM), le but principal de ma mission était d'étudier plusieurs modèles �nanciers dans le but de
les utiliser pour tarifer des produits en unités de comptes avec garanties en cas de vie (Variable
Annuities).

Pour tarifer et suivre les risques associés à ce genre de produits, il est nécessaire de disposer
de modèles stochastiques d'évolution des actifs �nanciers. Cela permet de simuler les di�érents
scénarios possibles concernant l'épargne du client, qui est investie sur les marchés �nanciers.

A l'heure actuelle, le service utilise des modèles �nanciers classiques et parfois jugés inadé-
quats dans certaines conditions, comme le modèle de Vasicek par exemple, qui ne permet pas
de reproduire toutes les courbes de taux existantes (notamment la courbe inversée). Dans le
même temps, des modèles plus récents apparaissent, comprenant des innovations importantes.
La théorie sur les modèles �nanciers évolue et il est important pour les actuaires de rester à la
pointe dans ce domaine.

C'est pourquoi il fallait étudier de nouveaux modèles, plus récents et plus robustes. L'idée
sous-jacente était que les modèles étudiés dans le cadre du stage soient meilleurs que ceux utilisés
jusqu'à présent et, par ailleurs, qu'ils puissent s'adapter à plusieurs marchés à l'international. Par
� meilleurs � on entend que ces nouveaux modèles doivent être plus complets et plus consistants
par rapport au marché (reproduire toutes les courbes de taux par exemple, et tenir compte de
l'état actuel du marché).

Ce mémoire retrace le travail e�ectué durant ces 6 mois et se divise donc en deux parties
distinctes mais intimement liées. La première partie représente le véritable travail de recherche
que j'ai été amené à e�ectuer pendant le stage, la seconde est quant à elle une application des
résultats sur un cas pratique.

La première partie traite donc de l'étude des modèles �nanciers à proprement parler et
constitue la partie théorique du stage. Les problématiques de calibration, d'implémentation et de
consistance des modèles y sont précisément abordées. Toutes les démonstrations sont par ailleurs
fournies dans les annexes B et C. Les deux modèles étudiés n'ayant pas encore été utilisés au sein
du service, l'essentiel de mon travail s'est fait à partir de notes internes et d'articles originaux
des auteurs de ces modèles.
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La seconde partie est quant à elle consacrée à la modélisation d'un produit de type Variable
Annuity. On y étudie notamment les problématiques et les techniques de tari�cation des garanties.
L'idée sous-jacente de cette seconde partie étant d'abord de tester la consistance des modèles
étudiés en terme de pricing (modèles � market consistant �). On souhaitait ensuite étudier la
sensibilité du prix de la garantie aux di�érents paramètres actuariels et �nanciers. Elle se termine
en abordant la problématique des réserves pour couvrir ces garanties. On pourra alors conclure
et évoquer au passage une possibilité de sujet d'ouverture.

Ce sujet m'a permis de mettre en application une grande partie des connaissances théoriques
acquises pendant la formation sur les modèles �nanciers, ce qu'il me semble indispensable de
maîtriser pour un actuaire. J'ai également pu apprendre considérablement sur les di�cultés
d'ordre pratique que l'on peut rencontrer lorsque l'on travaille sur la modélisation des actifs,
notamment lors de la calibration ou de l'implémentation.

D'autre part il me semblait préférable pour un mémoire d'actuariat de pouvoir concilier
une partie étude profonde et détaillée sur les modèles ainsi qu'une application pratique, en
l'occurrence une modélisation d'un produit d'assurance utilisant cette étude.

En�n, les produits de type Variable Annuities, bien que moins en vue pendant ces derniers
temps de baisse des marchés �nanciers, n'en demeurent pas moins des produits d'avenir. A
postériori, une expérience signi�cative dans ce secteur me semblait donc incontournable et j'ai
pu constater mon attrait pour ce type de sujets.
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Chapitre 2

Présentation de l'entreprise

Le groupe BNP Paribas

BNP Paribas, né le 23 mai 2000 de la fusion de la Banque Nationale de Paris (BNP) et de
Paribas, est un leader européen des services bancaires et �nanciers, avec une présence
signi�cative et en croissance aux Etats-Unis et des positions fortes en Asie. Le groupe possède
l'un des plus grands réseaux internationaux, avec une présence dans plus de 85 pays et 173 200
collaborateurs : 132 700 en Europe, dont 19 400 en Italie et 64 200 en France et Dom Tom ainsi
que 15 200 en Amérique du Nord et 9 500 en Asie.

L'essentiel de son activité se trouve dans :

� La banque de détail,
� La banque de �nancement et d'investissement,
� L'Asset Management et Services.

L'historique du groupe est résumé dans le graphique suivant :

Historique du groupe BNP Paribas
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BNP Paribas est la première entreprise française et la cinquième banque mondiale, mais
également la première banque de la zone Euro d'après le classement Forbes Global 2000 1 de
2008. C'est aussi la banque mondiale de l'année 2008 d'après le magazine The Banker, la septième
marque bancaire mondiale par sa valeur (Brand Finance - Février 2009) et la huitième banque
la plus sûre au monde (Global Finance - Février 2009).

En Juin 2009, BNP Paribas possède une capitalisation boursière de 50 milliards d'euros. C'est
aussi la troisième banque de la zone euro au regard des dépôts (avec 400 milliards d'euros de
dépôts), et si l'on considère BNP Paribas et Fortis, elle passe au premier rang avec 540 milliards
d'euros de dépôts.
Les notations relatives au crédit à long termes sont actuellement les suivantes :

� Standard & Poor's : AA avec prévision négative (notation revue le 28 janvier 2009),
� Moody's : Aa1 avec prévision négative (prévision revue le 16 janvier 2009),
� Fitch : AA avec prévision négative (prévision revue le 3 février 2009).

Les résultats �nanciers du groupe, en forte progression depuis plusieurs années, sont en baisse
en 2008 en raison de la crise �nancière mais dans des proportions moindres que la plupart de ses
concurrents :

Résultats de BNP Paribas pour 2008

1. Forbes Global 2000 est un classement annuel des 2000 plus grandes entreprises mondiales publié par le
magazine américain Forbes. Le classement est fondé sur quatre critères : les revenus, le résultat d'exploitation,
l'actif comptable et la valeur boursière
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BNP Paribas Assurance

BNP Paribas Assurance, �liale de BNP Paribas, conçoit et commercialise dans 41 pays ses
produits et services sous deux marques :

� BNP Paribas pour les produits distribués par le réseau des agences BNP Paribas en France,
� Cardif pour les autres réseaux et partenaires distributeurs, en France comme à l'interna-
tional.

En janvier 2009, Standard & Poor's a attribué la notation AA aux deux entités opération-
nelles de BNP Paribas Assurance. BNP Paribas Assurance se positionne en France comme le
quatrième groupe d'assurance vie et comme un acteur signi�catif dans l'assurance dommages.
Il est leader mondial en assurance des emprunteurs.

Son chi�re d'a�aire suit la progression suivante :

Chi�re d'a�aire de BNP Paribas Assurance

BNP Paribas exerce son activité dans trois grands métiers :

� En épargne, BNP Paribas Assurance commercialise des contrats d'assurance vie aux par-
ticuliers dans onze pays. En France, il propose également des contrats collectifs de retraite,
d'indemnités de �n de carrière ou de préretraite aux entreprises. En épargne individuelle,
BNP Paribas Assurance propose à des particuliers des contrats d'assurance vie multi-
supports et multi-gestionnaires régulièrement cités par la presse économique et �nancière.
Le chi�re d'a�aire de l'épargne pour 2008 est de 12.7 milliards d'euros.

� En prévoyance, BNP Paribas Assurance propose une large gamme de produits : assurance
des emprunteurs, assurance des factures, protection des moyens de paiement, extension des
moyens de garantie, gap et prévoyance individuelle. En France, il o�re des contrats collectifs
standards et personnalisés aux grandes entreprises comme aux PME. Le chi�re d'a�aire de
la prévoyance pour 2008 est de 3.4 milliards d'euros.

� En assurance dommages, BNP Paribas Assurance o�re en France des produits multi-
risques habitation, automobile, assurance scolaire, assistance voyage, protection juridique
au travers de Natio Assurance, détenue à parité avec Axa.

La répartition du chi�re d'a�aire en terme de métier et de situation géographique est la
suivante :
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Répartition du chi�re d'a�aire de BNP Paribas Assurance entre l'Epargne et la Prévoyance

Cardif est présente dans 41 pays, dont cinq en Amérique latine et sept en Asie. Elle assure plus
de 50 millions de personnes dans le monde. Dans les prochaines années, la part de l'international
dans le chi�re d'a�aires global devrait continuer à croître. Le graphique suivant représente toutes
les implantations de BNP Paribas dans le monde, au travers de BNP Paribas Assurance et de
Cardif.

Les implantations de BNP Paribas Assurance dans le monde
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La Direction Epargne Monde (DEM)

La Direction Epargne Monde (DEM) sert d'intermédiaire entre la Direction Générale de
Cardif et les di�érents pays pour traiter l'ensemble des sujets relatifs à l'épargne, en lien avec les
équipes d'actuariat locales, y compris celle de la France.
La DEM est divisée en trois services distincts :

� Marketing : Chargé du développement marketing à long terme, du suivi de l'action com-
merciale, de la conception des produits et du suivi des partenaires,

� Développement Commercial : Chargé du développement des réseaux de distribution,

� Actuariat Finance : Chargé du support technique des partenaires et de l'identi�cation
des risques à priori (tari�cation), du provisionnement, du suivi des risques à posteriori
(reporting), et en�n du suivi des résultats (suivi de la rentabilité).

La disposition hiérarchique du département est donnée ci-dessous :

Organigramme de la Direction Epargne Monde (DEM)
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Chapitre 3

Les Variable Annuities

3.1 L'environnement

Dans le cadre de l'assurance vie, les contrats en euros sont des contrats d'épargne proposant
une rémunération annuelle garantie des sommes investies quelles que soient les performances des
marchés �nanciers. En d'autres termes, en investissant sur un contrat en euros, l'épargne ne peut
jamais baisser.

Contrairement aux contrats en euros, un contrat en unités de compte est un contrat proposant
plusieurs supports d'investissement sur lesquels le souscripteur répartit son épargne en fonction
de ses objectifs en terme de rentabilité, de risque et de disponibilité. La valeur de l'épargne est
donc dépendante de l'évolution des marchés �nanciers.

Un produit Variable Annuity (VA) est un produit en unités de compte, permettant donc
de béné�cier de rendements du marché potentiellement élevés, combiné à des garanties visant à
� sécuriser � l'investissement.
Produits phares du marché nord-américain, les Variable Annuities sont des produits d'avenir
dans de nombreux pays, notamment dans le domaine de l'épargne-retraite ou simplement pour
répondre au besoin croissant de garanties pour l'investisseur. En e�et à l'heure actuelle et dans
de nombreux pays, l'environnement de l'épargne-retraite de caractérise par :

� des réformes des retraites et un allongement général de la durée de vie qui rendent nécessaire
la constitution d'un complément de retraite par capitalisation,

� des marchés �nanciers en période de fortes turbulences qui rendent nécessaire de béné�cier
de garanties �nancières.

Dans ce contexte, les clients désireux d'épargner peuvent avoir di�érentes attentes vis-à-vis des
assureurs et, dans tous les cas, les Variable Annuities peuvent répondre à ces besoins :

� se constituer une épargne a�n de �nancer leur retraite en raison de l'allongement de la
durée de celle-ci,

� se prémunir contre les mouvements défavorables des marchés �nanciers, contrairement aux
produits en Unités de Comptes purs,

� obtenir de meilleurs rendements que les produits en Euros classiques ou que les produits
en Unités de Comptes à dominante obligataire,

� avoir des produits souples et modulables selon leurs besoins.
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Du point de vue de l'assureur, tout incite à favoriser la vente de contrats en Unités de
Compte car le risque est porté par l'assuré, l'exigence de fonds propres est moindre (les contraintes
règlementaires sont di�érentes : les fonds propres doivent représenter au moins 4 % des provisions
mathématiques dans le cas des contrats en euros et 1 % des provisions mathématiques dans le cas
des contrats en unités de compte) et la rentabilité est meilleure. L'ajout des di�érentes garanties
permet d'attirer la clientèle des marchés les plus conservateurs.

En terme de positionnement sur le marché par rapport aux attentes des assurés, la situation
des Variable Annuities et des autres grandes familles de produits est donnée dans le graphique
suivant (source : Deloitte) :

Positionnement des Variable Annuities sur le marché

Bien qu'initialement développés sur le marché nord-américain, les produits Variable Annuities
ne sont pas totalement nouveaux pour le marché européen de l'assurance puisque des initiatives
récentes ont été prises par certains assureurs au Royaume-Uni, en Espagne et en France notam-
ment (exemple : Axa Accumulator).
Ces produits sont également en plein développement sur les marchés asiatiques avec une crois-
sance moyenne à trois chi�res sur la période 2001-2006 au Japon, favorisée notamment par la
faiblesse des taux d'intérêts.

Il est donc nécessaire de perfectionner les méthodes de tari�cations des produits de type
Variable Annuities, notamment par le biais des modèles, et ce même si la conjoncture actuelle
est peu propice à la vente de ces produits. En e�et, les récents déboires des marchés �nanciers ont
poussé les épargnants à privilégier les supports en euros, classiques et moins risqués. Cependant,
la plupart des assureurs continuent de développer leurs méthodes de tari�cation en attente d'une
reprise qui commence peu à peu à se pro�ler.
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3.2 Les di�érentes garanties

Il existe principalement 4 types de garanties, connues sous les noms de GMxB (Guaranteed
Minimum x Bene�t) ou GLB's (Guarantee Living Bene�ts), et que l'on se propose de détailler
dans un premier temps.

3.2.1 Guaranteed Minimum Death Bene�t - GMDB

Il s'agit de la seule garantie qui se déclenche au décès du souscripteur. Il en existe plusieurs
variantes :

� Premium Return : Le capital versé est égal au maximum entre la somme des primes
versées et la valeur du fond.

� Roll-Up : Cette fois le capital versé est égal au maximum entre la somme des primes
versées revalorisée à un taux �xe prédéterminé et garanti et la valeur du fond.

� Ratchet : Le capital versé est égal au maximum entre le niveau le plus haut atteint (en
général à une date anniversaire) par le fond et la valeur du fond.

� Mix : Il s'agit du niveau maximum entre le Ratchet et le Roll-Up.

Exemple de GMDB

Commentaires :

L'exemple ci-dessus est celui d'une GMDB avec Ratchet annuel de 15 % plafonné à 205 %.

On peut y observer les augmentations par paliers du niveau de la garantie. A chaque an-
niversaire du contrat, si le niveau du fond a augmenté de 15 %, le niveau de la garantie est
automatiquement réhaussé de 15 % également. Si une situation particulièrement favorable en-
trainant une hausse du niveau du fond de plusieurs paliers se présente, le niveau de la garantie
est également réévalué du même nombre de paliers (sur cet exemple, cela se produit notamment
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aux quatrième et cinquième anniversaires), sauf si cela implique le dépassement du plafond.
On remarque qu'entre 8 et 10 ans, le niveau du fond augmente de plus de 15 %, néanmoins le
plafond de 205 % empêche la garantie d'être réhaussée à un niveau supérieur.

Si l'assuré décède après 6 ans, la valeur de son épargne est inférieure au niveau de la garantie :
c'est un cas défavorable pour l'assureur qui devra prendre en charge le di�érentiel.

3.2.2 Guaranteed Minimum Accumulation Bene�t - GMAB

Il s'agit d'une garantie de capital minimum en cas de vie. Elle garantit au souscripteur un
plancher sur son investissement sur une période donnée. De la même façon que pour la GMDB,
ce plancher peut prendre di�érentes formes (Prime Return, Roll-Up, Ratchet).

Exemple de GMAB

Commentaires :

Le graphique précédent est un exemple de GMAB avec Roll-Up au taux de 5 % l'an. Le niveau
de la garantie évolue donc de manière constante pendant toute la durée de vie du contrat. Ce
niveau demeure totalement indépendant de l'évolution de l'épargne du client, et donc indépendant
des �uctuations observées sur les marchés �nanciers.

A échéance (après 10 ans dans cet exemple), le niveau de la garantie est d'environ 163 %. Or
le niveau du fond est inférieur à ce seuil. Il s'agit là aussi d'un cas défavorable pour l'assureur
qui enregistre une perte car il doit prendre le di�érentiel à sa charge.
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3.2.3 Guaranteed Minimum Income Bene�t - GMIB

Il s'agit de la garantie de revenu minimum en cas de vie. Ce contrat garantit au souscripteur
une rente viagère indépendamment de la performance des marchés. L'option peut être exercée
après un certain nombre d'années après la souscription (par exemple 10 ans) ou après un certain
age (par exemple 70 ans).

Le capital constitutif pour le calcul de la rente est le maximum entre la valeur du fond et le
niveau de la garantie à l'instant où l'assuré demande le début du paiement de sa rente.

La base de la rente peut être garantie en Roll-Up, en Ratchet, ou encore le plus élevé des
deux.

Exemple de GMIB

Commentaires :

Sur le graphique précédent, la base de la rente est garantie en Roll-Up, toujours à 5 %. Il
s'agit donc du même scénario que pour la GMAB précédente. Ici la daté clé du contrat n'est plus
l'échéance, mais une date à priori inconnue par l'assureur.

Supposons que l'assuré peut exercer sa garantie après 7 ans. S'il l'exerce immédiatement, le
niveau de la garantie est nettement supérieur à la valeur de l'épargne. Or l'assureur est engagé
à verser au client une rente calculée sur le maximum. C'est donc de nouveau un cas défavorable
pour l'assureur.

3.2.4 Guaranteed Minimum Withdrawal Bene�t - GMWB

Il s'agit de la garantie de retraits minimums en cas de vie. Elle donne la possibilité de retirer
x % des sommes versées par an quelles que soient les performances des marchés �nanciers. Ce
pourcentage x est �xé mais il est possible pour l'assuré de retirer un pourcentage y supérieur à
x, néanmoins il s'expose dans ce cas à des pénalités de rachat portant sur le di�érentiel y-x.
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La garantie est limitée dans le temps et il existe di�érentes variantes (par exemple il existe
parfois une période d'attente avant l'entrée en vigueur de la garantie).

Il existe aussi une garantie de retrait qui n'est plus limitée dans le temps, on parle alors de
GMWB for Life. Il existe en France des produits GMWB proposés par Axa (Accumulator) ou
Allianz.

Exemple de GMWB

Commentaires :

Sur le graphique précédent, on représente un exemple simpli�é du fonctionnement d'une
GMWB. On remarque que quelles que soient les performances des marchés �nanciers, l'assuré
peut retirer le pourcentage x des sommes investies. Dans cet exemple, la garantie n'est pas limitée
dans le temps puisqu'elle permet à l'assuré de retirer le pourcentage x à partir de 60 ans et jusqu'à
son décès.

De 55 à 60 ans, on se trouve dans la phase d'accumulation. La seconde phase est la mise
à disposition du complément de retraite de l'assuré. Celle-ci se termine lorsque la provision
mathématique du contrat s'annulle. On passe alors dans une phase de rente viagère.
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3.3 Contexte de l'étude

Lorsqu'il tari�e un produit de type Variable Annuity, l'actuaire est amené à faire plusieurs
hypothèses. Certaines d'entre elles sont des hypothèses actuarielles portant sur la mortalité, la
répartition de la population ou les rachats. Mais il est aussi amené à choisir des modèles �nanciers
pour simuler l'évolution des actifs sur lesquels le client investit son épargne.

Il existe en réalité plusieurs méthodes pour pricer des Variable Annuities. Les deux principales
et qui seront abordées dans ce mémoire sont la méthode de Monte Carlo d'une part, et la méthode
par formules fermées d'autre part. Dans les deux cas l'actuaire utilise une approche stochastique
en univers risque neutre pour simuler l'évolution du cours du sous-jacent (Monte Carlo) ou
simplement calculer des prix d'options européennes (formules fermées). On ne cherche pas à
déterminer la dynamique historique du cours du sous-jacent comme cela est traditionnellement
e�ectué en gestion du risque.

En e�et nous verrons que la tari�cation des garanties revient en réalité à un pricing d'option(s)
de vente (nous verrons par la suite qu'il peut s'agir d'un Put ou d'une somme de Puts pondérés
par des probabilités de survie ou de décès selon le cas). Ce pricing s'e�ectue nécessairement
sous probabilité risque neutre sous l'hypothèse d'Absence d'Opportunité d'Arbitrage (AOA).
Nous verrons par la suite que la méthode de Monte-Carlo permet de pricer toutes les garanties,
contrairement aux formules fermées.
Concernant les investissements du client, il sont généralement alloués dans les trois marchés
suivants :

� Le marché Actions (Equity)

� Le marché Obligataire (Bond)

� Le marché Monétaire (Money)

Pour mener à bien la modélisation d'un produit de type Variable Annuity, il est donc primor-
dial, dans un premier temps, de disposer de plusieurs modèles �nanciers consistants et robustes
pour chacun de ces marchés. Autrement dit, il est nécessaire d'avoir à disposition des modèles de
type Actions, pour modéliser l'évolution de la part investie en actions, et des modèles de type
Taux pour modéliser l'évolution de la part investie en obligations ou monétaire ainsi que pour
calculer le facteur d'actualisation.
Ces modèles doivent également être faciles d'implémentation et �exibles pour pouvoir s'adapter
à di�érents marchés à l'international.
L'objectif de la première partie du mémoire est donc d'étudier deux modèles �nanciers qui per-
mettront de générer des trajectoires d'évolution des actifs �nanciers qui seront utilisées lors du
pricing par la méthode de Monte-Carlo. On se place donc en univers risque-neutre.

Habituellement, lorsque le service tari�e ce type de produits, les modèles utilisés sont les
suivants : le modèle de Black et Scholes pour les actions, et le modèle deVasicek pour les taux.
Pour di�érentes raisons que nous aborderons par la suite, on ne peut pas se contenter uniquement
de ces modèles. Les deux modèles, plus évolués, qui seront étudiés dans cette première partie
sont : le modèle de Dupire pour les actions, et le modèle de Hull et White pour les taux.

Une fois que les modèles �nanciers auront été étudiés et testés, on pourra considérer qu'une
partie des hypothèses aura été traitée. La seconde partie du mémoire traitera des autres problé-
matique de la modélisation d'un produit d'assurance de type Variable Annuities. On y abordera
les di�érentes étapes du pricing et on proposera une analyse des résultats obtenus sur le coût de
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la garantie selon les modèles utilisés.
Une analyse de sensibilité sur ce coût en fonction des di�érents paramètres des hypothèses ac-
tuarielles et �nancières ainsi qu'une étude de Value at Risk (VaR), toujours sur le coût de la
garantie, seront également pratiquées. Le but de l'étude de VaR étant de s'intéresser aux pro-
blématiques de provisionnement relatives aux garanties des Variables Annuities, et non pas à la
gestion du risque de celles-ci.

Notons qu'un rappel sur toutes les notions relatives aux modèles �nanciers et à leur étude
est fourni dans l'annexe A. On y rappelle notamment les généralités ainsi que les méthodes qui
ont été utilisées dans le mémoire. Les théorèmes les plus importants sont également énoncés.
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Deuxième partie

Etude de modèles �nanciers
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Les modèles actuels et leurs limites

Dans la pratique, di�érents modèles sont utilisés pour la tari�cation et la couverture. Le
plus souvent il s'agit du modèle de Black et Scholes pour les actions, et du modèle de Vasicek
pour les taux. Il est important de les expliquer pour comprendre les nouveaux modèles et les
améliorations que ces derniers peuvent apporter.
Il est donc intéressant de faire quelques commentaires sur chaque modèle (Black et Scholes d'un
coté et Vasicek de l'autre) et d'établir leurs limites en termes d'utilisation ou d'adéquation au
marché.

4.1 Le modèle de Black et Scholes

4.1.1 La théorie du modèle

Le modèle de F.Black et M.Scholes est un modèle �nancier d'évolution des actifs de type
actions datant de 1973, dans lequel le prix de l'actif est un processus stochastique qui obéit à
l'équation suivante, sous la probabilité historique P :

dSt
St

= (µ− q) dt+ σdWt

avec :

- µ la dérive constante du modèle,

- q est le taux de rendement continu et constant des dividendes,

- σ la volatilité constante du cours du sous-jacent,

- Wt est un Mouvement Brownien Standard (sous P).

Par application du lemme d'Ito, on obtient la trajectoire suivante pour l'actif sous-jacent sous
la probabilité historique P :

St = S0 exp

((
µ− q − σ2

2

)
t+ σWt

)

Par application du théorème de Girsanov, on peut passer à la probabilité risque neutre Q
équivalente à P. Puis, par application du lemme d'Ito, on obtient �nalement la trajectoire suivante
pour l'actif sous-jacent sous la probabilité risque neutre Q :

St = S0 exp

((
r − q − σ2

2

)
t+ σWt

)

avec :
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- r le taux sans risque,

- Wt est un Mouvement Brownien Standard (sous Q).

La formule de Black et Scholes, quant à elle, est la célèbre formule de pricing pour les options
européennes déduite du modèle. Elle peut être démontrée à partir du processus de l'actif sous-
jacent sous la probabilité risque neutre Q, sous certaines hypothèses :

� des hypothèses de marché :

1. Le marché est en AOA (Abscence d'Opportunité d'Arbitrage),

2. il n'y a pas de frais de transaction, ni sur le sous-jacent, ni sur les options,

3. le marché est continu, tant sur le sous-jacent que sur les options,

4. les ventes à découvert sont possibles,

5. On peut emprunter ou prêter toute somme au taux sans risque, qui est supposé connu
et constant sur la durée de l'option,

6. l'option est européenne.

� des hypothèses sur le sous-jacent :

1. Le cours du sous-jacent suit un Mouvement Brownien Géométrique,

2. la volatilité est connue à l'avance et est constante,

3. le sous-jacent est parfaitement divisible.

On peut alors obtenir une formule fermée pour le prix des options européennes, évalués en t et
de maturité T :

C (S0,K, r, t, T, σ, q) = S0e
−q(T−t)Φ (d1)−Ke−r(T−t)Φ (d2)

P (S0,K, r, t, T, σ, q) = −S0e
−q(T−t)Φ (−d1) +Ke−r(T−t)Φ (−d2)

avec :

- d1 =
ln
(
S0
K

)
+
(
r−q−σ

2

2

)
(T−t)

σ
√
T−t

- d2 = d1 − σ
√
T − t

- Φ (x) =
∫ x
−∞

1√
2π
e−

t2

2 dt

4.1.2 La volatilité

Le concept de volatilité est une notion fondamentale qui constitue l'un des principaux outils de
gestion d'un portefeuille d'options. Dans la pratique, la cotation d'options se fait de plus en plus
en indiquant un chi�re de volatilité plutôt qu'une prime. Ceci démontre l'importance accordée à
ce facteur par les opérateurs qui � font � le marché (� market makers �). Les intervenants sur le
marché s'échangent alors des anticipations de volatilité.

Surtout, la volatilité est un paramètre primordial dans l'évaluation de la prime d'une option. Il
est important de bien avoir à l'esprit les principes relatifs à la volatilité sur les marchés d'options
pour aborder les limites du modèle de Black et Scholes.
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4.1.2.1 Volatilité historique et volatilité implicite

On peut distinguer deux types de volatilité, qu'il est nécessaire de ne pas confondre :

� La volatilité historique : Elle correspond au niveau de volatilité atteint dans le passé.
Elle se calcul sur l'historique de l'évolution des cours du sous-jacent par des formules
statistiques. On la dé�nit comme la mesure de l'écart type de la rentabilité de l'actif sur
une période élémentaire passée, que l'on ramène habituellement à une base annuelle.

Il est donc nécessaire de disposer d'une base de cours périodiques de l'actif en question a�n
de pouvoir estimer empiriquement sa volatilité historique.

Posons :

- n le nombre d'observations (on disposera donc de n− 1 rendements),

- St le cours de l'actif à la date t,

- Rt = ln
(

St
St−1

)
le rendement logarithmique associé,

- Rt la moyenne de la série des rendements.

Auquel cas, on peut estimer l'écart type des Rt par la formule classique :

σ =

√√√√ 1

n− 2

n−1∑
t=1

(
Rt −Rt

)2

En général, la base est annuelle, il faut donc multiplier par la racine carrée du nombre de
jours (ou de mois ou de semaines) d'observations.

� La volatilité implicite : Elle re�ète le � prix du risque � attaché à une option. Sa valeur
est � estimée � par le marché car elle représente les anticipations du marché sur les varia-
tions futures du support. Généralement, sur le marché d'actions, les mouvements baissiers
sont accompagnés d'une volatilité implicite forte (pessimisme), et à l'inverse pour les mou-
vements haussiers (optimisme). La volatilité implicite permet au trader d'apprécier si il
paye cher ou non son option.

Elle s'obtient à partir de la valeur de la prime, en inversant la formule d'évaluation de
l'option. La méthode la plus répandue est d'utiliser la formule de Black et Scholes et
l'algorithme de Newton-Raphson (approximations successives) dont le détail est donné
dans l'annexe A.4.

Ainsi, à toute prime est associée un niveau de volatilité implicite. On notera que les options
à la monnaie (ATM) et les options en dehors de la monnaie (OTM) sont plus sensibles aux
variations de volatilité que les options dans la monnaie (ITM) 1. D'autre part, toute aug-
mentation (diminution) de la volatilité implicite entraine une augmentation (diminution)
du prix de l'option, qu'il s'agisse d'un Call ou d'un Put (une volatilité accrue implique
qu'une �uctuation plus forte du sous-jacent est attendue, augmentant la probabilité de
PayO� favorable à échéance).

Dans la pratique, pour comparer le prix des options, on n'utilise que ces deux volatilités.
On associe au chi�re de volatilité historique un prix d'option théorique. On peut donc com-
parer la volatilité implicite et la volatilité historique pour constater les sur-évaluations et les

1. Call ITM : K < St, Put ITM : K > St, Call/Put ATM : K = St, Call OTM : K < St, Put OTM : K < St
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sous-évaluations des primes des options. Néanmoins il n'existe pas de formule mathématique
permettant de lier ces deux volatilités.
En résumé, si l'on se place à une date quelconque, la volatilité historique mesure la volatilité
passée du cours du sous-jacent sur une période donnée (par exemple 6 mois), et la volatilité
implicite est la volatilité attendue sur la durée de vie de l'option par les � market makers �.

4.1.2.2 Le Skew et le Smile

On s'intéresse souvent à la valeur de la volatilité implicite en fonction du strike et de la
maturité de l'option. Cela permet de construre une surface (ou nappe) de volatilité implicite.
Cette surface est généralement fournie sous forme de matrice sur les plateformes d'informations
�nancières.

Jusqu'au crash de 1987, la surface de volatilité implicite était plate, la volatilité étant supposée
constante quels que soient la maturité et le strike de l'option. Depuis cette chute d'un grand
marché de plus de 20 % (Dow Jones) en une seule séance, les traders ont commencé à s'intéresser
à la dépendance de la volatilité au strike et à la maturité.

