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Résumé

Dans le cadre de la réglementation Béle II, les banques ont 1'obligation de mobiliser une
partie de leurs fonds propres a des fins de couverture de leurs risques opérationnels. Chaque
établissement peut faire le choix d’utiliser I’approche avancée, conditionnée par la valida-
tion d’un modele interne, la Loss distribution approach (LDA). La seule exigence est de
construire le profil de risque de pertes sur une année et de déterminer le quantile & 99,9 %
de cette distribution. La construction de ce profil de risque se fait en découpant de facon
matricielle (lignes d’activités x catégories de risques) les différentes sources potentielles de
pertes opérationnelles. Au sein de chacune de ces cellules, I'estimation s’effectue sur deux
dimensions, la fréquence et la sévérité, afin de pouvoir construire la distribution de perte
annuelle.

C’est la modélisation de la dimension sévérité qui souléve le plus de questions, en raison
des spécificités des pertes opérationnelles. Ce mémoire explore le recours a des méthodes
d’estimation robustes, alors que les méthodes classiques le plus souvent utilisées (maximum
de vraisemblance, méthode des moments généralisée) ne présentent pas cette caractéristique,
et sont tres sensibles a ’hétérogénéité des données.

En lien avec les exigences du Comité de Bale, I'objectif de ce mémoire est donc d’étudier la
notion d’estimation robuste. Différentes familles d’estimateurs (OBRE, Cramér-von-Mises,
quantile-distance) sont ainsi présentées et leurs propriétés sont analysées dans le contexte
du calcul de capital au titre du risque opérationnel.

Mots-clés : risque opérationnel, Bale II, charge en capital, sévérité, statistique robuste,
méthodes d’estimation.

Abstract

In the Basel II framework, banks are required to raise a part of their capital to hedge their
operational risks. Each institution may choose to use the advanced approach, conditioned
by the validation of an internal model, the loss distribution approach (LDA). The only
requirement is to build a risk profile over a year and determine the 99.9% quantile of this
distribution. The construction of this risk profile is done by cutting different potential sources
of operational losses into a matrix (business lines times risk categories). Within each of
these cells, the estimation is performed in two dimensions, the frequency and severity, to
build the distribution of annual loss.

Within the LDA framework, the modelling of the severity is the most difficult task because
of the specificity of operational risk data. This thesis explores the use of robust estimation
methods, while the most commonly used methods (maximum likelihood, generalized method
of moments) did not show this effect, and are very sensitive to the heterogeneity of the data.
In line with the requirements of the Basel Committee, the objective of this thesis is to
study the concept of robust estimation. Different families of estimators (OBRE, Cramér-
von-Mises, quantile-distance) are thus presented and their properties are analyzed in the
context of computing capital charge for operational risk.

Keywords : operational risk, Basel II, capital charge, severity, robust statistics, estimation
methods.
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Introduction

Le role clé d’intermédiation joué par les institutions bancaires dans le financement de I’économie est tel
qu’il est impossible d’envisager une stabilité du systéme financier mondial sans un fonctionnement régulé
des banques. Les diverses activités conduites par une banque 'aménent de fait & encourir une grande
variété de risques. Or une appréhension erronée des risques encourus peut mener a des pertes financieres
considérables, qui peuvent elles-mémes engendrer la faillite et ainsi entraver la stabilité de ’économie
mondiale.

L’enjeu de la gestion des risques est donc bien de parvenir a prévenir l'occurrence de pertes financieres
importantes pouvant mettre en péril la perennité d’un établissement. Si elle garantit un fonctionnement
sain & court terme, une gestion efficace des risques concourt également, & plus long terme, a des gains
substantiels pour la banque, liés a la stabilité de son activité.

C’est a cette fin qu’ont été mis en place les Accords de Béle, contraignant les banques a instituer des me-
sures visant a quantifier de maniére appropriée leur exposition au risque et a assurer son pilotage. Dans
ce contexte, le risque opérationnel a commencé a étre considéré comme un risque majeur. La grande
difficulté inhérente a la gestion des risques opérationnels est la capacité a anticiper des événements rares
ayant des conséquences extrémement lourdes pour les banques.

Et c’est dans 'objectif de couvrir ces pertes a caractere imprévisible que les banques ont développé de
nombreuses méthodologies et modeles statistiques. Le modele le plus couramment utilisé se fonde sur
Pajustement des distributions de pertes (Loss Distribution Approach). Le capital réglementaire corres-
pond alors & une Value-at-Risk & 99,9% de la perte annuelle (couverture d’un risque millénaire), calculée
a partir de deux distributions : la fréquence des pertes (nombre annuel des pertes) et la sévérité (montant
des pertes).

