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Summary 

Over the last couple of years, regulatory bodies have put in place new requirements for in-

surance companies – particularly focusing on capital requirement & risk management. Solvency II 

in particular sets out the importance of the capital model. Companies can choose to use the stan-

dard formula or the internal model approach. The aim of both methods is to model all the risks 

faced by an insurance company in a coherent way – capturing the dependencies between those 

risks. This has put the emphasis on the need for Economic Scenario Generators – models which 

project simulations of economic variables in a coherent way.  

As part of my work for Towers Watson, I am responsible for the R&D of the real world ESG. 

A great deal of model improvement was required in order to capture the dynamics of the eco-

nomic series and project an economically sound output. Two models innovations were particularly 

important. Firstly, the projection of yield curves using a real world extension of the Libor Market 

Model. Secondly, the credit model which allows the projection of both transition matrices and 

credit spreads stochastically.  

The focus of this paper is the credit modelling as part of the Solvency II framework. In a 

first step, we will focus on the Solvency II requirements and the standard formula. We will then 

move to the internal model and describe Towers Watson’s solution – particularly focusing on the 

ESG. Finally, we will describe a new credit model which is an extension to the real world of the 

Arvanitis Gregory and Laurent model. This model is particularly challenging to calibrate to his-

torical data, we will therefore focus on this algorithm. We review the literature of credit models 

and compare this model to existing well-known models.  

 

Key Words 

Asset Liability Modelling, Economic Scenario Generators, Credit Risk, Solvency II, Internal Model, 

QIS5, Tail dependency, Modelling default risk, Real World, Risk Neutral, Structured Products  
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Résumé 

 

Durant les dernières années, les agences de régulation ont mis en place de nouvelles exi-

gences pour les compagnies d’assurances – particulièrement en ce qui concerne le capital régle-

mentaire et la gestion du risque. En particulier, Solvabilité II insiste sur l’importance du modèle 

utilisé pour le calcul du capital réglementaire. Les compagnies d’assurance peuvent choisir 

d’utiliser la formule standard ou bien le modèle interne. Le but de ces deux méthodes est de modé-

liser la totalité des risques auxquels les compagnies d’assurances sont confrontées de façon cohé-

rente. Il s’agit de bien capturer les dépendances entre ces risques. Ceci a amené à la nécessité 

d’utiliser un Générateur de Scenarios Economiques. Il s’agit d’un modèle qui projette des simula-

tions de variables économiques de façon cohérente.  

Dans mon travail chez Towers Watson, je suis responsable pour la recherche et le dévelop-

pement d’un Générateur de Scenarios Economiques en univers réel. Les modèles ont du être for-

tement améliorés afin de saisir les dynamiques des différentes séries économiques et que leur pro-

jection soit économiquement sensée. Deux innovations ont été particulièrement importantes. Dans 

un premier temps, les projections de courbes des taux d’intérêt ont été améliorées afin d’utiliser 

une extension au monde réel d’un modèle de type « Libor Market Model ». Dans un second temps, 

le modèle de crédit a été amélioré afin de permettre une projection stochastique conjointe de ma-

trices de transitions et de spreads de crédit.  

Ce mémoire se concentre principalement sur la modélisation du risque de crédit dans le 

cadre de Solvabilité II. Dans un premier temps, nous allons nous intéresser aux exigences de Sol-

vabilité II ainsi qu’à la formule standard. Nous nous intéresserons ensuite au modèle interne et 

nous décrirons la solution offerte par Towers Watson – en particulier le Générateur de Scenarios 

Economiques. Nous allons alors faire une critique des modèles de crédit existants. Enfin, nous dé-

crirons le nouveau modèle de crédit  développé par Towers Watson qui est une extension à 

l’univers réel d’un modèle développé par Arvanitis Gregory et Laurent. Ce modèle est particuliè-

rement difficile à calibrer à des valeurs historiques. Ainsi nous nous intéresserons à l’algorithme de 

calibration. 
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1. Introduction 

Towers Watson is a major consultancy firm advising clients on various areas from 

Benefits & Pensions, Actuarial consultancy to Investments. As part of the investment 

team, I built a real world Economic Scenario Generator which is designed to model 

the investment portfolio of institutions and be the base to Asset Liability Management.  

In the wake of Solvency II, insurance companies have been pushed to put a lot of 

efforts in developing their risk management capabilities. Companies can choose 

between using a standard formula or creating an (partial) internal model.  The latter 

was adopted by many companies which raised the interest in consultancy products 

such as Economic Scenario Generators.  

Market risks are often underestimated by insurance companies. Most think that their 

business being insurance, underwriting risk is their biggest risk. The global financial 

crisis has raised concerns about the asset side of the balance sheet. Some insurance 

companies have found themselves in difficult liquidity situations with assets sharply 

impacted by the credit meltdown. Appropriate market risk modelling has become a 

key area of development, even for very traditionally invested companies. The 

modelling of credit risky bonds and counterparty credit risk is one of the areas of 

interest. 

Many credit risk models are available in the literature but few are applicable to a 

global economic model. In order to fulfil the Solvency II requirements, a model 

should be usable for real world modelling and should capture the extreme 

movements of credit risks. We have taken the view that modelling credit spreads in 

isolation is not sufficient. Indeed, when it comes to bonds’ rating migrations, the use 

of a fixed transition matrix does not reflect the higher chance of default inherent to 

credit spreads. For that reason, Towers Watson went down the route of modelling 

both stochastic spreads and transition matrix together in an integrated manner. 

Arvanitis Gregory and Laurent introduced such a model for the risk neutral world 

and we have further extended it to the real world.  

In the section 2 of this document, we will first review the challenges posed by the 

Solvency II framework and particularly introduce the Standard Formula’s approach 

to credit spread risk. Section 3 introduces the Towers Watson modelling environment. 

Section 4 will then introduce the various types of credit model available in the 

literature, highlighting their limitations. In a 5th section, we will develop the chosen 

credit model and focus on its calibration and extension to the real world. Finally, we 

will look at limitations and possible extensions in section 6.  
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2. Challenges Faced by Insurance Companies Under     

Solvency II 

2.1 The Solvency II Framework 

Solvency II is a long term project whose goal is to establish a regulatory framework 

for risk management of insurance companies in Europe. The aim is to achieve a 

common set of rules for transparent and sound risk management. The directive has 

yet to be finalized and will come into effect in 2013 (although could be delayed).  

One of the most important topics of Solvency II is the Solvency Capital Requirement 

(SCR). The goal is to agree on common principles across Europe for its calculation. In 

order to promote confidence in the insurance sector, the SCR should reduce the risks 

of insurance companies defaulting. By definition, under Solvency II, the SCR is set 

such that an insurance company would survive a shock at the one year horizon at the 

99.5th percentile level.  

Solvency II is organized around three pillars. The first one focuses on the quantitative 

requirements, including the amount of capital an insurer should hold. The second 

pillar discusses the company’s approach to risk management, ensuring that all 

employees understand their responsibility. Finally, the third pillar emphasizes the 

need for transparency. We will focus here on the first pillar, which will come into 

force at first. One of its components is market risk.  

Under Solvency II, the calculation of solvency capital can be based on the Standard 

Formula or using an internal model. The Standard Formula categorizes risks into 

modules which can consequently be aggregated, while taking into account the 

benefits from diversification. The internal model gives more flexibility to the 

company by better reflecting the risk profile and management approach. 

Nevertheless, it presents a bigger challenge of implementation and required 

regulatory approval.  

Before reaching the final accord, various Quantitative Impact Studies (QIS) have been 

performed. They introduced various calculation methods in order to find the 

appropriate Standard Formula which captures best the risks an insurance company 

faces. The results of QIS5 were published in spring 2011.  

In this thesis, we will first present the Solvency II market risk module as introduced 

in QIS5, focusing on credit risk. We will analyse the results of QIS5 and introduce its 

limitations. This will drive us towards the internal model route, particularly looking 

at the Towers Watson offer. 
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2.2 The Market Risk Module under Solvency II Standard Formula 

In this section, we will introduce the Standard Capital Requirement calculation. The 

fifth Quantitative Impact Study (QIS5) introduces a framework to calculate the capital 

requirement. The SCR is the end result of the calculation. It can be decomposed into 

the basic solvency capital requirement, the capital requirement for operational risk 

and the adjustment for the risk absorbing effect of technical provisions and deferred 

taxes.  

 

Our interest today mainly focuses on the Basic Solvency Capital Requirement. It in-

cludes the following six risk categories: 

- Market risk 

- Counterparty default risk 

- Life underwriting risk 

- Non-life underwriting risk 

- Health underwriting risk 

- Intangible assets risk 

Each of those components are summed up (while taking into account the diversifica-

tion benefit) to obtain the gross Basic Solvency Capital Requirement.   

Please note that the standard formula also takes into account the loss absorbing ca-

pacity of technical provisions. Particularly, the risk mitigating effects of market risk. 

Nevertheless, the focus of this paper is the market risk component as described as 

part of the gross Basic Solvency Capital Requirement (the capital requirement with-

out risk mitigating effects). 

 

Under Solvency II, “assets should be valued at the amount at which they could be ex-

changed between knowledgeable willing parties in an arm's length transaction” and 

“Liabilities should be valued at the amount for which they could be transferred, or 

settled, between knowledgeable willing parties in an arm's length transaction” (QIS5). 

Those quotes emphasize the need for market risk modelling.  

 
Firstly, what is market risk? As described in the QIS 5 specification, “Market risk 

arises from the level or volatility of market prices of financial instruments. Exposure 

to market risk is measured by the impact of movements in the level of financial 

variables such as stock prices, interest rates, real estate prices and exchange rates.” 

The market risk module under Solvency II addresses equity risk, interest rate risk, 

property risk, currency risk, concentration risk, illiquidity risk and spread risk. For 

each risk type, the formula assesses the capital required to overcome a set of specified 

scenarios. It then sums the impact of those scenarios (up and down shocks to the 

market) across the various risk types while taking into account the correlation 

benefits. The overall market risk is the maximum capital required to overcome both 

the up and down scenarios.   
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Where r and c represent the rows and columns of the correlation matrix.  

The correlation matrix is different for the up and down scenarios. The entries         

and           are the entries for the up and down shock for each risk type r. It is 

important to note that only interest risk is described as up and down shocks while all 

the other risk types are one sided.  

This formula captures the diversification benefit inherent to a portfolio of a variety of 

risks. The correlation matrices contain entries for the following risks; interest, equity, 

property, spread, currency, concentration and illiquidity premium risks. The use of a 

separate correlation matrix for up and down scenarios highlights the fact that an up 

shock on interest rates does not have the same correlation to the other variables as a 

down shock on interest rates.  

The focus of this paper is the spread risk calculation and bonds in particular. The 

spread risk component is the sum of capital requirement for bonds, structured 

products and credit derivatives.  

            
           

            
   

Capital requirement allocated to the bond market is described as the “immediate 

effect on the net value of assets and liabilities expected in the event of an 

instantaneous decrease of values in bonds due to the widening of their credit spreads” 

(QIS5). The formula uses a set of pre-defined scenario.  

     
                                           

      is the change in value of the bond portfolio due to the spread shock 

            .  

The impact of the spread shock              on bond i is approximated using the 

duration: 

                    
            

This is a first order approximation which does not take into account the impact of 

curvature or further orders.  

At the portfolio level, the change in asset value is the sum of the individual bond 

value changes.  
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The scenarios              should deliver a shock equivalent to a 1 in 200 year event 

following a widening of credit spreads for rating i. This shock is applied on a line by 

line basis. The market value of each bond changes proportionally to its duration. 

Instead of modelling each bond separately, it is possible to instead apply the shock on 

the average duration of bond portfolio at rating i; then weighting by the market value 

of the bonds in this rating category.  

Duration floors and caps are employed. Indeed, if a bond has a duration that is below 

the duration floor, the impact on that bond is calculated with the duration floor 

instead of its true duration. This will increase the capital requirement – therefore 

being conservative. Furthermore, there is no point over-penalising long duration 

bonds; therefore a duration cap is put in place.  