En pratique, la surface de volatilité n'est pas plate. Plus généralement, la volatilité implicite
n'est pas la même pour di�érents strikes, et elle est également di�érente entre un Call et un
Put. A maturité �xée, lorsque l'on trace la courbe de volatilité implicite en fonction du strike,
on observe deux types de courbes, représentées par les graphiques suivants :

� Un Skew : la volatilité implicite est plus forte pour les Call � deep � ITM (largement dans
la monnaie) et les Put � deep � OTM (largement en dehors de la monnaie), donc pour les
options de strike très faible, et elle décroit lorsque le strike augmente.

Courbe au 24/12/2008 pour les Calls sur S&P500 de maturité 3 mois

� Un Smile : la volatilité implicite est minimale pour les options ATM (à la monnaie), et
augmente pour les options dans la monnaie ainsi que pour les options en dehors de la
monnaie, formant ainsi une courbe en forme de sourire.
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Courbe au 28/04/03 pour les Puts sur Bund 10 ans d'échéance 22/08/03

En réalité, que l'on utilise le terme de Skew ou celui de Smile, l'idée est de décrire
le phénomène général de dépendance de la volatilité implicite au strike de l'option.
La plupart du temps les auteurs utilisent le terme de � Smile � pour faire référence
à ce phénomène et il sera fait de même dans la suite du mémoire.

Ces dernières années, les courbes en smile ont majoritairement disparu, et l'on observe le
plus souvent des courbes en Skew. On continue d'observer un Smile pour les options sur taux de
change, tandis que les options sur actions présentent des courbes de volatilité en Skew la plupart
du temps.

Dans notre cas on s'intéresse aux options sur actions, on se concentrera donc sur les courbes
de type Skew, même si les interprétation du Smile sont semblables à celles du Skew. Commençons
par les di�érentes observations relatives au Skew :

� Pour les Calls, la volatilité implicite décrit typiquement un Skew où elle est maximale pour
les options fortement dans la monnaie et décroit lorsque le strike augmente. Cela s'explique
par le fait que les investisseurs sont très intéressés à l'idée d'acheter une option qui, en cas
de hausse du marché, leur permettra d'acheter le sous-jacent à un prix faible et donc de
maximiser leur gain. Dans le cas où ils anticipent une hausse du marché, leur espérance
de gain n'est pas limitée. Cette attirance rend ces options particulièrement chères et leur
volatilité est donc élevée.

� Pour les Puts, la volatilité implicite décrit typiquement un Skew où elle est maximale pour
les options fortement en dehors de la monnaie et décroit lorsque le strike augmente. Ceci
est logique car les investisseurs sont prêts à payer relativement cher pour une option qui les
couvre contre un crash boursier. En e�et les Puts de ce type fournissant un PayO� positif
si le cours du sous-jacent descend en dessous du strike, les investisseurs les voient comme
une couverture contre le risque de forte chute du cours du sous-jacent. Le prix élevé de ces
options augmente leur volatilité.
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� Ces observations sont tout de même plus marquées du coté des Puts que du coté des Call
car les investisseurs sur les marchés actions sont nettement plus sensibles au risque de
baisse qu'au risque de hausse du cours du sous-jacent.

� Plus la maturité est grande et moins l'e�et du Skew est important comme nous pouvons le
voir sur le graphique suivant. Ceci peut s'expliquer assez simplement : pour l'exemple des
Puts fortement en dehors de la monnaie, les investisseurs sont moins craintifs d'une baisse
du cours du sous-jacent sur le long terme que sur le court terme. Ils espèrent en e�et que
sur un horizon lointain, une chute éventuelle du cours sera compensée et sont donc moins
enclins à payer un prix élevé pour leur protection.

Courbes au 24/12/2008 pour les Calls sur S&P500 de di�érentes maturités

La surface de volatilité évolue également dans le temps. Les acteurs du marché la réévaluent
sans cesse, modi�ant leur anticipation de la probabilité, pour chaque prix d'exercice et chaque
maturité, qu'une option ne �nisse pas dans la monnaie.

4.1.3 Les limites du modèle

Le modèle de Black et Scholes repose, comme nous venons de le voir, sur un certain nombre
d'hypothèses. Cependant, ces hypothèses ne sont pas toutes véri�ées sur les marchés. Plus parti-
culièrement certaines d'entre elles sont inadéquates lorsque les marchés sont agités ou subissent
de fréquentes discontinuités de cours.

Prenons pour commencer l'hypothèse portant sur le processus aléatoire suivi par le sous-
jacent. Le modèle d'évolution du cours du sous-jacent utilisé par Black et Scholes suppose que,
dans un court intervalle de temps, les rendements du sous-jacent sont distribués selon une loi
normale. Si les rendements du cours du sous-jacent suivent une loi normale, alors cela implique
que les cours suivent une loi log-normale.
L'évolution normale des rendements constitue un biais puisque cela sous-estime très nettement
la survenance des évènements rares et extrêmes. On peut alors montrer que les prix des options
incluant ce type d'évènements ont un prix supérieur aux options évaluées par le modèle Black et
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Scholes.
En e�et, la distribution des rendements des actifs �nanciers se caractérise par un Skewness
di�érent de zéro, ce qui signi�e que la distribution des rendements n'est pas symétrique, et par
un Kurtosis supérieur à 3, ce qui signi�e que la distribution possède une queue épaisse.

La valeur des options hors de la monnaie ou dans la monnaie est particulièrement sensible
aux événements rares (rendements extrêmes du cours du sous-jacent) et, si ces événements sont
plus fréquents que ne le suppose une distribution normale, alors le prix de ces options sera plus
élevé que ne le prévoit le modèle.
En particulier, la formule de Black et Scholes ne reproduit pas le prix de marché des options de
maturités faibles qui sont en dehors de la monnaie et dans une moindre mesure, des options dans
la monnaie, du fait de l'hypothèse de normalité du rendement de l'actif sous-jacent, combinée à
l'hypothèse de volatilité constante. Dans tous les cas, ces erreurs sont fortement non négligeables.

En�n et surtout, dans la pratique, l'hypothèse de volatilité constante n'est pas
adéquate non plus. Nous venons de voir qu'au contraire, la volatilité est largement
dépendante du strike et de la maturité. Le prix de l'option étant une fonction crois-
sante de la volatilité (pour un Call comme pour un Put), il est clair que le phénomène
de smile implique une sous-évaluation des options qui ne sont pas à la monnaie.

L'hypothèse de constance de la volatilité est clairement innapropriée, les traders
sont constamment obligés de s'éloigner de cette hypothèse pour obtenir des prix
cohérents avec ceux du marché. Le besoin de modèles intégrant des mouvements de
volatilité est donc évident et essentiel.

Néanmoins, le modèle de Black et Scholes a été, et reste aujourd'hui très utilisé par les
opérateurs pour sa simplicité et pour sa �exibilité. Fisher Black lui même ironisait sur le sujet :
� Les opérateurs savent maintenant utiliser la formule et les variantes. Ils l'utilisent tellement

bien que les prix de marché sont généralement proches de ceux donnés par la formule, même

lorsqu'il devrait exister un écart important. . . �
De plus, lorsque l'on utilise le modèle pour la couverture, les biais induisent généralement une
sur-couverture, ce qui n'est pas catastrophique.

Les faiblesses du modèle de Black et Scholes sont mises en évidence par ce concept de volatilité,
qui est devenu l'un des plus importants dans le monde des options. A tel point qu'on ne parle
plus aujourd'hui de trader d'option mais de trader de volatilité.

4.2 Le modèle de Vasicek

4.2.1 La théorie du modèle

Le modèle de Vasicek est un modèle à un facteur. Le concept principal de ces modèles est
de supposer que l'ensemble de la courbe des taux n'est fonction que du taux court : rt, parfois
appelé taux court instantané, il s'agit du taux qui s'applique en t pour une période in�nitésimale.

Le premier modèle de taux était le modèle de Merton dans lequel le processus du taux court
suit un Mouvement Brownien Géométrique suivant l'équation di�érentielle stochastique suivante.
Ce modèle était très vite dépassé dès lors que la forme de la courbe des taux s'éloignait de sa
forme habituelle.

drt = µdt+ σdWt

37



Chapitre 4 : Les modèles actuels et leurs limites

En 1977, O.Vasicek a proposé un modèle plus évolué et possédant une innovation majeure :
la prise en compte du phénomène de retour à la moyenne. Dans ce modèle, le taux court rt suit
un processus de type Ornstein-Uhlenbeck, sous la probabilité historique P :

drt = a (b− rt) dt+ σdWt

avec :

- a > 0 et b > 0 les paramètres constants du modèle,

- σ la volatilité constante du taux court,

- Wt un Mouvement Brownien Standard (sous P).

Les paramètres du modèle ont par ailleurs une signi�cation :

� b est la moyenne de long terme du taux court rt,
� a est la vitesse de retour à la moyenne.

En e�et, ces deux paramètres impliquent le phénomène de retour à la moyenne de la manière
suivante : lorsque le taux court est supérieur à sa moyenne de long terme, alors le drift du
processus a (b− rt) est négatif et dans ce cas le taux court aura tendance à diminuer, donc à se
rapprocher de sa moyenne. Dans le cas contraire où le taux court est inférieur à sa moyenne de
long terme, ce drift est positif et conduira à faire remonter le taux court vers sa moyenne de long
terme. Le taux court est donc ramené vers b à la vitesse a. Cette évolution du taux court est à
priori en adéquation avec ce que l'on observe sur le marché.

Par application du théorème de Girsanov avec la prime de risque λ, on obtient l'équation
di�érentielle stochastique suivante, sous la probabilité risque neutre Q :

drt = a

((
b− σλ

a

)
− rt

)
dt+ σdWt

avec : Wt un Mouvement Brownien Standard (sous Q).

Le modèle de Vasicek permet en outre de déterminer les courbes des taux zéro-coupon futures
grâce à la trajectoire du taux court ainsi obtenue. Soit R (t, T ) le taux zéro-coupon en date t et
de maturité T − t. La fonctionnelle des taux zéro-coupon est la suivante :

R (t, T ) = R∞ − (R∞ − rt)

(
1− e−a(T−t)

a (T − t)

)
+

σ2

4a3 (T − t)
R∞ = b− σλ

a
− σ2

2a2
= cste

4.2.2 Les courbes de taux

Le terme de � Courbe des Taux � (en anglais � Yield Curve �) désigne la représentation
graphique de la fonction mathématique du taux d'intérêt e�ectif à un instant donné d'un zéro-
coupon en fonction de sa maturité.

C'est une notion fondamentale dans l'univers des modèles de taux et nous verrons que ceux-ci
se di�érencient par leur faculté à prendre en compte la structure de la courbe des taux. Il est
donc important de développer ce concept pour aborder les limites du modèle de Vasicek.
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4.2.2.1 Généralités sur les courbes de taux

Aux Etats-Unis et dans la zone Euro, ainsi que, dans une moindre mesure, au Japon et en
Grande Bretagne, il existe en permanence deux marchés de référence des taux d'intérêts de 0 à
30 ans, voire 50 ans, d'une bonne liquidité (cette liquidité est néanmoins moindre en général au
delà de 10 ans) :

� Celui des principaux emprunts d'Etat à taux �xe,
� Celui des Swaps contre IBOR.

Le niveau de taux d'intérêt �uctue donc en fonction de la maturité de l'opération. On parle
alors de structure par termes des taux d'intérêts (STTI). Les courbes de taux issues de cette
structure font donc apparaître le taux d'intérêt en ordonnée et la maturité en abscisses.

Il existe une multitude de courbes des taux. Nénanmoins, on peut dégager trois grandes
catégories :

� Les courbes du trésor (courbes d'Etat) : ce sont des courbes � sans risques � pour certains
pays sensés ne jamais faire défaut (G8),

� Les courbes interbancaires : elles régissent les opérations �nancières entre les banques. ce
ne sont pas des courbes sans riques car le � rating � des banques est variable car le risque
de solvabilité �nancière existe,

� Les courbes corporate : elles caractérisent les entreprises du secteur privé.

La forme la plus classique est une courbe croissante et concave. Les taux courts sont inférieurs
aux taux longs et la courbe est plus pentue sur sa partie courte (maturités faibles) que sur sa
partie longue (maturité élevée). Il s'agit du cas � standard � : plus l'emprunt se fait sur du long-
terme, plus les intérêts sont élevés (voir graphique ci-dessous).
Cependant nous verrons par la suite qu'il existe d'autres formes pour la courbe des taux, ce que
nous cherchons justement à prendre en compte dans le nouveau modèle.

4.2.2.2 Les di�érentes formes de la courbe des taux

Comme cela a été expliqué précédemment, l'un des buts du nouveau modèle est qu'il puisse
prendre en considération la structure initiale des taux d'intérêts pour évaluer les courbes de
taux futures. En e�et, chaque morphologie est représentative de l'état actuel du marché et des
anticipations économiques faites sur le marché. Il est donc nécessaire de présenter les di�érentes
formes connues. Historiquement, on a observé 5 types de courbe de taux :

� La �Normal Curve � (courbe usuelle) : Il s'agit de la courbe la plus fréquente, croissante
et concave. Les taux augmentent avec la maturité, mais de manière de plus en plus lente.
Cette forme de courbe re�ète l'anticipation des investisseurs d'une hausse de la croissance
ainsi que d'une poursuite de l'in�ation. Le marché anticipe donc un durcissement de la
politique monétaire des banques centrales, avec une hausse des taux court-terme visant à
calmer les pressions in�ationnistes.

� La � Humped Curve � (courbe bossue) : Il s'agit d'une courbe concave croissante puis
décroissante pour laquelle on observe un maximum pour les taux moyen-terme. Il arrive
également que l'on observe une légère incurvation de la partie courte de la courbe. Elle
est souvent causée par la forte demande en obligations long-terme qui cause la baisse de
la partie longue d'une normal curve. Elle peut signaler le début d'une récession, car elle
évolue souvent en courbe inversée.
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� La � Flat Curve � (courbe plate) : Elle se caractérise par des taux constants quelle que
soit la maturité. Economiquement, elle est le re�et d'une incertitude plus ou moins forte
sur la situation future. Le plus souvent on observe par la suite un retour à une courbe
normale ou à une courbe de type humped.

� La � Steep Curve � (courbe raide) : Cette courbe est croissante et convexe. Les taux
sont donc croissants avec la maturité mais de plus en plus fortement croissants au fur et à
mesure que la maturité augmente. Les taux courts étant très bas, l'économie concernée est
sensée se développer très fortement à l'avenir. On observe généralement ce type de courbes
avant un boom économique ou en �n de récession. On attend alors une forte hausse des
taux sur le court-terme. Historiquement néanmoins, cette courbe reste extrêmement rare.

� La � Inverted Curve � (courbe inversée) : La courbe inversée est une courbe clairement
anormale dans laquelle les taux longs sont inférieurs aux taux courts. Le spread 2 est donc
négatif. Dans pareil cas, les investisseurs anticipent un a�aiblissement de la conjoncture
économique et pensent que l'in�ation va rester faible. Elle peut également s'expliquer par
d'autres facteurs techniques ou une situation économique particulière.

Les di�érentes formes de la courbe des taux

4.2.3 Les limites du modèle

Le modèle de Vasicek, malgré les améliorations qu'il apporte au premier modèle de Merton,
possède certaines lacunes. Dans un premier temps, la probabilité d'obtenir des taux négatifs
est non nulle, ce qui est particulièrement génant. Notons que ce cas de �gure se produit le plus
souvent pour des économies où les taux sont relativement bas et où la volatilité est élevée, comme
le Japon par exemple.
On peut également relever le fait que le taux long R∞ est constant et une fois les paramètres du
modèle connus, toutes les courbes de taux futures possèdent la même limite lorsque la maturité
tend vers l'in�ni (R∞).

En�n, un inconvénient majeur est que la moyenne de long terme du taux court est également
constante. Donc la procédure de calibration et la spéci�cation du modèle ne permettent pas

2. Spread = Taux Long - Taux Court
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toujours de retrouver les taux longs termes anticipés par le marché. Or nous venons de voir
que selon la forme de la courbe des taux que l'on observera sur les marchés, les perspectives
économiques ne sont pas les mêmes et les futures courbes de taux devraient en tenir compte.

D'une manière plus générale, les modèles de type Vasicek ou CIR (Cox-Ingersoll-Ross) ne
s'ajustent pas automatiquement à la structure par terme observée sur le marché aujourd'hui.
Par un calibrage judicieux, ils permettent de retrouver la plupart des structures observées en
pratique. Cependant, l'ajustement aux observations n'est pas exact et, dans certains cas, des
erreurs signi�catives apparaissent. La majorité des utilisateurs (notamment les traders) ne sont
donc pas satisfaits de ces modèles.

4.3 Les objectifs des nouveaux modèles

4.3.1 Modèle Actions

Concernant le modèle actions, l'un des objectifs du nouveau modèle à mettre en place est donc
de prendre en compte le caractère non-constant de la volatilité. Il serait également judicieux que
ce modèle appréhende de manière plus précise la survenance des évènements rares et extrêmes
a�n de réduire les biais observés dans le modèle de Black et Scholes sur les options dans la
monnaie et hors de la monnaie.

4.3.2 Modèle Taux

Pour le modèle taux, l'objectif principal est de permettre une meilleure prise en compte des
di�érentes formes de la courbe des taux initiale. Comme nous venons de le voir, la forme de la
courbe des taux re�ète les perspectives économiques du pays concerné et par conséquent cette
forme aura un impact fortement non négligeable sur les formes futures de la courbe des taux. Il
faudra donc que le nouveau modèle puisse tenir compte de la structure initiale des taux. Il serait
également judicieux de conserver la facilité d'implémentation des modèles monofactoriels tout
en supprimant le caractère constant du retour à la moyenne du taux court.

Bien entendu, ces deux modèles devront être � Market Consistant �, ce qui signi�e que l'on
doit pouvoir retrouver des prix de marché en les calibrant, puis en les utilisant correctement.
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Pour des raisons qui seront expliquées par la suite, le choix du modèle actions s'est arrèté
sur le modèle de Dupire. Après une description du concept fondamental de volatilité locale, ce
chapitre s'attache à décrire le modèle le plus précisément possible. Les principes fondamentaux
sur lesquels il repose, ainsi que les problématiques de calibration et d'implémentation y sont
abordés.
On y détaille aussi les di�érentes approches envisagées pour utiliser le modèle. Chacune est testée
sur des données de marché a�n de dégager la plus consistante.

5.1 Les modèles de volatilité locale

Dans la suite de ce mémoire, nous allons aborder la notion de volatilité locale. Ce terme est
utilisé pour désigner la volatilité de l'actif sous-jacent en fonction de la valeur de ce même actif et
du temps. En e�et, lorsque l'on ne supposera plus que la volatilité est constante dans l'équation
di�érentielle stochastique du modèle, on parlera d'une volatilité � locale � car celle-ci évoluera
constamment.

5.1.1 Le contexte

Une fois le phénomène du smile de volatilité intégré, les �nanciers ont commencé à s'intéresser
aux améliorations à apporter au modèle de Black et Scholes. La question était de savoir si il était
possible de construire un processus d'évolution du sous-jacent qui soit compatible avec le smile
observé, quelle que soit la maturité, et qui conserve la complétude du modèle.

Les modèles de volatilité locale ont alors succédé, sans les remplacer, aux modèles paramé-
triques qui spéci�aient par avance la forme de la di�usion. Après avoir estimé le paramètre de
di�usion, on pouvait calculer des prix d'options et juger de leur adéquation avec le � smile � de
volatilité.

Les modèles cohérents au smile renversent la logique en utilisant le marché des options comme
input servant à inférer le processus de di�usion. En clair, on peut évaluer des options à partir du
smile observé contrairement à précédemment où l'on cherchait les spéci�cations qui collaient le
mieux au smile observé. Cela suppose aussi que l'on n'ait pas à déterminer en avance la forme
de la di�usion, mais plutôt à l'inférer numériquement grâce à des prix d'options européennes.

Un aspect important de cette classe de nouveaux modèles est qu'ils maintiennent le principe
d'absence d'opportunité d'arbitrage et en outre, contrairement aux modèles incluant un saut,
une volatilité stochastique ou une friction, ils ne rajoutent aucune source de risque additionnelle
de nature à faire basculer l'évaluation en univers incomplet. En e�et en situation d'incomplétude
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des marchés, nul ne peut prétendre calculer des prix d'options par arbitrage puisqu'une multitude
de prix existent, et donc la couverture d'une quelconque position va s'avérer fausse.

L'apport signi�catif de ce type de modèles est d'être parvenu à proposer une
alternative au modèle de Black et Scholes sans accroître dans le même temps la
dimension d'incertitude.

5.1.2 Les di�érents modèles

Il existe plusieurs modèles basés sur ce principe de volatilité locale. On se propose d'en
présenter certains des plus connus dans cette partie, sans chercher à entrer dans les détails. Une
approche succincte devrait nous permettre de faire apparaître les premiers éléments de choix
d'un modèle pour la suite.

5.1.2.1 Le modèle de Dupire (1994)

En 1994, Bruno Dupire a proposé de recomposer la totalité de la di�usion à partir des prix
d'options en posant un processus risque neutre de la même forme que celui du modèle de Black et
Scholes mais en supposant que la volatilité est locale et donc dépendante du strike et du temps.

Ce simple modèle est à l'origine du concept de volatilité locale. Dupire ne cherchait pas
réellement à créer une nouvelle classe de modèles de volatilité en supposant un processus sans
dérive pour générer une formule analytique pour la volatilité. L'idée était davantage de calculer
des prix d'options qui soient cohérents avec les prix observés sur le marché.

5.1.2.2 Les modèles de Derman et Kani (1994)

Le cours du sous-jacent obéit à la même équation di�érentielle stochastique que dans le
modèle de Dupire. Contrairement à Dupire, Derman et Kani ont développé un modèle en temps
discret où la volatilité locale σ(St, t) est déduite numériquement à partir du prix des options
pour coller au mieux au smile de volatilité. Il s'agit d'un modèle à arbre binomial comme dans
le modèle de Cox, Ross et Rubinstein (1976) avec pour di�érence que les n÷uds sont obtenus à
partir des prix d'options avec une volatilité non constante puisqu'elle est fonction du temps et
du cours du sous-jacent.

Le modèle est néanmoins connu pour son manque de stabilité et de �exibilité. Des amélio-
rations lui ont été apportées par Dupire, Derman, Kani, Chriss et Said pour passer à un arbre
trinomial à une ou plusieurs dimensions.

Dans notre étude ce modèle n'est pas intéressant car nous cherchons avant tout un modèle
en temps continu, qui se traduit par une meilleure implémentation dans la pratique, et qui est
plus approprié à la tari�cation des garanties des produits d'assurance.

5.1.2.3 Les modèles de Rubinstein (1994) et Jackwerth (1997)

Rubinstein a étendu le modèle standard de Cox, Ross et Rubinstein (1976) en proposant
un arbre implicite binomial en utilisant uniquement l'induction rétroactive contrairement à ce
que faisaient Derman et Kani. L'arbre ne fonctionne qu'avec des options européennes expirant
en date T , ce qui signi�e qu'il ne capture pas la structure par terme de la volatilité implicite
contrairement au modèle de Derman et Kani.

Jackwerth a étendu l'arbre implicite de Rubinstein en permettant à l'arbre de coller aux
maturités intermédiaires pour des options européennes. Comme pour Rubinstein, les transitions
de probabilités sont contraintes à rester entre 0 et 1 pour éviter les opportunités d'arbitrage.
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5.1.3 Le choix d'un modèle

A priori il était plus intéressant dans le cadre de mon étude de s'intéresser au modèle de
Dupire, qui est le modèle à l'origine du concept de volatilité locale, pour di�érentes raisons :

� Lorsque l'on rentre dans le détail, on s'aperçoit de sa relative facilité d'implémentation,

� Il s'agit du seul modèle qui n'utilise pas d'arbre de transition parmi ceux évoqués, il est
donc le plus �exible,

� Le modèle est théoriquement capable de reproduire le prix des options de type � Plain
Vanillas � européennes,

5.2 La théorie du modèle

Dans cette partie, nous allons donc nous intéresser exclusivement au modèle de Dupire pour
l'évolution des actifs �nanciers de type action. Après avoir dé�ni clairement le modèle d'un
point de vue théorique en se basant sur la démarche de Dupire, nous aborderons les di�érentes
méthodes pour le mettre en application de manière pratique. Il sera alors intéressant de choisir
l'une de ces méthodes et de tester sa consistance sur des données de marché.

Le pricing des options consiste en général à déterminer les prix après avoir spéci�é un modèle
et estimé ses paramètres. Dans le modèle de Black et Scholes par exemple, on obtient les prix en
fonction de la volatilité et lorsque l'on inverse l'équation, on est à même de calculer la volatilité
implicite à partir des prix des options, comme nous l'avons vu dans la partie précédente.

Si le modèle était correct, la volatilité implicite serait la même quel que soit le prix de
marché de l'option. Or ceci n'est pas le cas comme nous l'avons dit précédemment : la volatilité
implicite dépend non seulement du strike, mais aussi de la maturité de l'option. La question que
se pose alors Dupire est la suivante : Que faire lorsqu'une option à la monnaie sur un sous-jacent
quelconque possède une volatilité implicite de 20 % pour une maturité de 6 mois, et 18 % pour
une maturité de 1 an ?

L'idée première est de permettre à la volatilité d'être dépendante du temps, comme l'a fait
Merton. Mais cela ne règle pas le problème de la dépendance de la volatilité implicite au strike
de l'option, le fameux smile de volatilité. Finalement, Dupire a cherché à construire un modèle
qui :

� soit compatible avec le smile de volatilité observé,
� conserve la complétude du modèle.

Le processus suivi par le cours du sous-jacent sous la probabilité risque neutre Q est le
suivant :

dSt
St

= (r (t)− q (t)) dt+ σ (St, t) dWt (5.1)

avec :

- r (t) le taux d'intérêt sans risque,

- q (t) le rendement continu des dividendes,

- Wt est un Mouvement Brownien Standard (sous Q).
- σ (St, t) la volatilité locale, comme étant une fonction déterministe du cours

du sous-jacent et du temps.
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On pourra donc remarquer que la forme de la di�usion du modèle de Dupire est la même que
pour le modèle de Black et Scholes. Par conséquent la normalité des rendements est conservée.

La discrétisation du modèle fournit l'équation suivante :

St = St−1 exp

((
r (t)− q (t)− σ2 (St−1, t)

2

)
∆t + Φtσ (St−1, t)

√
∆t

)
(5.2)

avec : (Φt)t≥1 une famille de variables aléatoires indépendantes et identiquement distribuées
(iid) de loi normale centrée et réduite.

Le résultat fondamental du modèle est la relation permettant de calculer la fonction de
volatilité locale à partir du prix des options, du strike et de la maturité. Initialement, Dupire
avait supposé que le taux sans risque et le rendement des dividendes étaient nuls, néanmoins
la démonstration fournie en annexe B.1 prend en compte ces deux éléments. Le résultat est le
suivant :

σ (K,T ) =

√√√√2
∂C
∂T + (r (T )− q (T ))K ∂C

∂K + q (T )C

K2 ∂2C
∂K2

(5.3)

avec :

- K le strike de l'option,

- T sa maturité,

- C le prix de l'otion d'achat (Call).

Cette formule présente un intérêt certain pour ses utilisateurs. En e�et, chaque élément peut
être estimé soit directement (pour le taux et le rendement des dividendes), soit indirectement à
partir des prix des options (pour les dérivées partielles).
L'idée fondamentale du modèle de Dupire est donc que l'on peut utiliser les prix observés des
options pour spéci�er une fonction déterministe de volatilité locale qui soit consistante avec ces
prix.

Comme cela a été évoqué lors du choix du modèle, l'avantage considérable du modèle de
Dupire est qu'il permet théoriquement de reproduire le prix des options � Plain Vanillas �(caté-
gorie d'options ayant des composantes standards, par opposition aux options exotiques). Dans le
cadre de notre étude ceci est particulièrement important car, comme nous l'évoquions en début
de mémoire, le pricing des garanties se traduit par le pricing d'un ou plusieurs Puts pondérés.

5.3 Les di�érentes approches

L'utilisation du modèle s'e�ectue en deux étapes : la première consiste en la calibration
à partir des prix d'options, et la seconde consiste en la génération de scénarios stochastiques
d'évolution du sous-jacent.
On peut maintenant s'intéresser aux di�érentes manières d'implémenter et d'utiliser le modèle.
En e�et, pour di�user le prix du sous-jacent, il faut connaître la fonction de volatilité locale. Les
trois approches que nous proposons de présenter ne di�èrent donc que par la méthode utilisée
pour obtenir cette fonction, c'est à dire la calibration.
Pour chacune des méthodes développées, on tachera de donner les avantages et les inconvénients,
ainsi que les résultats obtenus sur un jeu de données particulier.
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5.3.1 Les données

Pour tester ces trois méthodes, on va utiliser la surface de volatilité implicite fournie par
Barclays pour la date du 13/06/2005 concernant les options de vente (Put) européennes portant
sur le sous-jacent S&P 500. La raison pour laquelle on utilise ces données et non un échantillon
plus récent est que nous disposions d'une note d'un cabinet d'actuariat concernant le modèle de
Dupire. Cette dernière contenant les résultats des tests e�ectués par ce dernier à partir de ces
données, il était particulièrment intéressant de pouvoir comparer nos résultats avec ceux dudit
cabinet.

Pour cette date, on dispose des éléments suivants :

- Le prix du sous-jacent : S0 = 1196, 71 (noté S dans les matrices suivantes),

- Le rendement continu des dividendes est constant et égal à 1, 9%,

- Les maturités s'étendent de 1 à 10 ans avec un pas annuel, et les strikes s'étendent de 75 % à
125 % de S0 avec un pas de 5 %. La matrice contient donc 110 valeurs,

- La courbe des taux est la suivante :

- La matrice des volatilités implicites observées sur le marché est la suivante :

On peut donc en déduire la matrice de prix des options grâce à la formule de Black et Scholes :
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5.3.2 La méthode des Calls

Cette première méthode consiste à utiliser directement la formule de la volatilité locale ( 5.3)
en calculant numériquement les dérivées partielles des prix d'options par la méthode des di�é-
rences �nies expliquée en annexe A.3.
La mise en place de cette méthode repose sur les étapes suivantes :

� Pour le type d'option considéré, il faut collecter un panel de prix en fonction de la maturité
et du strike. En pratique ces prix sont obtenus sur les plateformes d'informations �nancières
classiques soit directement, soit indirectement à partir des volatilités implicites grâce à la
formule de Black et Scholes,

� Ensuite, il faut calculer les dérivées partielles pour chaque couple (K,T ) de strike et de
maturité, en utilisant la méthode des di�érences �nies. Le schéma de discrétisation de la
méthode est le schéma d'Euler implicite, pour les raisons qui sont évoquées dans l'annexe
A.3 relative.