La modélisation de la sévérité de ces risques divers est la partie du modele la plus sensible et a fait I’'objet
de nombreuses publications proposant nombre d’options méthodologiques envisageables, en termes de
distributions paramétriques ou de méthodes d’estimation de leurs parametres. La problématique déve-
loppée dans ce mémoire est d’aborder la question des méthodes d’estimation en se focalisant sur celles
présentant un caractere robuste. Il s’agit a la fois d’'un réponse directe aux textes réglementaires qui
pronent 'usage de méthodes robustes — au sens large — et d’une ouverture a une branche (trop) peu
utilisée, la statistique robuste.

En conséquence, ce mémoire s’articule autour de trois parties. La premiere est consacrée a la présentation
du contexte de I'étude, sur les plans réglementaire et méthodologique. La deuxiéme partie présente les
bases de la statistique robuste et différents estimateurs robustes. Enfin, la derniére partie est consacrée a
I’application de ces méthodes dans le cadre du calcul de capital réglementaire.
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1 Risques bancaires et réglementation

1.1 Risques bancaires

1.1.1 Panorama des risques

Les risques bancaires sont liés & la survenance d’événements non prévisibles pouvant avoir des consé-
quences importantes sur le bilan de la banque. Par exemple, une fraude peut conduire & une perte
importante, affectant le résultat net de la banque.

Toutes les activités menées par la banque ’exposent potentiellement & un risque, il existe par conséquent
un large spectre de risques. Néanmoins, on distingue généralement trois grands types de risque :

— le risque de marché, qui correspond au risque que la valeur des actifs détenus par la banque varie
en raison de I’évolution des prix sur les marchés financiers;

— lerisque de crédit, qui est lié au risque qu’une contrepartie ne parvienne pas a remplir ses obligations
vis-a-vis de la banque;

— le risque opérationnel, qui résulte d’inadéquations ou de défaillances liées a des procédures, des
agents, des systemes internes ou des événements extérieurs.

Pour une banque universelle, on estime que le risque le plus important est le risque de crédit, suivi par
le risque opérationnel, puis par le risque de marché.

Le tableau suivant présente quelques exemples liés aux trois grands risques :

Risque de crédit Risque de marché Risque opérationnel
Défaillance Change Fraude
Dégradation de créance Taux d’intérét Désastre
Volatilité Risque juridique

11 est souvent facile de distinguer ces trois risques, mais la séparation est parfois ténue. Certains risques
sont a la frontiere entre les risques de crédit, de marché et le risque opérationnel. C’est par exemple le
cas du risque de modele dans le cadre de la valorisation de produits exotiques, qui peut étre considéré
comme un risque de marché ou un risque opérationnel.

Par ailleurs, d’autres risques ne correspondent pas a des pertes avérées. Si la banque prend de mauvaises
décisions qui peuvent conduire a la perte de parts de marché, les conséquences ne sont pas visibles
immédiatement. On parle de risque stratégique.

1.1.2 Fondements de la gestion des risques

Pour faire face a la diversité des risques auxquels elles s’exposent, les banques ont progressivement déployé
des moyens considérables. Ces évolutions (méthodologies, matériel, équipes, etc.) s’expliquent en grande
partie par des facteurs historiques concernant la théorie financiére, les marchés financiers ou encore les
désastres financiers.
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La théorie financiére

La naissance de la théorie financiére est généralement associée aux travaux fondateurs de Louis Bachelier.
Les années trente marquent le début des recherches empiriques sur les prix des actifs, et notamment la
formation des prix, l'efficience des marchés et 'anticipation des cours des actions. Ce n’est que dans les
années cinquante que des chercheurs (Markowitz, Sharpe, . ..) entreprennent les premiers travaux consé-
quents sur le risque, qui aboutissent a la théorie moderne du choix de portefeuille basée sur le modele
CAPM (Capital Asset Pricing Model).