The following table gives the spread risk factors for bonds alongside their duration 

floor and cap: 

     Duration Floor Duration Cap 

AAA 0.9% 1 36 

AA 1.1% 1 29 

A 1.4% 1 23 

BBB 2.5% 1 13 

BB 4.5% 1 10 

B or lower 7.5% 1 8 

Unrated 3% 1 12 

 

The     scenarios are calculated as the 99.5th percentile of the distribution of changes 

in credit spreads over one year. Indeed, the scenarios should capture the extreme 

widening credit spreads event.  

The standard formula approach has the advantage of being simple to adopt. It uses 

the argument of duration in order to assess the impact of a spread movement on the 

bond value. Being only a first order approximation, it does not capture second order 

movements like curvature. There is no benefit for holding a diversified duration 

portfolio as the correlation across the spread terms are not taken into account. This 

does not reflect reality – most insurers would hold a diversified duration portfolio in 

order to match their liability duration thus decreasing their liquidity risk.   

Another limitation of the standard formula for spread risk is that the risk factor 

adjustment     is the same across the full term structure of credit spreads. This 

assumption was violated during the credit crunch crisis. At a first stage, only short 

bonds were impacted by the market movements while long term bonds remained 

stable. Indeed, generally speaking long bonds exhibit a much lower volatility than 

short maturity ones.  

Not only does it not capture the variety of movements cross the yield curve, this 

widening of spreads is not associated to an increase in default probability. Only the 

value of the bonds is impacted by a spread movement. The default risk is not 
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incorporated in the spread risk module while it is an important component of credit 

risk. Default rates are not stable overtime – they should also be modelled 

stochastically. 

While taking into account the diversification benefit between risk categories, the QIS 

5 formula does not take into account diversification benefit for holding a variety of 

ratings. The evolution of the spreads amongst various ratings is not perfectly 

correlated. Investors in short and long maturities do not have the same profile and 

therefore, different events can have a different impact depending on the maturity and 

rating. In that perspective, it is beneficial to use an internal model as it will highlight 

the benefits of holding a diversified portfolio.  

Furthermore, the correlations in case of crisis are very different from standard 

correlations observed in history. QIS5 introduces a 50% correlation between the credit 

spreads scenarios and equity shocks, this is arbitrarily chosen. The historical 

correlation between AA spreads (Merrill Lynch Bond indices) and equities (S&P500) 

is about -27% - credit spreads widening is linked to an equity crash. The graph below 

shows the evolution of the correlation between equity and spreads over a 5 year 

rolling window. It is clear that correlation is not stable over time. In times of crisis, it 

can tend towards -100%. Therefore, a 50% stress case is not strong enough. Please 

note that the QIS5 correlation number is for the spread scenario (widening of spreads) 

vs. equity scenario (market crash) – therefore, it automatically adjusts for the fact that 

spreads and equities move in opposite direction.  

 

Figure 1 - Correlation between the S&P500 and the AA spread (Merrill Lynch Bond index) over a 5 year rolling window 

Although the Standard Formula introduced in QIS 5 captures more aspects of credit 

risk than previous quantitative impact studies did, it still has various limitation as 

listed in the previous paragraphs. The Standard Formula may sometimes 

underestimate risk while also being disadvantageous for companies with a large and 

diversified credit portfolio.   
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Indeed, the report of the results of the QIS5 study shows that market risk is the biggest 

risk hold by insurers. This is particularly true for life insurers where liabilities have 

embedded options which require hedging techniques. Generally speaking, the biggest 

risks are spread risk, equity risk and interest rate risk. The spread risk calculation was 

strongly criticized as it was either producing too high or too low stresses. At the time 

of writing this document, the final Solvency II recommendation is not published and 

QIS5 will only serve as a base for the final regulation. In its current implementation, it 

is apparent that large companies are more likely to opt for the (partial) internal model. 

We will describe the internal model approach in the next section. 

 

2.3 Internal or Partial Internal Model 

As part of their Solvency II implementation, companies are allowed to use a (partial) 

internal model instead of the Standard Formula. It permits a tailor made capital 

management. It is therefore more interesting for bigger firms, although it comes at a 

cost. Indeed, it is a more challenging approach; companies will need a great deal of 

model development, parameterization and validation before their internal model is 

approved. The results of QIS5 confirmed that most insurance companies are going 

down the route of the internal model or partial internal model instead of using the 

Standard Formula approach.  

Instead of using a Standard Formula to calculate the capital requirement, a Monte 

Carlo framework is used. It models all the risks faced by an insurance company in a 

coherent way and calculates the profit and loss. The capital requirement is obtained 

using a one year Value-at-Risk. It is set such that the insurance company holds 

sufficient funds to absorb significant losses. The Value-at-Risk confidence level is 

99.5 – meaning that ruin should not occur more than once every 200 years.  

One of the key components of the capital model is the Economic Scenario Generator 

(ESG). As mentioned previously, the aim of the internal model is to capture all the 

risks faced by an insurance company – particularly modelling all the dependencies 

between variables. Economic scenarios are projected using a Monte Carlo technique 

and will feed both the liability and the asset side of the balance sheet. Figure 2 

demonstrates the role of the ESG in the internal model of a typical non-life insurer. 
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Figure 2 - Role of the ESG in the non-life capital model 

 

On the liability side, ESGs are required in order to discount reserves & for liability 

projections. Indeed, under Solvency II, reserves should be discounted using LIBOR 

curves. Furthermore, some insurance companies may add additional linkages 

between economic variables and liabilities. For instance, a factor model on core 

inflation can be used to model medical claim series. Some insurance companies also 

try to correlate equity stresses with catastrophe risks in order to better capture the 

concentration risk between their investment portfolio and the liability risk.  

On the asset side, the Economic Scenario generator will be used to derive asset 

returns and valuations.  

Because Economic Scenario Generators project many variables and economies, they 

are complex models which require regular updates and maintenance. Therefore, 

many companies have taken the route of the partial internal model where some 

components of the internal model are outsourced like the ESG or the catastrophe 

model.  

Towers Watson’s area of expertise is actuarial consultancy, and the team I am 

working in specializes in investment advisory. This encompasses various products; 

the Economic Scenario Generator (ESG) which projects economic variables over time, 

the Asset Model where the user can define its asset universe and generates capital 

and income return, and the Portfolio Model where liabilities and assets come together 

to develop a rebalancing strategy. The Credit Spreads and transition matrices are 
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outputs from the ESG, while the credit risky bond returns are computed in the Asset 

Model. The following section will describe in further detail the Towers Watson 

Investment product suite.  
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3. The Investment Product Suite 

As mentioned in Section 2, large insurance companies tend to opt for the partial 

internal model. They employ their internal expertise for modelling liability cash flows 

and reserves; while they rely on external providers for the Economic Scenario 

Generation. The Towers Watson Investment team offers a range of products which 

help insurance companies in their capital modelling exercise. Those tools include the 

ESG, where economic variables are simulated through a Monte Carlo framework. 

Those scenarios are then used in the Asset model. The user defines its asset universe 

and generates returns. Finally, liabilities and asset return are aggregated in the 

portfolio model. This is where the ALM takes place. This section will introduce these 

various components.  

 

Figure 3 - The Investment Product Suite 

 

3.1 Igloo 

Before introducing the product suite, this section briefly describes the coding 

environment. Towers Watson not only provides actuarial consultancy but also a 

software called Igloo. The latter is a stochastic modelling tool which allows users to 

easily perform Monte Carlo simulations.  



Modelling Credit Risk in the Solvency II Framework 2011 

 

19  
 

The environment of this software is similar to Excel but with a visual component. One 

can create base units which are then linked to each other. Variables are passed from 

the output of one base unit to the input of another one. Calculations are performed in 

each base unit. The software compiles the code automatically and handles the order 

of calculations automatically and appropriately. As such it is a very easy 

programming environment.  

The draw of random numbers is generated in Igloo – generally using a Mersenne 

Twister algorithm (although other algorithms are available).  

The correlations between economic variables are applied by reordering simulations. 

Again, this is handled automatically in the background. 

A project in Igloo is like a spreadsheet in Excel. With the only difference that projects 

can import results or data from other Igloo projects and then export values. It is 

therefore possible to construct projects interacting with each other.  

The investment products of Towers Watson are coded in Igloo. They are effectively 

projects in Igloo whose outputs can be fed into other projects or exported to csv, excel 

or databases. Given that most of Towers Watson’s clients build their capital model in 

Igloo, the ESG & Asset model results are directly feeding the capital model. It is a 

very efficient platform which can help reducing operational risk. 

 

Figure 4 - Igloo 
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3.2 The ESG 

There are two types of ESGs; risk neutral and real world. Risk Neutral ESGs are 

typically used by banks for pricing derivatives. Indeed, by construction, risk neutral 

ESGs are calibrated using market prices of derivatives today. The parameters are 

inferred to match the pricing of such products at time 0. Such an ESG essentially 

reflects the market’s view of the evolution of the world (e.g. implied volatility) but 

contains limited historical analysis. Life insurers’ capital modelling uses such 

scenarios in order to price embedded options in contracts. In effect, life insurance 

liabilities require the use of replicating portfolios for their evaluation. Risk neutral 

models are not appropriate for risk management and asset liability modelling.  

Contrarily, a real world ESG focuses on the dynamics of economic variables in order 

to generate realistic scenarios. Its calibration uses observed historical time series. It 

produces coordinated scenarios which reflect the distributional properties of various 

economic series. The main use of such series is risk management and as such the 

models are not suitable for accurate forecasting or making short term trading 

decisions. These models are also not suitable for derivative pricing purposes. 

The Towers Watson Economic Scenario Generator consists of models for nominal 

interest rate yield curves, real interest rate yield curves, LIBOR swap curves, equity 

total (and price) return, dividend yields, price inflation (CPI), retail price index (RPI), 

wage inflation, property total return, foreign exchange rates, gross domestic product, 

federal funds rate (US only) and various indices (global hedge fund & HFRI sub 

indices, commodities, global equities, emerging market equities, private equity, REIT 

index, global high yield bonds, high yield emerging market). Each economic variable 

has its own model – i.e. each variable follows a specific SDE. The dynamics of the 

individual series is better captured. The number of years of projection, the number of 

scenarios and the currencies to model are user-defined inputs. Figure 5 shows a 

typical of ESG output for GBP for a projection over 20 years. The green line is the 

mean of the distribution. The dark blue area is the centre of the distribution while the 

light blue is the tail of the distribution.  
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Figure 5 - ESG Output Example 

In order to produce the economic scenarios, each model is calibrated to historical data 

as a first stage. The calibration process usually uses maximum likelihood or least 

squared differences techniques. This can be challenging for processes where an 

unobservable variable is required (e.g. stochastic volatility or regime switching). In 

such instances, the use of a Kalman filter or of MCMC algorithms can be an 

alternative.  Our calibration does not focus on a particular time horizon; our aim is to 

have realistic scenarios at the one year projection and at the long end. Depending on 

the purpose of the ESG, users would need different lengths of projection. Indeed, 

Solvency II capital modelling only requires one year projections. Nevertheless, in 

order to simulate the run-off of liabilities, some insurance companies may require 

ESG projections of more than 40 years. Therefore, our parameterization exercise 

focuses on both short term and long term projections.  