� Pour chacun des couples (K,T ), on peut alors calculer la volatilité locale à l'aide de la
formule ( 5.3) car r et q sont connus. On dispose alors d'une matrice de volatilité locale.
On rappelle ci-dessous la formule :

σ (K,T ) =

√√√√2
∂C
∂T + (r (T )− q (T ))K ∂C

∂K + q (T )C

K2 ∂2C
∂K2

� On peut alors �tter cette surface de volatilité locale par une fonction du strike K et de
la maturité T . Pour cela, di�érentes formes analytiques ont été proposées et la meilleure
est celle de Dumas, Fleming et Whaley (1998). Ils supposent que la forme analytique de la
volatilité est la suivante :

σ (K,T ) = α+ β1K + β2K
2 + β3T + β4T

2 + β5KT

Auquel cas, en utilisant la méthode des moindres carrés, on obtient un jeu de six paramètres
(α, β1, β2, β3, β4, β5) permettant d'exprimer la volatilité locale pour tout couple (K,T ) de
strike et de maturité, même ceux non représentés dans l'échantillon initial, ce qui est
nécessaire pour la génération des scénarios.

� On utilise alors l'équation de discrétisation du modèle ( 5.2) et la fonction de volatilité locale
σ précédemment estimée. Il est très important de noter la chose suivante : on a calibré la
fonction σ sur K et T lors des étapes précédentes, or l'équation de discrétisation
du modèle fait apparaître la volatilité locale comme une fonction de St−1 et de
t. Pour implémenter le modèle de manière correcte, il faut remplacer le strike
K par le dernier cours du sous-jacent St−1 et la maturité T par le temps t.

Pour calculer le prix des options, on utilise la méthode de Monte-Carlo. Dans le cadre de
notre exemple sur le jeu de données fourni, on génère 10 000 trajectoires du sous-jacent avec un
pas de temps mensuel.

Sous la probabilité risque neutre Q, le prix d'une option est donné par les formules suivantes,
ou C et P représentent respectivement le Call et le Put. Ici ST représente le cours du sous-jacent
à maturité, K représente le strike de l'option et r (T ) est le taux sans risque utilisé pour la
maturité T .

C = EQ

[
Max (ST −K; 0) e−r(T )T

]
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P = EQ

[
Max (K − ST ; 0) e−r(T )T

]
Pour chacune des 10 000 trajectoires de St simulées, on va calculer le PayO� à échéance

Max (K − ST ; 0) que l'on actualise ensuite au taux sans risque r (T ). En calculant ensuite la
moyenne de ces PayO� actualisés sur les 10 000 simulations, on obtient la valeur de l'option.

La première matrice représente les prix des Puts simulés de cette manière. La seconde repré-
sente la di�érence entre les prix simulés et les prix observés. La troisième représente l'écart en
pourcentage e entre les prix de Puts observés et les prix de Puts simulés :

e =
|Prix observé− Prix simulé|

Prix observé

Remarquons dès lors que l'écart maximal est égal à 0,93 % de S0, et que l'écart minimal est
égal à -0,85 % de S0. En terme de qualité, cette méthode semble donc intéressante car les écarts
sont relativement faibles entre les prix observés sur le marché et les prix simulés.
On remarque aussi que les prix des Puts sont dans leur plus large partie sous-évalués (parties
encadrées en bleu). Cependant il ne se dégage aucune tendance de la sur-évaluation ou de la
sous-évaluation en fonction du strike ou de la maturité, ce qui est étonnant. En e�et on pourrait
s'attendre à une meilleure précision lorsque l'on s'approche des options à la monnaie, or ici cela
semble aléatoire.

Notons tout de même que les prix des Puts (et donc les ecarts de prix) sont largement
dépendants des strikes et des maturités. Il n'est donc pas recommandé de ne se baser que sur les
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écarts simples entre les valeurs observées et simulées (il est en e�et di�cile de comparer entre
elles les valeurs de cette matrice) pour apprécier la méthode. c'est pourquoi on regarde les écarts
absolus en pourcentage.

En pourcentage de la valeur observée du Put, on remarque que les écarts absolus sont les
plus importants pour les strike les plus faibles. La valeur maximale de ces écarts est de 16,70 %.
Dans la plupart des cas les erreurs sont inférieures à 10 %.

A partir de la matrice des prix des Puts simulés, on peut retrouver la matrice des volatilités
implicites simulées par inversion de la formule de Black et Scholes et grâce à l'algorithme de
Newton-Raphson (le détail de l'équation à résoudre est donné dans l'annexe A.4). La dernière
matrice représente les écarts absolus de volatilité en pourcentage calculés avec la même formule
que les écarts absolus de prix en pourcentage calculés ci-avant :
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On remarque logiquement que les observations faites sur les prix des Puts se répercutent sur
les volatilités implicites. En e�et la tendance est nécessairement conservée car le prix du Put est
une fonction croissante de la volatilité dans la formule de Black et Scholes : la sur-évaluation du
prix entraine donc une sur-évaluation de la volatilité et inversement.
D'autre part, la di�érence maximale vaut 2,39 % et la di�érence minimale vaut -1,51 %.

En regardant la matrice des écarts absolus en pourcentage, on remarque que la moyenne de
ces écarts est d'environ 3,17 %, avec un minimum et un maximum respectivement égaux à 0,07
% et 17,83 %. Dans la même optique que pour les écarts absolus en pourcentage sur les prix, il
sera intéressant de comparer ces valeurs à celles obtenues avec les autres méthodes.

En conclusion, cette première méthode o�re globalement de bons résultats sur les prix des
Puts mais pas sur les volatilités implicites où l'on observe des écarts plus importants et décentrés
par rapport à 0. De plus, aucune tendance sur la précision ne se dégage en fonction du strike et
de la maturité.

5.3.3 La méthode des volatilités implicites

Cette seconde méthode repose, comme son nom l'indique, sur l'utilisation de la volatilité
implicite au lieu du prix de l'option dans la formule de volatilié locale 5.3. En e�et on sait que le
prix d'une option dépend de sa volatilité implicite et donc il est possible de travailler directement
à partir d'une matrice de volatilité implicite récupérée sur le marché.

Pour pouvoir travailler à partir des volatilités implicites, il faut modi�er la formule 5.3 de
façon à ce que celle-ci fasse référence à la volatilité implicite de l'option. Une démonstration
proposée en annexe B.2 permet de déboucher sur la formule suivante :
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σ (K,T ) =

√√√√√√ σ2
I (K,T ) + 2σI (K,T )T

(
∂σI
∂T (K,T ) + (r (T )− q (T ))K ∂σI

∂K (K,T )
)

(
1 +Kd∂σI∂K (K,T )

√
T
)2

+ σI (K,T )K2T

(
∂2σI
∂K2 (K,T )− d

(
∂σI
∂K (K,T )

)2√
T

)
(5.4)

avec :

- σI (K,T ) la volatilité implicite associée au couple (K,T ),

- d =
ln
(
S0
K

)
+

(
r(T )−q(T )+

σ2I (K,T )

2

)
T

σI(K,T )
√
T

,

- S0 le cours initial du sous-jacent.

Dans cette seconde approche, la calibration et l'implémentation du modèle impliquent les
étapes suivantes :

� Après avoir récupéré une matrice de volatilités implicites en fonction de di�érentes valeurs
du strike K et de la maturité T , il faut �tter cette surface selon une fonction paramétrique.
On utilise de nouveau la méthode des moindres carrés et la forme donnée à la fonction de
volatilité implicite est la suivante :

σI (K,T ) = α+ β1M + β2M
2 + β3T + β4T

2 + β5MT

La fonction M est appelée � Moneyness � et s'écrit :

M = M (K,T ) = −
ln
(
S0 exp(rT )

K

)
√
T

� Après l'estimation, on dispose des six paramètres (α, β1, β2, β3, β4, β5) permettant de cal-
culer la volatilité implicite pour tout couple (K,T ) de strike et de maturité. On peut alors
en revenir à la volatilité locale grâce à la formule 5.4 en calculant les dérivées partielles de
la volatilité implicite de manière analytique. Les calculs et formules relatifs aux dérivées
partielles sont fournis en annexe B.3.

� On est �nalement en mesure de calculer la valeur de la volatilité locale pour tout couple
(K,T ) de strike et de maturité. Il ne reste alors plus qu'à utiliser l'équation de discrétisation
du modèle 5.2 de la même manière que pour la première méthode. A savoir qu'il faut
remplacer K par St−1 et T par t.

De nouveau, on va générer 10 000 trajectoires d'évolution du sous-jacents et déterminer le
prix des Puts par la méthode de Monte-carlo pour un pas de temps mensuel. Pour cette seconde
méthode on donne ci-dessous les mêmes matrices de comparaison que pour la méthode des Calls.
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On observe tout d'abord que le modèle semble plutôt sous-évaluer le prix des options en
dehors la monnaie (K < S0) et sur-évaluer le prix des options dans la monnaie (K > S0) avec
une très légère distinction selon la maturité puisqu'il y a une légère tendance à sous-évaluer
davantage pour les maturités élevées. Les meilleurs résultats sont obtenus sur les options proches
de la monnaie (K = S0), ce qui semble plus logique car ce sont les options les plus sensibles aux
variations de volatilité.
D'autre part les résultats sont légèrement meilleurs que pour la première méthode. En e�et l'écart
maximal vaut ici 0,82 % (contre 0,93 %) tandis que l'écart minimal vaut -0,92 % (contre -0,85
%).
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La même tendance que pour la méthode des Calls se dégage, avec des écarts plus importants
pour les strike faibles. Néanmoins, malgré une valeur maximale plus importante (près de 30 %
pour un strike de 75 % de S0 et une maturité de 1 an), les écarts sont dans leur plus large partie
plus faibles que dans la méthode des Calls, ce qui tend à accréditer la méthode des volatilités
implicites.

De la même manière que pour la méthode des Calls, on peut déduire la matrice de volatilités
implicites et les di�érences avec la matrice de volatilités implicites initiale. On en déduira de
nouveau les écarts absolus de volatilité en pourcentage :
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De nouveau, les impacts sont ampli�és lorsque l'on regarde la volatilité implicite. Comme cela
a été expliqué dans la première méthode, les tendances sont conservées en vertu de la dépendance
entre le prix du Put et la volatilité implicite.
Ici les résultats sont nettement meilleurs qu'avant car l'écart maximal est de 1,31 % et l'écart
minimal de -1,75 % (contre 2,39 % et -1,51 % pour la méthode des Calls).

En regardant la matrice des écarts absolus en pourcentage, on remarque que la moyenne de
ces écarts est d'environ 3,54 %, avec un minimum et un maximum respectivement égaux à 0,08
% et 11,05 %. Ces écarts sont donc légèrement plus élevés en moyenne que pour la méthode des
Calls, néanmoins leur étendue est très nettement inférieure, ce qui con�rme la robustesse de la
méthode des volatilités implicites.

En conclusion, la méthode des volatilités implicites o�re de bons résultats, tant sur les prix
des options que sur les volatilités implicites. De plus, cette dernière semble plus cohérente que la
méthode des Calls car les meilleurs résultats sont obtenus autour de la monnaie.
De plus, l'application de cette méthode entraîne une sur-évaluation des prix des Puts dans la
monnaie. Or les Puts dans la monnaie sont les options de vente les plus chères (le strike est élevé,
permettant donc au porteur de vendre le sous-jacent à un prix fort quel que soit son cours). Leur
sur-évalutation est donc une bonne chose pour la gestion du risque (principe de prudence).

5.3.4 La combinaison des deux méthodes

Cette troisième et dernière méthode de mise en pratique du modèle de Dupire est une ap-
proche hybride à partir des deux premières. En e�et, elle fait appel aux volatilités implicites et à
la méthode des di�érences �nies. Le but est d'utiliser la formule 5.4 sans pour autant donner une
forme analytique à la volatilité implicite, mais en calculant numériquement les dérivées partielles.
Pour l'appliquer, il su�t de suivre les étapes suivantes :

� Après avoir récupéré la matrice des volatilités implicites, on calcule les dérivées partielles
à partir de la méthode des di�érences �nies pour chaque couple (K,T ).

� La formule 5.4 permet alors de calculer la volatilité locale à partir des dérivées partielles
de la volatilité implicite pour chaque couple (K,T ).

� Dès lors on dispose de la matrice des volatilités locales sur laquelle on va pouvoir e�ectuer
la calibration. On utilise la même forme que pour la méthode des Calls, à savoir :

σ (K,T ) = α+ β1K + β2K
2 + β3T + β4T

2 + β5KT

� Il ne reste plus qu'à utiliser la volatilité locale ainsi calculée dans la formule de discrétisation
du modèle 5.2. Notons qu'à nouveau il faut remplacer K par St−1 et T par t.

Pour cette troisième et dernière méthode, on génère également 10 000 scénarios pour calculer
les prix des Puts par la méthode de Monte-Carlo. De même on utilise toujours un pas de temps
mensuel. On obtient les résultats suivants :
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On remarque premièrement que les prix des Puts sont sous-estimés dans la majorité des cas,
mais avec une di�érence notable par rapport aux méthodes précédentes. En e�et, il semble que
l'impact ne soit pas le même selon la maturité : les prix sont plus souvent sous-évalués à maturités
moyennes (de 4 à 7 ans).
En terme de qualité des résultats, cette méthode est légèrement moins performante que les
précédentes avec des écarts allant de -0,68 % à 1,14 %. L'étendue de ces écarts est donc plus
importante et nettement plus décentrée par rapport à 0.
De plus, comme pour la méthode des Calls, les meilleurs résultats ne sont pas nécessairement
obtenus pour les options à la monnaie.

Même si cette méthode paraît légèrement moins performante que les précédentes, on peut
regarder les écarts absolus en pourcentage.
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Contrairement à ce que l'on pouvait attendre, les écarts absolus sont relativement faibles,
puisque la valeur maximale est de 15 %. D'autre part, la tendance qui semble se dégager est
qu'il existe des écarts plus importants lorsque le strike ou la maturité sont faibles. Néanmoins
en moyenne les écarts absolus sont du même ordre que pour les deux méthodes précédentes.

Regardons en�n les deux matrices relatives aux volatilités implicites : la matrice des volatilités
implicites issues des Puts simulés, ainsi que la matrice re�étant les écarts entre les volatilités
implicites observées et simulées.
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On remarque que pour cette méthode, l'écart maximal est de 1,76 % et l'écart minimal est de
-1,90 %. Il s'agit donc d'écarts supérieurs à la méthode des volatilités implicites et globalement du
même ordre que pour la méthode des Calls. Malgré tout, la tendance au décentrage par rapport à
0 est atténuée lors du passage à la volatilité implicite. La tendance marquée à la sous-évaluation
est quant à elle conservée.

En regardant la matrice des écarts absolus en pourcentage, on remarque que la moyenne
de ces écarts est d'environ 2,82 %, avec un minimum et un maximum respectivement égaux
à 0,00 % et 16,00 %. En terme de moyenne cette méthode est donc clairement la meilleure.
Néanmoins l'étendue des écarts demeure trop importante pour pouvoir s'y �er véritablement. En
e�et la méthode des volatilités implicites semble reproduire les volatilités observées avec plus de
constante.

En conclusion, la méthode combinée o�re des résultats plutôt troublants. En e�et, même si
la précision est moindre au niveau de la reproduction des prix de Puts, les écarts ne sont pas
trop importants, tant sur les prix que sur la volatilité. L'inconvénient notable que l'on pourra
retenir est que cette méthode ne dégage pas de tendance logique (ou du moins compréhensible)
quant à la sur-évaluation ou à la sous-évaluation des prix de Puts.

5.4 Choix d'une méthode et tests

Au regard des résultats obtenus dans la section précédente, la méthode choisie pour être
par la suite implémentée dans les pricers (donc la méthode qui sera utilisée dans le modèle
action pour tarifer les garanties) est la méthode des volatilités implicites. En e�et, en dépit d'une
qualité des résultats sensiblement égale à celle de la méthode des Calls, la méthode des volatilités
implicites permet de reproduire les observations avec plus de cohérence : la plus grande précision
est observée pour les options à la monnaie, les options dans la monnaie sont légèrement sous-
évaluées et les options en dehors de la monnaie sont légèrement sur-évaluées.
De plus, cette méthode est clairement la plus pratique à implémenter car elle ne nécessite pas
d'utiliser un schéma de discrétisation des di�érences �nies et réduit par conséquent le temps de
calcul informatique et l'imprécision liée au calcul des dérivées partielles.
On notera néanmoins que le modèle ne permet pas de reproduire parfaitement la nappe des prix
d'options observée.

Il est maintenant possible de s'intéresser aux améliorations que le modèle de Dupire est
supposé apporter au modèle de Black et Scholes. Pour cela, nous allons regarder la distribution
des rendements pour les deux modèles. Pour ce faire, on pratique des simulations sur 10 ans avec
un pas de temps mensuel.
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Il est important de noter que l'on ne souhaite pas comparer ces distributions avec la distri-
bution historique des rendements d'un titre ou d'un indice boursier quelconque. En e�et il ne
s'agit pas du critère adéquat pour di�érencier les deux modèles. Il est d'ailleurs notoire que le
modèle de Black et Scholes est incapable de reproduire la distribution historique.
Surtout, étant dans une problématique de pricing, on se place en univers risque neutre.

5.4.1 Etude des rendements du modèle de Black et Scholes

Pour utiliser le modèle de Black et Scholes, il faut choisir une volatilité constante. Nous
prenons la volatilité implicite à 10 ans pour les options à la monnaie. D'après la matrice fournie
précédemment, on aura : σ = 22, 25 %. Le taux, constant également, sera le taux 10 ans, soit :
r = 4, 31 %. Rappelons que le rendement continu des dividendes est : q = 1, 9 %.
Avec un pas de temps mensuel, on observe les statistiques suivantes pour la variable du rendement
du cours du sous-jacent. Notons qu'il s'agit ici des valeurs mensuelles :

La moyenne et l'écart-type donnés ici sont les valeurs mensuelles. Ramenée sur une base
annuelle la moyenne des rendements est de 2,42 %, soit très proche de la valeur attendue en
moyenne qui est de r− q = 2, 41 %. De même, la volatilité annualisée vaut 22,30 % contre 22,25
% pour sa valeur attendue en moyenne.
Le skewness, malgré sa valeur de 0,205, reste proche de 0 donc la distribution des rendements
n'est que faiblement asymétrique avec une étendue à droite (valeurs positives du rendement)
légèrement plus importante. Ceci est con�rmé par les valeurs du minimum et du maximum. La
valeur attendue du skewness pour une distribution des rendements selon Black et Scholes est
0, néanmoins cet écart s'explique par la �nesse du pas de temps. En e�et on s'aperçoit que le
skewness se rapproche nettement de 0 lorsque le pas de temps est a�né.
De plus l'excès de kurtosis est de 0,082 caractérisant une distribution quasi-normale au niveau
de l'aplatissement, avec des queues légèrement plus épaisses que la loi normale. Ce qui signi�e
que les queues comptent légèrement plus d'observations que dans une loi normale.

5.4.2 Etude des rendements du modèle de Dupire

Dans le modèle de Dupire, l'intégralité de la matrice des volatilités implicites est utilisée, de
même que l'intégralité de la courbe des taux. Le tableau suivant reprend également les statistiques
de la variable du rendement du cours du sous-jacent. On a utilisé de nouveau un pas de temps
mensuel et on a simulé sur 10 ans. Les statistiques sont également données en valeurs mensuelles :

De nouveau, en revenant aux valeurs annualisées, on remarque que le rendement moyen vaut
2,42 % et que la volatilité moyenne vaut 22,55 %, on est donc très proche des valeurs attendues.
On peut remarquer que l'étalement des données est beaucoup plus important puisque l'étendue
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(valeur maximale - valeur minimale) vaut 84,65 % contre 57,31 % pour le modèle de Black et
Scholes. Les rendements extrêmes sont donc nettement plus importants. Le skewness con�rme
par ailleurs l'asymétrie de la distribution : il vaut 0,267 (légèrement supérieur au cas du modèle
de Black et Scholes) et témoigne d'une queue plus longue à droite.
L'excès de Kurtosis de 1,352 témoigne que les queues sont épaisses et comptent nettement plus
d'observations que dans une distribution gaussienne.

En conséquence, le modèle de Dupire semble prendre nettement mieux en compte la présence
de valeurs extrêmes dans la distribution (excès de Kurtosis supérieur à 1). En e�et sous ce
modèle, les valeurs extrêmes sont plus marquées que dans celui de Black et Scholes.
De cette manière, en travaillant avec le modèle de Dupire, on sous-estimera moins la survenance
des évènement rares et extrêmes.

5.4.3 Comparaison des queues de distribution

Ces évènements rares et extrêmes sont observés grâce aux queues de distribution des rende-
ments. Pour évaluer les di�érences entre les deux modèles, on représente ci-après les queues de
distribution des deux modèles sur les mêmes graphiques :

Zoom sur les queues de distribution : Rendements négatifs

Concernant les rendements négatifs, on observe que les fréquences d'apparition pour le modèle
de Black et Scholes sont d'abord plus importantes que celle du modèle de Dupire, mais cela
s'inverse pour les valeurs véritablement extrêmes. Cela con�rme les observations faites ci-avant
concernant la meilleure prise en compte des évènements extrêmes par le modèle de Dupire.
On peut par ailleurs s'intéresser aux valeurs de la Value at Risk (VaR) pour di�érents seuils :

VaR(90 %) VaR(95 %) VaR(98 %) VaR(99,5 %)

Black-Scholes -7,89 % -10,00 % -12,34 % -15,19 %

Dupire -7,57 % -10,07 % -13,22 % -17,66 %
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On observe que dans le modèle de Dupire, les rendements sont inférieurs à -10,07 % avec une
probabilité de 5 %, et inférieurs à -13,22 % avec une probabilité de 2 %.
On observe par ailleurs que dans le modèle de Black et Scholes, les rendements sont inférieurs à
-10 % avec une probabilité de 5 %, et inférieurs à -12,34 % avec une probabilité de 2 %. Donc
plus le niveau de VaR est important et plus l'écart de VaR se creuse entre les deux modèles.
Ceci vient con�rmer les observations faites sur l'histogramme, à savoir qu'il y a plus d'évènements
extrêmes dans le modèle de Dupire.

Zoom sur les queues de distribution : Rendements positifs

On observe la même chose pour les rendements positifs : au-delà d'un certain niveau, le
modèle de Dupire présente le plus grand nombre d'occurrence des évènements extrêmes.

Le modèle de Dupire est donc plus prudent que le modèle de Black et Scholes lorsque l'on
s'intéresse aux queues de distribution, notament pour les calculs de VaR. En e�et, dans ce
modèle, il y a beaucoup plus d'évènements rares et extrêmes, et ces derniers sont plus marqués
et plus forts que dans le modèle de Black et Scholes. Donc, en l'utilisant, on sous-estimera moins
la survenance des ces rendements négatifs extrêmes et cela augmentera la prudence dans une
optique de couverture.

De plus le modèle de Dupire permettra d'appliquer des stratégies de Vega hedging, ce que ne
permet pas le modèle de Balck et Scholes. Le Vega étant la sensibilité du prix de l'option à la
volatilité de cette dernière, il n'existe aucune stratégie utilisant le modèle de Black et Scholes qui
permette d'obtenir un portefeuille de Vega neutre car on suppose qu'il n'y a aucune variation de
volatilité.

5.5 Conclusion

En résumé de ce chapitre, rappelons que la meilleure méthode de calibration du modèle est
celle des volatilités implicites. Celle-ci permet en e�et d'obtenir les résultats les plus précis en
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terme de pricing, bien que l'on ne puisse pas reproduire parfaitement le prix des Puts initiaux.
Elle est également la moins gourmande en temps de calcul et n'ajoute pas d'incertitude sur les
calculs des dérivées partielles.
On remarque en outre que l'utilisation du modèle de Dupire plutôt que Black et Scholes entraine
une plus grande occurence des évènements extrêmes, ce qui faisait partie des objectifs du modèle.
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Chapitre 6

Le modèle de Hull et White

Par la suite, nous expliquerons les raisons pour lesquelles le choix s'est porté sur le modèle
de Hull et White à un facteur. D'une manière analogue au chapitre sur le modèle de Dupire,
nous traiterons ici de la calibration et de l'implémentation du modèle, après en avoir précisément
détaillé les principes.
De même on tâchera de présenter les di�érentes approches envisagées pour utiliser en pratique
le modèle. Ces approches seront ensuite testées sur des données de marché, toujours dans le but
de dégager la plus consistante d'entre elles.

6.1 Généralités sur les taux

Le taux court rt en une date t est le taux qui s'applique à cette date pour une période de
longueur in�nitésimale. Il est parfois appelé taux court instantané.
C'est essentiellement le processus suivi par rt sous la probabilité risque neutre qui importe pour
l'évaluation des obligations ou des options sur taux. On supposera donc que tous les processus
dé�nis par la suite le sont sous la probabilité risque neutre Q.

- La valeur en t d'un actif dérivé qui engendre un PayO� fT en date T est donné par :

EQ
(
e−r(T−t)fT

)
où r est la valeur moyenne du taux court entre les dates t et T .

- On notera P (t, T ) le prix en date t d'un zéro-coupon qui paye 1 en date T . D'après l'équation
précédente, on a donc :

P (t, T ) = EQ
(
e−r(T−t)

)
- Si R (t, T ) désigne le taux d'intérêt composé en continu qui prévaut en date t pour une durée
T − t, on peut écrire :

P (t, T ) = e−R(t,T )(T−t)

- Notons F (0, t, y − t) le taux forward déterminé en 0, démarrant en t et d'échéance y. Les
taux forward sont les taux d'emprunt ou de placement, pour des périodes futures, implicites
dans les taux zéro-coupon d'aujourd'hui. Ils représentent les anticipations du marché sur les
courbes de taux futures :

F (0, t, y − t) =
(

(1+R(0,y))y

(1+R(0,t))t

) 1
y−t − 1
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- Par ailleurs, on notera F (0, t) le taux forward instantané pour l'horizon t, vu en date 0. Il
s'agit du taux forward déterminé en 0, démarrant en t et pour une durée y − t in�nitésimale.
C'est donc la valeur limite de F (0, t, y − t) lorsque y tend vers t+. On notera de la même façon
Ft (0, t) sa dérivée par rapport à t. Auquel cas, on sait exprimer le taux forward instantané
comme ceci :

F (0, t) = −∂ ln(P (0,t))
∂t .

- On peut également dé�nir le facteur d'actualisation D (t), dépendant de la trajectoire suivie
par le taux court, de la façon suivante :

D (t) = exp

(
−
∫ t

0
r (s) ds

)

6.2 Les modèles de type Ho et Lee ou Hull et White

6.2.1 Leur intérêt

L'inconvénient des modèles de type Vasicek ou CIR est qu'ils ne s'ajustent pas automatique-
ment à la structure par termes des taux d'intérêts observés sur le marché aujourd'hui.
Un modèle de type Ho et Lee ou Hull et White est construit de façon à être cohérent avec cette
structure. En quelque sorte, la di�érence essentielle entre les deux approches est que la première
fournit la structure par termes des taux, alors que la seconde utilise la structure actuelle (au
moment de la calibration) comme un paramètre servant à inférer le processus.

Dans le premier cas (Vasicek ou CIR par exemple), le drift du taux court n'est pas, en général,
une fonction du temps, alors qu'il l'est dans les modèles de Ho et Lee ou de Hull et White. Cela
s'explique par le fait que la structure des taux initiale détermine la trajectoire moyenne qui sera
prise par le taux court dans le futur. Si la courbe des taux est fortement croissante entre deux
maturités t1 et t2, alors le taux court r aura un drift positif entre ces deux dates. A l'inverse, si
la courbe des taux est fortement décroissante entre ces deux maturités, le drift de r sera négatif
entre ces deux dates.

6.2.2 Le modèle de Ho et Lee

Il existe di�érents modèles cohérents avec la structure actuelle des taux parmi lesquels le
modèle de Ho et Lee ainsi que le modèle de Hull et White. Dans cette partie, on se propose
d'expliquer brièvement le premier. Une approche succinte de ce modèle devrait permettre de
dégager ses limites et donc les premiers éléments pour justi�er le choix du modèle de Hull et
White.

A l'origine le modèle est en temps discret avec une évolution binomiale de la fonction d'ac-
tualisation.
Deux paramètres du modèle sont essentiels : l'écart-type du taux court ainsi que le prix de mar-
ché du risque pour ce taux. La version en temps continu du modèle s'écrit de la manière suivante
sous la probabilité risque neutre Q :

drt = θ (t) dt+ σdWt

avec :

- σ la volatilité constante du taux court,

- θ (t) une fonction du temps calibrée pour que le modèle s'ajuste parfaitement à la
courbe ZC initiale. Elle possède la forme analytique suivante : θ (t) = Ft (0, t)+σ2t
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Ce modèle est facile à appliquer et donne un ajustement exact de la courbe initiale des taux.
Néanmoins un inconvénient est l'absence de retour à la moyenne : à un instant donné, le drift
est indépendant du niveau des taux.

6.2.3 Le modèle généralisé de Hull et White

Le modèle de Hull et White généralisé est un modèle dans lequel une fonction quelconque du
taux court obéit à un processus de di�usion gaussien de la forme suivante :

df (rt) = (θ (t)− a (t) f (rt)) dt+ σ (t) dWt (6.1)

La fonction θ est choisie de manière à ce que le modèle soit cohérent avec la structure initiale
des taux. Les fonctions a et σ sont des paramètres déterministes de volatilité, calibrés sur des
prix de marché.

Ce modèle généralisé contient de nombreux modèles populaires selon ses cas particuliers :

� Lorsque f (r) = r, il s'agit du modèle classique de Hull et White (ou modèle de Vasicek
généralisé),

� Lorsque f (r) = ln (r), il s'agit du modèle de Black et Karasinski (1991),
� Lorsque f (r) =

√
r, il s'agit du modèle de Pelsser (1996).

Seuls les deux premiers modèles sont couramment utilisés dans la pratique. Dans la plupart
des cas, ces deux modèles présentent des performances voisines dans l'ajustement des données
de marché à partir d'instruments liquides.
L'avantage du modèle classique de Hull et White est bien entendu sa simplicité analytique, sa
contrepartie est que, comme dans le modèle de Vasicek, la probabilité d'obtenir des taux négatifs
est strictement positive. Le plus souvent, la probabilité d'occurence des taux négatifs est très
faible, mais les analystes considèrent souvent cet inconvénient comme rédhibitoire.
Le modèle de Black et Karasinski est beaucoup moins maniable mais les taux obtenus sont
toujours positifs. De plus, les traders sont habitués à traiter des volatilités provenant d'un modèle
log-normal plutôt que normal.

Le choix d'un modèle est réellement di�cile dans une économie où les taux sont très faibles.
Le modèle gaussien (classique) n'est pas satisfaisant car la probabilité d'obtenir des taux négatifs
n'est plus négligeable. Le modèle log-normal (Black et Karasinski) pose quant à lui des problèmes
de �exibilité.
Sur le plan pratique, Hull et White ont développé une technique qui semble bien fonctionner
et qui consiste à considérer un modèle log-normal (Black et Karasinski) quand les taux sont
inférieurs à 1 %, et un modèle gaussien (Hull et White classique) au-delà de ce seuil.

6.2.4 Le choix d'un modèle

Le premier objectif du nouveau modèle de taux était de permettre une meilleure prise en
compte de la structure initiale des taux d'intérêts. Cela est possible, comme nous venons de le
voir, dans le modèle de Ho et Lee. De plus, la facilité d'implémentation voulue est disponible
dans ce modèle et les formules donnant la fonctionnelle des taux zéro-coupon sont bien connues.