L’année 1973 est marquée par la parution de 'article de Black et Scholes pour valoriser une option
européenne, point de départ des recherches concernant la valorisation des produits dérivés. Ces travaux
sont d’autant plus importants qu’ils abordent le probleme de la valorisation du point de vue du risque,
en considérant le prix de 'option comme le prix de la couverture mise en place pour insensibiliser le
portefeuille. Quarante ans plus tard, ces résultats font toujours figure de référence pour la gestion des
produits optionnels. Durant les années quatre-vingt-dix, la couverture des produits optionnels devient de
plus en plus complexe. Si la méthodologie Raroc publiée en 1996 par Bank of America a trait au risque
de crédit, c’est le risque de marché qui fait I'objet des plus grandes avancées avec la publication en 1994
de RiskMetrics par JP Morgan, qui permet une large diffusion des méthodes de valeur en risque. Voici
les grandes dates de la théorie financiére :

1900 These de Louis Bachelier « Théorie de la spéculation ».

1952  Parution de l'article « Portfolio selection » (Markowitz).

1964 Modele CAPM (Sharpe).

1970  Syntheése des travaux sur Defficience des marchés par Fama.

1973  Formule de valorisation d’une option européenne (Black et Scholes).
1974 Etude de Pobligation risquée (Merton).

1977 Modeles de taux de Vasicek et de Cox, Ingersoll et Ross.

1994  Publication de RiskMetrics par JP Morgan.

1996  Publication de la méthodologie Raroc par Bank of America.

Le développement des marchés financiers

On peut considérer que les activités premieres d’une banque I'exposent principalement au risque de dé-
faillance d’emprunteurs & ne pas rembourser leurs dettes et au risque de volatilité des prix des actifs,
c’est-a-dire au risque de crédit et au risque de marché. A partir des années quatre-vingt, la globalisation
des marchés financiers entraine une concurrence accrue entre les banques, associée a un besoin de finan-
cement plus important de la part des entreprises. C’est pourquoi le risque de crédit revét un fort enjeu,
d’autant qu’il touche tous les types de contreparties, y compris les Etats.

La succession de crises mettant en difficulté le systéme financier international ameéne les banques et les
autorités a réfléchir pour mieux gérer le risque de crédit. Parallelement, il apparait que le risque de marché
doit aussi étre mieux appréhendé au vu des positions de hors-bilan et de la complexité des produits traités.
L’innovation financiére connait en effet un développement accéléré, d’abord sur le marché des changes
(FX market), en raison de la crise pétroliere de 1973, puis sur les marchés d’actions (equity market) et
de taux d’intérét et, dans une moindre mesure, sur le marché des matiéres premieres (commodities).

Les crises financiéres

La stabilité du systéme financier international est une condition importante pour la mise en place des
politiques économiques, notamment pour garantir la croissance. La régulation du systéme financier inter-
national et la mise en place de mécanismes de surveillance des établissements financiers par des autorités
de supervision sont donc une logique économique afin d’éviter les crises systémiques.

La mise en place d’une réglementation vise donc dans un premier temps a limiter le risque systémique,
et dans un deuxiéme temps a éviter les défaillances individuelles des établissements financiers, dans la

Vincent Lehérissé Mémoire d’actuariat



5 1 Risques bancaires et réglementation

mesure ou la défaillance d’un seul établissement peut engendrer une contagion aux autres établissements.
Voici quelques points de repere sur les désastres financiers :

1974  Herstatt Bank : 620 millions de dollars (change)

1995 Barings : 1,33 milliard de dollars (stock index futures)

1997 Natwest : 127 millions de dollars (swaptions)

1998 LTCM : 2 milliards de dollars (crise de liquidité)

2006 Amaranth : 6,5 milliards de dollars (contrats & terme sur gaz)
2007  Société Générale : 7,1 milliards de dollars (fraude)

2008 Madoff : 65 milliards de dollars (fraude)

Au-dela de ces désastres émanant d’acteurs relativement isolés, la crise financiere de 2007-2008 a eu
un impact considérable sur Péconomie. A l'origine de cette crise, des préts immobiliers avec des taux
d’emprunt variables aux modalités complexes, sont accordés a des ménages "subprimes'. Ces préts servent
en fait de sous-jacents a des produits structurés bénéficant de trés bons ratings car mélés a des obligations
d’Etats, et placés dans des hedge funds. En période de hausse de taux, les ménages ne parviennent plus
a rembourser, et les actifs titrisés s’en retrouvent trés mal valorisés. Les investisseurs se détournent alors
de ces actifs a risque pour des instruments financiers plus transparents, ce qui entraine lilliquidité de
nombreux fonds, déclenchant ainsi une crise de liquidité globale. L’interdépendance du systeme bancaire
engendre par suite une crise de liquidité sans précédent. L’intervention des Banques Centrales sur le
refinancement et le soutien massif des Etats permet néanmoins d’éviter de nombreuses faillites.