The projection of the scenarios is constructed in a “cascade” structure, with the 

outputs of some models being fed into others lower down the cascade. Figure 6 

shows how some variables are directly linked to others. However, cascade links are 

not enough to drive the full dependency structure of the economy. Therefore, a 

copula is applied between the random shocks driving the models.  
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Figure 6 - The ESG Cascade 

In the calibration process, we obtain residuals from each model. We then study the 

correlation between the residuals of each series and calibrate a grouped Student’s T-

copula. When generating this dependency structure, the ESG generates a set of 

uniform variables which correlations and tail dependency satisfy the proprieties 

imposed by the Grouped t-copula. Copulas allow the specification of the dependency 

structure of a multivariate distribution. Because we model various economic variables 

and economies, having the flexibility to specify a full correlation matrix between 

every variable is necessary. Furthermore, it would be desirable to capture the 

stronger tail dependency observed during a market crash. We opted for the Grouped 

t-copula as it meets the two conditions. It allows for a different correlation between 

different innovations but also allows for different degrees of “tail dependency”. Each 

innovation is placed into a group (in the ESG, groups are currently made up from 

economic variables from different currencies; for example, equity returns from 

various currencies will be placed into one group, GDP forms another group etc.). 

Innovations within a group have a Student’s t-copula dependency with a calibrated 

number of degrees of freedom. The higher the number of degrees of freedom, the 

closer to the Gaussian copula; the lower that number, the higher the tail correlation. 

Between groups, the dependency structure is Gaussian; i.e. only the standard 

correlation structure is applied. 



Modelling Credit Risk in the Solvency II Framework 2011 

 

23  
 

 

Figure 7 - Example Tail Dependency between Equity Markets 

 

In the ESG projection, the first step is to generate the dependency structure. We 

simulate the normal draws that are linked via the copula. These innovations are then 

fed into the individual models and each economic variable is projected according to 

its own model/equation. By construction, the variables are correlated through both 

the copula and the cascade structure.   

Figure 7 shows the correlation between two equity series (GBP and USD) as a heat 

map. It is clear that thanks to the Grouped t-copula, the tail dependency is enhanced.  

The Towers Watson ESG only generates economic variables; it does not generate asset 

returns such as bond returns. Some ESG providers have decided to calibrate bond 

series to existing bond indices. Users would then have to rely on this subset of indices 

to replicate their portfolio. In our opinion, this isn’t granular and flexible enough. 

This is why the ESG is calibrated to generic yield curves and spreads term structures. 

The Asset model is then used to generate the bond returns and other asset classes.  
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3.3 The Asset Model 

The Asset Model is used to produce asset returns for a desired set of asset classes – 

the user defined asset universe. In this way, the Asset Model is typically used to pro-

duce valuations and cash flows from a range of securities that the user might like to 

consider in a portfolio at a later stage. These might include actual securities or no-

tional ones used as a proxy for one or more securities that might be invested in. The 

returns can then be imported into the Portfolio Model to construct asset portfolios. 

Most insurance companies generally hold vanilla asset classes – equities, corporate & 

government bonds, inflation linked bonds, floating rate notes and a few hedging in-

struments. This is particularly true for general insurers with no catastrophe insurance. 

In this special case, asset liability matching is applicable and they would tend to hold 

a portfolio with a similar duration to that of liabilities. Nonetheless, more exotic asset 

classes tend to be attractive to catastrophic insurers where Asset Liability matching is 

irrelevant. For catastrophic losses, the return and diversification benefit is more im-

portant. Therefore, we have noticed that MBS, CMBS, CMOs and other ABS have be-

come increasingly a part of their investments.  

The Asset Model is very granular. Users can define asset classes down to security 

level or aggregate them to generate indices. Each asset class has its own model and 

valuation method. For the purpose of this thesis, we will focus on bond returns.  

 

Figure 8 - The Asset Classes Available in the Asset Model 
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For bond returns, the asset model values the assets using a discounted cash flow 

method. Cashflows are calculated by the exact date and then discounted using the 

yield curves of the ESG. The aim of the model is to generate asset indices. The user 

can specify rebalancing rules; “hold”, “reset” or “hold & reset”. Where a subclass is 

set to “hold”, the securities will be held until redemption – such that the group is ef-

fectively run off until nothing remains. Where the subclass is set to “reset”, it will re-

balance to the original profile by selling the securities at the end of the period and us-

ing the proceeds to buy new securities with the original parameters. Finally, where 

the subclass is set to “hold & reset”, the security will be held until redemption. The 

principal redeemed is used to rebalance the matured security to its original profile. 

This last method is a combination of the two previous methods. The flexibility in re-

balancing methods is very interesting to insurance companies which look at asset li-

ability modelling and try to keep the duration of their portfolio constant.  

For other asset classes that are more complex, the discounted cash flow method is not 

applicable. For instance, a proxy model is used to compute ABS returns. The user can 

input the delta and gamma to some interest rates.  

Derivatives are not available in the asset model as one would need a risk neutral ESG 

in order to value these. It is nonetheless possible to use derivatives as hedging in-

struments where only the cash flows are modelled but the asset is not valued and 

cannot be traded.  

Another very important feature available in the asset model is the risk split. Returns 

are split by capital and income return as well as by risk category: Equity risk, spread 

risk, FX risk, interest rate risk. This is one of the Solvency II requirements; insurance 

companies should be able to identify the exposure to those individual risks.  

Please note that the Solvency II credit risk definition does not contain elements of 

market risk but only concerns reinsurance and premium debtors default risk – it is 

therefore a counterparty risk which has to be modelled separately from the main 

market risk exposure. Spread risk on the other hand is the aggregation of bond de-

faults, migrations and spread movements – thus only focusing on market risk. Equity, 

FX, and interest rate risk are all part of the market risks exposure.  

  

3.4 The Portfolio Model and ALM tools 

Once the asset returns have been generated in the asset model, the user specifies its 

investments in the individual asset classes in the portfolio model. Furthermore, 

rebalancing rules are included and import liability cash flows imported. The portfolio 

model will automatically sell and buy assets based on the liability outflows and 

reinvestment rules.  
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The portfolio model generates reports for risk management 

- Evolution of portfolio investments 

- VaR  

- VaR allocated by Risk Type and asset classes 

- TVaR 

 

Figure 9 - VaR Allocation 

At this stage of the process, no simulations have to take place. The rules are generally 

deterministic. It is therefore possible to create a loop around the portfolio model 

inputs in order to find the optimal investment strategy. We will get back to asset 

liability modelling at a later stage.  
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4. Introduction to Credit Risk 

In this section we will review the credit modelling approaches available in the 

literature. We will start with the general measures of credit risk – transition matrices 

and credit spreads. And then we will move the idiosyncratic types of models.  

 

4.1 Probabilities of Default and Credit Spreads 

In the bond market, there are two types of investment; government bonds and 

corporate bonds. Government bonds are assumed to be risk free (with some 

limitations, please refer to section 5.2). The risk free yield curve can be backed out 

from government bond prices. Corporate bonds, on the other hand, can default; this 

makes them risky investments. Investors do not wish to bear the risk unless it is 

compensated by a higher return. As for government bonds, assuming a company has 

emitted bonds with various maturities, a risky yield curve can be inferred from the 

bonds available in the market. The spread between the risky yield curve and the risk 

free yield curve is called the credit spread.  

It is frequent to assume that bond prices vary with interest rates (risk free yield curve) 

and default probability of a company. Thus, credit spreads should directly reflect the 

chances of a company defaulting. It is worth noting that this is limited to the theory. 

Indeed, during the credit crisis, credit spreads were sky rocketing without a direct 

linkage to a similar increase in probabilities of default. Fear in the market and lack of 

liquidity are also important contributors to credit spread movements.  

 

4.2    Ratings, Scores & Transition Matrices 

In order to assess the credit quality of a firm, various approaches are used in the 

market. Depending on the time horizon of interest, one would use the “at-the-point-

in-time” methods or “through the cycle” methods.  

The first type of method assesses the credit quality of a firm over the coming months. 

Such approaches use quantitative methods or structural models looking at the 

debt/equity ratios.  

The second type of method is less volatile as its aim is to capture the creditworthiness 

over a long time horizon. Ratings are more stable over time. The methodology 

includes the whole business cycle - peaks and droughts of the economy. Generally, 

transition matrices reflect through-the-cycle probabilities.  

Rating agencies affect a rating to most issued bonds. These should reflect the issuing 

companies’ creditworthiness. The existing three main rating agencies use their own 
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method to assess the probability of default of companies. Ratings are the main 

indicator of spread level and are the easiest way to group issuers in a model.  

Furthermore, rating agencies publish rating transition matrices which give the 

probability of migration from one rating to another over the course of one year. These 

matrices are published on a yearly basis. Our analysis is based on the S&P Annual 

Global Corporate Default Study and Rating Transitions and contains both an average 

transition matrix calculated using data from 1981 but also the current year’s transition 

matrix.  

Transitions and probabilities of default are not fixed in time but vary with the 

economic cycle (please see Figure 10). Most insurance companies would like to model 

their investments on a multi-year basis. Therefore, transition matrix used may reflect 

the average over the longer period which this has the drawback of underestimating 

credit risk in a crisis environment. Using the current year’s transition matrix is not 

appropriate for longer term modelling. In the Towers Watson ESG, we combine both 

approaches. Our aim is to capture the current environment of probabilities of default 

and then mean-revert towards the long term S&P matrix. We will develop this idea 

further in Section 5.   

 

Figure 10 - Evolution of Default Probabilities (extract from S&P) 
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4.3 Merton Model 

In essence, credit spreads are meant to reflect the probability of default of a company. 

It is thus sensible to look at the capital structure. This is the approach introduced by 

Merton. This model falls into the idiosyncratic category of models as it analyses 

individual companies in isolation.  

The Merton model originated from Black and Scholes who suggested that their 

methodology could be extended to corporate security pricing. Indeed, a firms with 

value V is financed through equity (S) and discount bonds (value P and maturity T). 

The debt principal is K. The value of the firm at time t is 

           

The model then assumes that the value of the firm follows a Geometric Brownian 

Motion. Default is triggered by the event     . This relies on one major assumption; 

bond holders cannot force the firm to go bankrupt before the maturity of the debt.  

In the event of default, bondholders have priority over equity holders and receive   . 

Otherwise, they receive the principal of the debt, K. This payoff can be seen as the 

payoff of a riskless bond minus a put option on the value of the firm. Indeed,  

                                       . 

Shareholders receive nothing in the event of default but would profit from the upside 

if the firm remains solvent. Their payoff is a call option on the value of the firm with a 

strike K:  

                                       

 

According to the Black-Scholes formula for option pricing, the equity value is 

obtained immediately: 

                                    

   
    

  
      

 
   

       

      
 

Where r is the risk free rate, and    the volatility of the firm’s value.  

Although this model sounds appealing as it brings a lot of insight on the relationship 

between the value of a firm and its securities, it relies on many strong assumptions, 

E.g.:  

- the capital structure is very simplistic 
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- it is assumed that one can observe the value of the firm easily and that it follows a 

GBM 

- riskless interest rates are constant 

- there is no debt renegotiation 

- default occurs at the debt maturity only 

Many extensions to this approach have been published. One of which was to extract 

probability of default from equity prices. This is the basis of the KMV credit method.  

Once the structure of the debt is known, it is possible to back out the distance to 

default k. N(-k) would give the default probability (with N the cumulative normal 

distribution). KMV have extended this idea.  

The problem of this method is that the probability of default obtained here is a point 

in time measure. Ratings on the other hand are through-the-cycle assessments of 

creditworthiness. When one is looking at tactical asset allocation and needs 

information to price individual issues, such a method becomes attractive. 

Nevertheless, a lot of information is required from the debt structure and it relies on a 

significant number of assumptions. In the context of risk management, this method is 

not appropriate.  

We will now introduce another type of idiosyncratic models – the intensity based 

models.  

 

4.4 Credit Intensity Models – Reduced-form models 

Intensity models (also called reduced-form models) consider the default of a 

company to be an exterior event which hits the company by accident. The probability 

of the default event is extracted from bond prices. 

The default time is modelled as the first jump of a Poisson process. The probability of 

a jumping in the next time interval dt is 

                          

     is called the intensity or hazard rate, it is assumed to be strictly positive. 

Depending on the specification of the model, the intensity rate is deterministic or 

stochastic (often modeled as a Cox Ingersoll Ross process).  

It then flows that the probability of the bond surviving past maturity (survival 

probability at t) is 
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This is very similar to the price of a zero coupon bond in an interest rate model where 

the short rate is replaced by the hazard rate.  