Néanmoins, on souhaitait également pouvoir améliorer le modèle de Vasicek sur le caractère
constant du retour à la moyenne. Or dans le modèle de Ho et Lee, il n'existe pas de phénomène
de retour à la moyenne. C'est pourquoi le modèle de Hull et White a �nalement été choisi. En
e�et et comme cela sera expliqué par la suite, il prend en compte la structure initiale de la courbe
des taux (d'une manière par ailleurs plus �ne que dans le modèle de Ho et Lee) et induit un
phénomène de retour à la moyenne qui, cette fois, est variable en fonction du temps.
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D'autre part, les taux que l'on utilisera dans l'étude sont supérieurs à 1 %, ce qui porte le meilleur
choix au modèle classique. On conserve donc la facilité d'implémentation du modèle ainsi que la
continuité avec le modèle de Vasicek dont il est une extension.

6.3 La théorie du modèle

Dans cette partie, nous allons donc nous intéresser exclusivement au modèle de Hull et White
à un facteur pour l'évolution des taux. De la même manière que nous avons présenté le modèle
de Dupire dans le chapitre précédent, nous aborderons dans un premier temps le modèle sur le
plan théorique, après quoi les di�érentes approches possibles d'implémentation du modèle seront
présentées. Ici encore ces approches seront testées sur des données de marché dans un but de
comparaison et pour �nalement choisir la plus consistante.

C'est en 1990 que Hull et White analysent des extensions du modèle de Vasicek qui permet-
traient de respecter la structure initiale des taux. L'une des versions considérées, qui deviendra
le modèle de Hull et White, ou modèle de Vasicek généralisé, s'appuie sur le processus suivant,
sous la probabilité risque neutre Q :

drt = (θ (t)− art) dt+ σdWt (6.2)

Ce qui peut aussi s'écrire :

drt = a

(
θ (t)

a
− rt

)
dt+ σdWt (6.3)

avec :

- rt le taux court,

- θ (t) une fonction du temps utilisée pour tenir compte de la structure initiale des
taux d'intérêts,

- a un paramètre constant,

- Wt un Mouvement Brownien Standard (sous Q).

- σ la volatilité constante du taux court.

Il s'agit donc bien d'une extension du modèle de Ho et Lee incorporant un retour à la moyenne.
D'après l'équation précédente, on voit qu'à l'instant t, le taux est attiré vers θ(t)

a à la vitesse a.
Le modèle de Ho et Lee correspond au cas où a est nul.

La fonction θ (t) se déduit de la structure initiale des taux par la formule suivante, où les
notations sont celles dé�nies précédemment :

θ (t) = Ft (0, t) + aF (0, t) +
σ2

2a

(
1− e−2at

)
(6.4)

La discrétisation du modèle fournit l'équation suivante :

rt = rt−1 + (θ (t− 1)− art−1) ∆t + σ
√

∆tΦt (6.5)

avec : (Φt)t≥1 une famille de variables aléatoires indépendantes et identiquement distribuées
(iid) de loi normale centrée et réduite.
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Par ailleurs, Hull et White ont démontré (voir annexe C.1) que l'on pouvait écrire le prix du
zéro-coupon en t et de maturité T − t de la manière suivante :

P (t, T ) = exp (A (t, T )− r (t)B (t, T )) (6.6)


B (t, T ) = 1−exp(−a(T−t))

a

A (t, T ) = ln
(
P (0,T )
P (0,t)

)
−B (t, T ) ∂ ln(P (0,t))

∂t − σ2

4a3

(
e−aT − e−at

)2 (
e2at − 1

)
Il est important de noter que les taux obtenus par la formule 6.5 ne sont pas directement

utilisables dans la formule 6.6. En e�et, le taux rt ainsi simulé est en réalité le taux forward de
maturité ∆t et non un taux instantané. A�n de pouvoir l'utiliser en tant que tel, il est nécessaire
de l'ajuster de la manière suivante :

r (t) =
rt∆t +A (t, t+ ∆t)

B (t, t+ ∆t)
(6.7)

On peut �nalement déduire la fonctionnelle des taux zéro-coupon grâce à la formule donnée
en début de chapitre et mettant en relation le prix du zéro-coupon et son taux. Dans notre cas,
on aura :

R (t, T ) =
r (t)B (t, T )−A (t, T )

T − t
(6.8)

En outre, il est assez facile de véri�er la consistance et l'implémentation du modèle. Il existe
en e�et deux tests simples et �ables :

� On peut commencer par véri�er que le prix en 0 d'un zéro-coupon rapportant 1 en t est
égal au facteur d'actualisation en t. En d'autres termes, il faut véri�er que :

P (0, t) = E [D (t)]

� D'autre part, pour s < t on peut montrer facilement que l'espérance conditionnelle du taux
court s'écrit de la façon suivante :

Es (rt) = rse
−a(t−s) + g (t)− g (s) ea(t−s)

où g (t) = F (0, t) + σ2

2a

(
1− e−2at

)2
Ensuite, en constatant que le dernier terme de g (t) est la plupart du temps négligeable
devant le reste de la formule, on a :

Es (rt) = F (0, t) + e−a(t−s) (rs − F (0, s))

lim
t→∞

Es (rt) = F (0, t)

Donc en moyenne le taux court suit la pente de la courbe du taux forward
instantané.
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6.4 La calibration des paramètres

La première étape d'implémentation du modèle de Hull et White est la calibration. Celle-ci
se fait uniquement sur les paramètres de volatilité que sont a et σ. La calibration du modèle de
Hull et White peut se faire à partir de dérivés de taux tels que les Caps ou les Swaptions. Dans
cette étude, c'est le marché des Caps qui a été choisi, bien que la calibration demeure inchangée
en travaillant sur les Swaptions. La calibrtaion du modèle n'a pas été e�ectuée dans le cadre
du stage, c'est le service Recherche en Allocation d'Actifs de la DGA (Direction de Gestion des
Actifs) qui a calibré et fournit les paramètres.

Les Caps et les Floors font partie de la grande variété de produits dérivés que sont les options
de taux d'intérêt. Comme leur nom l'indique, ces instruments sont dépendants du niveau des
taux d'intérêt.
Un Cap est un contrat d'option de gré à gré entre deux contreparties qui permet à son acheteur
de se couvrir contre une hausse des taux au delà d'un niveau prédéterminé (strike), moyennant le
paiement immédiat d'une prime. A chaque date de constat, si le niveau du taux variable constaté
est supérieur au strike, l'acheteur reçoit du vendeur le di�érentiel de taux, appliqué au montant
nominal et rapporté au nombre de jours de la période d'intérêt.
Un Floor permet à son acheteur, toujours moyennant le paiement d'une prime, de se couvrir
ou de tirer pro�t d'une baisse des taux en deçà d'un certain niveau (strike). A chaque date
de constat, si le niveau du taux variable constaté est inférieur au strike, l'acheteur reçoit du
vendeur le di�érentiel de taux, appliqué au montant nominal et rapporté au nombre de jours de
la période d'intérêt. Le plus souvent, le taux d'intérêt variable sur lequel porte le contrat est le
taux EURIBOR ou LIBOR.

La calibration s'e�ectue sur les Caps plutôt que sur les Floors car le marché des Caps est
nettement plus liquide que celui des Floors. La plupart du temps, les calibrations ont été prati-
quées à l'aide de Caps possédant un strike de 4 % sur des horizons allant de 2 à 10 ans. Le ténor
(maturité de sous-jacent) étant généralement de 6 mois (par exemple lorsque le sous-jacent était
l'Euribor 6 mois).
Notons en�n que les prix utilisés pour la calibration ne sont pas les prix exacts de marché. En
e�et, les prix de marché des Caps ne sont fourni par l'opérateur du marché que lorsque l'on désire
traiter. Dans le cas contraire, les prix fournis sont des prix dits � composites �, ce qui signi�e
qu'ils sont calculés à partir de plusieurs prix de marchés issus des derniers achats et ventes.

Soit D = (d1, d2, ..., dn) les dates de paiements des Caps, puis τ = (t1, t2, ..., tn) les temps
correspondants (donc ti est la di�érence en années entre di et la date de calcul t). On notera
par ailleurs τi la fraction d'année allant de di−1 à di. Le strike du Cap est noté X et la valeur
nominale du Cap est notée N . La formule d'évaluation d'un Cap pour t < t0 dans le modèle de
Hull et White est la suivante :

Cap (t, τ,N,X) = N

n∑
i=1

(
P (t, ti−1)φ

(
−hi + σip

)
− (1 +Xτi)P (t, ti)φ (−hi)

)
Avec : 

σip = σ

√
1−e−2a(ti−1−t)

2a B (ti−1, ti)

hi = 1
σip

ln
(
P (t,ti)(1+Xτi)

P (t,ti−1)

)
+

σip
2

On utilise pour la calibration la méthode des moindres carrés. Pour un ensemble de prix
observés sur le marché, on va estimer les paramètres a et σ qui donnent les prix les plus proches
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à partir des formules ci-dessus au sens des moindres carrés (minimisation de la somme des carrés
résiduels).

6.5 Les di�érentes approches

Après avoir calibré les deux paramètres du modèle que sont a et σ, il faut être en mesure de
calculer les valeurs de la fonction θ (t) a�n de pouvoir réellement implémenter le modèle. C'est
donc sur la méthode de détermination de cette fonction que vont di�érer les deux approches
suivantes.
Comme le prévoit la formule 6.4, il faut connaitre le taux forward instantané ainsi que sa
dérivée par rapport au temps. Les deux méthodes envisagées sont présentées dans la suite de
cette section.

6.5.1 Les données

Pour tester ces deux méthodes, on utilisera la courbe des taux zéro-coupon de la zone Euro
récupérée le 31/12/2008 pour être en accord avec les valeurs des paramètres a et σ, elles mêmes
obtenues à cette date. Cette courbe des taux prend les valeurs suivantes. On donne également sa
représentation graphique :

Courbe des taux ZC en zone euro au 31/12/2008

Il s'agit d'une courbe de type � Humped Curve �.
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Courbe des taux ZC en zone euro au 31/12/2008

6.5.2 La méthode continue

La méthode dite � continue � consiste à �tter la courbe des taux zéro-coupon initiale à l'aide
d'un modèle de reconstitution de la courbe, de façon à obtenir une forme analytique pour les
taux zéro-coupon initiaux qui soit deux fois di�érentiable. En e�et la dé�nition de θ au travers
de la formule 6.4 impose cette condition.
Une fois les calculs de dérivées e�ectués, on obtiendra une forme analytique pour la fonction
θ (t).

Il existe principalement deux grandes familles de modèles de reconstitution de la courbe des
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taux, dont on donne ci-dessous les avantages et inconvénients :

� La famille des modèles de Vasicek : Ces modèles s'inspirent de la fonctionnelle des taux
zéro-coupon du modèle de taux de Vasicek présenté précédemment. Il en existe trois di�é-
rentes versions plus ou moins complexes. Néanmoins ils ne permettent pas de reconstituer
les courbes de taux avec autant de précision que la seconde famille.

� La famille des modèles de Nelson-Siegel : Elle présente l'avantage de pouvoir repro-
duire la quasi-totalité des courbes de taux observables. De plus, les paramètres qui entrent
en comptent sont tous associables à des caractéristiques �nancières.

La modèle de reconstitution utilisé sera donc le modèle de Nelson-Siegel Augmenté (dit
aussi Nelson-Siegel-Svensson). La fonctionnelle des taux zéro-coupon de maturité θ dépend de 6
paramètres à estimer selon la forme suivante :

R (θ) = β0+β1

1− exp
(
− θ
τ1

)
θ
τ1

+β2

1− exp
(
− θ
τ1

)
θ
τ1

− exp

(
− θ

τ1

)+β3

1− exp
(
− θ
τ2

)
θ
τ2

− exp

(
− θ

τ2

)
Le set de paramètres à estimer (β0, β1, β2, β3, τ1, τ2) peut s'interpréter �nancièrement de la

manière suivante :

� β0 symbolise le taux de maturité in�nie, c'est donc un facteur de niveau,
� β1 symbolise le spread (taux court - taux long), c'est donc un facteur de rotation,
� β2 est un facteur de courbure,
� β3 est un second facteur de courbure (agissant sur la partie courte des taux),
� τ1 est un paramètre d'échelle,
� τ2 est un second paramètre d'échelle.

Dans notre cas, on cherche à �tter la courbe des taux initiale R (0, t) présentée ci-avant. On
s'intéresse par ailleurs à la fonctionnelle du taux forward instantané et à sa dérivée par rapport
au temps. Auquel cas, on a :  F (0, t) = −∂ ln(P (0,t))

∂t

P (0, t) = exp (−tR (0, t))

Et on en déduit : 
F (0, t) = R (0, t) + t∂R(0,t)

∂t

Ft (0, t) = 2∂R(0,t)
∂t + t∂

2R(0,t)
∂t2

Finalement, on est en mesure d'exprimer la forme analytique de la fonction θ (t) en utilisant
les dérivées de la fonctionnelle des taux du modèle de Nelson-Siegel-Svensson qui sont fournies
dans l'annexe C.2. La formule 6.4 devient :

θ (t) = aR (0, t) + (at+ 2)
∂R (0, t)

∂t
+ t

∂2R (0, t)

∂t2
+
σ2

2a

(
1− e−2at

)
(6.9)

Il ne reste alors plus qu'à utiliser la fonction θ (t) dans la formule de discrétisation du modèle
6.5 pour générer la trajectoire du taux court. Pour cela on utilise un pas de temps mensuel sur
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une période de 30 ans.
On obtient donc une valeur du taux forward de maturité 1 mois pour chaque mois t sur 30 ans
qu'il est nécessaire d'ajuster par la formule 6.7 pour obtenir le taux court. Ce taux court est
ensuite utilisé dans la formule 6.8 pour obtenir la courbe des taux zéro-coupon en t estimée
aujourd'hui par le modèle.

Après di�érents tests, cette méthode a présenté des résultats insatisfaisants. Le premier incon-
vénient de cette approche est que la fonctionnelle des taux du modèle de Nelson-Siegel Augmenté
n'est pas dé�nie en t = 0. Ceci est problématique dans la mesure où l'on ne pourra donc pas
calculer la fonction θ en t = 0 alors que celle-ci est nécessaire pour générer la trajectoire du taux
court. L'alternative visant à estimer une valeur de θ (0) n'est pas recommandée car elle rajoute
une dimension d'incertitude au modèle.
Ensuite, il s'avère que, malgré la �exibilité du modèle de Nelson-Siegel Augmenté, ce dernier ne
permet pas un ajustement convenable de toutes les courbes de taux, notamment sur la partie
courte des taux (maturités faibles). De ce fait une partie de l'information contenue dans la courbe
initiale est perdue et ne sera pas re�etée dans la génération des scénarios futurs.
En�n, la formule permettant d'obtenir θ (t) à partir de P (0, t) n'est valable que dans le cadre
continu et peut engendrer des erreurs non négligeables lors de son utilisation dans le cadre discret.

Pour ces di�érentes raisons, cette méthode n'a pas été retenue. Il fallait plutôt adopter une
approche discrète qui soit consistante avec les prix des zéro-coupon donnés.

6.5.3 La méthode discrète

La méthode dite � discrète � consiste non plus à la détermination d'une forme analytique et
continue de la fonction θ (t), mais en un calcul itératif des valeurs utiles de cette fonction. On va
donc calculer les θi = θ (ti) à partir des prix observés des zéro-coupon Pi = P (0, ti).
Pour cela il est nécessaire de connaître un maximum de Pi et donc d'interpoler les prix manquants
dans l'échantillon de taux constituant la courbe initiale.

Cette interpolation se fait à l'aide de la méthode classique des splines polynomiaux. Cette mé-
thode, détaillée en annexe A.3, consiste à raccorder plusieurs morceaux de courbes polynomiales
pour �tter au mieux les observations.

On utilise ensuite le schéma de discrétisation suivant, dont on trouvera la démonstration dans
l'annexe C.3, pour calculer itérativement les θi :

r0 = − ln(P1)
∆t

Pn+1 = exp

−∆tr0Cn+1 −
n−1∑
j=0

(
(∆t)

2Cn−jθj −
σ2 (∆t)

3C2
n−j

2

)
Ci = 1−bi

1−b ⇒ C1 = 1 C2 = 1 + b

b = 1− a∆t

On peut alors retravailler cette formule pour obtenir directement une expression de récurrence
sur les θi sous la forme suivante :
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
θ0 = −

(
r0(2−a∆t)

∆t
+ σ2∆t

2 + ln(P2)

(∆t)
2

)

θn+1 = σ2

2a2∆t

n+1∑
j=0

(
1− bn+2−j)2 − r0

(
1− bn+3

)
a (∆t)

2 − ln (Pn+3)

(∆t)
2 − 1

a∆t

n∑
j=0

(
1− bn+2−j) θj

(6.10)

De la même manière que pour la première approche, on utilise ensuite les valeurs ainsi déter-
minées des θi pour simuler la trajectoire du taux court et déduire une courbe des taux zéro-coupon
estimée en toute date.
Cette méthode est à priori beaucoup plus consistante que la première, car elle n'utilise que des
formules valables dans le cadre discret. De plus, la méthode des splines est aisée à mettre en
place et elle permet de ne perdre aucune information sur la courbe des taux initiale.

Les paramètres utilisés sont ceux déterminés lors de l'étape de calibration, soit a = 0, 1473375
et σ = 0, 4381%. Dans notre exemple, on génère la trajectoire du taux court sur 30 ans avec un
pas de temps mensuel. Il est donc nécessaire d'interpoler la courbe des taux zéro-coupon initiale
par la méthode des splines pour disposer d'un taux zéro-coupon pour chaque mois pendant 30
ans. Sur le graphique suivant, on a représenté la trajectoire simulée ainsi que la courbe du taux
forward instantané :

Exemple de trajectoire du taux court dans le modèle de Hull et White

Dans un premier temps, on peut remarquer que la trajectoire du taux court semble suivre
la même tendance que celle du taux forward instantané. Ce n'est qu'une observation, et la
consistance du modèle devra être testée en moyenne par la suite.

La formule 6.8 permet ensuite de déterminer la courbe des taux zéro-coupon en t telle que
l'estime le modèle. Par exemple, on représente ci-dessous la courbe des taux zéro-coupon dans
18 mois, pour les di�érentes maturités :
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Courbe des taux future (18 mois)

On pourra remarquer quelques irrégularités sur la courbe. Il est malheureusement impossible
de passer outre avec un pas de temps mensuel.

En�n, on peut tester la consistance du modèle à l'aide des deux observations faites précé-
demment. Rappelons que la première consistait à générer une trajectoire moyenne du taux court
et de la comparer à la courbe du taux forward instantané sur laquelle le taux court est supposé
s'ajuster. On obtient les courbes suivantes pour 1000 simulations :
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Test de consistance numéro 1

On observe alors une excellente adéquation entre la courbe du taux forward instantané et
la trajectoire moyenne du taux court sur 1000 scénarios. En e�et les deux courbes sont quasi-
superposées, avec un très léger écart lorsque la maturité devient élevée (au delà de 15 ans).
Les paramètres ainsi que la méthode de mise en pratique du modèle semblent donc consistantes
à la vue des résultats de ce premier test.

Le second test, quant à lui, consistait à comparer une trajectoire moyenne du facteur d'actua-
lisation D (t), dé�ni précédemment, avec la courbe des prix des zéro-coupon initiale. En théorie
le prix du zéro-coupon de toute maturité évalué en 0 est égal au facteur d'actualisation en cette
même date. Toujours sur une base de 1000 simulations, on obtient les courbes suivantes :
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Test de consistance numéro 2

Le résultat est tout aussi satisfaisant que pour le premier test puisque les deux courbes sont
parfaitement superposées. Ceci tend à con�rmer la consistance du modèle de Hull et White ainsi
calibré et implémenté.

6.6 Conclusion

Au regard des résultats obtenus dans ce chapitre, il est possible de conclure sur la consistance
du modèle de Hull et White classique à un facteur lorsque celui-ci est calibré à partir de dérivés
de taux de type Caps, et implémenté à l'aide de la méthode discrète précédemment expliquée.
En e�et nous observons que les deux principaux tests qu'il est possible de pratiquer sur le modèle
sont très satisfaisants. De plus les hypothèses relatives à la discrétisation sont respectées puisque
le pas de temps est su�sament petit pour permettre l'approximation exponentielle.
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Conclusions sur les modèles

Ce mémoire étant consacré à la modélisation d'un produit Variable Annuity, il était primordial
de traiter en profondeur la problématique majeure des modèles �nanciers. Comme cela a déjà
été évoqué, le choix des modèles est au coeur du travail de l'actuaire lors de la tari�cation de ces
produits.
Néanmoins, le travail de l'actuaire ne s'arrète pas à la détermination d'un prix pour le produit.
Il est également de toute première importance de suivre le risque d'un contrat d'assurance,
particulièrement pour les produits en unités de comptes avec des garanties. La consistance des
scénarios �nanciers générés est donc extrêmement importante, et le choix des modèles doit tenir
compte de cela.
La théorie évoluant également, des modèles plus robustes et performants apparaissent et se
développent. Dès lors les modèles classiques, à défaut de devenir obsolètes, montrent leurs limites
dans certains cas particuliers.

Dans cette optique, nous venons d'étudier un nouveau modèle Actions, le modèle de Dupire, et
un nouveau modèle Taux, le modèle de Hull et White, de manière théorique. Le modèle de Dupire
a été abordé dans l'idée d'améliorer certaines limites du modèle de Black et Scholes, notamment
l'incohérence au smile de volatilité. De plus, ce modèle est issu d'une approche radicalement
di�érente qui vise à inférer le processus à partir des prix d'options. Le modèle de Hull et White
a lui aussi été abordé pour ses améliorations : il s'agissait d'abord de permettre au modèle de
tenir compte de la structure actuelle des taux, qui est source d'informations sur le marché, mais
aussi de supprimer le caractère constant du retour à la moyenne.
En fonction des méthodes pratiques de calibration et d'implémentation, ces deux modèles se sont
avérés consistants :

� Le modèle de Dupire nous a permis de pricer à posteriori les Puts sur lesquels le modèle
avait été calibré, avec plus ou moins de succès selon la méthode employée. A ce titre le
choix de la meilleure méthode s'est portée sur la méthode des volatilités implicites, qui est
à la fois la plus précise en terme de résultats, et la plus simple en terme de calibration.

� Concernant le modèle de Hull et White, les di�érents tests e�ectués sur une date quelconque
de calibration ont permis de valider la méthode discrète de calcul itératif de la fonction de
retour à la moyenne. De plus, la calibration à partir des prix de Caps donne des paramètres
satisfaisants et cohérents.

Néanmoins, si les modèles semblent fonctionner d'un point de vue théorique, il reste à voir
ce que ceux-ci donnent lors du pricing en pratique. C'est un des sujets qui seront abordés dans
la seconde partie, qui est entièrement consacrée à la modélisation d'un produit GMXB (X=A ou
X=D) et aux résultats obtenus.
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Troisième partie

Modélisation et résultats
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Chapitre 8

Les problématiques du pricing

Comme cela a été évoqué en introduction, le choix des modèles est une étape importante
de la tari�cation d'une garantie. Néanmoins ces seules hypothèses ne su�sent pas et l'actuaire
est amené à travailler avec de nombreux paramètres, tant actuariels que �nanciers, pour obtenir
le coût de la garantie. Cette seconde partie est consacrée à la modélisation totale d'un produit
Variable Annuity. On y aborde la technique du pricing et les hypothèses autres que les modèles
�nanciers avant de travailler sur un produit �ctif 1 de type GMAB/GMDB. A l'aide de ce produit
on testera la consistance des nouveaux modèles implémentés dans un premier temps. Ensuite, on
pratiquera une étude qualitative de sensibilité sur les paramètres de la tari�cation ainsi qu'une
étude de Value at Risk. En�n on proposera d'étendre le champ de l'étude en abordant pour �nir
une technique de réduction du risque, un sujet d'actualité pendant la crise �nancière.

Ce premier chapitre est consacré aux di�érentes étapes sur lesquelles l'actuaire est amené
à travailler dans le cadre de la tari�cation du produit. Il s'agira pour l'essentiel d'hypothèses
actuarielles, mais nous serons malgré tout amenés à faire de nouvelles hypothèses �nancières en
plus du choix des modèles.
Le but de cette section est d'assimiler tous les paramètres qui entrent en considération lors du
pricing, et ce dans le but de mieux comprendre par la suite les résultats des tests de sensiblité
sur ces paramètres.

Dans notre cas, on ne s'intéressera qu'aux garanties GMAB et GMDB. De plus on s'attachera
à d'aborder le cas de la présence du Ratchet (cliquet) sur l'évolution de la garantie. Pour plus
de précision, on séparera toujours le coût lié à la garantie en cas de décès d'une part, et celui lié
à la garantie en cas de vie d'autre part.

8.1 Les hypothèses actuarielles

8.1.1 Les frais

Il existe en assurance di�érents types de frais sur les contrats en unités de compte. Les
contrats en unités de compte sont constitués d'un certain nombre d'unités de compte et les frais
ne sont pas pris sur l'encours mais sur le nombre d'unités de compte.
A titre d'exemple, prenons un contrat dont le souscripteur possède n unités de compte du sous-
jacent de valeur S. Il possède donc le capital investi N = nS. Si l'assureur prélève 5 % de frais,
il disposera de 95 % des n unités de compte qui auront toujours pour valeur chacune S.
Il existe donc di�érents types de frais : les frais d'entrée, les frais de gestion du contrat, les frais
de gestion des actifs, les frais de couverture de la garantie.

1. Pour des raisons de con�dentialité, certains paramètres ont été modi�és.
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� Les frais d'entrée : Dans le cas d'un contrat avec prime unique (la prime est versée en une
seule fois à l'origine du contrat), les frais d'entrée, également appelés frais d'acquisition sont
appliqués en une seule fois sur la prime. Dans le cas d'un contrat avec primes périodiques,
les frais d'entrée réduisent le montant du capital investi lors de chaque versement. Ils sont
destinés à couvrir les coûts de commercialisation du contrat, notamment les frais relatifs
au partenariat permettant de proposer le contrat.

� Les frais de gestion du contrat : Ils sont payés en �n d'année et retenus sur une base
annuelle sur le montant de l'épargne gérée, et sont destinés à couvrir les coûts de gestion
du contrat.

� Les frais de gestion des actifs : Il sont également retenus en base annuelle sur les per-
formances des di�érents actifs. On dé�nit en général des frais de gestion di�érents pour les
actions, pour les obligations ainsi que pour le monétaire. Ils rémunèrent le gestionnaire pour
son travail et l'administration du fond, mais une partie peut être reversée au distributeur
via une retrocession de commission.

� Les frais de couverture de la garantie : Ils représentent ce qui doit être prélevé au
client, en base annuelle, pour lui permettre de béné�cier de la garantie que lui propose
l'assureur. C'est en fait le coût de l'option, converti en points de base, et prélevé à l'assuré
tous les ans. Tarifer une garantie de type GMAB/GMDB revient donc à déterminer ce
taux de chargement sur l'encours, appelé le Hedge Cost (HC).

Il est important de noter que le Hedge Cost peut être vu à la fois comme un prix, dans le sens
où il s'agit du taux de chargement que l'assureur va prélever à l'assuré au titre de la garantie qu'il
lui o�re, et comme une perte. En e�et le Hedge Cost est calculé de façon à couvrir en moyenne
les pertes de l'assureur liées aux garanties du contrat. La perte moyenne est donc étroitement
liée au Hedge Cost.
A ce titre le Hedge Cost peut être utilisé pour le calcul de Value at Risk. On pourra de cette
façon estimer le Hedge Cost nécessaire pour couvrir di�érents niveaux de perte de l'assureur. De
plus, le risque �nancier étant le risque principal pour la GMAB ou la GMDB, il est essentiel de
calculer une VaR sur le Hedge Cost, et c'est d'ailleurs ce qui intéresse le management lors de la
mise en place d'un tel produit.

8.1.2 La mortalité

En général, la modélisation de la mortalité est e�ectuée par la spéci�cation d'un taux de
hasard µ (x, t), qui est en réalité le taux de décès instantané à la date t pour un individu d'âge x
à cette date. La connaissance de ce taux de hasard premet ensuite de calculer la probabilité de
survie entre deux dates t et T (avec T > t) pour un individu âgé de x années en t :

S (x, t, T ) = exp

(
−
∫ T

t
µ (x+ u− t, u) du

)

Donc, dans le cas particulier où le taux de décès instantané ne dépend que de l'âge (µ (x, t) =

µ (x)), on retrouve la formule classique suivante, où S (x) = exp

(
−
∫ x

0
µ (u) du

)
est la fonction

de survie :

S (x, t, T ) =
S (x+ T − t)

S (x)
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Dans le cas où le taux instantané de décès est une fonction déterministe et bien spéci�ée, le
risque de mortalité se mutualise. En e�et, la loi des grands nombres s'applique et assure que sur
un portefeuille de taille importante, les �uctuations d'échantillonnage sont faibles.

A ce risque mutualisable s'ajoute un risque d'erreur de spéci�cation : si la mortalité observée
dans le futur est di�érente de celle prévue par le modèle, l'écart n'est pas mutualisable car
toutes les têtes sur lesquelles porte le contrat sont a�ectées dans le même sens (écart entre la
prévision et la réalisation). Dans l'approche standard de la mortalité, la manière de se prémunir
contre ce risque consiste à retenir une modélisation prudente intégrant une prime de risque. Par
exemple pour assurer un risque viager, on retient une table de mortalité féminine quelle que soit
la proportion de femmes dans la population du contrat, car les femmes ont une durée de vie
supérieure à celle des hommes. Une autre possibilité est d'appliquer à la mortalité un coe�cient
d'abattement f , ce qui signi�e que l'on va prendre en compte uniquement la portion 1 − f de
la mortalité. Pour un coe�cient d'abattement de 25 %, cela revient à supposer que la mortalité
réelle est en réalité égale à 75 % de la mortalité prévue par la table. De cette façon on garde une
marge de prudence quand à la précision du modèle (table de mortalité) utilisé.

Notons que l'on peut être conduit à rechercher une modélisation capable de tenir compte
des �uctuations de la mortalité autour de sa valeur tendancielle. C'est l'objectif des modèles de
mortalité stochastique, qui considèrent le taux de décès instantané comme un processus stochas-
tique.
Di�érents modèles existent (lissages bayésiens, modèle de Kimeldorf et Jones, modèle de Lee et
Carter notamment), mais il n'est pas utile de les détailler ici. En e�et, le but de cette partie
est simplement de lister les di�érentes hypothèses actuarielles du pricing. Les choix des modèles,
aussi variés et spéci�ques soient-ils, sont au jugement de l'actuaire.

8.1.3 Les rachats

La majorité des contrats d'assurance vie prévoit la possibilité pour le souscripteur de racheter
le contrat, c'est-à-dire de retirer tout (rachats totaux) ou partie (rachats partiels) des sommes
placées. En cas de rupture du contrat, la valeur de rachat est la somme que l'assureur devra
verser à l'assuré (la totalité de l'épargne disponible dans certains cas, mais le plus souvent il
existe des pénalités de rachat). Notons que l'assureur a la possibilité de prévoir une indemnité
en cas de rachat qui sera alors retranchée à la valeur versée.