1.1.3 Fonds propres d’une banque

Les risques encourus par une banque impactent son bilan a travers ses fonds propres. Le bilan de la
banque peut en effet se présenter, de facon simplifiée, sous la forme suivante :

Actif Passif
Actifs immobilisés  Fonds propres
Crédits et préts Dettes
Titres Dépots
Trésorerie

Les fonds propres sont donc un des éléments du passif. Ils regroupent notamment les actions ordinaires,
les certificats d’investissement, les réserves et le résultat non distribué. Les autres éléments du passif d’une
banque sont les dépots, épargne des ménages, ainsi que les dettes. A actif, on trouve les crédits et les
préts aux ménages et aux entreprises, les services, le portefeuille de titres (portefeuilles de négociation et
d’investissement).

Trois caractéristiques sont attribuables aux fonds propres :

(1) Les fonds propres sont le moteur de l'activité de la banque : en raison de contraintes externes
(principalement la réglementation) et internes (imposées par exemple par les actionnaires), ils dé-
terminent le risque pris par la banque, et donc son activité. A ce titre, ils dimensionnent également
la croissance de I’établissement, en fonction de I’évolution de son capital.

(2) Les fonds propres sont une garantie vis-a-vis des créanciers dans la mesure ot ils permettent d’ab-
sorber d’éventuelles fortes pertes dues & des éléments exogénes et/ou inattendus. Ainsi, plus leur
niveau est élevé, plus la banque présente des gages de solidité. Ces fonds propres sont d’ailleurs un
des éléments utilisés pour la notation de la banque (rating), note qui impacte le coiit des ressources
(de trésorerie et de long terme).

(3) Les fonds propres permettent de couvrir les risques, et sont par conséquent rémunérés, par le ROE
(Return on Equity). L’objectif de la banque est donc d’offrir le ROE le plus élevé & ses actionnaires
en minimisant le risque encouru pour maximiser le profit. Celui-ci a une influence trés importante
sur la valeur de marché de la banque et conditionne la croissance externe de I’établissement.

Mémoire d’actuariat Vincent Lehérissé



1.2 La réglementation prudentielle 6

1.2 La réglementation prudentielle

1.2.1 Evolution des réglementations

La réglementation prudentielle a considérablement évolué ces vingt derniéres années sous I'impulsion
des travaux du Comité de Béle (Basel Committee on Banking Supervision, BCBS). Méme si celui-ci n’a
aucun pouvoir décisionnel, ses recommandations sont reprises par les autorités de tutelle des différents
pays industrialisés. Le Comité de Bale est un organisme de réflexion et de proposition sur la supervi-
sion bancaire, situé a la Banque des Réglements Internationaux (Bank of International Settlements, BIS).

La mise en place d’une réglementation est un processus assez long dont les différentes étapes sont les
suivantes :

— publication d’un document de travail par le Comité de Béle;
— discussions entre le Comité de Béle et 'industrie bancaire ;
— rédaction d'un « Accord » définitif par le Comité de Bale;

— traduction juridique de cet accord au niveau national.

En Europe, c’est la Commission Européenne qui est chargée de définir la CRD (Capital Requirement
Directive), dont la mise en ceuvre revient aux différentes autorités nationales de tutelle. En France, c’est
I’Autorité de Controle Prudentiel et de Résolution' (ACPR, dont le Secrétériat Général est rattaché
a la Banque de France) qui controle lapplication de la CRD, une fois que celle-ci a été adaptée a la
législation frangaise par le Comité de la Réglementation Bancaire et Financiére (CRBF). Le tableau
suivant répertorie les grandes étapes de la réglementation prudentielle :

1988  Publication de « The Basel Capital Accord » définissant le ratio Cooke (Bale I).
1993  Elaboration de la CAD par la Commission Européenne.

1996 Incorporation du risque de marché dans ’assiette des risques.

1999  Premier document consultatif sur le nouveau ratio McDonough.

2004 Publication du texte définitif de la réglementation Bale II.

2006 Mise en place de la norme Bale II.

2010  Publication du texte définitif de la réglementation Bale III.

2013 Début de mise en ceuvre de la norme Béle III.

Bale |

En 1988, le Comité de Béle propose un ratio international de solvabilité qui doit permettre une adéquation
des fonds propres par rapport aux risques, tout en renforcant la solidité et la stabilité du systéme bancaire
et également d’atténuer les inégalités concurrentielles entre les banques. Il s’agit du ratio Cooke (du nom
du président du Comité de Bale de I’époque) qui correspond au rapport entre le montant des fonds
propres et celui des encours pondérés de crédit EPC. Plusieurs niveaux de fonds propres sont définis :

(1) les fonds propres de base FPy ( Tier one), qui correspondent au capital et aux réserves;

(2) les fonds propres complémentaires FPy ( Tier two), principalement constitués d’emprunts subordon-
nés;

(3) les fonds propres surcomplémentaires FP3 (Tier three).