Furthermore, one can then compute the price of a risky zero coupon bond: 

                                     
 

   

From this notation, it becomes clear that the hazard rate is the credit spread.  

One of the limitations of this model is that the hazard rate is modelled independently 

of the other sources of randomness. Furthermore, the credit spreads of individual 

companies are modelled stochastically but not in an integrated manner.  

In the context of a bond portfolio, one isn’t interested in the individual riskiness of the 

issuers - the so-called idiosyncratic risk. Instead, it is the systematic nature of the risk 

that should be focused on.  
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5. The JLT framework and extensions 

In the previous section, we have introduced the link between probabilities of default 

and credit spreads. Furthermore, we have looked at transition matrices and their 

information content with regards to bonds’ riskiness. The two models presented in 

the previous section do not take advantage of rating information. These two models 

are ideal when a defined security should be priced – indeed, the focus should then be 

on idiosyncratic risk. When it comes to risk management, systemic risk should be 

looked at and therefore a different model is required.  

 

5.1 The JLT framework & alternatives 

The Jarrow, Lando and Turnbull model focuses on the link between probabilities of 

default and credit spreads. Based on a transition matrix, credit spreads are inferred 

directly. This assumes that corporate bond prices are only driven by rating and 

maturity.  

The model stems from the correspondence between the risk neutral probability of 

default and the bond price. Indeed, credit risky bond prices can be linked to the 

survival probability. If the bond survives up to maturity      , the owner will 

receive principal repayment. But if the bond defaults before maturity      , the 

owner receives the recovery rate    Therefore, the price of a bond at time t with rating 

i and maturity T is as follows: 

                      
 

 

                     

Where Q is the risk neutral probability measure,    is the risk free rate,   is the 

recovery rate,   the time of default.  

This translates into the following decomposition between risk free bond prices and 

survival probability.  

                          
     

We denote by B(t,T) the price of a risk free bond at time t and maturity (T-t),     
    is 

the probability of going from rating i to default between t and T.  

Please note that the probability of default q is the risk neutral probability over the 

periods T-t. Indeed, K is the default state – assuming we have K-1 ratings. This is a 

discrete probability. It is important to note that the transition matrices produced by 

rating agencies are always provided with a time horizon – generally one year. Indeed, 

the probabilities change depending on the time horizon. A common assumption is 

that probabilities of migrations and default follow a Markov chain process. Indeed, 
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the yearly transition matrix can be compounded in order to obtain the transition 

probabilities over 2 years.  

At this stage, it can be useful to mention continuous and discrete transition matrices. 

The transition matrices provided by rating agencies express discrete probabilities. 

When looking at stochastic processes and bond prices, it is much easier to work in the 

continuous world. Therefore, generator matrices are used instead. The discrete (Q) 

and continuous matrices (   are related by the following relationship: 

                    

The sum of rows in a discrete matrix is equal to 1. The sum of rows of the generator 

matrix is equal to 0. Therefore, Λ is of the form: 

     

  
      

   

   

  
     

 
   

     

 

  

From the formula linking the price of a risky bond and the probability of default, we 

can get a relationship between credit spreads and probabilities of default. Indeed, the 

price of a risk free bond is 

                   
 

  

Where f      is the instantaneous forward rate.  

The price of a risky bond is: 

                            
 

                    
 

  

Where        defines the instantaneous forward credit spread. 

This means that there is a direct correspondence between default probabilities and 

forward credit spreads: 

                         
 

  

Here, we have q the probability of default between t and T;        is the instantaneous 

forward spread.  

We will use this relationship throughout the paper. Indeed, the proposed model relies 

on the correspondence between transition matrices and credit spreads.  

The probabilities of migrations and defaults presented in the formulas above are risk 

neutral probabilities. Indeed, credit spreads are risk neutral instruments. The 

transition matrix obtained from rating agencies is real world as it is calculated from 

observed default and migrations over time. The JLT model differentiates itself from 

the previous models by introducing a risk premium to move from real world to risk 

neutral probabilities. The relationship between spreads and probabilities of default 
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does not work with real world probabilities and couldn’t be exploited. In order to 

match bond prices observable in the market, the use of a risk premium is required. 

JLT introduce the following specification: 

        
   

   
      

             

                            
  

This form of risk premium can generate negative spreads. It is possible to address this 

issue by specifying another form of risk premium 

Nevertheless, its main disadvantage is that it does not allow for stochastic spread 

variation. Indeed, the risk premium used in the model is deterministic and thus the 

spreads movements are non-existent.  

Many papers mention extensions of the JLT model in order to project stochastic 

spreads linked to transition matrices. Towers Watson’s previous approach was to 

apply a stochastic multiplicative adjustment to the generator matrix. A Cox Ingersol 

Ross process was used as a multiplicative factor to the transition matrix. This means 

that there exists a closed-form formula for bond prices. The process being positive 

ensured transition rates remained positive – and so were spreads. Furthermore, we 

would force the process to revert towards 1; therefore, this forced the transition rates 

to revert towards the S&P matrix over the long run.  

             

                             

Please note that in order to force the process to revert to 1, we would set the long 

term mean b to 1. a is the speed of mean reversion and sigma the volatility of the 

process.  

Although this model has the advantage of being simple and parsimonious, it has a 

few drawbacks. Firstly, only very few parameters drive the evolution of the model; 

the volatility, mean reversion rate and risk premium. The mean reversion level is 

fixed to one in order to ensure the matrix reverts towards the S&P matrix. This means 

that only three parameters can be changed to fit the historical spreads for all ratings. 

It is impossible to match the starting term structure of credit spreads for all ratings 

given the limited number of degrees of freedom. Instead, only one rating can be used 

in the calibration process.  

Furthermore, there is considerable heterogeneity between rating classes for corporate 

bonds. All ratings are not impacted by the same events or news, their evolution can 

diverge. For instance, at the beginning of the credit crunch crisis, mostly non-

investment grade bonds were affected before it spread to investment grade. Given 

that it is only a one factor model; the spreads by ratings obtained in the projection are 

fully correlated. This is not realistic.  
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Thirdly, the scalar transition intensity modification does not fully represent the true 

dynamics of the ratings migration process. For example, when the credit intensity 

parameter is high, the model will tend to produce more defaults, but also more 

upgrades. In reality, an economic downturn would tend to produce more 

downgrades and defaults and fewer upgrades.  

Finally, the distribution of this credit model does not capture the tail distribution 

correctly. Even though the volatility of the CIR process is calibrated to historical 

spreads, the distribution cannot replicate spreads levels as observed during the credit 

crunch.  

We will compare the results of this model against the Arvanitis Gregory and Laurent 

extension – the current approach – in the results section.  

  

5.2 The Arvanitis Gregory and Laurent Extension 

Arvanitis, Gregory and Laurent have extended the JLT framework in order to capture 

stochastic credit spreads as well as stochastic transition & default probabilities.  

In our model, we use the S&P transition matrix but any other rating agencies’ matrix 

could be used instead. Bonds are grouped by categories of creditworthiness, from 

AAA to CCC rating.  

The process by which issuers migrate between credit categories denoted i=1,…,K-1 

and the default state K, is modelled as a continuous time Markov process with gen-

erator matrix  . 

      

            
           

       
       

  
  

  
  

  

With                    . 

The generator matrix is related to the transition probability matrix through the fol-

lowing relationships: 
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The latter equation relies on one assumption – the matrices      need to be commu-

tive. Indeed, we only have exp(A+B) = exp(A) + exp(B) when the square matrices A 

and B commute (AB = BA).  

The generator matrix is then decomposed into eigenvalues and eigenvectors. We have 

as many eigenvalues as the number of credit ratings, i.e. eight (incl. the default state), 

and eight eigenvectors with eight elements each. The spectral decomposition of the 

generator is 

       

                
   

                       
                

     

Where                   
 represent the (right) eigenvectors and the eigenvalues of 

     respectively. 

The Arvanitis Gregory and Laurent paper states that it is empirically observed that 

the eigenvectors are stable over time, therefore we assume these to be constant. This 

is critical in order to ensure that the      commute - therefore validating the assump-

tion made earlier in the document. Nevertheless, this assumption is very restrictive. 

As mentioned in Lando, it means that the family of generators has a common set of 

eigenvectors regardless of how the process for the state variables evolves. 

Given that the eigenvectors are assumed constant, they are calculated directly from 

the historic S&P transition matrix. On the other hand, the eigenvalues are modelled 

stochastically.  

A closed form formula links the risk neutral probability of default by rating and the 

term structure of credit spreads.  

  
                  

 

   
                      

Where   is the recovery rate and          the probability of default between t and T 

for rating i.  

The probability of default is linked to the process followed by the eigenvalues as de-

scribed by the following formula: 
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Where       is the conditional expectation given all information available up to  ,     

is the (i,j)th element of  ,      the (i,j)th element of    . The    are the eigenvalues by rat-

ing.  

The formula above is quite intuitive. It is apparent that the probability of default for 

rating i depends on the sum of probabilities to move from rating i to rating j and then 

from rating j to default (K).  

Please note that the sum does not include j = K. Indeed, the result stems from the fol-

lowing relationship: 

                               

State K is an absorbing state -    = 0 and the last row of     is equal to (0,0…,0,1). It 

can be demonstrated that it is the unique invariant of the Markov chain.   

Instead of modelling each eigenvalue individually which would be inefficient, the ei-

genvalues are driven by a three-factor mean-reverting Ornstein-Uhlenbeck (OU) 

model. A Principal Components Analysis (PCA) is applied on the time series of cen-

tred and normalised eigenvalues in order to isolate the first three components.  

We define the centred reduced eigenvalues by        
      

 
          

   
  

where   
  is the mean of the jth historical eigenvalue and     the standard deviation of 

the historical data set.   

The first three factors obtained from the PCA analysis explain about 98% of the total 

correlation for most economies. In our model, we assume that those three factors fol-

low an Ornstein-Uhlenbeck process as per the equation below: 

                     

With       

     
     
     

 ,    
    
    
    

 ,    

    
    
    

  and     

  
 

  
 

  
 

   

(Please note that the   
  are independent from each other) 

We force the mean reversion level to be zero as the eigenvalues have already been 

centered before applying the PCA. Furthermore, the three processes are independent 

because the three factors are orthogonal by construction.  

The following parameters drive the OU process:  
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- The speed of mean reversion measures how fast the process reverts towards 

its equilibrium levels. This parameter is common for all three factors (see the 

section on calibration for reasoning behind this assumption); 

- The volatility coefficients measure the degree of volatility (amplitude of 

fluctuation) of the eigenvalues about their equilibrium levels. There are three 

volatility coefficients for each factor applying.  

Furthermore, the following parameters are required in order to recover the projected 

eigenvalues: 

- The principal component (PCA) coefficients are obtained from the PCA. 

These are summarized in a three by eight matrix (factors times number of rat-

ings). 

- The mean (     and standard deviation (     of the historical eigenvalues for 

each credit rating: these are necessary, since in this approach we model cen-

tred eigenvalues which we further scale by their standard deviations;  

The        
      

 can be recovered from the three processes      using the following 

relationship: 

              

 

where     

               

   
               

  is the principal components matrix (obtained 

through the PCA) 

 

Therefore the eigenvalues can be expressed as a function of the Ornstein-Uhlenbeck 

process: 

                   
 
     

The use of a three factor Ornstein-Uhlenbeck enables us to obtain a closed form solu-

tion for default probabilities: 

             

   

   

                    
 

 

      

The integral of the eigenvalues are normally distributed. It is  
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We can therefore apply the moment generating function of a normal variable which 

gives us: 

               
 

 

                       
         

 
  

Using the closed form solution of the Ornstein-Uhlenbeck process, it can be easily 

demonstrated that: 

                  
      

 

 
                           

 

   

 

 
 

 
                     

   
     

           
     

              
        

             
        

 
   

          

 

   

 

 
        

 
             

                
   

 

 

   

 

        
 

   
 

  
             

 

 
                 

 

In the formulas above we note ttm as the time to maturity (T-t),   
   as the historical 

mean of the eigenvalues,    are the simulated eigenvalues,     are the historical stan-

dard deviations of the eigenvalues,    is the standard deviation of the OU process k.  