Pour tarifer le produit, il est donc nécessaire de faire une hypothèse concernant le nombre de
rachats que subira le portefeuille. Pour cela deux possibilités se présentent.
La première est d'utiliser un taux de rachat � déterministe � pour chaque année, qui pourra être
di�érent selon l'année, mais qui devra être prédéterminé. Autrement dit, le nombre de rachats
est indépendant de l'évolution de l'épargne du client.
L'autre possibilité est d'utiliser des lois de rachat dites � dynamiques �, ce qui signi�e que la
probabilité que le client rachète son contrat est fonction de l'évolution de la valeur de son épargne
investie. Les taux de rachats appliqués sont donc di�érents pour chaque scénario.

8.1.3.1 Rachats déterministes

Il existe plusieurs méthodes pour déterminer les taux de rachats à appliquer chaque année.
Le plus souvent, il s'agit d'une étude préalable sur l'historique des contrats du pays concerné : on
regarde les contrats du portefeuille par année d'ancienneté, puis sur chaque année d'ancienneté
on détermine le nombre de contrats exposés au rachat et le nombre de contrats ayant été rachetés.
Le quotient de ces deux valeurs fournit alors le taux de rachat sur l'année. Cette approche en
nombre de rachats est surtout e�ectuée pour les rachats totaux tandis que pour les rachats
partiels, la même approche se fera sur les montants. Lorsque l'historique n'est pas entièrement
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connu, le taux peut être estimé à l'aide de benchmarks (produits similaires avec plus d'historique
par exemple, mais on peut également calibrer une loi statistique sur les rachats).
Une autre possibilité est d'utiliser la méthode de Kaplan-Meier. Il s'agit d'une méthode non
paramétrique d'estimation de la survie s'appuyant sur le calcul des probabilités conditionnelles.
Il faut également être conscient que di�érents paramètres peuvent in�uencer les rachats. En e�et,
en France, on observe le plus souvent un pic de rachats à 8 ans, notamment pour des raisons
de �scalité. L'âge de l'assuré, sa situation ou l'évolution de celle-ci, ainsi que la conjoncture
économique ont un impact sur les rachats.

8.1.3.2 Rachats dynamiques

Le but est de pouvoir anticiper les rachats importants (� massifs �) lorsque les scénarios sont
haussiers et les rachats faibles dans le cas contraire. Pour cela il faut faire une hypothèse sur
le comportement des clients, à savoir que l'on va supposer qu'un client est rationnel si il ne
rachète son contrat que lorsque la valeur de son épargne est supérieure à sa garantie. Un client
ayant un comportement di�érent de cela est considéré irrationnel. Dans toute l'étude préalable
à la détermination de la loi de rachat dynamique, il faudra alors distinguer la part de clients
rationnels de celle des clients irrationnels.

On aura alors :
TRD = TRS×Ajustement Dynamique

où :

- TRD est le Taux de Rachat Dynamique,

- TRS est le Taux de Rachat Structurel et correspond à un taux de rachat de base,
calculé à partir de statistiques, car quelle que soit l'évolution de l'épargne, il existe
toujours un pourcentage de clients qui rachètent leur contrat (irrationnels). Le
TRS se calcule sur la base des clients irrationnels, car ce sont les seuls à racheter
un contrat malgré un très faible niveau de réserve (épargne).

- L'Ajustement Dynamique est une fonction du rapport de l'épargne sur la garantie
(noté dans la suite R

G), lequel évolue selon la trajectoire des actifs.

Avant de choisir la forme de l'Ajustement Dynamique, il est nécessaire de dé�nir, en plus du
Taux de Rachat Structurel, quelques paramètres qui seront utilisés dans la loi de rachat :

� Le Taux Minimum τmin : Il s'agit du plus petit taux observé sur l'historique, il servira
de borne inférieure pour l'utilisation de l'Ajustement Dynamique,

� Le Taux Maximum τmax : Il s'agit du plus grand taux observé sur l'historique, il servira
de borne supérieure pour l'utilisation de l'Ajustement Dynamique,

Il ne reste plus qu'à déterminer la forme et les paramètres de l'Ajustement Dynamique.
Celui-ci peut être de di�érentes formes :

1. Exponentielle :

2. Linéaire :

3. Par morceaux :

4. Autres : Quadratique, Arctangente

Pour des raisons de con�dentialité quant aux méthodes internes de détermination des lois de
rachats dynamiques, il n'a pas été possible de retranscrire les formules des di�érentes lois dans
le présent mémoire. Pour la suite de l'étude, nous avons utilisé une loi de rachats linéaire.
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8.1.4 Le niveau de la garantie

Il faut ensuite être en mesure de connaitre à chaque pas de temps le niveau de la garantie
dont béné�cie le client. Dans notre cas, s'agissant d'une GMAB couplée à une GMDB, le niveau
sera le même pour les deux garanties. Dans le cas classique, la garantie est égale à 100 % des
primes investies par le client, indépendamment de la valeur de son épargne au cours du temps. Ce
n'est plus le cas lorsque la garantie comporte un Ratchet, car l'on garantit au client le maximum
entre la valeur du fond et la valeur maximum préalablement atteinte par le fond à une date
anniversaire. Le niveau de la garantie est donc lié à l'évolution des marchés �nanciers.

Prenons l'exemple d'une garantie avec Ratchet réévalué mensuellement avec des pas de p %,
plafonnée à m %. Cela signi�e que tous les mois, le niveau de la garantie est réhaussé de p %
de sa valeur initiale (notée G (0)) si la valeur de l'épargne a, elle même, dépassé 100 % + p %.
Notons toujours R le niveau de l'épargne du client, on a alors :

G (t) =


Min

(
m ;

[
R(t)
G(0)
−1

p

]
× p− 1

)
×G (0) si R (t) > G (t− 1)

G (t− 1) sinon

Avec [.] la fonction partie entière.

Un exemple était par ailleurs donné graphiquement en début de mémoire dans la partie
consacrée aux Variable Annuities, pour l'exemple de la GMDB (page 19).

8.1.5 Le portefeuille

Pour �nir avec les hypothèses actuarielles, il faut connaitre les caractéristiques principales
du produit à tarifer et de la population visée. Il s'agira donc de choisir une répartition entre
clients des di�érents sexes et un âge à la souscription pour évaluer les probabilités de décès de
la manière la plus précise possible. Concernant le produit, il faut faire un choix entre un contrat
à prime unique et un contrat à prime périodique. Dans notre cas il s'agira d'un contrat à prime
unique.

8.2 Les hypothèses �nancières

Grâce aux modèles �nanciers, on est en mesure de générer des scénarios d'évolution du
rendement pour les actifs de type actions ainsi que pour les taux. Néanmoins cela n'est pas
su�sant pour modéliser entièrement la valeur de l'épargne du client.

En e�et, il faut pouvoir déduire de la trajectoire du taux court l'évolution du rendement de
l'actif de type obligation (gouvernementale) ainsi que le facteur d'actualisation et le rendement
de la part investie sur le marché monétaire nécessaires au pricing de la garantie. Il faut également
pouvoir tenir compte des éventuelles corrélations entre les actifs (corrélations entre le taux court,
le taux long et les actions).

8.2.1 Les corrélations

Pour tenir compte des corrélations entre les di�érents actifs, il est nécessaire d'utiliser la
décomposition de Cholesky. Le théorème de Cholesky stipule que pour toute matrice symétrique
et dé�nie positive A, il existe au moins une matrice réelle triangulaire inférieure L telle que
A = LLt. En imposant la condition que tous les éléments de la diagonale soient positifs, la
décomposition est alors unique.
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Supposons donc que Correl soit la matrice de corrélation entre les actions, le taux court et
le taux long, alors la décomposition de Cholesky fournit la matrice triangulaire supérieure C
telle que Correl = CCt. Auquel cas, lors de la génération des variables aléatoires utilisées pour
simuler la trajectoire de chacun des actifs, il su�t de corréler les Browniens de la façon suivante :

Si B = (B1 B2 B3) est un vecteur de trois Browniens indépendants, alors le vecteur B
′
tel

que B
′

= CB est un vecteur de trois Browniens corrélés.

Dans la pratique, les corrélations sont estimées de façon historique. Dans ce cas la période
de temps est variable selon l'étude réalisée, elle peut donc être plus ou moins longue selon les
cas. On peut par exemple travailler à partir d'une moyenne glissante sur 20 à 40 jours, ou bien
prendre une moyenne sur 10 ans. Tout dépend des objectifs et donc du cas de �gure dans lequel
on se place.
Lors d'un pricing, on pourrait par exemple utiliser un historique de 10 ans sur lequel on calculerait
les corrélations sur une période de 30 jours. La corrélation estimée serait alors la moyenne de ces
corrélations sur l'ensemble de l'historique.

8.2.2 Les obligations

Pour obtenir le rendement de la partie de l'épargne investie en obligations, on utilise le taux
long (10 ans) ainsi que la formule de Taylor. On utilise le taux 10 ans car le Benchmark habituel
du produit le plus proche de notre produit �ctif est un ensemble d'obligations long terme (10-15
ans). La formule de Taylor permet d'exprimer la variation du prix d'une obligation en fonction
de sa duration et de sa convexité. Cette formule étant essentielle, il est préférable de détailler
ci-dessous les calculs nécessaires à son obtention.

Posons P le prix de marché d'une obligation, les variables r et t représentent respectivement
le taux long et le temps. Dès lors, on sait qu'une variation du prix de marché de l'obligation
obéit à l'équation suivante :

∂P =
∂P

∂r
∂r +

∂P

∂t
∂t+

1

2

∂2P

∂r2
∂r2

Avec :

- ∂P la variation du prix de l'obligation,

- ∂r la variation du taux long,

- ∂t le pas de temps.

On s'intéresse au rendement, donc à la variation en pourcentage. Il est donc préférable de
diviser chaque partie de l'équation précédente par le prix de marché de l'obligation P :

∂P

P
=

1

P

∂P

∂r
∂r +

1

P

∂P

∂t
∂t+

1

2P

∂2P

∂r2
∂r2

On peut alors dé�nir la duration modi�ée ainsi que la convexité de l'obligation, qui seront
utilisées dans la formule précédente. L'intérêt d'utiliser ces valeurs est qu'elles sont fournies par
les plateformes d'informations �nancières (Bloomberg, etc.)

� la duration modi�ée : Dérivée de la duration, la duration modi�ée notée MD mesure la
sensibilité du prix d'une obligation aux variations de taux d'intérêt, mais en pourcentage.
Pour obtenir le changement de cours de l'obligation, il su�t de multiplier la valeur de
la duration modi�ée par la variation des taux. Cette duration modi�ée s'exprime de la
manière suivante : MD = − 1

P
∂P
∂r .

86



Chapitre 8 : Les problématiques du pricing

� La convexité : La convexité est également un indicateur du risque de taux, elle vient en
complément de la sensibilité et de la duration. C'est une mesure de second ordre de la
sensibilité du prix de l'obligation aux variations de taux. Elle est notée C et évaluée grâce
à la formule suivante : C = 1

P
∂2P
∂r2

.

De plus, lorsque l'on dérive par rapport à t la formule du prix de l'obligation à coupons, on
obtient : ∂P∂t = r × P , donc r = 1

P
∂P
∂t . On peut alors réécrire la formule en tenant compte de ces

apports :

∂P

P
= −MD∂r + r∂t+

1

2
C∂r2

En d'autres termes, on a :

P (r + ∆r)

P (r)
= 1−MD∆r +

1

2
C (∆r)2 + r∆t

C'est cette formule qui est utilisée pour déduire du taux long la trajectoire de la partie
investie en obligations. Le pas de temps utilisé (∆t) sera le plus souvent le mois, tandis que ∆r
correspond à la variation de taux long observé sur l'intervalle [t, t+ ∆t].

8.2.3 Les actions et le monétaire

Pour modéliser le rendement des actions, on utilise directement les résultats issus du modèle
d'actions utilisé. Une fois que la trajectoire du sous-jacent est générée, il est aisé de calculer les
rendements.

Pour modéliser le rendement de la part investie sur le marché monétaire, on utilise le taux
1 an issu du modèle de taux utilisé. En e�et, sur le marché monétaire, les opérateurs placent
leurs avoirs à court terme pour se procurer des �nancements courts. Par � court �, on entend,
généralement moins d'un an, parfois moins de deux ans.

Une fois que l'on est en mesure de simuler l'évolution de la part investie en actions, de la
part investie en obligations et de la part investie en monétaire, il est possible de connaître l'évo-
lution de la totalité de l'épargne investie en pondérant chaque rendement (actions, obligations
et monétaire) par l'allocation choisie.

8.2.4 Le facteur d'actualisation

Pour évaluer l'impact des pertes futures (liées aux garanties) pour en dégager un coût de
garantie à priori, il est nécessaire de pouvoir actualiser ces pertes. Pour cela il faut connaître le
facteur d'actualisation. De cette manière, en multipliant le �ux futur par le facteur d'actualisation
correspondant à la date de survenance dudit �ux, on connaîtra la Valeur Actuarielle Nette (VAN)
du �ux.
Posons F (T ) le facteur d'actualisation pour un �ux survenant à l'horizon donné T , sa valeur se
déduit directement de la trajectoire du taux court r (t). On supposera que le temps, exprimé en
fraction d'année, est divisé en intervales [ti+1 − ti], que t0 = 0 et que tn = T :

F (T ) =
1

n−1∏
i=0

(1 + r (ti+1))ti+1−ti
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8.3 Calcul du Hedge Cost

A�n de calculer le Hedge Cost, qui rappelons-le, est le taux de chargement sur l'encours (frais)
au titre de la garantie fournie au client, il su�t en réalité d'égaliser la Valeur Actuelle Probable
(VAP) des engagements de l'assureur ainsi que la VAP de l'assuré. La VAP des engagements
de l'assuré est proportionnelle au Hedge Cost comme cela sera expliqué ci-dessous, il est donc
possible d'obtenir le Hedge Cost simplement par quotient.

On procède par la méthode de Monte-Carlo : on va générer un nombre important de scénarios
d'évolution de l'épargne investie, puis pour chacun de ces scénarios, on va calculer la VAP de
l'assuré et la VAP de l'assureur. Après avoir calculé la moyenne de chacune d'elles sur l'ensemble
des simulations et égalisé ces deux moyennes, on sera en mesure de dégager un Hedge Cost
moyen, qui sera celui retenu dans le pricing.

La VAP de l'assureur représente la somme de ses engagements (actualisés) envers l'assuré.
Il s'agit donc des éventuelles pertes actualisées au titre de la garantie GMAB ou au titre de
la garantie GMDB. Ces pertes ne se produisent que si le niveau de l'épargne est inférieur à la
garantie, et ne sont a�ectés qu'aux survivants (GMAB) ou aux décès (GMDB).

La VAP de l'assuré représente la somme de ses engagements (actualisés) envers l'assureur.
Donc cela correspond au paiement du Hedge Cost pendant toute la durée du contrat.

8.3.1 Pertes liées à la garantie en cas de vie

Dans un premier temps, il faut évaluer pour chaque scénario la perte totale liée à la garantie
GMAB. Comme cela a été expliqué dans la première partie de ce mémoire, la GMAB est une
garantie de capital minimum en cas de vie à échéance du contrat. Les pertes potentielles pour
l'assureur ne peuvent donc survenir qu'au terme de ce contrat.

A échéance, si la valeur de l'épargne est inférieure à la garantie, l'assureur est engagé à
prendre à sa charge la di�érence. Néanmoins, si la garantie est inférieure à la valeur de l'épargne,
l'assureur n'enregistre pas de pertes. Il faut par ailleurs tenir compte du fait qu'à échéance, un
certain nombre de contrats n'existent plus (mortalité, rachats). En�n il est nécessaire d'actualiser
ce �ux potentiel à échéance :

Pertes GMAB = Max (G (T )−R (T ) ; 0)× CR (T )× F (T )

Où les notations précédentes sont conservées, à savoir :

- T est l'échéance du contrat (déclenchement de la garantie),

- G (T ) est le niveau de la garantie en T ,

- R (T ) est la valeur de l'épargne en T ,

- CR (T ) est le pourcentage de contrats restants en T ,

- F (T ) est le facteur d'actualisation pour un �ux survenant en T .

Notons par ailleurs que le pourcentage de contrats restants à tout instant t dépend non
seulement du taux de décès, mais aussi du taux de rachat. Auquel cas si l'on considère l'assuré
� moyen � du contrat (dont la mortalité est une moyenne pondérée entre la mortalité masculine
et la mortalité féminine selon les proportions d'hommes et de femmes dans le contrat) d'âge x,
on calcule ce pourcentage de la manière suivante :

CR (0) = 1

CR (t) = CR (t− 1) [1− qx+t−1 − τrachat (t− 1) + qx+t−1 × τrachat (t− 1)]

Où :
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- qx+t−1 la probabilité de décès entre t− 1 et t,

- τrachat (t− 1) le taux de rachat entre t− 1 et t.

8.3.2 Pertes liées à la garantie en cas de décès

Dans un second temps, il faut évaluer pour chaque scénario la perte totale liée à la garantie
GMDB. Comme cela été expliqué précedemment, la GMDB est une garantie de capital minimum
en cas de décès sur toute la durée du contrat. Les pertes potentielles pour l'assureur peuvent
donc survenir à n'importe quel moment.

Le mode de fonctionnement est similaire à celui de la GMAB. A décès du souscripteur, si
la valeur de l'épargne est inférieure à la garantie, l'assureur est engagé à prendre à sa charge la
di�érence. Néanmoins, si la garantie est inférieure à la valeur de l'épargne, l'assureur n'enregistre
pas de pertes. Il faut également tenir compte du nombre de contrats restants et de la probabilité
de décès à chaque étape de la vie du produit. Dans le cas de la GMDB aussi, il faut evidemment
tenir compte de la date du décès (et donc de la potentielle perte) via un facteur d'actualisation :

Pertes GMDB =

T∑
t=1

Max (G (t)−R (t) ; 0)× CR (t− 1)× qx+t−1 × F (t)

Où :

- t est un instant du contrat,

- T est l'échéance du contrat,

- qx+t−1 est la probabilité de décès entre t− 1 et t.

8.3.3 La VAP des engagements de l'assuré

Pour un scénario particulier, la Valeur Actuelle Probable des engagements de l'assuré est par
dé�nition l'actualisation des �ux futurs pondérés par la probabilité que ces �ux surviennent :

VAP Assuré =
T∑
t=1

Hedge Cost×R (t)× CR (t)× F (t)

8.3.4 Moyenne sur les simulations et Hedge Cost

Supposons que l'on génère n scénarios d'évolution de l'épargne investie, indexés par l'indice
i. Alors les VAP moyennes pour les engagements de l'assureur et de l'assuré s'expriment de la
manière suivante :

VAP Assureur = 1
n

n∑
i=1

(Pertes GMABi + Pertes GMDBi)

VAP Assuré =
Hedge Cost

n

n∑
i=1

(
T∑
t=1

R (t)× CR (t)× F (t)

)
i

Donc, en égalisant les VAP moyennes, on obtient :

Hedge Cost =

n∑
i=1

(Pertes GMDBi + Pertes GMDBi)

n∑
i=1

(
T∑
t=1

R (t)× CR (t)× F (t)

)
i
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Chapitre 9

Pricing avec les nouveaux modèles

Le but de ce nouveau chapitre est de tester la consistance des modèles �nanciers étudiés en
terme de tari�cation des garanties. Comme nous l'avons vu dans la première partie, le modèle
de Dupire et le modèle de Hull et White sont consistants pour retrouver des prix de marché.
Néanmoins il reste à apprécier leurs apports en terme de pricing. On calculera donc des Hedge
Cost pour di�érentes combinaisons de modèles, les autres paramètres restant inchangés.

Pour e�ectuer cette comparaison, on se basera sur un ou plusieurs produits de base que l'on
dé�nira préalablement. Pour des raisons de con�dentialité, il est impossible d'utiliser un produit
réellement tarifé par le service a�n de ne pas divulguer les prix obtenus et proposés aux clients.
Le pricing se fera donc sur un produit � proche �, dans sa structure, de ceux tarifés par le service.
Habituellement la tari�cation est e�ectuée par le service en utilisant conjointement les modèles
de Black et Scholes et de Vasicek. Néanmoins comme il ne s'agira pas d'un produit réel, on
ne dispose pas des prix obtenus par le service. L'idée est donc de comparer nos prix avec ceux
obtenus à l'aide de formules fermées. Cette autre méthode de pricing, qui sera expliquée par la
suite, est parfois utilisée en comparaison des résultats issus de la méthode de Monte-Carlo.

9.1 Le(s) produit(s)

Comme cela vient d'être évoqué, il est impossible d'utiliser autre chose qu'un produit �ctif.
On va donc utiliser deux produits, tous deux contenant à la fois une garantie GMAB et une
garantie GMDB de même niveau. Pour le produit A, la garantie sera constante à 100 %, tandis
que le produit B comprendra un Ratchet (cliquet) mensuel sur le niveau des garanties. Les
caractéristiques des deux produits A et B sont résumées dans le tableau suivant.
D'autre part, on supposera que le produit est tarifé en Dollars (USD). En e�et, pour se rapprocher
le plus possible du produit réel, on se place dans un pays asiatique dans lequel les produits sont
tarifés en dollars. On utilise donc la table de mortalité relative à ce pays.
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Caractéristique Produit A Produit B

Maturité 10 et 15 ans

Frais d'entrée 3 %

Frais de gestion 1,5 %

Frais sur les actions 1 %

Frais sur les obligations 0,5 %

Allocation en actions 50 % (10 ans) et 70 % (15 ans)

Cliquet Non Oui

Pas du cliquet Non 10 %

Plafond du cliquet Non 200 %

Abattement 0 %

Age 40 ans

Répartition Hommes/Femmes 50 % - 50 %

Corrélation Actions-Taux 0

NB : Il est important de noter que la dernière ligne du tableau précédent constitue une
hypoyhèse hautement irréaliste. Néanmoins celle-ci est conservée par simplicité et l'impact de la
corrélation Actions-Taux sera évoqué ultérieurement.

9.2 Les données

Pour e�ectuer cette comparaison, il faut choisir une date de référence. Le pricing sera donc
e�ectué sur la date du 25/07/2008 car nous disposions déjà de la plupart des données �nancières
(courbe de taux, duration, convexité) nécessaires pour réaliser les calibrations et les simulations
avec tous les modèles.
Les di�érentes données nécessaires pour e�ectuer le pricing sont toutes celles que l'on utilise soit
pour calibrer les modèles, soit pour générer les scénarios.

Pour calibrer et générer les scénarios �nanciers par le modèle de Dupire, il faut tout d'abord
une matrice de volatilité implicite pour la calibration. Pour rester cohérent avec le marché sur
lequel on tari�e, on utilise la volatilité implicite portant sur le sous-jacent S&P500. La matrice
en question est fournie ci-dessous, et la valeur de la première cellule correpsond au cours du
S&P500 à la date de calcul :

Matrice de volatilité implicite du S&P500 au 25/07/2008

Pour obtenir les paramètres de la calibration du modèle de Dupire, générer les scénarios par
le modèle de Hull et White ou encore calibrer le modèle de Vasicek, il faut également connaître
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la courbe des taux. On utilise à ce titre la courbe des taux zéro-coupon USD pour le 25/07/2008,
laquelle est donnée ici :

Au �nal, une fois toutes les calibrations e�ectuées selon les méthodes exposées dans la partie
précédente, on obtient les paramètres suivants pour nos 4 modèles �nanciers. On utilisera ensuite
ces jeux de paramètres pour comparer les résultats du pricing et juger de la consistance des
modèles sur le plan pratique.

Modèles Black et Scholes Dupire Vasicek Hull et White

Paramètres
r = 4, 92 %
σ = 27, 47 %

α = 0, 2107
β1 = −0, 2399
β2 = −0, 0544
β3 = 0, 0001
β4 = 0, 0002
β5 = −0, 0021

a = 0, 44
b = 5, 66 %
σ = 2, 93 %
r0 = 2, 66 %

a = 0, 427
σ = 2, 79 %

9.3 Pricing par les formules fermées

En général, la méthode de Monte-Carlo est utilisée lorsque l'on ne dispose pas de formules
fermées pour le pricing. C'est notamment le cas pour la garantie GMWB qu'il est impossible
de tarifer par des formules fermées. La méthode de Monte-Carlo permet de tarifer les produits
les plus complexes. De plus elle ne se limite pas au pricing, elle permet également l'étude des
risques (étude de VaR, analyse des scénarios et de la distribution). Dans le cas d'une garantie de
type GMAB ou GMDB, on peut calculer le Hedge Cost via des formules fermées de la manière
suivante.

9.3.1 En absence de Ratchet

Comme nous l'avons vu précedemment, les pertes liées à la garantie GMAB s'expriment de
la manière suivante :
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Pertes GMAB = Max (G (T )−R (T ) ; 0)× CR (T )× F (T )

Où :

- T est l'échéance du contrat (déclenchement de la garantie),

- G (T ) est le niveau de la garantie en T ,

- R (T ) est la valeur de l'épargne en T ,

- CR (T ) est le pourcentage de contrats restants en T ,

- F (T ) est le facteur d'actualisation pour un �ux survenant en T .

Auquel cas, lorsque l'on calcule la moyenne sur l'ensemble des simulations de ces pertes, cela
revient à prendre l'espérance (en univers risque neutre) en terme de probabilités :

Pertes GMAB = E [Max (G (T )−R (T ) ; 0)× F (T )]︸ ︷︷ ︸
PayO� d'un Put

×CR (T )

En e�et, on remarque que la perte moyenne liée à la garantie en cas de vie est en réalité
équivalente à un Put européen de maturité T et pondéré par le nombre de contrats restants à
maturité. Les caractéristiques de ce Put sont les suivantes :

� G (T ) est le strike, qui vaut ici 100 % de la prime investie (pas de Ratchet),
� le sous-jacent est l'épargne investie,
� le Put est européen car la garantie ne se déclenche qu'à maturité.

D'autre part, lorsque l'on s'intéresse à la garantie GMDB, le raisonnement est le même, si
ce n'est qu'on observe en réalité une somme de PayO� de Puts. En e�et, lorsque l'on reprend la
formule de la perte, on a :

Pertes GMDB =

T∑
t=1

Max (G (t)−R (t) ; 0)× CR (t− 1)× qx+t−1 × F (t)

La moyenne sur l'ensemble des simulations permet, de manière analogue à la garantie en cas
de vie, d'écrire la perte moyenne à partir de l'espérance :

Pertes GMDB =

T∑
t=1

E [Max (G (t)−R (t) ; 0)× F (t)]︸ ︷︷ ︸
PayO� d'un Put

×CR (t− 1)× qx+t−1

On reconnait alors qu'il s'agit d'une somme de PayO� de Puts européens de maturités t
pondérés par le nombre de décès sur la période considérée. Les caractéristiques (sous-jacent et
strike) sont les mêmes que pour la garantie précédente.

Dans les deux cas, on peut évaluer les prix de ces Puts par la formule de Black et Scholes
pour obtenir le prix de la couverture. Connaissant pour chacun des Puts la maturité, le strike
et le cours du sous-jacent, il su�t de connaître également la courbe des taux (pour le facteur
d'actualisation) ainsi que le rendement moyen et la volatilité moyenne des actifs. Dans notre cas,
on pratique 5000 simulations avec l'un ou l'autre de nos modèles de taux et ces valeurs sont
résumées dans le tableau suivant :

Actions Obligations

Rendement 10 ans 4,92 % 5,07 %

Rendement 15 ans 4,92 % 5,31 %

Volatilité 10 ans 27,47 % 5,29 %

Volatilité 15 ans 27,47 % 5,30 %
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9.3.2 En présence de Ratchet

Lorsque la garantie comporte un Ratchet (cliquet), cela change légèrement le principe car le
strike des Puts n'est plus nécessairement le même quel que soit l'instant auquel on se place. En
e�et la valeur de la garantie évolue au gré des marchés �nanciers.

La conséquence est l'utilisation d'option à barrières en lieu et place des options classiques.
Si l'on s'intéresse par exemple à la garantie GMAB, on ne peut plus voir la perte à maturité
comme une variante du PayO� d'un Put classique. On remplace ce Put par une succession de
Put à barrières : chaque fois qu'un pas du cliquet est atteint, un Put disparait et un nouveau Put
apparait avec pour strike la nouvelle valeur de la garantie. Pour la garantie GMDB, la méthode
est la même sur toute la somme de Put.

9.3.3 Résultats

Sur nos deux produits �ctifs, on obtient les prix suivants pour le Hedge Cost en utilisant cette
méthode. Ces prix serviront de première base de comparaison pour les prochaines combinaisons
de modèles.

NB : Les tableaux suivants expriment le Hedge Cost en points de base, en tant que taux
de chargement sur l'encours prélevé au titre de la garantie dont béné�cie l'assuré. Les colonnes
GMAB et GMDB représentent respectivement la part dans le Hedge Cost total représentée par
la garantie en cas de vie et par la garantie en cas de décès.

Garantie GMAB GMDB Total

Produit A 10 ans 45 2 47

Produit A 15 ans 39 4 42

Produit B 10 ans 111 4 114

Produit B 15 ans 89 7 97

9.4 Les résultats du pricing

Pour chacun des produits (A et B) ainsi que pour chacune des maturités, on a e�ectué un
pricing par la méthode de Monte-Carlo sur 5000 simulations avec chaque combinaison de modèles
Action-Taux. Les résultats sont résumés dans le tableau suivant, il s'agit des Hedge Cost pour
chaque combinaison, donnés en points de base. On sépare pour chaque cas le coût de la garantie
selon la garantie.

Important : Le Hedge Cost total n'est jamais réellement égal à la somme de ses composantes
en GMAB et en GMDB. En e�et lorsque l'on calcule les trois Hedge Cost avec un pas mensuel,
on utilise les formules suivantes :
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

HCGMAB =

1 +

n∑
i=1

Pertes GMABi

n∑
i=1

(
T∑
t=1

R (t)× CR (t)× F (t)

)
i


12

− 1

HCGMDB =

1 +

n∑
i=1

Pertes GMDBi

n∑
i=1

(
T∑
t=1

R (t)× CR (t)× F (t)

)
i


12

− 1

HCTotal =

1 +

n∑
i=1

Pertes GMABi + Pertes GMDBi

n∑
i=1

(
T∑
t=1

R (t)× CR (t)× F (t)

)
i


12

− 1

Auquel cas il est évident que l'on n'a pas HCTotal = HCGMAB+HCGMDB, même si l'écart
est très faible. Néanmoins les valeurs sont très proches et le plus souvent l'arrondi au point de
base le plus proche ne permet pas de s'en aprecevoir.

9.4.1 Black et Scholes combiné à Vasicek

Garantie GMAB GMDB Total

Produit A 10 ans 48 2 50

Produit A 15 ans 42 4 46

Produit B 10 ans 112 4 116

Produit B 15 ans 96 8 104

9.4.2 Dupire combiné à Hull et White

Garantie GMAB GMDB Total

Produit A 10 ans 51 2 53

Produit A 15 ans 46 4 50

Produit B 10 ans 112 3 115

Produit B 15 ans 103 7 110

9.5 Conclusions

Dans un premier temps, on pourra remarquer la consistance des deux nouveaux modèles pour
le pricing. En e�et, quel que soit le produit ou quelle que soit la maturité, les prix obtenus ne
sont pas aberrants mais ils sont au contraire de l'ordre de grandeur attendu par le pricing par
les formules fermées.

On remarquera néanmoins qu'en utilisant le modèle de Dupire et le modèle de Hull et White,
les Hedge Costs sont légèrement plus élevés pour les deux produits et les deux garanties qu'avec
la méthode des formules fermées ou avec les modèles de Black et Scholes et de Vasicek. Cela peut
s'expliquer grâce aux observations faites précedemment sur la plus grande prudence du modèle
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de Dupire. Au premier abord, il n'est pas aisé de voir les améliorations apportées par le modèle
de Hull et White sur le pricing. En e�et nous n'avons pas dégagé préalablement des observations
permettant de juger l'impact de son utilisation sur les résultats du pricing.

Néanmoins il est nécessaire de rappeler qu'à la date de calibration, la courbe des taux zéro-
coupon utilisée est parfaitement standard (croissante et concave, de type Normal Curve).
Ce genre de courbe est aisément réplicable avec le modèle de Vasicek également et les apports
du modèle de Hull et White sont minimes. Par contre, le modèle de Vasicek est parfaitement
incapable de répliquer une courbe de type Humped Curve par exemple, ce que le modèle de Hull
et White est théoriquement capable de faire. Auquel cas le véritable apport du modèle de Hull et
White pour le pricing est qu'il est le seul à pouvoir fournir des prix lorsque la courbe de taux ne
présente pas une forme standard, comme cela a pu être le cas pendant les plus fortes turbulences
de la crise �nancière (août et septembre 2008 notamment).

Le seconde chose que l'on peut remarquer est que le Hedge Cost diminue systématiquement
lorsque la maturité augmente. Cela est logique pour les raisons suivantes : les pertes liées à la
garantie GMAB sont plus faibles pour une maturité élevée, car la valeur de l'épargne est en
moyenne plus forte au bout de 20 ans que de 10 ans. De plus les pertes liées à la garantie GMDB
n'augmentent que faiblement : en e�et les pertes potentielles additionnelles (décès entre 10 et 20
ans de contrat par exemple) sont de plus en plus faibles en raison de l'augmentation de la valeur
de l'épargne et de la diminution du nombre de contrats restants.

Un autre observation importante à faire est que la part du Hedge Cost relative à la garantie
en cas de décès est très largement inférieure à la part relative à la garantie en cas de vie, et
ce dans tous les cas de �gure. Le coût total de la garantie est donc très proche du coût de la
garantie GMAB, comme on pouvait s'y attendre. En e�et pour des individus de 40 ans, le taux
de décès est extrêmement faible sur 10 ou 15 ans, les pertes liées à la garantie GMDB sont donc
faibles. Et dans le même temps le nombre de contrats restants à maturité est élevé, d'où des
pertes importantes pour la garantie GMAB.

En�n, on peut remarquer que la présence du cliquet in�uence le résultat du Hedge Cost de
manière non négligeable. Le coût de la garantie est largement supérieur lorsque celle-ci comporte
un cliquet. Cette observation s'explique assez facilement : lorsque la garantie comporte un cliquet,
le niveau de cette dernière est supérieur (ou égal dans le pire des cas) à celui d'une garantie sans
cliquet, et ce quel que soit l'instant auquel on se place. Auquel cas, à évolution égale de l'épargne
(donc des marchés), l'assureur enregistre plus de pertes lorsque la garantie comporte un cliquet,
tandis que la VAP de l'assuré reste inchangée. Le Hedge Cost sera donc plus important pour un
contrat avec garantie comprenant un cliquet que pour un contrat avec garantie standard, toutes
choses égales par ailleurs.
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Tests de sensibilité et étude de VaR

10.1 Tests de sensibilité

Le but de cette seconde section est tout d'abord de comprendre comment évolue le Hedge Cost
en fonction des di�érentes hypothèses actuarielles et �nancières. En e�et il est primordial pour
l'actuaire d'être conscient des paramètres qui ont un réel impact sur la valeur du Hedge Cost,
ainsi que des paramètres qui, eux, n'in�uencent en réalité que très peu le coût de la garantie.
Notons que le but n'est pas nécessairement de quantifer l'impact d'une variation mesurée de
chaque paramètre, mais de dégager la tendance globale issue de cette variation. On se place donc
dans une approche plus qualitative que quantitative.

Pour e�ectuer les tests de sensibilité à ces paramètres, on se concentrera uniquement sur une
combinaison de modèles et une maturité, les impacts n'ayant aucune raison d'être di�érents selon
la combinaison ou la maturité du contrat.
Dans le cadre de l'étude sur l'amélioration des modèles �nanciers, il parait plus logique de
pratiquer les tests en utilisant Dupire pour les actions et Hull et White pour les taux. D'autre
part on choisira la maturité 10 ans.

Notons que pour e�ectuer les tests de sensibilité, il est indispensable que les paramètres soient
modi�és un à un � toutes choses égales par ailleurs �. Par conséquent le scénario central pour les
tests de sensibilité est celui combinant le produit A pour la maturité de 10 ans avec les modèles
de Dupire et de Hull et White, soit un Hedge Cost de 53 points de base.

10.1.1 Variations des hypothèses actuarielles

10.1.1.1 La présence du cliquet

Comme nous l'avons vu précedemment, la présence du cliquet sur la garantie augmente le
coût de cette dernière. Néanmoins cette seule observation n'est pas étonnante et il est également
possible d'agir sur les paramètres du cliquet.

On testera donc di�érents pas et di�érents plafonds pour le cliquet, a�n de déterminer si ces
paramètres in�uencent de manière signi�cative le coût de la garantie. La fréquence de constata-
tion du cliquet a potentiellement un impact également. Le tableau suivant résume les résultats
obtenus :

Pas/Plafond/Fréquence GMAB GMDB Total

10 %/200 %/Mensuel 112 3 115

10 %/250 %/Mensuel 118 3 121

20 %/200 %/Mensuel 101 3 104

10 %/200 %/Annuel 90 2 92
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On remarque clairement que le pas et le plafond du cliquet jouent également un rôle : lorsque
le pas augmente, le Hedge Cost diminue, tandis que lorsque le plafond augmente, le Hedge Cost
augmente également.
L'augmentation du plafond entraine une hausse des pertes pour l'assureur car le niveau maximal
de la garantie est augmenté : l'écart à payer par l'assureur entre la garantie et la réserve est donc
plus élevé en cas de mauvaise performance du marché.
L'augmentation du pas produit l'e�et inverse : les performances du marché sur un mois sont
souvent trop faibles pour déclencher le cliquet si le pas est élevé, et le niveau de la garantie
augmente donc moins, d'où des pertes minimisées pour l'assureur et une diminution du Hedge
Cost.
Pour les mêmes raisons, plus le cliquet est constaté fréquemment, et plus les pertes pour l'assureur
seront importantes car la garantie sera plus souvent revalorisée, donc le Hedge Cost augmentera
également et inversement.

En conclusion, la seule présence du cliquet in�uence fortement le Hedge Cost.
Surtout, chaque paramètre du cliquet est susceptible de faire évoluer le coût de la
garantie de manière signi�cative.

10.1.1.2 La mortalité

Concernant les hypothèses de mortalité, il est possible de faire varier plusieurs paramètres.
En premier lieu on peut modi�er l'age à la souscription qui, intuitivement, devrait avoir un
impact majeur sur le résultat. Ensuite, on peut penser à modi�er la marge de prudence qu'est le
coe�cient d'abattement. Pour �nir, la mortalité étant di�érente entre les hommes et les femmes,
il est également intéressant de faire varier la répartition de la population dans le contrat entre
hommes et femmes.

Le scénario central est basé sur une population agée de 40 ans à la souscription. Lorsque
l'on fait passer cette age à l'entrée à 60 ans (notons que l'on conserve la même prime que pour
l'assuré de 40 ans), on obtient un Hedge Cost de 56 (45 pour la GMAB et 11 pour la GMDB).
Comme on pouvait s'y attendre, l'augmentation de l'age à l'entrée entraine très logiquement une
augmentation du coût de la garantie en cas de décès et une diminution du coût de la garantie
en cas de vie. En e�et le taux de décès sur 10 ans d'une population de 60 ans est nettement
supérieur à celui d'une population de 40 ans. Il y a donc plus de décès sur la période de validité
du contrat et moins de contrats restants à maturité.
Globalement le Hedge Cost augmente avec l'age à la souscription car les deux phénomènes précités
ne se compensent pas parfaitement.

Concernant l'abattement, on prendra deux exemples en plus du scénario central, dans lequel
il n'y a pas de marge de prudence sur la mortalité (abattement nul) : une marge prudente de 25
% et une marge encore plus prudente de 35 %. Concernant la répartition de la population, qui
était de 50 % d'hommes et 50 % de femmes dans le scénario central, on testera les répartitions
suivantes : 0 % - 100 % et 100 % - 0 %. Les résultats sont résumés dans les deux tableaux
suivants :

Sensibilité à l'abattement

Abattement GMAB GMDB Total

0 % 51 2 53

25 % 52 2 54

35 % 52 1 53
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Sensibilité à la répartition

Proportion d'hommes GMAB GMDB Total

0 % 52 1 53

50 % 51 2 53

100 % 51 3 54

On remarque que l'impact d'une modi�cation du coe�cient d'abattement ou de la répartition
entre hommes et femmes est extrêmement faible, et même pratiquement insigni�ant. En e�et,
entre un contrat composé uniquement de femmes et un contrat composé uniquement d'hommes,
la di�érence de Hedge Cost n'est que d'un seul point de base. Il en est de même pour une
modi�cation de 25 % de l'abattement.

Ce résultat est relativement étonnant, on pouvait s'attendre à des écarts plus importants.
Cela pourrait s'expliquer par le fait qu'à 40 ans, les écarts de qx entre hommes et femmes sont
faibles, il serait donc intéressant de regarder les mêmes tests de sensibilité avec une population
agée de 60 ans à la souscription. En e�et, plus l'age augmente et plus les écarts de mortalité
entre hommes et femmes sont importants. Les résultats de ce second test sont donnés dans les
tableaux suivants :

Sensibilité à la répartition

Proportion d'hommes GMAB GMDB Total

0 % 46 8 54

50 % 45 11 56

100 % 43 14 57

On remarque alors une légère di�érence avec le test précédent puisque cette fois les Hedge
Costs sont nettement plus éloignés. On observe une augmentation du coût de la garantie au fur et
à mesure que la part d'hommes augmente. Si cette augmentation demeure légère et di�cilement
explicable de manière globale, un autre point est à souligner : on peut observer que le coût de la
garantie en cas de vie diminue lorsque la proportion d'hommes augmente, contrairement au coût
de la garantie en cas de décès qui augmente. Si bien qu'au �nal ces deux e�ets se contrent et le
Hedge Cost n'augmente que faiblement. Ceci est logique car les femmes décèdent � moins � que
les hommes. Auquel cas plus il y a de femmes dans la population et plus il reste de contrats à
maturité, donc le Hedge Cost augmente pour sa part GMAB. A l'opposé, il y a moins de décès
durant la période et le Hedge Cost, pour sa part GMDB, est moins important.

Les mêmes tests de sensibilité concernant le coe�cient d'abattement sur une population agée
de 60 ans à la souscription fournissent les Hedge Costs suivants :

Sensibilité à l'abattement

Abattement GMAB GMDB Total

0 % 48 11 59

25 % 47 8 55

35 % 47 7 54

L'impact de la modi�cation du coe�cient d'abattement est légèrement plus marqué qu'avec
la population de 40 ans. On remarquera que le coût de la garantie diminue lorsque l'abattement
augmente. La part liée à la garantie en cas de vie tend à baisser, à l'inverse de la part liée à la
garantie en cas de décès qui augmente avec l'abattement. Ceci semble également logique car en
augmentant l'abattement, on suppose qu'il y a moins de décès, d'où une baisse du Hedge Cost
pour sa part GMDB.

En conclusion, lorsque l'on s'intéresse aux paramètres de mortalité, le facteur
déterminant reste l'age de la population. Celui-ci provoque en lui-même un impact

101



Chapitre 10 : Tests de sensibilité et étude de VaR

important sur le coût de la garantie, mais surtout, il in�uence grandement l'impact
des autres paramètres que sont l'abattement et la répartition de la population.

10.1.1.3 Les rachats

Concernant les rachats, deux approches sont possibles pour les tests de sensibilité. La première
est de modi�er le taux de rachat dans le cadre de rachats déterministes : le scénario central
prenant en compte des rachats déterministes au taux de 5 % l'an, on peut augmenter ce taux
pour passer à 8 % par exemple, tout en restant dans le cadre déterministe. La seconde possibilité
est de constater l'impact d'une loi de rachat dynamique en conservant un taux de base (structurel)
de 8 %.

Pour cette dernière option, il est nécessaire de choisir une loi de rachat parmi celles évoquées
précedemment (exponentielle et linéaire notamment), qu'il convient ensuite de calibrer correcte-
ment. Dans notre cas on se limitera à une loi de rachat linéaire, bien que la loi exponentielle ne
soit nullement plus compliquée à calibrer.
Pour calibrer la loi de rachat linéaire, il est nécessaire de disposer d'une chronique de rachat
� cohérente � en fonction du rapport réserve sur garantie. Le but étant simplement de constater
l'impact d'une telle loi et non de le quanti�er, les valeurs des paramètres ne sont pas essentielles.
C'est pourquoi la loi n'a pas été calibrée à partir d'une chronique de rachats réelle observée, mais
simplement en créant une chronique de rachats cohérente. De manière générale, cette chronique
présente les caractéristiques suivantes :

� Pour un niveau de R
G inférieur à 70 %, le taux de rachat est de 3 % (clients irrationnels),

� de 70 % à 140 % de R
G , le taux de rachat est croissant, s'étalant de 3 % à 20 %,

� au delà, les rachats sont plafonnés à 20 %.

Les paramètres obtenus sont les suivants :

Fmin 0,375

Fmax 2,5

D 0,681

M 3,539

Au �nal, les résultats obtenus en faisant varier les hypothèses de rachat sont résumés dans le
tableau suivant. Pour l'hypothèse de rachats dynamique, les résultats seuls ne sont pas facilement
explicables, c'est pourquoi on donne ensuite un graphique contenant la chronique de rachat
moyenne sur les simulations, ainsi que la trajectoire moyenne de l'actif du client :

Sensibilité aux rachats

Taux de rachat GMAB GMDB Total

Déterministe 5 % 51 2 53

Déterministe 8 % 43 2 45

Dynamique 8 % 58 2 60

La première chose à remarquer est que le taux de rachat déterministe in�uence très nettement
le coût de la garantie. En e�et le Hedge Cost diminue de 8 points de base en augmentant le taux
de rachat de 3 %. Surtout, l'impact observé est uniquement sur la part relative à la garantie
GMAB. Cela s'explique simplement : lorsque les rachats augmentent, il y a moins de contrats à
maturité, d'où une baisse du coût de la garantie GMAB. Dans le même temps les taux de décès
ne sont pas modi�és, il n'y a donc pas d'impact sur le coût de la GMDB.

D'autre part, le passage à la loi de rachat dynamique entraine quant à lui une hausse très
nette du coût de la garantie. Pour tenter d'expliquer le phénomène, on peut s'intéresser à la
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courbe de rachats moyens sur la simulation ainsi qu'à la trajectoire moyenne de l'épargne qui est
donnée ci-dessous (ici la garantié est de 100 %, donc il n'est pas nécessaire de regarder le rapport
R
G qui est égal à R).

On remarque alors que la trajectoire moyenne de l'épargne est croissante jusqu'à 127 %, et
les rachats le sont également de 8 % à 13 %, ce qui est en accord avec la chronique. En e�et, le
niveau de l'épargne se situe en permanence dans une zone où les rachats sont supérieurs à 8 %
(niveau de R

G dans notre chronique initiale). En moyenne, les rachats sont plus importants dans
le cas dynamique. On le con�rme en regardant le pourcentage moyen de contrats restants dans
les deux cas (rachats dynamiques et rachats déterministes à 8 % l'an), on obtient le graphique
suivant :
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A maturité, il reste en moyenne 42,5 % des contrats dans le cas déterministe, contre 34,12 %
dans le cas dynamique. Quand on regarde la formule du calcul de la perte relative à la GMAB,
on s'aperçoit que celle-ci dépend directement du nombre de contrats restants, ce qui semble
incohérent avec le résultat que nous observons.

L'augmentation du coût de la garantie en cas de vie s'explique en di�érenciant le comporte-
ment des clients selon l'évolution du fond.
Dans le cas déterministe, le nombre de contrats à maturité est le même quel que soit le niveau
de l'épargne. Dans les cas favorables (lorsque la garantie est inférieure au niveau de l'épargne),
l'assureur n'enregistre aucune perte. Dans les cas défavorables (lorsque la garantie est supérieure
au niveau de l'épargne), l'assureur doit payer le di�érentiel pour tous les contrats restants.
Dans le cas dynamique, les rachats sont fonction de la valeur de l'épargne. Dans les cas favorables,
l'assureur n'enregistre toujours pas de pertes. Dans les cas défavorables, les clients rachètent très
peu (moins que 8 % par an) et il reste un nombre de contrats supérieur au cas où les rachats
sont déterministes. Les pertes sont donc plus importantes pour l'assureur et dans le même temps
la VAP des engagements de l'assuré augmente car il reste plus de contrats. Cela entraine une
augmentation du coût de la garantie également.

En conclusion, le taux de rachat annuel in�uence considérablement la valeur du
Hedge Cost, principalement en raison de la garantie en cas de vie. La modélisation
des rachats a également un impact majeur : le choix d'appliquer ou non une loi
de rachat dynamique ainsi que ses paramètres jouent un rôle important dans la
tari�cation.

10.1.2 Variations des hypothèses �nancières

Bien que le choix des modèles utilisés soit fait, il reste di�érentes hypothèses �nancières
susceptibles de faire évoluer le prix de la garantie. Notamment, il est possible de jouer sur la
part allouée au marché actions et qui aura probablement un impact. Il est également intéressant
de regarder ce qui résulterait d'un choc (à la hausse par exemple) sur les taux et/ou sur la
volatilité. En�n, dans le scénario central, on ne supposait pas de corrélation entre les actifs, il
pourrait donc être pertinent de tester la sensibilité du coût de la garantie à la valeur du coe�cient
de corrélation.

10.1.2.1 L'allocation d'actifs

Dans le scénario central (produit A 10 ans), l'allocation d'actifs est faite équitablement entre
les actions et les obligations. Pour tester l'impact de cette hypothèse, on prendra l'allocation
suivante : 70 % en actions et 30 % en obligations et inversement. On obtient les résultats suivants :

Sensibilité à l'allocation d'actifs

Part Actions GMAB GMDB Total

30 % 19 1 20

50 % 51 2 53

70 % 85 3 88

Le coût de la garantie est donc largement dépendant de l'allocation choisie. Plus la part
actions est importante et plus le Hedge Cost l'est également. On remarque par ailleurs que cela
est quasi-exclusivenment dû à la part relative à la GMAB.

Intuitivement ce résultat n'est pas surprenant car en réduisant la part obligataire (non ris-
quée) au pro�t des actions (actif risqué) dans l'épargne, la volatilité moyenne des actifs est
augmentée. De ce fait son évolution est plus aléatoire et le risque pour l'assureur d'enregistrer
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des pertes augmente, ce qui se répercute sur le coût de la garantie.
Comme cela a été vu dans le pricing, le rendement des actions et des obligations est relativement
proche sur 10 ans avec nos deux modèles (respectivement 4,92 % et 5,07 %), par conséquent le
rendement moyen est proche de 5 % quelle que soit l'allocation choisie. Une augmentation de la
volatilité moyenne entrainant une dispersion plus forte des scénarios autour du rendement moyen,
la probabilité d'obtenir des valeurs de l'épargne à maturité inférieures à la garantie augmente.

10.1.2.2 La corrélation

Historiquement, les taux d'intérêt étaient inversement corrélés au prix des actions. Une baisse
des taux était en général favorable à l'augmentation du prix des actions. Bien que cela ait duré
jusqu'à la �n du siècle dernier (1997-1998), la tendance est inversée depuis. On observe, dans des
conditions normales de marché, que lorsque les taux montent, les actions montent également et
inversement. En e�et, la hausse des taux longs traduit une croissance plus forte de l'économie, ce
qui est favorable aux actions. On assiste malgré tout épisodiquement à des décorrélations, voire
à des corrélations inversées.

Dans le scénario central, on supposait les actions et les taux parfaitement décorrélés, ce qui
est une hypothèse hautement simpli�catrice comme nous venons de le voir. Pour se donner une
idée de l'impact que peut avoir ce paramètre sur le coût de la garantie, on prendra un coe�cient
de corrélation de 100 % entre les actions et les taux. A titre indicatif, on prendra également en
compte le cas, plus rare, de la corrélation inverse totale (- 100 %). En e�et, comme on ne cherche
pas à quanti�er les impacts, on préfère tester les coe�cients susceptibles d'avoir le plus d'impact.

Ces modi�cations entrainent des écarts dans le Hedge Cost, qui sont donnés dans le tableau
suivant :

Sensibilité à la corrélation

Coe�cient de corrélation GMAB GMDB Total

100 % 54 2 56

50 % 52 2 54
0 % 51 2 53

-50 % 49 2 51

-100 % 46 2 48

On remarque dans un premier temps que l'impact sur le coût de la garantie est léger. La
corélation négative tend à faire diminuer le Hedge Cost, à l'inverse de la corrélation positive. On
remarquera aussi que l'impact est légèrement plus important lorsque l'on suppose la corrélation
négative.

Ces observations s'expliquent relativement facilement : lorsque la corrélation est négative, la
baisse (ou la hausse) d'un actif sera accompagnée de la hausse (ou de la baisse) de l'autre actif.
Les sur-performances et les sous-performances de l'épargne investie seront donc atténuées, et le
Hedge Cost aussi par conséquent. Dans l'autre cas, les actifs auront la même évolution et la
baisse (ou la hausse) de l'un ne sera plus compensée par l'autre, il y aura donc plus de cas où
l'épargne à maturité est inférieure à la garantie et le Hedge Cost sera donc plus important.

10.1.2.3 Impact sur la nappe de volatilité

A�n de constater si la date de calibration est réellement in�uente sur les résultats, on peut
s'intéresser à la nappe de volatilité implicite sur laquelle le modèle de Dupire est calibré. Pour
simpli�er, on supposera simplement que la nappe de volatilité implicite peut subir une variation
uniforme de p % (quelle que soit la maturité et quel que soit le prix d'exercice).
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Or si l'on se remémore la forme de la fonction analytique sur laquelle s'e�ectue la calibration,
à savoir :

σ (K,T ) = α+ β1M + β2M
2 + β3T + β4T

2 + β5MT

On remarque que tout impact uniforme sur la nappe se traduit par un impact équivalent sur le
paramètre α : le paramètre α sera donc modi�é de p % dans notre test. On testera parallèlement
une hausse et une baisse uniforme de 2 % sur la nappe de volatilité. Les résultats obtenus sont
les suivants :

Sensibilité à la volatilité implicite

Impact uniforme GMAB GMDB Total

2 % 58 2 60

0 % 51 2 53

-2 % 43 2 45

On remarque immédiatement que l'impact est important sur le Hedge Cost : il augmente assez
nettement (exclusivement la part liée à la GMAB) lorsque la volatilité implicite est augmentée
et inversement lorsque celle-ci est diminuée. On peut donner à cela le même type d'explication
que pour l'augmentation de la part action. En e�et, en augmentant de manière uniforme la
volatilité implicite, on augmente subséquemment la volatilité locale (il su�t pour s'en convaincre
de regarder la formule donnant la volatilité locale en fonction du paramètre α). Donc la volatilité
du modèle de Dupire est plus importante et cela augmentera la volatilité moyenne des actifs,
quelle que soit l'allocation choisie. On retombe alors sur les explications données précédemment.

10.1.2.4 Impact sur la courbe des taux

De la même manière, on peut supposer un impact sur la courbe des taux. Ici également on
supposera que cet impact est uniforme quelle que soit la maturité, on le �xera ici aussi à plus ou
moins 2 %. Il est néanmoins important de noter la chose suivante : il est possible de tester ces
impacts sur la courbe de taux à deux étapes di�érentes :

� Lors de l'utilisation de la courbe zéro-coupon pour la calibration des paramètres a et σ,
� Après la calibration, lors du calcul itératif des coe�cients θi.

Il ne parait pas cohérent d'utiliser la première solution. En e�et, la calibration s'e�ectue
sur les Caps qui sont des produits de taux. Si l'on modi�e la courbe des taux tout en gardant
les mêmes Caps pour la calibration, cette dernière perd tout son sens. On supposera donc que
l'impact sur la courbe des taux intervient uniquement au moment du calcul itératif des θi et non
lors de la calibration.
Auquel cas, les résultats obtenus après ces deux impacts de plus ou moins 2 % sur la courbe des
taux initiale sont les suivants :

Sensibilité à la courbe des taux

Impact uniforme GMAB GMDB Total

2 % 35 2 37

0 % 51 2 53

-2 % 73 2 75

Le Hedge Cost diminue fortement lorsque l'on pratique cette augmentation des taux zéro-
coupon, et inversement lors de la diminution. De plus, l'impact est quantitativement équivalent.
L'explication de ce phénomène est assez simple : en augmentant la courbe des taux zéro-coupon,
on augmente également la courbe des taux forward sur laquelle le taux instantané du modèle
de Hull et White s'ajuste en moyenne. Donc le taux instantané est en moyenne plus fort avec
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cette augmentation des taux zéro-coupon, ce qui se répercute sur le taux court et sur le taux
long. Le rendement des obligations (et des actions car on se trouve en univers risque neutre)
augmente par conséquent (7,26 % contre 5,16 % avec la courbe initiale). A terme, et ce quelle
que soit l'allocation choisie, la valeur de l'épargne du client est en moyenne supérieure, et comme
la garantie est �xée à 100 %, l'assureur enregistre des pertes inférieures, doù la diminution du
Hedge Cost.

En conclusion concernant les hypothèses �nancières, on a vu que l'allocation
d'actifs joue un rôle majeur dans le résultat du Hedge Cost, tout comme la nappe de
volatilité implicite initiale et la courbe des taux. A une moindre échelle, le coe�cient
de corrélation est également de nature à in�uencer le coût de la garantie.

10.1.3 Conclusions

Au travers de ce chapitre, nous avons pu mettre en avant les paramètres ayant un impact
non négligeable sur le coût �nal de la garantie, ainsi que ceux dont les variations in�uencent peu
ou pas le résultat. Il s'est avéré que les paramètres �nanciers, autres que les choix des modèles,
ont tous un impact important sur le Hedge Cost, qu'il s'agisse de la corrélation ou de l'allocation
entre les actifs, tout comme les données de marché utilisées pour les modèles. A ce titre, il a
été constaté que des chocs sur la courbe de taux ou sur la nappe de volatilité implicite ont des
conséquences considérables sur le coût de la garantie.
A contrario, les hypothèses actuarielles n'ont pas toutes la même in�uence sur le Hedge Cost.
Les marges de prudence sur la mortalité ont en réalité très peu d'impact sur une population
� jeune �, que ce soit le coe�cient d'abattement ou la répartition de la population. L'age de la
population, les hypothèses de rachats et la présence d'un cliquet sur la garantie sont quant à
elles des hypothèses fortes, très in�uentes sur le résultat du Hedge Cost.

Ces observations permettent de savoir, lors de la tari�cation, quelles sont les paramètres fon-
damentaux et au contraire quels sont ceux dont le choix ne doit pas requérir un étude approfondie.
Il en résulte qu'une fois les caractéristiques précises du contrat déterminées (age et répartition de
la population, présence ou non d'un cliquet sur la garantie et choix de ses paramètres, allocation
entre actions et obligations), ce sont les hypothèses �nancières qui déterminent réellement le
coût de la garantie, ainsi que les caractéristiques de la population (rachats, mortalité) dans une
moindre mesure.
Cela vient con�rmer a postériori l'importance des modèles �nanciers dans le pricing des Va-
riable Annuities. Plus particulièrement on peut insister sur le caractère primordial des données
de marchés utilisées et sur la calibration.

10.2 Etude de VaR

L'objectif de cette seconde partie du chapitre est l'étude de la mise en place d'une pro-
vision concernant le produit Variable Annuity étudié, et non l'étude du risque. Nous avons
vu à quel point les hypothèses �nancières peuvent in�uencer le coût de la garantie, on peut en
outre comparer le Hedge Cost calculé avec di�érents scénarios, notamment des scénarios catas-
trophiques. De plus, comme nous l'avons notamment vu lors de l'étude du modèle de Dupire,
l'utilisation de tel ou tel autre modèle n'est pas équivalente en terme de suivi du risque.

La tari�cation du produit se fait, comme nous venons de le montrer, sur un scénario moyen.
Donc lorsque le coût de la garantie est arreté et le produit lancé, l'assureur n'est pas à l'abri
d'encaisser des pertes importantes en cas de mauvaises performances �nancières, du fait des
garanties octroyées aux clients qui l'engagent à payer éventuellement le di�érentiel (garantie -
niveau du fond) au décès ou à maturité par exemple. Avec la crise �nancière de 2008 et les
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déboires des marchés �nanciers, ces garanties ont d'ailleurs déjà couté très cher à de nombreux
assureurs et la question du provisionnement se pose plus que jamais.

Les hypotèses du pricing peuvent varier, nous avons par exemple vu qu'un impact sur la
courbe de taux peut avoir une in�uence importante sur le coût de la garantie. L'assureur doit
être en mesure d'encaisser les pertes qui en découlent, et doit donc mettre de coté une provision
(en prélevant un pourcentage supplémentaire sur l'encours).
Di�érentes questions se posent alors : Comment l'assureur doit-il procéder pour constituer ces
réserves ? Faut-il provisionner la moyenne estimée des coûts ? Faut-il de préférence ajouter de la
prudence en provisionnant le coût d'un scénario � catastrophe � ? Peut-il encore procéder d'une
autre manière ? Un groupe de travail de l'Institut des Actuaires se réunit d'ailleurs régulière-
ment pour travailler sur cette question, d'autant plus importante qu'avec l'arrivée prochaine des
directives de Solvabilité 2, le besoin en fonds propres sera nettement plus controlé.

10.2.1 Le besoin en fonds propres sous Solvabilité 2

Le premier pilier du projet de directives européennes a pour objectif de dé�nir des seuils
quantitatifs aussi bien pour les provisions techniques que pour les fonds propres. Ces seuils
deviendront des seuils réglementaires. Deux niveaux de fonds propres seront dé�nis :

� Le MCR (Minimum Capital Requirement : Capital Minimum Requis) qui représente le
niveau minimum de fonds propres en dessous duquel l'intervention de l'autorité de contrôle
sera automatique,

� LE SCR (Solvency Capital Requirement : Capital de Solvabilité Requis) qui représente le
capital cible nécessaire pour absorber le choc provoqué par une sinistralité exceptionnelle.