Instead of applying a discretization scheme, we can use those closed-form formulas at 

the simulation stage.  

The use of a three-factor Ornstein-Uhlenbeck ensures that the ratings are not fully 

correlated. This addresses some of the limitations of the credit model introduced in 

5.1.  

 

5.3 Challenges for risk management, introduction of risk premiums 

When modelling a bond portfolio, it is not only required to model credit spreads but 

also to capture migrations and defaults. This has been introduced in section 3.3 – the 

asset model. So far, we have concentrated on credit spreads. These are risk neutral 

measures of credit risk. The model introduced by Arvanitis, Gregory and Laurent 

described in 5.2 produces risk neutral migration intensities which are used to 

generate the term structure of credit spreads. For risk management purposes, we will 
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require the real world transition probabilities are driving transitions. For that matter, 

the model needs to be extended to the real world.  

The S&P transition matrix is based on the average default and transitions observed 

between 1981 and 2010. We assume this to be the long term level of migrations and 

defaults which will ensure the real world model reverting towards this target. The 

starting point is calibrated to the current level of credit spreads. This implies that be-

fore reaching the equilibrium level, the model produces periods of high default rates, 

but also benign periods of low default rates.  

To achieve this, a risk premium adjustment was added to the OU process in order to 

move to the real world probability measure. This gave good results but some 

information was lost through the PCA and the long term level was not in line with 

the S&P matrix. Instead, we now use a risk premium adjustment for each eigenvalue. 

Indeed, by construction of the OU process, the risk neutral eigenvalues revert 

towards their historical average. It is therefore easy to make the real world 

eigenvalues converge towards the S&P historical eigenvalues.  

In order to move from the risk neutral to the real world transition matrix, a risk pre-

mium is applied to the eigenvalues.  

  
                

                     

With            the risk premium factor for the ith eigenvalue. 

 

This risk premium is obtained through an optimisation algorithm. Its goal is to obtain 

a long term real world transition matrix as close as possible to the S&P transition ma-

trix. Furthermore, one of the constraints of this optimiser is to ensure the starting real 

world matrix captures the order of riskiness (the probability of default of a AAA 

bond is lower than that of a AA bond).  

The real world transition matrix is computed with the real world eigenvalues: 

                 

  
                

   
                       
             

     

     

An alternative specification for the risk premium would be to include it as part of the 

Ornstein Uhlenbeck process.  This would represent an appropriate change of measure 

where the martingale property is respected. There would be only 3 risk premium pa-

rameters – one by OU process. This was our first approach but it became apparent 

that having only 3 degrees of freedom was not enough to achieve a good fit of the his-

torical transition matrix. Indeed, the average of the simulations at the long term hori-

zon was not perfectly aligned with the S&P matrix used as reference. This led us to 



Modelling Credit Risk in the Solvency II Framework 2011 

 

41  
 

use this risk premium adjustment instead. The proof that it is an appropriate change 

of measure will be investigated at a later stage.  

Another challenge of modelling transition matrices from credit spreads is the high 

volatility. There are many components of risk which form credit spreads, the major 

one being the default & migration probability. In addition to this, there is liquidity 

risk and idiosyncratic risk. Historically, the transition rates and default probabilities 

exhibit less volatility over time than credit spreads imply. The current model as it 

stands is calibrated to credit spreads, thus reflecting their volatility. The transition 

matrix output is therefore too volatile. For that reason, before moving to the real 

world, a default adjustment was introduced to reduce the volatility of default rates. 

This factor is calculated to capture the extremes of the level of defaults as seen in his-

tory.  It is the same for all economies and fixed at 0.4. In order to reduce the volatility 

uniformly, it is applied to the Ornstein-Uhlenbeck process; the vector   . 

The transition matrix projections use similar techniques as the one applied for credit 

spreads. The same stochastic process drives the credit spreads evolution and the tran-

sition matrix. Eigenvalues are only modified by the risk premium adjustments in or-

der to obtain a real world matrix.  

We use the following relationship (described in the previous section).  

            
   
                  

               
 

 
       

As per the credit spreads formula, we have: 

          
               

 

 

                       
         

 
  

The only difference between risk neutral and real world is the mean term via the 

presence of the risk premium adjustment.  

                      
      

 

  

                           

 

   

 

              
        

             
         

  

     
          

 

   

 

        
 

  
  

 

   

              
 

  

                  

In the formulas above we note ttm as the time to maturity (T-t),   
   as the historical 

mean of the eigenvalues,    are the simulated eigenvalues,     are the historical stan-

dard deviations of the eigenvalues,    is the standard deviation of the OU process k.  
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The time to maturity used for the calculation of the transition matrix is one year as it 

is common practice to look at the one year transition matrix. When it is required to 

model bond returns on a quarterly basis, a quarterly transition matrix is required. To 

do so, we use the formula described previously and integrate the eigenvalues over 

one quarter – therefore setting ttm to be equal to 3 months.   

This model can sometimes give negative probabilities of default and negative 

spreads. This is further detailed in the section limitations. Nevertheless, it is impor-

tant to note that at the projection stage, we force the probabilities of default to be 

positive. We thus use the following relationship: 

                       

The transition rates no longer sum to one and consequently need to be rescaled.  

So far, we have focused on the model itself and how to obtain credit spreads and 

transition probabilities in an integrated way. Nevertheless, the biggest challenge 

posed by this model is its calibration. The following section will examine the process 

followed.  

 

5.4 Calibration 

Transition and default probabilities are directly observable using statistics of compa-

nies and bonds. Credit spreads on the other hand are inferred from traded products 

on the markets and thus contain risk premium adjustments. Because of this risk pre-

mium, credit spreads cannot be obtained directly from real world or observed transi-

tion matrices; an adjustment needs to be made to compensate for it. As explained in 

the previous section, we need to evolve two transition matrices in parallel, one which 

reflects the probabilities of bonds defaulting (the real world transition matrix) and 

one containing the embedded risk premium adjustments from which bond prices and 

credit spreads can be inferred (the risk neutral transition matrix). Because of this, our 

calibration process has to be structured in three phases. The first one computes the ei-

genvalues from the history of credit spreads. At the second stage we obtain the pa-

rameters of the Ornstein Uhlenbeck. Finally we calculate the risk premium adjust-

ment.  

Our calibration process uses the Merrill Lynch bond indices – particularly the option 

adjusted spread data. Daily data is available from Bloomberg for many countries and 

is split by rating and duration. However, the full term structure of bonds is not avail-

able from that index. We generally obtain a short maturity (around 2 years) and a 

longer one (around 10-15 years) for each rating category and country. As part of our 

data set, we also have the average duration of the index at each time step. The indices 
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are formed from a variety of bonds – the pool is regularly updated in order to keep 

duration around a constant level. The data set starts around 2000.  

Another important element of the calibration is the S&P transition matrix. We use the 

one year transition and default matrix calculated using data from 1981.  From that we 

calculate the generator matrix (we calculate the eigenvalues and eigenvectors and ap-

ply a logarithm to the eigenvalues). As explained in the specification of the model, we 

assume that the eigenvectors are constant over time. They will be used all along in the 

calibration and projection.  

We can then start with the first step of the calibration process – calculating the time 

series of eigenvalues from the credit spreads. Indeed, we do not have history of tran-

sition rates from the data set. We only have credit spreads. In order to obtain the pa-

rameters of the Ornstein Uhlenbeck, we need the history of eigenvalues. These should 

not be seen as parameters but rather latent variables.  

Using the historical spread time series for each rating category at various maturities, 

we determine the       series in the risk neutral framework. To do so, we use the rela-

tionship between the spread of a specified rating and the eigenvalues of the 

tor  .  

  
                  

 

   
                      

             

   

   

                    
 

 

      

The formula above requires the parameters of the Ornstein Uhlenbeck and the prin-

cipal components – which will only be estimated at a later stage once we have the his-

tory of eigenvalues. We will explain later how we go around this problem.  

We perform an optimisation minimising the difference between the historical spreads 

and the theoretical ones. The theoretical spread is a function of the parameters of the 

Ornstein-Uhlenbeck process and the principal components.  

Therefore the optimization problem is expressed as: 

   
  

      
                    

                     
 

               

  

               

 

With                                           

As the data window can be as long as 13 years on a monthly basis, there are up to 

1094 unknowns and finding one solution is not possible. It is worth nothing that the 

spreads cannot be expressed as a function of      ,         only. Indeed the principal 
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components       are also prevalent in the formula. Because the principal components 

are retrieved from the PCA performed on the very same eigenvalues that are being 

estimated here, they are unknown at this stage. This goes into a full loop.  

For this reason, we need to make some simplifications. Under certain assumptions, 

the term involving the principal components in the spread formula can be ignored.  

Indeed, in the spread formula, the only term which includes the principal compo-

nents is 

  
 

  
  

 

   

              
 

  

                     
        

     
 

 

   

 

If         , it can be approximated by 

  
 

  
  

 

   

        
 

  

           
                         

 

    
        

     
 

 

   

   

 

In our data set, the short term bonds forming the indices used in the calibration have 

an average maturity between 1Y and 3Y and it can be noted that       , therefore 

we assume that the term   in the spread formula can be neglected during the calibra-

tion process. 

From this simplification we obtain the following formula for the theoretical spread 

(please note that at this stage, we assume that    .) : 

   
                  

 

   
                 

With          the probability of default between t and T for rating i. 

              

   

   

      
  
         

              
 

   
          

              
 

 

    

With     the (i,j)th element of  ,      the (i,j) element of     and   
   the       long term 

mean. In the calibration process these values are approximated by  

  
     

       
 

 
   

     

  

    

    

Using the previous approximation, the spread formula is not a function of PC and   

anymore. Furthermore, we split the optimisation problem into solvable sub problems 
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(one optimisation is performed per date). Therefore the optimisation problem can be 

re-written as 

   
 

      
             

    
                     

                     
 

               

  

               

  

The previous optimisation is done under the condition     
      

     
       

      
   

  
       

   with    an arbitrary long term to maturity (75Y). This ensures that the order 

of riskiness of the ratings is maintained for long maturity bonds.  

Once we have the time series of eigenvalues, we can apply the principal component 

analysis and then calibrate the Ornstein Uhlenbeck process.  

The fit is done using the moment matching technique. We only have two parameters 

to estimate for each of the 4 factors (the speed of mean reversion and the volatility).  

In practice the optimal   tends towards 0 for all economies except for the US. This 

would mean that the process    is a pure diffusion process. For the other economies, 

the dataset is quite limited and only starts in 2000. Therefore the last two crisis (2000 

and 2008 particularly) form an important part of the overall dataset. Over this period, 

   seems to have a mean reverting component and a jump component. The latter is 

not included in the process at this stage. The various crisis and illiquidity events 

translate in a number of jumps. Given their exclusion in the current approach, the 

optimiser tends to move away from a mean reversion process by affecting a value 

close to 0 to the mean reversion parameter   for most economies. 

The data window for the US is larger than the one available for other economies. The 

fit to US data gives an optimal   significantly different from 0. The mean reverting 

feature assumption is confirmed for this economy. The Figure 11 shows the evolution 

of the three principal components over time.  
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Figure 11 - Evolution of the three factors over time 

 

The spreads across economies are strongly correlated. Therefore, it seems reasonable 

to set the optimal   for all economies as close as possible to the one calibrated for the 

US.  

We only need to estimate the volatility.   is determinated using the stationary (long-

term) variance formula for an Ornstein-Uhlenbeck process: 

      
          

  
 

    
 

Where    is the optimal  . 

The calibration stage is really the key part of the model development; this is what will 

drive the output. Before moving to analysing the results, we will first describe the 

projection of the model which happens in the ESG. 