Les modalités de calcul exactes du MCR et du SCR sont actuellement en cours de dé�nition,
mais il apparaît clairement que le SCR devrait être l'outil principal des autorités de contrôle.
En e�et, le SCR est le seul à être basé sur l'exposition aux risques, en incorporant tous les
risques liés à l'activité de la compagnie (souscription, crédit, opérationnel, liquidité, marché).
Une compagnie qui ne serait pas en mesure de démontrer que son niveau de fonds propres est
su�sant pour couvrir ces risques devra soumettre à son autorité de contrôle pour approbation
un plan précisant comment et quand elle pourra concrètement respecter ces critères.

Pour déterminer le SCR, les assureurs et réassureurs sont contraints de mesurer leurs risques
et de s'assurer qu'ils ont su�sament de fonds propres pour les couvrir. Il existe toujours un débat
sur le niveau de prudence (probabilité d'être solvable à un an) qui sera requis. Le niveau de
probabilité retenu pour le SCR est de 99,5 %.

Les compagnies devraient avoir le droit entre deux options : soit adopter une approche stan-
dard, soit un modèle interne. L'approche standard est actuellement en cours de dé�nition au
travers de QIS (Etudes Quantitatives d'Impact). La commission européenne a par ailleurs af-
�rmé à plusieurs reprises que ceux ayant opté pour l'approche standard se verront imposer une
exigence de capital complémentaire par rapport à ceux ayant opté pour le modèle interne. L'ap-
proche par modèle interne, bien que plus contraignante, est la seule à apporter des éléments
permettant une meilleure maîtrise de l'activité de la société.

10.2.2 Choix de la probabilité

En général, lorsque l'on cherche à calculer des risques, la mesure de probabilité utilisée est la
probabilité historique. Dans cette approche, cela ne sera pas le cas et on utilisera la probabilité
risque neutre pour les raisons suivantes.
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Le calcul de Value at Risk que l'on s'apprête à e�ectuer a pour but le provisionnement et non
la gestion du risque à proprement parler, comme cela vient d'être évoqué. La �nalité recherchée
est la mise en place d'une réserve liée aux garanties. Lorsque c'est ce but de � reserving � qui est
poursuivi, l'approche se veut la plus prudente possible.

Or si l'on se place sous la probabilité risque neutre, le rendement des actifs est généralement
plus faible que sous la probabilité historique. Bien évidemment ceci n'est pas toujours vrai et tout
dépend des périodes passées que l'on considère (par exemple il est fort probable que la dernière
année passée contredise cette généralité) mais on souhaite ici se placer dans le cas le plus général
possible. Or un rendement plus faible pour les actifs aura pour e�et d'augmenter le coût de la
garantie et ajoute donc de la prudence dans la démarche de provisionnement.

Notons tout de même qu'en règle générale, pour calculer les risques, on utilise des paramètres
re�étant la réalité (l'historique). La probabilité risque neutre est une mesure pûrement théorique
valable pour le pricing (théorie des options) ou pour le reserving (principe de prudence). Il est
dénué de sens de vouloir calculer un évaluer un risque (notamment pour le reporting des risques)
avec une mesure théorique. Les scénarios des actifs devront donc être tirés sous la probabilité
historique.

Contrairement à ces risques, les Variable Annuities sont valorisées sous la probabilité risque
neutre. Non seulement le risque �nancier (risque de marché) est la principale source de risque
impactant ces produits, mais aussi la valorisation sous la probabilité risque neutre est la seule à
fournir une valeur � objective � (� Fair Value � 1) de ce risque �nancier. La valorisation sous la
probabilité risque neutre est conforme à l'approche économique dictée par la directive Solvabilité
2, notamment pour le provisionnement et l'utilisation de la formule standard.

NB : Dans le cas du modèle interne, ce n'est pas forcément le cas car on ne peut pas raisonner
avec la fonction empirique obtenue sous la probabilité risque-neutre, la vision des extrêmes étant
altérée. Il faut alors simuler la situation économique en univers réel puis ensuite, pour établir
le bilan économique, il est possible de raisonner en risque-neutre, le Best Estimate étant une
moyenne espérée.

En�n, on peut voir une justi�cation de ce choix dans la théorie économique en environnement
incertain. La théorie de l'utilité de Von Neumann et Morgenstern ont en e�et pour hypothèses
fondatrices que :

� Les agents préfèrent strictement plus de revenus que moins,
� Les agents sont averses au risque.

En d'autres termes, entre deux jeux d'espérance de gain identique, l'agent choisira le moins
risqué. Cependant il pourrait accepter de modi�er son choix si un gain supplémentaire (appelé
prime de risque) lui était proposé.

Il faudra donc toujours bien distinguer la VaR en univers historique, qui correspond à une
perte potentielle liée au produit, et la VaR en univers neutre au risque, utilisée pour les pro-
blématiques de reserving. Dans les deux cas, la VaR repose sur l'étude d'une variable (le Hedge
Cost, la perte résiduelle, le pro�t, etc.) pour donner un niveau de risque en adéquation avec la
volonté de l'assureur au lancement du produit.

Comme nous l'évoquions en début de chapitre, le seul but de cette partie est de proposer
un Hedge Cost critique dans l'optique du reserving. L'étude est faite en risque neutre pour les
raisons évoquées ci-dessus.

1. La Fair Value d'un actif ou d'un passif est la valeur pour laquelle deux agents, identiquement informés,
accepteraient de s'échanger cet actif ou ce passif
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10.2.3 Les mesures de risque

Le choix de la � bonne manière � de mesurer les risques est au centre des problématiques de
Solvabilité 2. En e�et ce choix impacte à la fois l'évaluation des provisions et celle du capital
cible (SCR). Il existe plusieurs mesures de risque acceptables dans le contexte de Solvabilité 2,
notamment la VaR et la TVaR.

10.2.3.1 La Value at Risk (VaR)

Si X est une variable aléatoire (un risque) et 0 ≤ α ≤ 1 une probabilité, la VaR de X au
niveau α est le quantile d'ordre α de X, soit en posant FX la fonction de répartition de X :

VaR (X,α) = F−1
X (α)

La VaR a le mérite de reposer sur un concept simple et directement justi�able : VaR (X,α)
est le montant qui permettra de couvrir le montant des sinistres engendré par le risque X avec
une probabilité α. Ce concept est directement lié à celui de probabilité de ruine puisque si une
société dispose de ressources égales à VaR (X,α) et assure un unique risque X, sa probabilité de
ruine est égale à 1− α.

L'utilisation de cette mesure de risque s'est développée dans les milieux �nanciers avant d'être
largement reprise dans les problématiques assurantielles.

10.2.3.2 La Tail Value at Risk (TVaR)

L'idée de la Tail Value at Risk est d'obtenir une information sur ce qui se passe lorsque la
VaR est dépassée. Son expression est donnée de la manière suivante, ou X et α sont toujours
respectivement le risque et le seuil :

TVaR (X,α) =
1

1− α

∫ 1

α
VaR (X, s) ds

De cette manière, pour un seuil �xé, la TVar est systématiquement supérieure ou égale à la
VaR.

10.2.4 Choix d'un critère

Au moment de choisir un critère entre VaR et TVar, on pourra se réferer aux points suivants :

� La VaR n'apporte pas d'information sur la queue de la distribution,
� La TVaR contient toujours un chargement de sécurité : TVaR (X,α) ≥ E (X),
� L'ordre associé à la TVaR a une interprétation naturelle en assurance,
� Mais les préférences associées à la VaR sont plus stables que celles associées à la TVaR.

En pratique, Solvabilité 2 donne des indications pour guider le choix, et on doit considérer
les deux approches comme complémentaires et non exclusives. Ces deux mesures ne fournissent
pas la même information : La VaR nous indique la charge de sinistres au delà de laquelle il y a
ruine avec la probabilité α, tandis que la TVaR nous renseigne sur l'ampleur de la ruine au delà
de ce seuil (une fois atteint).
L'objectif essentiel de la solvabilité est de contrôler la probabilité de ruine : la VaR est un outil
naturel pour le faire. La TVaR fournit alors une mesure de l'intensité de la ruine lorsque celle-ci
survient. Dans notre cas, on ne s'intéressera néanmoins qu'à la VaR.

Il existe trois di�érentes méthodes de calcul de la VaR : la méthode analytique, la méthode
historique et la méthode de Monte-Carlo. Notons que les deux premières citées font appel aux
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données du passé et reposent donc sur la continuité entre le passé et le futur. Nous utiliserons la
VaR de Monte-Carlo (ou VaR aléatoire).
Cette méthode consiste simplement à simuler les facteurs de risque et à calculer le quantile
correspondant. Il s'agit de la plus juste intuitivement mais elle nécessite à la fois des moyens
informatiques conséquents (temps de calcul) et un e�ort accru de modélisation (trajectoires des
facteurs de marchés utilisés pour le calcul de la VaR).

10.2.5 Calculs de VaR

Pour e�ectuer les calculs de Value at Risk, on ne se base que sur le produit �ctif A de maturité
10 ans. En e�et il n'est pas nécessaire de le faire pour les deux produits et les deux maturités
car on n'attend pas de résultats foncièrement di�érents.

Notons que nous n'avons pas utilisé de modèle de mortalité stochastique. Dans la pratique,
on préfère prendre des hypothèses prudentes et, de plus, nous avons abordé l'impact des lois
de rachat dynamique dans la section précédente. En théorie la VaR que nous calculons ici est
donc légèrement inférieure à celle qui serait obtenue en modélisant la mortalité de manière
stochastique.

En générant 5000 scénarios, on obtient les résultats suivants sur la distribution des Hedge
Cost en scindant la garantie GMAB et la garantie GMDB :

Rappelons également que le Hedge Cost moyen était de 51,49 points de base pour la part
relative à la garantie en cas de vie et de 1,93 points de base pour la part relative à la garantie
en cas de décès, pour un Hedge Cost total de 53,46 points de base.
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Pour la garantie GMAB, le Hedge Cost de 51,49 points de base correspond à une VaR de
niveau 74,04 %. Cela signi�e que dans environ 74 % des 5000 scénarios simulés, le Hedge Cost
est inférieur à celui retenu dans le pricing.
Pour la garantie GMDB, le Hedge Cost de 1,93 points de base correspond à une VaR de niveau
68,84 %, donc dans près de 69 % des cas on obtient un Hedge Cost inférieur à celui retenu dans
le pricing.
Au global, le Hedge Cost du produit étant de 53,46 points de base : Ce Hedge Cost est su�sant
dans 74,12 % des cas.

On peut alors se demander si l'assureur peut se contenter de provisionner ce pourcentage.
A priori cela dépend de ses objectifs en terme de prudence et de rentabilité. Le niveau de VaR
de 65 % est couramment retenu dans les optiques de reserving, le niveau actuel semble donc
particulièrement prudent.

De ce fait, on peut soulever la question de l'intérêt de l'univers risque neutre pour évaluer les
réserves. En e�et un excès de prudence aura nécessairement pour impact de réduire la rentabilité
du produit.

10.2.6 Conclusions

Dans cet ultime chapitre, on se proposait d'aborder la problématique de provisionnement
dans le cadre des Variable Annuities. En e�et, selon les performances des marchés �nanciers, les
assureurs s'exposent à des pertes potentiellement élevées. Dans cette optique, la mise en place
d'une provision se fait selon les objectifs de l'assureur.

Pour mettre en place cette provision, plusieurs possibilité s'o�rent à l'assureur. Nous avons
présenté ci-dessus l'utilisation de la VaR calculée sur le Hedge Cost et soulevé les principales
questions sur lesquelles l'actuaire en charge du provisionnement est amené à travailler. Le choix
d'une mesure de risque et d'une mesure de probabilité est notamment important.
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Conclusions sur la modélisation

Dans cette seconde partie du mémoire, nous avons pu aborder toutes les étapes de modélisa-
tion d'un produit Variable Annuity de type GMAB-GMDB.

Dans un premier temps, en abordant les di�érentes problématiques relatives au pricing, nous
avons pu mettre en avant deux méthodes de calcul du Hedge Cost. La première, par les formules
fermées, nous a servi par la suite de point de comparaison. Tandis que la seconde, qui requiert
la génération de scénarios stochastiques de l'épargne investie et l'utilisation de la méthode de
Monte-Carlo, possède l'avantage de fonctionner pour toutes les garanties. C'est cette méthode
qui nous intéressait le plus car elle permettait aussi d'utiliser les modèles �nanciers étudiés dans
la première partie du mémoire.
Nous avons abordé la problématique de modélisation de la mortalité et des rachats en proposant
deux approches (déterministe et dynamique), ainsi que les hypothèses �nancières (corrélations,
rendements).

En imaginant des produits GMAB-GMDB �ctifs, nous avons pu tester les modèles de Du-
pire et de Hull et White en terme de tari�cation. Pour cela nous avons comparé les résultats
obtenus avec la méthode des formules fermées pour constater que le couple de nouveaux modèles
permettait d'obtenir des prix satisfaisants : les ordres de grandeurs attendus sont respectés et la
tendance prudente observée sur le modèle de Dupire se retrouve sur les Hedge Costs. De plus le
modèle de Hull et White o�re la possibilité de tarifer quelle que soit la forme de la courbe des
taux sans perdre d'information sur l'état du marché.

Ensuite, nous avons réalisé une étude de sensibilité sur le coût de la garantie en faisant
varier tous les paramètres, actuariels et �nanciers, pour pouvoir apprécier les impacts que des
modi�cations de ces hypothèses peuvent avoir sur le Hedge Cost. A ce titre nous avons pu
constater que la plupart de ces paramètres ont un impact non négligable sur le coût de la
garantie. Surtout nous avons pu proposer une explication �nancière à chaque test de sensibilité.
Cette étude permet surtout de voir à quel point un changement dans l'environnement �nancier
(baisse ou hausse des taux par exemple) peut remettre en cause la stratégie de provisionnement
mise en place par l'assureur.

En�n, nous avons terminé cette seconde partie du mémoire en proposant une étude de VaR
dans une optique de provisionnement. Cette dernière sous partie a été abordée plutôt dans le
but de soulever les questions essentielles du provisionnement.
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Les modèles �nanciers utilisés par le service jusqu'ici n'étaient pas toujours cohérents avec
ce que l'on observe sur le marché.
Le modèle de Black et Scholes fait défaut par son hypothèse de volatilité constante. Les marchés
d'options présentent depuis 1987 un phénomène de Smile de volatilité que ce modèle ne prend
pas en compte, induisant des biais dans l'évalutation des options.
Le modèle de Vasicek n'est quant à lui pas en accord avec le marché pour deux raisons. Premiè-
rement toutes les courbes de taux futurs simulées possèdent la même limite, et deuxièmement il
ne prend pas en compte la structure actuelle de la courbe des taux, alors que celle-ci re�ète les
anticipations faites sur le marché et contient donc une information importante.

En étudiant les deux nouveaux modèles que sont le modèle de Dupire et le modèle de Hull
et White, nous avons pu résoudre ces problèmes d'adéquation avec le marché.
Le modèle de Dupire permet de prendre en compte le phénomène du Smile de volatilité que
l'on observe aujourd'hui sur tous les marchés d'options. Nous avons vu qu'il permettait aussi
de retrouver des prix d'options tout en améliorant la prise en compte des évènements rares et
extrêmes.
Le modèle de Hull et White quant à lui, nous a permis une meilleure cohérence car il s'ajuste
automatiquement sur la structure des taux. Auquel cas les informations sur le marché contenues
dans la courbe des taux ne sont plus oubliées mais servent au contraire à inférer le processus du
taux court.
Pour chacun des modèles nous avons mis en avant les méthodes de calibration et de génération
des scénarios qui se sont avérées cohérentes.

Une fois que l'on dispose de modèles �nanciers �ables et robustes, on est en mesure de simuler
l'évolution de l'épargne du client dans le cadre des Variable Annuities. Nous avons d'ailleurs
explicité une méthode de tari�cation des garanties GMAB et GMDB, en reprenant précisément
tous les paramètres et toutes les étapes du pricing.

En�n nous avons cherché à comprendre de quelle manière chaque paramètre in�uence le coût
�nal de la garantie. Pour cela des tests de sensibilité ont été pratiqués sur le Hedge Cost et
ont révélé la prépondérance de certaines hypothèses par rapport à d'autres, comme par exemple
l'âge, les rachats ou encore les hypothèses �nancières. Cette partie permet d'être plus conscient
des impacts que peuvent avoir de légères modi�cations des conditions �nancières par exemple,
et donc d'apprécier à quel point ce genre de garanties peut entrainer des pertes pour l'assureur,
particulièrement ces derniers mois d'agitation des marchés.

Ces pertes potentielles soulèvent les questions du provisionnement ainsi que de la gestion du
risque de marché inhérents aux Variable Annuities. Le chapitre sur l'étude de Value at Risk a
été abordé dans ce but, pour proposer une méthode de provisionnement. Nous avons pu voir
que le Hedge Cost moyen calculé pour la tari�cation permettait de couvrir près de 75 % des cas.
Surtout, plusieurs problématiques sont à aborder dans l'optique du provisionnement des Variable
Annuities.
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Puisqu'il s'agit d'évaluer au mieux ces risques pour mettre en place une réserve, il est primor-
dial de pouvoir les réduire pour que le provisionnement ne se fasse pas en dépit de la rentabilité
du produit. De plus, avec les récents déboires des marchés �nanciers, il a souvent été demandé
aux actuaires de mettre en place des stratégies de réduction du risque.

A ce titre, on peut évoquer la stratégie de structuration de l'actif via les fonds CPPI, une
méthode classique de réduction du risque de marché et qui pourrait être un sujet d'ouverture
particulièrement intéressant dans le cadre des Variable Annuities. Une description rapide de la
stratégie, de ses avantages et de ses inconvénients est proposée en annexe D, se basant sur le
mémoire ISUP de M. Romain Fitoussi (cf. Bibliographie [19]).
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Annexe A

Rappels, théorèmes et méthodes

Avant d'étudier les modèles, il semble important de faire quelques rappels de �nance sto-
chastique pour pouvoir résoudre les Equations Di�érentielles Stochastiques (EDS) rencontrées.
D'autre part, certaines formules fondamentales que nous démontrerons par la suite reposent sur
des théorèmes parfois moins bien connus qu'il est judicieux d'énoncer dans cette annexe. Pour
�nir, des méthodes statistiques classiques sont utilisées dans la calibration ou l'implémentation
des modèles, et méritent donc d'être dé�nies ou expliquées.

A.1 Généralités sur les processus stochastiques

Processus, Filtration et Martingales

Un processus stochastique (Xt)t≥0 est une suite de variables aléatoires.

Une �ltration est une suite croissante de tribus (Ft)t≥0, c'est à dire véri�ant Ft ⊂ Ft+1.

Le processus (Xt)t≥0 est adapté à la �ltration (Ft)t≥0 si Xt est Ft-mesurable pour tout t.

Soit s ≤ t. Un processus (Xt)t≥0 Ft-adapté tel que E (|Xt|) < +∞ est :

� Une sur-martingale si E (Xt/Fs) ≤ Xs,
� Une sous-martingale si E (Xt/Fs) ≥ Xs,
� Une martingale si E (Xt/Fs) = Xs.

Mouvement Brownien

On dit que (Wt)t∈R est un Mouvement Brownien (MB) si c'est un processus à trajectoire
continue tel que :

1. Wt ∼ N
(
0, σ2t

)
, t ≥ 0, où σ est une constante strictement positive,

2. (Wt) est à accroissements indépendants.

Par conséquent, un Mouvement Brownien véri�e W0 = 0, est à accroissements stationnaires et
à la covariance :

C (s, t) = Cov (Ws,Wt) = σ2 min (s, t) avec (s, t) ∈ R+

Un Mouvement Brownien est dit � Standard � (MBS) si il véri�e : σ2 = 1

Dans la suite, Wt sera toujours un Mouvement Brownien Standard sur une �ltration naturelle.
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Processus de di�usion

Un processus de di�usion Xt est un processus qui obéit à une équation di�érentielle
stochastique de la forme suivante :

dXt = m (Xt, t) dt+ σ (Xt, t) dWt

Formules d'Itô

Fonction aléatoire d'Itô

(Xt) est une fonction aléatoire d'Ito si : Xt = X0 +
∫ t

0 ψ (s) ds+
∫ t

0 ϕ (s) dWs

C'est à dire : dXt = ψ (t) dt+ ϕ (t) dWt

où ψ et ϕ sont des fonctions aléatoires appartenant à M2 =
{
f / E

(∫ t
0 f

2 (s) ds
)
< +∞,∀t

}
Isométrie d'Itô

Pour deux fonctions f et g de M2, on a :

E
(∫ b

a f (t) dWt

)
= 0

E
((∫ b

a f (t) dWt

)(∫ b
a g (s) dWs

))
=
∫ b
a E (f (t) g (t)) dt

Lemme d'Itô

Supposons que Xt est la fonction aléatoire d'Itô précédente, alors pour toute fonction Φ deux
fois continuement di�érentiable et bornée (les dérivées partielles sont également bornées), on a :

Φ (Xt, t) = Φ (X0, 0) +
∫ t

0

(
ψ (s) Φ

′
X (Xs, s) + Φ

′
t (Xs, s)

)
ds+

∫ t
0 Φ

′
X (Xs, s)ϕ (s) dWs

+ 1
2

∫ t
0 Φ

′′

X2 (Xs, s)ϕ
2 (s) ds

C'est à dire :

dΦ (Xt, t) =
(
ψ (t) Φ

′
X (Xt, t) + Φ

′
t (Xt, t) + 1

2Φ
′′

X2 (Xt, t)ϕ
2 (t)

)
dt+ Φ

′
X (Xt, t)ϕ (t) dWt

Théorème de Girsanov

Soit (θ (t))t≥0 un processus Ft-adapté tel que EP

(
exp

(
1
2

∫ T
0 θ2 (t) dt

))
< +∞ (condition

su�sante de Novikov), alors il existe une probabilité Q tel que :

� Q est équivalente à P

� ∂Q
∂P = exp

(
−
∫ T

0 θ (t) dWt − 1
2

∫ T
0 θ2 (t) dt

)
�
(
Wt

)
t≥0

tel que Wt = Wt +
∫ t

0 θ (s) ds est un MBS sous Q
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Probabilité risque neutre

La probabilité risque neutre est une mesure de probabilité sous laquelle les prix actualisés
sont des martingales. Son existence découle de l'Absence d'Opportunités d'Arbitrage (AOA) et
son unicité découle de la complétude du marché. Dans toute la suite du mémoire, on se placera
sous la probabilité risque neutre, les actifs rapportent donc en moyenne le taux sans risque.

A.2 Théorèmes importants

Equation de Fokker-Planck

L'équation de Fokker-Planck (aussi appelée équation forward de Kolmogorov) est une équa-
tion aux dérivées partielles que doit satisfaire la densité de probabilité de transition d'un processus
de Markov.

Un processus de Markov est tel que la probabilité d'appartition d'un état du système à un
instant donné ne dépend que de son histoire la plus récente.
Supposons que l'on parte de l'équation di�érentielle stochastique suivante :

dXt = f (t,Xt) dt+ g (t,Xt) dWt

Alors la densité de probabilité p (t,Xt) véri�e l'équation de Fokker-Planck suivante :

∂p
∂t = −∂f(t,Xt)p(t,Xt)

∂Xt
+ 1

2
∂2g2(t,Xt)p(t,Xt)

∂X2
t

Théorème de Leibniz

Le théorème de Leibniz est un théorème fondamental d'analyse numérique, plus souvent
appelé � Théorème de dérivation sous intégrale �.

Soient A et I deux intervalles de R et f une fonction de A× I dans R.
Si les conditions suivantes sont véri�ées :

� ∀x ∈ A, t→ f (x, t) est continue par morceaux et intégrable sur I,

� ∀x ∈ A, t→ ∂f(x,t)
∂x existe et est continue par morceaux sur I,

� ∀t ∈ I, x→ ∂f(x,t)
∂x est continue,

� si il existe φ : I → R+ intégrable telle que ∀ (x, t) ∈ A× I, |∂f(x,t)
∂x | ≤ φ (t).

Alors la fonction F telle que F (x) =
∫
I f (x, t) dt est de classe C1 et F ′ (x) =

∫
I
∂f(x,t)
∂x dt

Théorème de Breeden et Litzenberger

A la �n des années 1970, en marge d'une littérature spéci�quement dédiée au problème de
l'évaluation des prix d'options, Breeden et Litzenberger démontrent que, dans un monde neutre
au risque, on peut lire dans le prix des options la probabilité associée par le marché à di�érents
états du futur.
Autrement dit, l'existence d'options à di�érents prix d'exercice permettrait de lire complètement
la distribution du prix futur telle qu'elle est perçue par le marché.

Ils montrent qu'on peut extraire la densité de probabilité risque neutre à partir des prix des
options en dérivant ceux-ci deux fois par rapport au strike.
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A.3 Méthodes utilisées

Les moindres carrés

Lors des di�érentes calibrations que l'on sera amené à faire pour l'étude des modèles �nanciers,
on utilisera la méthode classique des Moindres Carrés Ordinaires (MCO). Il s'agit de la méthode
d'ajustement statistique par régression la plus intuitive.

On considère un nuage de points Mi (xi, yi) que l'on désire ajuster au mieux par une courbe
mathématique de type x −→ y = f (x) dont on devra choisir le type de façon pertinente eu égard
au phénomène étudié.
On recherche les paramètres de f en minimisant la somme des carrés des distances entre yi et
f (xi). On cherche donc à minimiser :

∆ =
n∑
i=1

(yi − f (xi))
2

Les générateurs de nombres aléatoires

La génération de réalisations de variables aléatoires suivant une loi uniforme U[0,1] ou une loi
normale N (0, 1) est une étape indispensable des simulations pour les modèles �nanciers. Il est
donc primordial d'utiliser un générateur qui permet de répliquer au mieux ces lois.
Dans notre cas, il s'agira surtout de générer des nombres aléatoires issus d'une loi normale centrée
ét réduite. Pour cela on utilisera le générateur aléatoire d'Excel-VBA ainsi que la méthode de
Box-Muller.

Le générateur aléatoire d'Excel-VBA est en fait un générateur pseudo aléatoire de type
congruentiel donc la suite de nombre est prévisible. La suite de variables aléatoires de loi U[0,1]

est générée selon la relation suivante :

{
X0 ∈ N
Xn+1 = (kXn + p) mod m avec (k, p,m) ∈ N

La valeur de la variable aléatoire uniforme est alors générée par : Un = Xn
m

La méthode de Box-Muller permet d'obtenir des variables aléatoires de loi N (0, 1) à partir
de variables aléatoires de loi U[0,1] en se basant sur le postulat suivant :

Soient U1 et U2 deux variables aléatoires indépendantes et de même loi U[0,1]. Alors les variables
aléatoires Z0 et Z1 suivantes sont indépendantes et suivent une loi N (0, 1) :

{
Z0 =

√
−2 ln (U1) cos (2πU2)

Z1 =
√
−2 ln (U1) sin (2πU2)

L'algorithme de Newton-Raphson

En analyse numérique, la méthode de Newton-Raphson est un algorithme e�cace pour trou-
ver des approximations d'un zéro (ou racine) d'une fonction d'une variable réelle à valeurs réelles.
L'algorithme consiste à linéariser une fonction f en un point et de prendre le point d'annulation
de cette linéarisation comme approximation du zéro recherché. On réitère alors cette procédure
en prenant cette dernière valeur approximée comme valeur de départ.
Dans les cas favorables, les approximations successives obtenues convergent avec une vitesse
quadratique. de manière informelle, le nombre de décimales correctes double à chaque étape.
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Pour pratiquer cette méthode, il faut partir d'une valeur initiale x0 de préférence proche
du zéro de la fonction. Elle requiert également que la fonction f soit dérivable. On fait alors
l'approximation au premier ordre de la fonction, on considère donc qu'elle est égale à sa tangente
en ce point : f (x) ' f (x0) + f ′ (x0) (x− x0). Auquel cas la recherche du zéro de la fonction

donne x = x1 = x0 − f(x0)
f ′(x0) .

On obtient donc une point x1 qui a, en général, de bonnes chances d'être plus proche de la vrai
racine de f que x0 et on réitère la procédure.

Formellement, à partir du point x0, il su�t de construire la suite xn+1 = xn − f(xn)
f ′(xn) tout en

spéci�ant un critère d'arrêt (minimum de précision).

Dans le cadre de cette étude, la méthode de Newton-Raphson est utilisée pour obtenir la
volatilité implicite contenue dans le prix d'une options grâce à la formule de Black et Scholes.
La description de ce cas particulier est donnée ci-dessous.

La méthode des di�érences �nies

En analyse numérique, la méthode des di�érences �nies est la méthode la plus simple d'accès
pour déterminer la solution d'une équation aux dérivées partielles. En e�et, elle ne repose que
sur la discrétisation intuitive des opérateurs de dérivation.
Dans le cadre de l'étude, cette méthode sera utilisée lorsque l'on disposera d'un échantillon de
prix d'options en fonction du strike et de la maturité, et que l'on cherchera à en déduire les
dérivées partielles du prix par rapport à l'une ou l'autre de ces variables.

Supposons que l'on dispose d'une fonction f de deux variables : le temps t et le cours d'un
actif S. On suppose par ailleurs que les deux variables sont divisibles en un certain nombre
d'intervalles d'amplitudes respectives δt et δS. Elles forment alors une grille de discrétisation où
le point (i, j) correspond à la date iδt et au cours jδS. Notons fi,j la valeur de la fonction en ce
point. Il existe principalement trois schémas de calculs :

� Le schéma implicite
� Le schéma explicite
� Le schéma de Crank-Nicolson

En règle générale, le schéma de Crank-Nicolson donne les meilleurs résultats car il calcule
les dérivées partielles avec plus de précision. Néanmoins il est plus gourmand en temps de calcul
informatique et il ne permet pas d'e�ectuer le calcul en autant de points que les autres schémas.
Dans le cadre de cette étude, il est plus intéressant de choisir le schéma implicite car il faudra
implémenter le modèle �nancier et que l'on ne souhaite pas réduire la taille de l'échantillon de
points disponibles si celui-ci est dèjà faible.
On donne ci-après les formules relatives à ce shéma, les formules des autres chémas ne sont pas
retranscrites ici pour ne pas surcharger le document avec des formules que l'on n'utilisera pas :



∂f
∂S =

fi,j+1−fi,j
δS

∂f
∂S =

fi,j−fi,j−1

δS
∂f
∂S =

fi,j+1−fi,j−1

2δS

∂f
∂t =

fi+1,j−fi,j
δt

∂2f
∂S2 =

fi,j+1+fi,j−1−2fi,j
(δS)2
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La méthode de Monte-Carlo

La méthode de simulation de Monte-Carlo est une technique numérique pour solutionner des
problèmes mathématiques en simulant des variables aléatoires. Dans notre étude, elle est utilisée
pour obtenir le prix d'une option (européenne) lorsque l'on ne dispose pas d'une formule fermée
commme cela est le cas dans le modèle de Black et Scholes. La méthode de Monte-Carlo pour
l'évaluation des options repose notamment sur le caractère neutre au risque de l'univers dans
lequel on se place. En e�et, la valeur d'une option est dé�nie comme l'espérance sous probabilité
risque neutre de son PayO� à échéance, actualisé au taux sans risque.
Auquel cas, pour obtenir le prix d'une options, on va simuler un grand nombre de trajectoires
du sous-jacent. On va ensuite déduire, pour chaque simulation, la valeur du PayO� terminal
de l'option. On actualise alors ce PayO� au taux sans risque (la méthode de Monte-Carlo pour
l'évaluation des options repose notamment sur le caractère neutre au risque de l'univers dans
lequel on se place) et l'on calcule la moyenne pour l'ensemble des simulations.