 

 

 

Values by simulation: projection onto factor space
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5.5 Projection 

The Towers Watson’s clients receive quarterly an update of the parameters of the 

model and the projection tool. The last stage of the process is therefore to generate 

Monte Carlo simulations of the model.  

As explained in section 3.2, the model generates the normal shocks which will be ap-

plied to the various economic variables. For the credit model, we use three factors - 

thus need three vectors of normal of the length of the projection period. Generally, 

the model is projected on a quarterly basis and then aggregated in order to obtain an-

nual values.  

Once the dependency and copula is generated, we can enter the individual economic 

models – particularly the credit model.  

 

Figure 12 - Credit Model Projection 

As outlined on Figure 12, the first step of the generation of the credit model is to pro-

ject the Ornstein-Uhlenbeck which is an easy task due to the closed form solution of 

the process:  

           
      

 

   
                  

Next, we back out the corresponding eigenvalues.  

                   
 
     

It is worth noting that the model described by Arvanitis Gregory and Laurent as-

sumes that the eigenvalues have the following property: 

          

  



Modelling Credit Risk in the Solvency II Framework 2011 

 

48  
 

It is not possible to enforce that the projected eigenvalues are all negative when we 

recover them from the Ornstein-Uhlenbeck processes and the principal components. 

Therefore, we need to amend the X processes. A new set of eigenvalues       

Δ   j 8 is defined, respecting the negativity feature. 

     Δ             
    Δ    

With     
    Δ   the originally simulated eigenvalues. 

We can then obtain a modified process for X which fulfils the condition. The       are 

defined as  

                         
              

   

 
   ] 

By doing this adjustment, we are breaking the autoregressive process and deviate 

from the original process. This is mathematically incorrect but absolutely necessary in 

order to limit the number of negative spreads. Furthermore, by amending the X proc-

ess slightly, we deviate from the mean imposed in the calibration which has a slight 

impact on the long term mean of credit spreads.  

The next stage of the projection is to calculate the variance of the model.  

              
        

             
         

  
     

          

 

   

 

The same formula is used in the calculation of the transition matrices and the spreads. 

Figure 12 - Credit Model Projection shows the credit model projection. The base unit 

called “Spread RN” is where spreads are projected. Similarly, the base unit “Transi-

tion Matrix” generates the matrices for each projection date.  

The spreads are easily computed using the formulas outlined in section 5.2. The 

transition matrices are calculated using the results mentioned in section 5.3. The only 

difference between these two calculations is the risk premium. Furthermore, as 

explained in section 5.3, the X process is rescaled before being used in the calculation 

of the transition matrices in order to reduce the volatility of the probabilities of 

default – please refer to Table 4 in the results section.  

The projection of the model is fairly fast. It is part of the Economic Scenario 

Generators. We will now move to analysing the model and how good the results are 

compared to other approaches.  
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5.6 Results 

In this section, we will analyse the results of the model. In the first part, we will look 

at the historical data and isolate the features we would need to capture. We will then 

move to the calibration by analysing the goodness of the fit. Finally, we will look at 

the projection of the credit spread term structure and transition matrices.  

 

Historical Analysis 

Before starting analysing the results, we look at history of spreads. Figure 13 shows 

the spread evolution over time in USD. Given the construction of the Merrill Lynch 

bond indices, the ratings are not perfectly comparable. Indeed, maturity is not 

constant over time and also varies by rating category – it is driven by the bonds 

underlying the construction of the index. Nevertheless, it appears clearly from the 

graph that the ratings evolution is strongly correlated. Indeed, the historical 

correlation between AAA and AA spread is of 97%.  

 

Figure 13: History of Spreads by rating for a short maturity (ca. 2years) 

 

The Figure 14 shows the evolution of the eigenvalues after they have been backed out 

from the history of credit spreads. It is quite apparent that the spikes observed on the 

credit spread history coincide with the eigenvalues graph. Furthermore, the 

eigenvalues evolve closely together.  
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Figure 14 - History of eigenvalues over time 

 

Our data set provides short (around 2 years) and longer (around 10 years) maturity 

bonds. The aim of our model is to project the full term structure of credit spreads. 

Therefore, it is important to capture the volatility across the term structure well. 

Figure 15 exhibits the evolution of short and long maturities for AAA bonds. During 

the credit crunch crisis, the spike on short bonds was much wider than the one 

observed on AA bonds. Indeed, short bonds are generally more volatile than longer 

bonds due to the increased short term risks.  
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Figure 15: AAA Spread for short (blue) and long maturities (green) 

 

The table below demonstrates how the volatility of short and long term bonds 

compares by rating.  

 Short term to 
maturity (around 
2 years) 

Long term to ma-
turity (around 10 
years) 

AAA             0.77              0.58  
AA             0.92              0.63  
A             1.48              0.76  
BBB             1.78              0.95  

 

Table 1 - Volatility of spreads - short against long maturities by rating 

 

Another interesting fact about term structure of credit spreads is its shape. The AAA 

term structure is usually upward sloping. This is shown in Figure 15. Nonetheless, 

the term structure tends to be downward sloping for ratings below BBB. Indeed, a 

AAA bond over a one year horizon has very little chance of default. For longer 

maturities, a AAA bond is very likely to move to lower ratings and thus has a higher 

probability of default. On the other hand, a CCC bond is very likely to default in the 
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coming year. But if it survives, it is more likely to be upgraded, therefore has a lower 

probability of default.  

 

Calibration 

The output of the projection relies on the calibration. No matter how great the models 

are, using the wrong parameters would not give a good economic capital framework. 

A good calibration algorithm is necessary to in order to capture the historical 

dynamics appropriately. Therefore, we spend a significant amount of time on the 

validation of the calibration. This includes statistical tests, comparison of fitted values 

against historical values, back-testing and in-sample tests.  

As we have seen in section 425.4, we apply the principal component analysis on the 

time series of eigenvalues. This creates the vector to which the Ornstein Uhlenbeck 

process is fitted. For the optimised set of parameters, we have a vector of fitted 

Ornstein Uhlenbeck. The latter can be used in order to obtain the fitted credit spreads. 

Figure 16 plots the historical spread values in blue against the fitted values (in green) 

for the short maturity of the AAA series. Figure 17 plots the fitted values against 

historical spreads for the long maturity of the AAA series. It is noticeable that the fit 

is closer for short maturities compared to long maturities.  

 

Figure 16: Historical against fitted values AAA short maturity 
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Figure 17: Historical against fitted values AAA long maturity 

 

An important ability of this model is to fit to the starting term structure of credit 

spreads. We will now analyse how close this fit is. We look at the squared differences 

between historical spreads and fitted values obtained in the model and at the sum of 

squared differences in order to compare the various stages of the calibration process. 

The numbers mentioned here are meaningless but are important tools for the 

comparison of the various approaches.  

At the first stage of calibration, we back out the history of eigenvalues from historical 

credit spreads. Some mismatch appears already at that stage due to the lack of 

freedom. We only have seven eigenvalues available in order to fit two maturities 

across seven ratings. Therefore, the estimated eigenvalues imply certain spreads 

which are not exactly in line with historical spreads. 

The sum of squared errors as at September 2011 is around 0,10. At the second stage of 

calibration, we apply the principal component analysis and isolate the three main 

drivers of the eigenvalues. When moving to three components, some information will 

be lost again. The sum of squared error is about 0,65. This error can be further 

reduced when introducing a fourth principal component. It reduces to 0,4. 

Depending on the economy this difference is more or less significant. It is arguable 

that one could move to four factors in order to retain information and to better match 

the starting term structure may be advisable.  
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The table below compares the historical spreads from the Merrill Lynch Bond index 

by rating and maturity as at 31/12/2010 against the fitted values.  

Ratings 
Observed Fitted 

Short Maturity Long Maturity Short Maturity Long Maturity 

AAA 0.55% 0.79% 0.74% 1.07% 

AA 0.75% 1.24% 0.92% 1.26% 

A 1.15% 1.57% 1.21% 1.54% 

BBB 1.96% 2.13% 1.86% 2.13% 

 

Similarly, the table below shows the same comparison as at 30/09/2011.  

Ratings 
Observed Fitted 

Short Maturity Long Maturity Short Maturity Long Maturity 

AAA 0.63% 1.18% 0.97% 1.35% 

AA 1.44% 1.99% 1.36% 1.61% 

A 1.92% 2.31% 1.78% 1.96% 

BBB 2.49% 3.18% 2.84% 2.74% 

 

The mismatch between observed and fitted values is higher in September 2011. 

Indeed, at the end of September 2011, spreads were extremely volatile as there was a 

lot of uncertainty about the economy and the Eurozone. On the opposite, in 

December 2010, the markets were relatively stable and presented “normal” 

conditions.  

In particular, in a period of turmoil, the behaviour of the term structure can be quite 

different from normal times. Some maturities and ratings would be more affected by 

the fear in the market. The proposed model is an integrated approach in that it 

projects all ratings together. Therefore, it may become difficult to fit in times of crisis 

where the term structure and ratings have unexpected behaviours.  

 

Statistical Tests 

As part of the assessment of the quality of the ESG, we perform statistical tests to 

validate the ESG. The residuals of the models are assumed to have a mean of 0, be 

normally distributed and that they exhibit no autocorrelation. To check that the mean 

of the residuals is 0, we use a t-test. To check the normality assumptions, three tests 

are performed: Kullack-Leibler, Chi-squared and Jarque-Bera. To check for 

autocorrelations, or lack thereof, we perform the Ljung-Box test. 

The null hypothesis of the one sample two tailed t-test states that the residuals have a 

mean of zero. We calculate the t-statistic using the mean and variance of the residuals. 

The number of degrees of freedom is given by the number of observations. We then 



Modelling Credit Risk in the Solvency II Framework 2011 

 

55  
 

get the p-value associated to this statistics and the null hypothesis is not rejected if the 

p-value is higher than an assumed significance level.  

The (normal) Chi-squared test checks if the residuals are normally distributed. It tests 

for an overall fit. We use the mean and variance of the residuals to compute a theo-

retical normal distribution and then calculate the p-value.  

The Jarque-Bera test is a more specific goodness-of-fit test, also testing departure from 

normality, but focusing only on the third and fourth moments, also known as skew-

ness and kurtosis. Again, a p-value is calculated. 

The Ljung-Box test is a test for autocorrelations, that is to say, we want to check that 

each residual is independent, or that the data is truly random. It is a portmanteau test, 

that is, it tests the whole group of data at the same time, instead of individually. 

Again, a p-value is calculated. 

The p-value, also known as power, is understood as the significance level that is re-

quired before the hypothesis is rejected. For example, suppose our null hypothesis is 

that the residuals are normally distributed and our significance level is 5%. A p-value 

of more than 5% would mean we do not reject the null hypothesis. 

The Kullback-Leibler test is a method developed in house. It is checking the validity 

of the distribution – particularly the distribution of the residuals. The idea is 

borrowed from information theory whereby the distance between two distributions is 

looked at. If the residuals are sampled from a normal distribution, the test gives the 

perfect score of 100%. If the residuals are sampled from a uniform distribution, the 

test would give a score of 0%. As opposed to the usual hypothesis testing framework 

which only say if the hypothesis cannot be rejected, this test looks at how close 

distributions are.  

In the case of the credit model, the residuals of the three Ornstein Uhlenbeck 

processes are tested. Given that there are three factors, we also have three series of 

residuals – therefore three test results. The time series are too short to enable us to 

perform other tests than the t-test and Kullback-Leibler tests.  

The residuals obtained when fitting the Ornstein-Uhlenbeck process give the 

following results: 

T-test 1 2 3 

GBP 93% 47% 92% 

USD 74% 77% 81% 

EUR 99% 53% 59% 
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Kullback 
- Leibler 1 2 3 

GBP 78% 64% 65% 

USD 89% 90% 83% 

EUR 74% 68% 78% 
 

The null hypothesis cannot be rejected for the tests and as such the fit to the data is 

considered reasonable.  

 

Projection 

The next step of the result analysis is to look at the projection of the credit spreads in 

the ESG.  

Figure 18 to Figure 20 show the history of credit spreads and the projection over time. 

The historical the data is obtained from the Merrill Lynch bond series, it appears as 

the green plain line. The projection starts where the funnel in blue appears. The green 

line within the funnel is the mean of the projections. The dark blue area is where most 

of the simulations are concentrated, the light blue area are extreme percentiles.   

 

Figure 18 - AAA Spreads History and Simulations 
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Figure 19 - BBB Spread History and Simulations 

 

Figure 20 - CCC Spread History and Simulation 

Percentile fan: spread_histo_simu[*,BBB,1]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

-20 0 20 40 60 80 100 120 140 160

spread_histo_simu[*,BBB,1]

V
a
lu

e

Percentile fan: spread_histo_simu[*,CCC,1]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

-20 0 20 40 60 80 100 120 140 160

spread_histo_simu[*,CCC,1]

V
a
lu

e



Modelling Credit Risk in the Solvency II Framework 2011 

 

58  
 

The full extent of the credit crisis is not captured by the model. Only high percentiles 

can reach such levels. The credit crunch crisis is equivalent to the 99.5th percentile of 

the distribution.  

Apart from looking at the distribution of spreads, we also validate the ESG by 

performing some backtests. We calibrate the ESG up to today (September 2011) but 

only change the starting point to be that of two years ago – here September 2009. We 

then compare the last two years of spreads’ evolution (the blue line) against the 

projections in the ESG (the percentile fan). It becomes apparent which percentiles of 

the distribution correspond to the historical path.  

 

Figure 21 - Backtesting USD A Spreads 

It can be seen from Figure 21 - Backtesting USD A Spreads that history is captured 

within the funnel. The validation of a model would fail if the historical path was not 

contained in the percentile fan. Over the last three years we have seen dramatic 

movements of credit spreads – illiquidity jumps and fast returns to the mean, and as 

such, this back testing report has become an important validation step.  

Another important element of the projection is the term structure of credit spreads. Is 

it realistic? As mentioned in the historical analysis, the term structure is usually 

upward sloping for good quality credit ratings. It then tends to be inverted for lower 

rating categories. The ESG replicates this pattern. Please see Figure 22 to Figure 27 
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which exhibit the term structure of credit spreads for various ratings and projection 

times.  

Furthermore, as we have seen from history, the long maturities are usually less 

volatile than short maturities. This behaviour is also captured by the model. As 

described in the model description section (Section 5), the volatility declines with the 

time to maturity.  

As per all diffusion processes, the funnel is wider after 20 years of projection than 

after just one year of projection. The speed at which the funnel widens is driven by 

the force of mean reversion in the model. Indeed, when the mean reversion is strong, 

the funnel does not widen rapidly and tends to stay quite narrow. This can be quite 

problematic when looking at credit spreads; e.g., the credit crunch levels seen in 2009 

happened quite rapidly. This is a limitation of this model whereby only the default 

component of credit spreads is captured but not the illiquidity component. The fear in 

the market that was observable in 2009 cannot be captured without a jump process of 

some sort. We will develop this further in the extension section (section 6).  

Please also note from the term structure graphs that the funnel is truncated at 0. 

Credit spreads cannot be negative by construction – this would imply a negative 

probability of default. Therefore, the projection has been truncated in order to force 

the spreads to remain positive. We will discuss this issue in further extend in the 

limitations section.  

 

 

Figure 22 - Term Structure of AAA spreads after 1 year of projection 
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Figure 23 - Term Structure of AAA spreads after 20 years of projection 

 

Figure 24 - Term Structure of BBB spreads after 1 year of projection 
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Figure 25 - Term Structure of BBB spreads after 20 years of projection 

 

Figure 26 - Term Structure of CCC spreads after 1 year of projection 
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Figure 27 - Term Structure of CCC spreads after 20 years of projection 

 

The model not only projects credit spreads but also transition matrices. Using a risk 

premium, we move from risk neutral to real world transition rates. The aim of this 

risk premium is that the long term transition matrix is in line with the S&P matrix. 

The assumption is that the average S&P matrix from 1981 to 2010 is based on 

through-the-cycle calculation and therefore does not capture the current level of 

probabilities of default. Instead, credit spreads contain instantaneous information 

about credit quality and are more reliable in the short term. Nevertheless, given the 

lack of long term information about creditworthiness of individual companies, it is 

preferable to revert towards the “through-the-cycle” levels implied by the S&P matrix.  

Figure 28 exhibits the evolution of the average 1 year probability of default by rating 

category over 20 years of projection. The starting levels of probabilities of default are 

higher than the long term historical level. Indeed, the current level of credit spreads 

are significantly higher than historical average, therefore suggesting that there is an 

increased default risk in the market. Over the long term, the probabilities of default 

revert to the long term average.  
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Figure 28 – Average of one year default probabilities over 20 years of projection 

 

One of the challenges of the calibration of the risk premium is to be close to the 

transition matrix from S&P. Indeed, we only have 7 parameters in order to fit an 8 x 7 

matrix.  

After 20 years of projection, the transition matrix (Table 3 – Average 1 year Transition 

Matrix ) is quite close to the S&P matrix (Table 2 – 1 year transition matrix from S&P using 

data between 1981 and 2010) as can be seen from the tables below.  

S&P AAA AA A BBB BB B CCC Default 

AAA 90.87% 8.35% 0.56% 0.05% 0.08% 0.03% 0.05% 0.01% 

AA 0.59% 90.15% 8.52% 0.55% 0.06% 0.08% 0.02% 0.02% 

A 0.04% 1.99% 91.64% 5.64% 0.40% 0.18% 0.02% 0.08% 

BBB 0.01% 0.14% 3.96% 90.50% 4.26% 0.71% 0.16% 0.27% 

BB 0.02% 0.04% 0.19% 5.79% 83.97% 8.09% 0.84% 1.05% 

B 0.00% 0.05% 0.16% 0.26% 6.21% 82.94% 5.06% 5.32% 

CCC 0.00% 0.00% 0.22% 0.33% 0.97% 15.20% 51.25% 32.03% 
Table 2 – 1 year transition matrix from S&P using data between 1981 and 2010 

 

 
AAA AA A BBB BB B CCC Default 

AAA 91.31% 7.53% 0.59% 0.25% 0.12% 0.05% 0.04% 0.10% 

AA 0.54% 90.72% 7.77% 0.57% 0.11% 0.13% 0.02% 0.15% 

A 0.04% 1.81% 92.18% 5.11% 0.40% 0.17% 0.02% 0.27% 

BBB 0.01% 0.14% 3.62% 91.13% 3.83% 0.69% 0.14% 0.45% 

BB 0.02% 0.05% 0.22% 5.39% 84.84% 7.46% 0.79% 1.23% 

B 0.00% 0.05% 0.16% 0.31% 5.74% 84.15% 3.85% 5.75% 

CCC 0.00% 0.01% 0.23% 0.34% 1.36% 14.44% 50.70% 32.92% 
Table 3 – Average 1 year Transition Matrix obtained in year 20 of projection 
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A perfect fit for all the elements of the matrix is not possible. The emphasis is put on 

the default column which is the column that will largely drive the capital requirement 

of the insurance company when modelling a bond portfolio.  

Similarly, given that the transition matrix is stochastic, it is important that the 

distribution of the default probabilities is reasonable. Therefore, we compare the 

99.5th percentile of the probabilities of default by rating against the S&P maximum 

default probability observed across history.  

 

 
ESG Without Adjustment ESG With adjustment 

S&P Max 

 
1 Year 20 Year 1 Year 20 Year 

AAA 1.21% 1.68% 0.49% 0.62% 0.00% 

AA 1.77% 2.29% 0.74% 0.91% 0.44% 

A 2.53% 3.90% 1.11% 1.44% 0.49% 

BBB 3.46% 5.02% 1.59% 2.01% 1.40% 

BB 6.74% 7.89% 3.37% 3.86% 3.06% 

B 13.90% 14.14% 9.04% 9.55% 16.25% 

CCC 41.38% 45.66% 36.06% 37.73% 48.68% 
 

Table 4 - Comparison the 99.5th percentile probability of default against the maximum default probability observed by S&P by 
rating 

 

As mentioned in paragraph 395.3, the credit spreads are not only driven by default 

probabilities but also by liquidity risk. By calibrating the model to credit spreads, it 

captures a too high volatility. This can be seen by looking at the ESG without 

adjustment percentiles.  Although CCC bond probabilities of default are in line with 

the maxima observed by S&P, the investment grade bonds’ probabilities of default 

are overestimated and too volatile. Given that most of our clients invest in investment 

grade bonds only, it was necessary to focus on this category. This brought us to 

introduce an adjustment factor in order to reduce the volatility of transition matrices 

without adjusting the credit spreads volatility. The adjustment factor is applied on 

the process and restricts its volatility before it is used to compute the transition 

probabilities. The “ESG with adjustment” columns are obtained from the less volatile 

matrix. They still tend to overestimate the historical maxima but are more in line.  
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5.7 Modelling a bond portfolio 

The ultimate aim of the model is to provide a tool which projects portfolio returns 

and calculates the capital requirement for the Solvency II requirement. As part of this 

exercise, our clients want to model their bond portfolio.  

So far, we discussed the projection of credit spreads and transition matrices which 

happens in the ESG. We introduced the asset model in section 3.3. This is the critical 

part of the model to downstream users; they are able to define their asset universe 

and generate the returns of a bond portfolio. It is particularly important that the asset 

model is developed in line with the ESG in order to benefit from its complexity. In-

deed, we have seen clients using the ESG but being unable to feed a stochastic transi-

tion matrix in their internal model.   

In the case of corporate bonds, the asset model plays a major role. Indeed, the ESG 

outputs credit spreads, nominal yield curves and transition matrices but not corpo-

rate bond returns as such. These are calculated in the asset model. In the latter, we 

consider the income and capital return of each security on each valuation date over 

the future periods under consideration. The returns for a period are determined by 

valuing the bond at the previous valuation date, considering cash flows during the 

period and then revaluing at the end of the period. The risk of rating migration from 

one credit rating to another, upgrade or downgrade, (leading to a change in valuation, 

due to the use of yield curves based on different ratings) and default is taken into ac-

count when calculating returns. Bonds are split into groups with the same seniority of 

debt and initial credit rating, with each group belonging to an industry sector. Rating 

category changes for individual bonds are simulated (based on the weights from the 

transition matrix) and correlated with each other, via a correlation matrix by sector. It 

is therefore possible to specify a correlation parameter for the correlation to be ap-

plied within each sector, and between each pair of sectors. These correlations are then 

applied to each individual bond.  

Rating category changes for each individual bond are also correlated to an "external 

market variable", which in our model is taken as the overall equity return. Where 

bonds are seen to default, it is assumed that they will still generate a certain propor-

tion of their future cash flows being the recovery rate proportion which is generated 

from a Beta distribution1. The valuation of defaulted bonds is based upon these re-

duced future cash flows, using a yield curve corresponding to the rating of the bond 

before it defaulted.  

The mean and standard deviation for the recovery rates can be specified separately 

for the various seniority levels of debt that the bonds can correspond to. In this way, 

bonds from senior issues may be set to have a higher recovery rate than those of sub-

                                                           
1
 The use of the beta distribution is based on the paper CreditMetrics - Technical Document by JP Morgan. We parameterize the distribution using 
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ordinated issues. It is also possible to apply a correlation between the variability of 

the recovery rates for defaulted bonds, and also a correlation between the recovery 

rates of individual default bonds and the total number of defaults in the period. 

 

5.8 Comparison with QIS 5 

In section 2, we introduced the Solvency II framework. One of the suggest approaches 

followed by insurance companies is the use of the Standard Formula. We described 

the QIS 5 market risk calculation and its limitations – this is likely to become the Sol-

vency II method once it comes into force.  