La méthode des splines

Dans le domaine mathématique de l'analyse numérique, une spline est une fonction dé�nie
par morceaux par des polynômes. Dans les problèmes d'interpolation, la méthode des splines
est très souvent préférée à l'interpolation polynomiale, car on obtient des résultats similaires en
se servant de polynômes ayant des degrés inférieurs, tout en évitant le phénomène de Runge
(l'augmentation du nombre de points d'interpolation ne constitue pas nécessairement une bonne
stratégie d'approximation de la fonction).

Dans notre cas on utilise le plus souvent des splines cubiques. Il est possible de construire des
interpolateurs polynomiaux qui passent par une série de points ((x0, y0) , (x1, y1) , ..., (xn, yn)).
Mais il est possible que ce type d'interpolateur oscille beaucoup. Pour en fabriquer un meilleur,
il faut permettre la courbure entre les di�érents points. Pour cela, les dérivées premières et
secondes doivent être continues sur l'intervalle [x0, xn]. L'interpolateur qui lie les points (xk, yk)
et (xk+1, yk+1) est de forme polynomiale du troisième ordre :

Sk (x) = Sk,0 + Sk,1 (x− xk) + Sk,2 (x− xk)2 + Sk,3 (x− xk)2 x ∈ [xk, xk+1]

et est soumis aux contraintes :



Sk (x) = yk

Sk (xk+1) = Sk+1 (xk+1)

S
′
k (xk+1) = S

′
k+1 (xk+1)

S
′′
k (xk+1) = S

′′
k+1 (xk+1)

A.4 Détails sur l'algorithme de Newton-Raphson

Dans le cadre de la détermination de la volatilité implicite dans le modèle de Black et Scholes,
on utilise l'algorithme de Newton-Raphson de la manière suivante. On prendra l'exemple d'un
Put Européen, mais le fonctionnement est le même pour un Call et seules les formules sont
légèrement modi�ées en conséquence.
Supposons que l'on connaisse les éléments suivants :

� S0 la valeur du sous-jacent,
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� r le taux sans risque,
� q le rendement des dividendes,
� T la maturité,
� K le strike,
� Pobs le prix observé du Put sur le marché.

On cherche à déterminer la volatilité σ qui donne le prix observé du Put grâce à la formule
de Black et Scholes :

P (σ) = −S0e
−qTφ (−d1) +Ke−rTφ (−d2)

d1 =
ln
(
S0
K

)
+
(
r − q + σ2

2

)
T

σ
√
T

d2 = d1 − σ
√
T

Autrement dit, on cherche à résoudre l'équation en σ : P (σ) − Pobs = 0. Pour cela on peut
poser les variables suivantes :

µ = ln

(
S0

K

)
+ (r − q)T et ρ = σ

√
T

Auquel cas on obtient : P (σ) = P (ρ) = S0e
−qT

(
−φ
(
−µ
ρ −

ρ
2

)
+ e−µφ

(
−µ
ρ + ρ

2

))
et on

applique la méthode à la fonction f (ρ) = P (ρ)− Posb.

L'utilisation des variables ρ et µ permet d'obtenir une forme relativement simpli�ée de la
dérivée, et l'algorithme est alors très aisé à implémenter :

f
′
(σ) = S0e

−qTφ
′
(
µ

ρ
+
ρ

2

)
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Annexe B

Modèle de Dupire : Démonstrations

B.1 Formule fondamentale : La volatilité locale en fonction du
prix de l'option

Comme évoqué dans le chapitre sur le modèle de Dupire, le processus suivi par le cours du
sous-jacent est le suivant, sous la probabilité risque neutre Q :

dSt
St

= (r (t)− q (t)) dt+ σ (St, t) dWt

En utilisant des arguments standards (complétude du marché), on peut montrer que les
options sont tarifées comme si l'actif sous-jacent suivait ce processus. De manière équivalente,
cela signi�e qu'un Call est tarifé selon l'équation suivante :

C (t) = B (t, T )EQ
t (S (T )−K | S (T ) > K)

B (t, T ) est le prix en t d'un zéro-coupon qui paye 1 en T .

Dé�nissons Φ la densité de S (T ) conditionnellement à S (t) sous la probabilité Q. Alors
l'équation précédente peut s'écrire comme :

C (t) = B (t, T )

∫ ∞
K

(S (T )−K) Φ (S (T )) dS (T )

Le théorème de Leibniz permet alors de dériver deux fois par rapport à la variable K pour
obtenir :

Φ (S (T )) |S(T )=K=
∂2C

∂K2
B (t, T )−1

Cette dernière équation est une version, pour K et t continus, du théorème de Breeden et
Litzenberger. On utilise en fait l'expression pour la densité de S (T ) évaluée en K dans l'équation
forward de Kolmogorov.

Rappel :

L'équation forward de Kolmogorov, détaillée dans la première annexe, déclare que la densité
Φ (x (T ) | x (t)) d'une variable aléatoire x (T ) de valeur initiale x (t) suivant la di�usion :
dx (t) = µ (x (t) , t) dt+ a (x (t) , t) dWt est dé�nie par une équation aux dérivées partielles qui,
après suppression du conditionnement à la valeur initiale x (t), prend la forme suivante :
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∂Φ (x (T ))

∂T
+
∂µ (x (T ) , T ) Φ (x (T ))

∂x (T )
− 1

2

∂2a (x (T ) , T )2 Φ (x (T ))

∂x (T )2 = 0

Cette dernière équation peut alors être réappliqué à notre cas. Ce qui signi�e que l'on va
l'adapter au problème en faisant la di�érenciation selon K :

∂Φ (K)

∂T
+
∂ (r (T )− q (T ))KΦ (K)

∂K
− 1

2

∂2σ (K,T )2K2Φ (K)

∂K2
= 0

Si l'on remplace alors Φ (K) par son expression obtenue précedemment grâce au théorème de
Leibniz et à la double dérivation, on obtient :

∂B (t, T )−1 ∂2C
∂K2

∂T
+
∂ (r (T )− q (T ))KΦ (K)

∂K
− 1

2

∂2σ (K,T )2K2Φ (K)

∂K2
= 0

On peut alors développer cette dernière expression en e�ectuant les dérivations nécessaires
par rapport à T , puis en inversant l'ordre des dérivées partielles restantes. On obtient �nalement,
en intégrant par rapport à K :

B (t, T )−1 ∂
∂C
∂T

∂K
+r (T )B (t, T )−1 ∂C

∂K
+(r (T )− q (T ))KΦ (K)−1

2

∂σ (K,T )2K2Φ (K)

∂K
+α (T ) = 0

Avec α (T ) la constante d'intégration. On utilise de nouveau l'expression obtenue de Φ (K), puis
on multiplie par B (t, T ). On termine en intégrant de nouveau par rapport à K pour obtenir :

∂C

∂T
+ (r (T )− q (T ))K

∂C

∂K
+ q (T )C − 1

2
σ (K,T )2K2 ∂

2C

∂K2
+ α (T )K + β (T ) = 0

Avec β (T ) la constante d'intégration de cette seconde intégration.

Pour déterminer les constantes d'intégration, il su�t de faire tendre K vers l'in�ni. Dans
ce cas toutes les dérivées partielles du prix du Call tendent vers 0. Auquel cas les constantes
d'intégrations sont nulles et on peut �nalement écrire :

∂C

∂T
+ (r (T )− q (T ))K

∂C

∂K
+ q (T )C − 1

2
σ (K,T )2K2 ∂

2C

∂K2
= 0

Ce qui est équivalent au résultat fondamental suivant :

σ (K,T ) =

√√√√2
∂C
∂t + (r (T )− q (T ))K ∂C

∂K + q (T )C

K2 ∂2C
∂K2
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B.2 Formule : La volatilité locale en fonction de la volatilité im-
plicite

Cette seconde formule, qui est utilisée dans la méthode des volatilités implicites, découle de
la formule précédente par dérivation. En e�et, il su�t d'utiliser cette formule conjointement aux
dérivées partielles du prix du Call par rappor au strike et à la maturité. Les calculs ne seront pas
donnés entièrement ici pour ne pas ajouter inutilement des pages au mémoire, mais on donne
ci-dessous les formules de dérivées partielles à utiliser :

C (S0,K, r, T, σI , q) = S0e
−qTΦ (d)−Ke−rTΦ (d)

d =
ln
(
S0
K

)
+
(
r − q − σ2

I
2

)
T

σI
√
T

Φ
′
(x) =

1√
2π
e−

x2

2

∂C

∂T
= S0e

−qT
[
∂d

∂T

1√
2π
e−

d2

2 − qΦ (d)

]
−Ke−rT

[(
∂d

∂T
− ∂σI
∂T

√
T − σI

2
√
T

)
1

2π
e−

(d−σI
√
T)2

2 − rΦ
(
d− σI

√
T
)]

∂C

∂K
= S0e

−qT ∂d

∂K

1√
2π
e−

d2

2 − e−rT
[
Φ
(
d− σI

√
T
)

+K

(
∂d

∂K
−
√
T
∂σI
∂K

)
1√
2π
e−

(d−σI
√
T)2

2

]

∂d

∂T
= −∂σI

∂T

√
T +

(
r − q − σ2

I
2

)
σI
√
T

− dσI
∂σI
∂T

T −
dσ2

I

2

∂d

∂K
= − 1

K

∂σI
∂K

√
T − ∂σI

∂K

d

σI

B.3 Dérivées partielles de la volatilité implicite

Rappelons dans un premier temps la forme de la volatilté implicite proposée dans l'étude :

σI (K,T ) = α+ β1M + β2M
2 + β3T + β4T

2 + β5MT

La fonction M est appelée � Moneyness � et s'écrit :

M = M (K,T ) = −
ln
(
S0erT

K

)
√
T

Commencons donc par donner les formules des dérivées partielles de la Moneyness par rapport
à K et T : 

∂M
∂K = 1

K
√
T

∂2M
∂K2 = − 1

K2
√
T

∂M
∂T =

ln

(
S0e
−rT
K

)
2T
√
T
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Auquel cas on est en mesure de donner les mêmes dérivées partielles concernant la volatilité
implicite, lesquelles sont utilisées dans la formule donnant la volatilité locale :

∂σI
∂K = β1+2β2M+β5T

K
√
T

∂2σI
∂K2 = 2β2

K2T
− 1

K
∂σI
∂K

∂σI
∂T = (β1 + 2β2M + β5T )

ln

(
S0e
−rT
K

)
2T
√
T

+ β3 + 2β4T + β5M
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Annexe C

Modèle de Hull et White :

Démonstrations

C.1 Fonctionnelle des taux zéro-coupon

On donne ici la démonstration complète et générale du modèle de Hull et White, également
appelé modèle de Vasicek généralisé en raison de l'extension qu'il constitue au modèle de Vasicek
originel.

Dans le modèle de Hull et White, on prend le taux court comme variable d'état. Grâce à
l'hypothèse d'Absence d'Opportunités d'Arbitrage (AOA), on peut déduire tous les taux termes-
termes.
En posant α, β et γ des fonctions déterministes de la variable t, le modèle généralisé est s'écrit
de la manière suivante :

drt = (α (t)− β (t) rt) dt+ γ (t) dWt

Posons g (t) = exp

(
−
∫ t

0
β (s) ds

)
, on peut alors dé�nir le processus Ht = rt

g(t) . On obtient

alors :

dHt =
α (t)

g (t)
dt+

γ (t)

g (t)
dWt

Auquel cas, on obtient la trajectoire suivante pour le processus du taux court :
rt = g (t)

(
r0 +

∫ t

0

α (s)

g (s)
ds+

∫ t

0

γ (s)

g (s)
dWs

)

ru = g (u)

(
rt
g(t) +

∫ u

t

α (s)

g (s)
ds+

∫ u

t

γ (s)

g (s)
dWs

)
si u > t

Comme cela est indiqué dans le chapitre sur les modèles de taux, on travaille en univers risque
neutre, donc le prix du zéro-coupon en t qui paye 1 et T est donné par : P (t, T ) = E

(
e−I(t,T ) | rt

)
,

avec I (t, T ) =

∫ T

t
rsds

En utilisant la transformée de Laplace, on peut réécrire le prix du zéro-coupon en fonction
de l'espérance et de la variance de I (t, T ), de la forme suivante :
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P (t, T ) = exp

(
−E (I (t, T ) | rt) +

1

2
V (I (t, T ) | rt)

)

Les valeurs de la variance et de l'espérance se déduisent des isométries d'Itô détaillée préce-
demment, ainsi que du théorème de Fubini :

E (I (t, T ) | rt) = rt

∫ T

t

g (u)

g (t)
du+

∫ T

t

(∫ u

t
g (u)

α (s)

g (s)
ds

)
du

V (I (t, T ) | rt) =

∫ T

t

(∫ T

s
g (u)

γ (s)

g (s)
du

)2

ds

On peut en�n utiliser la dernière forme de P (t, T ) et les deux expressions précédentes pour
montrer que l'on peut écrire P (t, T ) = exp (A (t, T )− rtB (t, T )) avec les fonction A et B sui-
vantes : 

A (t, T ) = 1
2

∫ T

t

(∫ T

s
g (u)

γ (s)

g (s)
du

)2

ds−
∫ T

t

(∫ u

t
g (u)

α (s)

g (s)
ds

)
du

B (t, T ) =

∫ T

t

g (u)

g (t)
du

Dans notre étude, on peut simpli�er les expressions littérales de ce cas général. En e�et dans
le modèle qui a été etudié dans ce mémoire, le processus suivi par le taux court est le suivant :

drt = (θ (t)− art) dt+ σdWt

On peut donc adapter au cas général en posant simplement :
α (t) = θ (t) = Ft (0, t) + aF (0, t) + σ2

2a

(
1− e−2at

)
β (t) = a

γ (t) = σ

Auquel cas, la fonction g est telle que g (t) = e−at, et les fonctions A et B se retrouvent,
après calculs des intégrales, modi�ées de la façon suivante :

B (t, T ) = 1−e−a(T−t)
a

A (t, T ) = ln
(
P (0,T )
P (0,t)

)
−B (t, T ) ∂ ln(P (0,t))

∂t − σ2

4a3

(
e−aT − e−at

)2 (
e2at − 1

)
C.2 Dérivées partielles du modèle de Nelson-Siegel

Rappelons la forme de la fonctionnelle des taux zéro-coupon initiale dans le modèle de Nelson,
Siegel et Svensson (t est ici la maturité) :
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R (0, t) = β0+β1

1− exp
(
− t
τ1

)
t
τ1


︸ ︷︷ ︸

A

+β2

1− exp
(
− t
τ1

)
t
τ1

− exp

(
− t

τ1

)
︸ ︷︷ ︸

B

+β3

1− exp
(
− t
τ2

)
t
τ2

− exp

(
− t

τ2

)
︸ ︷︷ ︸

C

Auquel cas, on a : 
∂R(0,t)
∂t = (β1 + β2)A

′
+ β2

e
− t
τ1

τ1
+ β3C

′

∂2R(0,t)
∂t2

= (β1 + β2)A
′′ − β2

e
− t
τ1

τ21
+ β3C

′′

On donne en�n les dérivées partielles des trois fonctions A, B et C :

A
′

= e
− t
τ1 (t+τ1)−τ1

t2

B
′

= A
′
+ e

− t
τ1

τ1

C
′

= e
− t
τ2 (t+τ2)−τ2

t2
+ e

− t
τ2

τ2


A
′′

= − e
− t
τ1

τ1t
− 2A

′

t

C
′′

= − e
− t
τ2

τ2t
− 2 e

− t
τ2 (t+τ2)−τ2

t3
− e

− t
τ2

τ22

C.3 Formule discrétisée pour θ

Dans cette partie, on s'intéresse à la discrétisation du modèle pour le calcul des θi de manière
itérative.

L'équation di�érentielle stochastique satisfaite par le modèle, une fois intégrée, fournit l'ex-
plicitation suivante pour ru :

ru = r0e
−au + e−au

∫ u

0
easθ (s) ds+ σe−au

∫ u

0
easdWs

On peut de nouveau intégrer cette relation pour obtenir :∫ t

0
rudu = r0

1− e−at

a
+

∫ t

0
e−au

(∫ u

0
easθ (s) ds

)
du+ σ

∫ t

0
e−au

(∫ u

0
easdWs

)
du

On remarque donc que la fonction I (0, t) déjà évoquée précedemment suit une loi normale.
Posons µ (t) son espérance et ν (t) sa variance. Les fonctions µ et ν peuvent se déduire de la
démonstration précédente, cependant la forme obtenue ne serait pas celle voulue. On donne
ci-dessous les calculs relatifs à ces deux fonctions :
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µ (t) = E

[∫ t

0
rudu

]

= r0
1−e−at

a +

∫ t

0
e−au

(∫ u

0
easθ (s) ds

)
du+ σ

∫ t

0
e−auE

[∫ u

0
easdWs

]
︸ ︷︷ ︸

= 0 (Ito)

du

= r0
1−e−at

a +

∫ t

0
e−au

(∫ u

0
easθ (s) ds

)
du

= r0
1−e−at

a +

∫ t

u=0

∫ u

s=0
e−aueasθ (s) dsdu

Or par le théorème de Fubini, on peut intervertir l'ordre des intégrales, en prenant soin de
ne pas perdre le domaine d'intégration. En e�et on a 0 ≤ u ≤ t et 0 ≤ s ≤ u, donc cela équivaut
à s ≤ u ≤ t et 0 ≤ s ≤ t. Auquel cas, on peut continuer les calculs et se débarasser de la double
intégrale au pro�t d'une intégrale simple :

µ (t) = r0
1−e−at

a +

∫ t

s=0

(∫ t

u=s
e−aueasθ (s) du

)
ds

= r0
1−e−at

a +

∫ t

s=0
easθ (s)

(∫ t

u=s
e−audu

)
ds

= r0
1−e−at

a +

∫ t

0
easθ (s)

e−as − e−at

a
ds

µ (t) = r0
1−e−at

a + 1
a

∫ t

0
θ (s)

(
1− e−a(t−s)

)
ds

On peut ensuite passer au calcul de la variance ν :

ν (t) = E

[(∫ t

0
rudu

)2
]
− µ (t)2

Pour plus de simplicité, on adopte les notations suivantes :∫ t

0
rudu = r0

1− e−at

a︸ ︷︷ ︸
A

+

∫ t

0
e−au

(∫ u

0
easθ (s) ds

)
du︸ ︷︷ ︸

B

+σ

∫ t

0
e−au

(∫ u

0
easdWs

)
du︸ ︷︷ ︸

C

Dans ce cas, il est plus aisé de réécrire ν :

136



Chapitre C : Modèle de Hull et White : Démonstrations

ν (t) = E

[(∫ t

0
rudu

)2
]
− µ (t)2

= A2 +B2 + E
[
C2
]

+ 2AB + 2A× E [C] + 2B × E [C]− (A+B)2

= E
[
C2
]

+ 2A× E [C]︸ ︷︷ ︸
0

+2B × E [C]︸ ︷︷ ︸
0

(Ito)

= σ2E

[(∫ t

0
e−au

(∫ u

0
easdWs

)
du

)2
]

= σ2E

[(∫ t

u=0

∫ u

s=0
e−aueasdWsdu

)(∫ t

u=0

∫ u

s=0
e−aueasdWsdu

)]
Et donc, de la même manière que précedemment

= σ2E

[(∫ t

s=0

(∫ t

u=s
e−aueasdu

)
dWs

)(∫ t

s=0

(∫ t

u=s
e−aueasdu

)
dWs

)]

= σ2

∫ t

s=0

(∫ t

u=s
e−aueasdu

)2

ds Par la seconde isométrie d'Ito

ν (t) = σ2

a2

∫ t

0

(
1− 2e−a(t−s) + e−2a(t−s)

)
ds

On peut ensuite passer au calcul du prix du zéro-coupon. Par dé�nition, et comme nous

l'avons expliqué dans le mémoire, on a P (t, T ) = E

[
exp

(
−
∫ T

t
rudu

)]
. Auquel cas, on peu

déterminer Pn+1 = P (0, tn+1) :

Pn+1 = E

[
exp

(
−
∫ tn+1

0
rudu

)]

= exp
[
−µ (tn+1) + ν(tn+1)

2

]

= exp

− r0
1− e−atn+1

a︸ ︷︷ ︸
D

− 1

a

∫ tn+1

0
θ (s)

(
1− e−a(tn+1−s)

)
ds︸ ︷︷ ︸

E


× exp

 σ2

2a2

∫ tn+1

0

(
1− 2e−a(tn+1−s) + e−2a(tn+1−s)

)
ds︸ ︷︷ ︸

F



On peut alors calculer et discrétiser les intégrales pour les trois fonctions D, E et F a�n
d'obtenir la formule �nale. Pour cela on supposera la discrétisation de pas uniforme ∆t, donc
ti = i∆t. De plus, le pas de temps est supposé su�sament petit pour permettre l'approximation
suivante : e−a∆t ≈ 1−a∆t. En�n, on dé�nit les varaiables suivantes pour simpli�er les notations :
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b = 1− a∆t ≈ e−a∆t et Ci =
1− bi

1− b

D = r0
1−e−atn+1

a

= r0
a

(
1− e−a(n+1)∆t

)
= r0∆t

1−b

(
1−

(
e−a∆t

)n+1
)

= r0∆t
1−b

(
1− bn+1

)
D = r0∆tCn+1

E = 1
a

∫ tn+1

0
θ (s)

(
1− e−a(tn+1−s)

)
ds

= 1
a

n+1∑
j=1

∆tθj−1

(
1− e−a((n+1)∆t−j∆t)

)

= (∆t)
2

1−b

n+1∑
j=1

θj−1

(
1− bn+1 × b−j

)

= (∆t)
2
n+1∑
j=1

θj−1Cn−j+1

= (∆t)
2

n∑
j=0

θjCn−j

E = (∆t)
2
n−1∑
j=0

θjCn−j Car C0 = 0
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F = σ2

2a2

∫ tn+1

0

(
1− 2e−a(tn+1−s) + e−2a(tn+1−s)

)
ds

= σ2

2a2

n+1∑
j=1

∆t

(
1− 2e−a(n+1)∆t × ej∆t + e−2a(n+1)∆t × e2aj∆t

)

= σ2(∆t)
3

2(1−b)2

n+1∑
j=1

(
1− bn−j+1 +

(
bn−j+1

)2)

= σ2(∆t)
3

2

n+1∑
j=1

(
1− bn−j+1

)2
(1− b)2

= σ2(∆t)
3

2

n+1∑
j=1

C2
n−j+1

= σ2(∆t)
3

2

n∑
j=0

C2
n−j

F = σ2(∆t)
3

2

n−1∑
j=0

C2
n−j Car C0 = 0

Finalement en replaçant ces dernières expressions dans la formule de Pn+1, on obtient la
formule annoncée :

Pn+1 = exp

−∆tr0Cn+1 −
n−1∑
j=0

(
(∆t)

2Cn−jθj −
σ2 (∆t)

3C2
n−j

2

)

D'autre part, par dé�nition on avait : P1 = P (0, t1) = exp (−t1R (0, t1)). Or t1 = ∆t dans
la discrétisation, et r0 comme nous l'avons dé�ni est bien le taux forward en 0 de maturité ∆t,
qui selon notre schéma (pas de temps mensuel) est bien égal au taux zéro-coupon R (0, t1). Donc

�nalement r0 = − ln(P1)
∆t

.
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Annexe D

Ouverture sur le CPPI

Habituellement les assureurs conservaient la totalité du risque associé aux Variable Annuities,
ou bien en cèdaient une partie à des réasssureurs. Néanmoins depuis les années 2000, ces derniers
se sont progressivement éloignés de ce type de produits. Dans le même temps, les autorités
régulatrices (en Europe comme aux Etats-Unis) pressent les assureurs d'accroître leurs réserves
pour couvrir les pertes éventuelles. Les banques ont identi�é une opportunité d'aider les assureurs
en réduisant les risques de marché de ces contrats, leur permettant par la même occasion de
réduire leurs réserves et de concentrer leur expertise sur les seuls risques actuariels.

D.1 Dé�nition

CPPI est l'abréviation de Constant Proportion Portfolio Insurance, il s'agit d'une stratégie
de gestion dynamique d'un fond, également appelée � méthode du coussin � visant à fournir
une garantie minimale de capital à maturité, et qui permet aux investisseurs de participer aux
performances des marchés d'actions.

La structure de base d'un CPPI fait varier l'allocation entre un actif � sans risques � (obli-
gations et monétaire) et un actif � performant � (actions ou autres actifs risqués) selon les per-
formances du marché. Le gérant du fond ajuste de façon régulière et dynamique l'exposition
entre ces deux types d'actifs de manière à assurer la protection du capital investi. Lorsque la
valeur du portefeuille atteint un plancher, la position en actif risqué est totalement liquidée et le
portefeuille est uniquement investi en actif non risqué (monétisation).

Le CPPI présente un certain nombre d'intérêts pour le fournisseur du produit. La méthode
est en e�et connue pour sa �exibilité pour la gestion du risque. De plus le CPPI permet d'utiliser
une gamme étendue d'actifs �nanciers.

D.2 Fonctionnement

De manière synthétique, si l'actif risqué surpasse l'actif sans risque, le gérant du fond aug-
mente l'allocation en actifs risqués. Inversement, si la valeur de l'actif risqué décroit, le gérant
réduit l'allocation en actif risqué. Le CPPI est totalement réglementé et n'est donc en aucun cas
discrétionnaire. Pour expliquer avec précision le fonctionnement du CPPI, on dé�nit les termes
suivants :

� Le Bond Floor : Valeur actuelle de la garantie à fournir à maturité,

� La NAV : Net Asset Value, donc la valeur du portefeuille,
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� Le Coussin : NAV−Bond Floor
NAV , il s'agit de la perte en pourcentage que le portefeuille

est en mesure d'absorber,

� Le Multiplicateur m : Il correspond au levier du CPPI, il détermine la part de l'allocation
en actif risqué et est fonction de la volatilité de ce dernier (plus la volatilité est importante
et plus le multiplicateur est faible). Dans le CPPI, le multiplicateur est constant, sa valeur
est inférieure à 5 et 2,5 est souvent considéré comme la valeur optimale,

� Le Plancher et le Plafond : Il s'agit de l'allocation minimale et de l'allocation maximale
en actifs risqués,

� La fréquence rebalancement : Elle peut être régulière ou dépendante de la survenance
de certains évènements.

Auquel cas, l'allocation en actifs risqués et l'allocation en actifs sans risques sont déterminées
par les formules suivantes :

Allocation en actifs risqués = Max (Plancher,Min (m× Coussin,Plafond))

Allocation en actifs sans risques = NAV−Allocation en actifs risqués

D.3 Le risque de Gap

Une entité fournissant un CPPI souscrit par la même occasion un risque appelé le risque de
Gap (en français � trou �, � fossé �) et garantit de fournir le minimum prédéterminé quelles que
soient les performances des marchés �nanciers. C'est donc le risque que la valeur de l'actif risqué
chute rapidement d'un niveau à un autre sans qu'un rebalancement ne puisse être e�ectué et que
la valeur du portefeuille passe en dessous du Bond Floor. A cet instant, les actifs ne sont plus en
mesure de fournir la protection voulue. Le risque concerne uniquement le gérant du fond et non
l'assuré. Typiquement, ce genre de mouvement se produit dans les cas suivants :

� Lorsque des déclarations ou des résultats défavorables paraissent, entrainant une chute
brutale du cours d'une action par rapport à son dernier cours de clôture,

� Lorsqu'il y a un manque de liquidité sur le sous-jacent,
� Lorsque la cotation est suspendue.

Il est également envisageable que, suite à une baisse des taux, le Bond Floor remonte au
dessus de la valeur du CPPI. Dans la pratique, l'écart de taux est trop important pour que le
fournisseur du CPPI s'en préoccupe, même si la surveillance doit être accrue lorsque le coussin
est faible. Par ailleurs, il existe un lien direct entre la valeur du multiplicateur et le risque de
Gap car, sous certaines hypothèses, on peut exprimer la perte à partir de laquelle il y aura un
évènement de Gap en fonction du multiplicateur.
La plupart du temps les entités non-bancaires achètent une protection contre le risque de Gap
à un tiers. Il existe di�érentes manière de réduire le risque de Gap : il est possible de vendre le
risque à une compagnie de réassurance, de sélectionner uniquement des actifs liquides, d'utiliser
un multiplicateur plus faible, ou encore supprimer l'e�et de levier avant que la valeur du coussin
ne devienne nulle.
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Chapitre D : Ouverture sur le CPPI

D.4 Les avantages et inconvénients du CPPI

Les avantages

Pour l'assureur, le fait d'utiliser la stratégie du CPPI présente di�érents avantages intéres-
sants. Il y a pour commencer des avantages en terme de transparence : le client peut être aisément
conscient de la performance du fond car la méthode d'allocation est �xée dans le contrat, et il
en va de même pour les frais qui sont prédé�nis lors de la signature du contrat entre l'assureur
et la banque qui fournit le CPPI. En�n, en cas de revente avant maturité, la valeur de revente
sera dé�nie au contrat (valeur du portefeuille éventuellement amputée de frais de sortie) tandis
que dans une stratégie en OBPI, la valeur de l'option avant maturité dépend de la volatilité du
sous-jacent.

D'autre part, cette stratégie apporte une grande �exibilité de par le choix du sous-jacent et
son interchangeabilité. En e�et, comme cela a été évoqué précédemment, il est possible d'utiliser
une large gamme d'actifs sous-jacents et non seulement ceux pour lesquels il existe un marché
d'options. On peut aussi changer, au cours de la durée de vie du CPPI, de fond pour un autre
(sous-jacent) à condition que les risques de Gap pour les deux fonds soient équivalents. Le choix
de la structure ajoute également de la �exibililté car il existe de nombreuses variantes du CPPI
qui ne présentent pas plus de risque pour la banque les unes que les autres.

Les inconvénients

Néanmoins, il subsiste quelques inconvénients majeurs à l'utilisation des fonds CPPI. Le
premier est le risque de monétisation dont nous parlions en début de chapitre : si la performance
du fond s'e�ondre et que sa valeur atteint le plancher, le CPPI est alors uniquement investi en
actif sans risques pendant toute la durée restante du contrat (le risque est accru en cas de forte
volatilité du sous-jacent).
Le second inconvénient est le suivant : si l'on regarde le processus d'allocation du CPPI, on
remarque que lorsque la valeur du fond augmente, le sous-jacent est acheté, et lorsque le fond
baisse, le sous-jacent est vendu. Ce qui signi�e que le sous-jacent est toujours acheté à un prix
fort et vendu à un prix faible, ce qui ne semble pas la meilleure des stratégies.
En�n lorsque le CPPI s'est rapproché très près du plancher et que l'actif risqué performe de
nouveau, le CPPI est peu réactif à cette augmentation (coussin très faible) et tarde avant de
se réallouer totalement en actif risqué. En d'autres termes si le sous-jacent baisse et remonte
rapidement, le client ne béné�ciera pas de la remontée car celle-ci ne sera que faiblement captée
par le CPPI.
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