The alternative approach is to use the partial internal model. The Towers Watson 

Portfolio Model calculates the Value at Risk of the portfolio for various risk levels (e.g. 

1 in 200 year event) – clients then use it to calculate their capital requirement. The 

portfolio model also breaks down the risk of the overall portfolio into risk categories 

as required under Solvency II. The aim of this section is to look at the comparison be-

tween the QIS 5 result and the internal model result.   

Please note that under QIS 5, the spread component of market risk is calculated is cal-

culated for a bond portfolio – indeed, it is the sum of weighted net asset values mul-

tiplied by a certain shock (up or down shocks). Therefore, we will compare the results 

for a standard portfolio of an insurance company rather than comparing shocks to the 

term structure of credit spreads.  

For a portfolio with a total value of 500 million, the spread results are outlined below: 

 QIS 5 Internal Model 

Spread Risk 11 million 20 million 

Overall Portfolio 40 million 32 million 

 

The internal model result is the standalone 1 in 200 value-at-risk.  

For spread risk, the AGL model returns exhibits a value at risk that is significantly 

higher than the QIS 5 number. However, at the overall portfolio level, the value at 

risk is significantly less for the internal model compared the QIS 5 approach. This is 

due to the diversification benefit obtained through the dependency structure of the 

ESG. The internal model becomes more accurate. QIS 5 also accounts for correlation 

between models but this is extremely limited.  
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This study demonstrates that the shocks generated by the Towers Watson model are 

strong enough when compared to the QIS 5 shocks. Furthermore, it shows that com-

panies benefit strongly from using an internal model which captures better the de-

pendency structure and is tailor made to their needs.  

 

5.9 Asset Liability Modelling 

One of the reasons for the development of this new credit model was to provide a 

better asset liability modelling framework. Particularly, that the output of the ALM 

exercise is economically sound and realistic – it should capture all the risks 

underlying a credit investment. In this section, we demonstrate that a good credit 

model is important and will impact the output of the ALM. Particularly, we 

demonstrate that the use of a stochastic transition matrix that is linked to stochastic 

credit spreads is an important driver of the asset allocation.  

In the first case (Figure 29 - Optimal Asset Allocation when using an ESG with a 

Fixed Transition Matrix), the ESG driving the asset returns only models stochastic 

credit spreads. The asset model is using a fixed transition matrix to generate asset 

returns. Therefore, lower quality ratings are artificially attractive due to their higher 

spread.  

 

Figure 29 - Optimal Asset Allocation when using an ESG with a Fixed Transition Matrix 

In the second case, the credit model used in the ESG is the extended AGL model 

presented in this paper. The link between transition matrices and credit spreads 

highlights the fact that higher spreads are associated to higher default probabilities. 

Therefore, the algorithm has rebalanced the investment, moving away from BBB 

bonds towards better quality bonds (AAA).  
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Figure 30 - Optimal Asset Allocation with an ESG with a Stochastic Transition Matrix 

 

This example highlights to the importance of credit risk modelling and the model 

specification.   
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6. Limitations & Extension of the model 

In this section we will discuss the appropriateness of the model to be used in a 

Solvency II framework. Particularly, we will focus on the limitations of the model and 

discuss possible extensions.  

 

6.1 Negative Spreads & Riskiness order 

One of the features required by a credit spread model is to generate positive spreads. 

Indeed, a negative credit spread would imply that the company has a negative 

probability of default – or that it is less risky than the risk free security.  

As seen in the Results section, the funnel is cut at 0. Indeed, in the projection phase, 

we ensure the credit spreads do not get below 0 by imposing a barrier. In fact there 

are a certain number of negative spreads. These negative spreads appear when we 

recompose the probability matrix from the eigenvectors and stochastically generated 

eigenvalues. As mentioned in Lando, “there are no nice conditions which ensure that 

the modified matrix remains a generator”.  

The percentage of projected negative spreads depends on the rating and maturity of 

the bond. Indeed, this reduces with the maturity – negative spreads almost disappear 

past 5 years maturity. Furthermore, the number of negative spreads increases with 

volatility but also decreases with the level. The lower rated categories combine a 

higher volatility and also a higher level – compensating each other. Therefore, we see 

that the peak of negative spreads is obtained for the A-rated spreads then decreases 

with riskier ratings. 

What could be done to reduce the number of negative spreads? The negative spreads 

are related to a negative probability of default arising in the following linear 

combination: 

             

   

   

                    
 

 

      

The eigenvectors are obtained from the S&P matrix, only the eigenvalues are 

stochastic.  

We traced back the simulations causing negative spreads and found that they are all 

linked to a high 1st factor close to the historical maxima. It is usually combined with a 

negative 2nd factor – sitting below the 25th percentile of the historical distribution.  

The main underlying problem is the shape of the distribution. An Ornstein-

Uhlenbeck process assumes a normal distribution for each factor – therefore a 

symmetric distribution without skew. The distribution of the 1st factor is strongly 

negatively skewed as the distribution plot demonstrates.  
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Figure 31 - Historical distribution of the 1st Factor 

Modifying the distribution applied will not solve the problem of negative spreads but 

it is likely to reduce them by better modelling the negative tail. Furthermore, using a 

symmetric distribution does not allow us to capture the extreme credit spread 

movements observed during the credit crunch.  

 

6.2 Illiquidity 

Another limitation of the current approach is the limited amount of extreme spread 

movements. As mentioned previously in the paper, the illiquidity component of 

credit spreads is poorly captured by the model.  

Regulators are increasingly asking companies to create stress scenarios and look at 

the impact on capital. Therefore, it is important to be able to capture another credit 

crunch and possibly worse scenarios. Indeed, we do not want to hear “a 1 in 1000 

year event happened three times last week” (quote heard from a Goldman Sachs 

employee during the summer 2007). “All models are wrong but some models are 

useful”2 is certainly a true adage, but we want the best model of the moment. Given 

the proximity of the 2007 crisis, it is not acceptable to be able to replicate such spreads 

only at the 99.5 percentile. This could certainly happen again – in less than a thousand 

years! 

Our asset model is very granular and offers a lot of flexibility. It enables clients to 

model concentration risk (correlation of defaults within sectors) and anti-correlations 

between recovery and default rate. The bond returns projected in the asset model 

benefit from the stochastic transition and default probabilities – they are very realistic 

and capture the history of bond returns. Credit illiquidity and spread movements do 

                                                           
2
 Quote from George Edward Pelham Box a professor of statistics at the university of Wisconsin 
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not affect the return of the bond if the strategy is to hold to maturity – indeed, only 

default occurrence would dampen redemption. During the credit crunch crisis, 

spreads have jumped while default occurrence hasn’t changed as much 

proportionally. From that angle, the volatility of spreads generated in the ESG should 

not be source of worry but clients should focus on the validation of the bond returns. 

Nevertheless, credit spread data is easier to observe and to compare to. Clients could 

adopt a rebalancing strategy, in which case valuations of bonds matter as well. 

Therefore, it is important to capture the periods of illiquidity.  

Section 6.1 introduces the negative spreads occurrence and the poorly captured shape 

of distribution of the first factor. A couple of alternatives exist in order to capture this 

shape better. In their original paper, Arvanitis Gregory and Laurent suggest the use 

of a CIR process. This has the advantage of having an asymmetric shape. However, it 

is necessary to modify the principal components in order to apply such a process. 

Indeed, the CIR ensures the process remains positive – therefore can only be 

calibrated to a positive process. Of course, taking the exponential of the factors 

described in this paper so far would be an alternative but the closed form solution 

would be lost. Furthermore, the calibration is far from easy. Finally, applying the CIR 

process to the factors does not ensure the spreads remain positive – this all comes 

down to the principal components and their linear combination.  

The aim of this section is to model the illiquidity component of credit spreads. In 

essence, illiquidity events such as credit crunch crisis are better modelled as jumps. 

There are a couple of possibilities in order to capture jumps.  

Our first idea was to relax the normality assumption of residuals. It would be fairly 

easy to calibrate a jump process to the residuals obtained from the initial Ornstein-

Uhlenbeck calibration. When studying the residuals, it is clear that the credit crunch 

is poorly captured by the model. It is apparent that the first factor is the most 

significant contributor to liquidity jumps. Indeed, in case of an illiquidity crisis, all 

ratings tend to be affected in a proportional fashion. Therefore, we have focused our 

attention on the first component.  
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Figure 32 - Evolution of VIX and Residuals over Time 

One of the findings was to notice that the residuals are strongly anti-correlated with 

the changes in the VIX (implied volatility index) at -65%. This is not particularly 

surprising given that the VIX is known as being the indicator of illiquidity and fear in 

the market. Nevertheless, it pointed out that in times where the model would give a 

bad fit, this would be linked to the illiquidity component.  

We modelled the first component residual using a diffusion process with double 

asymmetric exponential jumps. This captured both sides of the distribution. The 

immediate result was very encouraging. The spreads widened strongly – pushing the 

99.5th percentile twice as far as their previous levels.  

Even though this idea is simple and attractive, it has a major drawback. The number 

of negative spreads also doubled - reaching around 20% of the simulations. This is 

due to the fact that the higher volatility and the double sided jumps show a more 

extreme 1st factor. A solution would be to capture only one sided jumps but this 

would move the distribution of credit spreads and change its mean. Furthermore, 

given that the residuals obtained from the Ornstein-Uhlenbeck fit are forced to follow 

a centered normal distribution, it is inappropriate to fit only negative jumps.  

Therefore, we applied the following approach; fitting an Ornstein-Uhlenbeck process 

with jumps on the 1st factor directly. This would ensure the mean reversion is 

captured as well as the extraordinary negative jumps. At the time of writing, this 

solution was still at the research stage. Nevertheless, it is believed that it will be able 

to capture the asymmetric distribution, therefore projecting less negative spreads 

while still obtaining a wider distribution.  
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6.3 Sovereign Risk 

The model described in this paper focuses on the credit risk of corporate bonds 

particularly. Indeed, the asset model does not model government bond defaults. A 

similar assumption is described in QIS5. For developed countries, it is common to 

assume that government bonds do not have credit risk.  

In 2011, the degradation of sovereign bond credit quality has raised concerns – 

particularly in the Eurozone. Should capital model capture the risk of government 

bonds defaulting? Should this be part of the internal model or should this be 

modelled as a stress scenario? 

The ESG is calibrated using statistical techniques and historical data. The number of 

government bonds defaults in history is scarce and does not form sufficient database 

for the calibration of a model. Instead, we suggest clients to use the flexibility of the 

asset model. It is possible to enter the Euro government bonds as AA bonds or A 

bonds in the corporate bond module. This would have a general impact on the capital 

charge. Alternatively, we are developing a functionality allowing users to enter a rare 

default event which would be modelled in the asset model – directly impacting 

government returns.   

The model described in this paper cannot be easily extended to capture government 

bond spreads due to its necessary linkage to transition rates and defaults. No such 

matrix is available for government bonds – even if it was, the default probabilities 

would not be high enough to justify the current observed spreads.  
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7. Conclusion 

As part of our work at Towers Watson, our aim is to help clients with their 

regulatory submissions. Particularly, Solvency II brings up new requirements 

to insurance companies.  

One of the key risks faced by insurance companies is credit risk. It affects the 

reinsurance business, the counterparties but most importantly the investment 

risk. The aim of this paper was to review the approach introduced by QIS5 – 

the preliminary study of the Solvency II framework – for modelling credit risk 

and compare it to the literature.  

There is a whole range of available approaches focusing on idiosyncratic or 

systemic risk. One of which is the Jarrow, Lando and Turnbull framework. We 

developed it further in order to be able to model credit spreads stochastically. 

Furthermore, we wanted it to be applicable to risk management and the inter-

nal model of an insurance company.  

The model introduced in this paper addresses most of the issues encountered 

when modelling spreads but has a few limitations. A few extensions to the 

model are introduced in section 6 in order to bring the framework to the next 

level. Particularly, reducing the number of negative spreads and better captur-

ing the high spreads observed during the credit crunch.  
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