Selon I’Accord de Bale, les établissements financiers doivent respecter les contraintes FP, < FPy et
FP1/EPC > 4%, mais surtout le ratio de solvabilité, appelé ratio Cooke :

FP; + FP,
EPC
1. I’ACPR résulte de la fusion intervenue en janvier 2010 des deux organes de contrdle des banques (la Commission

Bancaire) et des assurances (I’Autorité de Controle des Assurances et des Mutuelles). Initialement dénommée, ACP, elle
prend le nom d’ACPR en 2014.

> 8%

Vincent Lehérissé Mémoire d’actuariat



7 1 Risques bancaires et réglementation

La réglementation a ensuite évolué progressivement pour prendre en compte les risques de marché, avec
la proposition de deux approches, 'une forfaitaire, et ’autre autorisant les banques a utiliser un modele
interne. L’idée est d’inciter les banques a construire des modeles fiables pour calculer les risques de marché
et donc d’obtenir des exigences de fonds propres beaucoup plus réalistes. Ce n’est qu’en janvier 1996 que
le Comité de Bale propose d’incorporer le risque de marché dans le ratio Cooke. En 1999, le Comité de
Béle publie un premier document consultatif pour réformer le ratio Cooke, puis un second en 2001, avec
pour objectifs la modification du traitement du risque de crédit et I'intégration du risque opérationnel.

1.2.2 La norme Bale Il

Le Comité de Bale publie finalement en juin 2004 le Nouvel Accord de Bale, résultat de plusieurs périodes
consultatives aupres des institutions financieres. La premieére motivation de I’Accord est la modification
de Dassiette des risques, qui intégre désormais le risque opérationnel, et la définition d’un nouveau ratio
de solvabilité, le ratio McDonough :

FP FP
1 +EPs > 8%
Erc + Ero + Erm

ou Frc, Ero et Erys sont les exigences définies respectivement pour le risque de crédit, le risque opé-
rationnel et le risque de marché.

La seconde motivation de 1’Accord est de rapprocher la réglementation des pratiques en vigueur dans
I'industrie pour le pilotage des risques, afin que l'exigence de fonds propres soit plus sensible au risque
réel de la banque. L’idée est d’autoriser les banques, sous certaines conditions, a utiliser des modeéles
internes pour mesurer le risque de crédit et le risque opérationnel, de la méme fagon que pour le risque
de marché.

Le nouveau dispositif s’articule autour de trois piliers :

(1) le premier pilier correspond aux exigences minimales de fonds propres et vise a définir le ratio
McDonough ;

(2) le deuxiéme pilier concerne le processus de surveillance et donne un pouvoir accru aux autorités de
controle (Autorité de Controle Prudentiel) ;

(3) le troisiéme pilier porte sur la communication financiére et la discipline de marché.

Pilier 1 : exigences minimales de fonds propres

En ce qui concerne le premier pilier, le traitement du risque de marché est inchangé. Le traitement du
risque de crédit est revu en profondeur. Trois méthodes sont désormais possibles pour mesurer le risque
de crédit :

— lapproche standard (SA, pour Standard Approach) reste une méthode forfaitaire, mais désormais les
pondérations en risque dépendent de la notation des agences externes;

— lapproche IRB (Internal Ratings Based) « simple » est basée sur des mesures internes des probabilités
de défaillance (PD, pour Probability of Default) et des mesures exogenes des autres parameétres du
modele;

— dans 'approche IRB « avancée », la banque estime d’autres parametres comme le taux de perte
(LGD, pour Loss Given Default) et 'exposition en cas de défaut (EAD, pour Ezposure at Default).

Les méthodes de calcul sont standardisées et imposées par le Comité de Béle. Que ce soit pour 'approche
SA ou les approches IRB, le point central de ces approches est la notation, externe ou interne. Les ap-
proches IRB ne sont donc pas des modeles internes, mais correspondent plutét a un modele externe avec
des parametres internes. C’est la différence fondamentale avec 'approche précédente.

En outre, le risque opérationnel est intégré a ’assiette des risques. Trois méthodes sont proposées pour
le mesurer :

Mémoire d’actuariat Vincent Lehérissé



1.2 La réglementation prudentielle 8

— La méthode Basic Indicator Approach (BIA) : le risque opérationnel est appréhendé a partir du
produit annuel brut et la charge en capital est alors une fonction linéaire de cet indicateur.

— La méthode Standardized Approach (TSA) : I'établissement est divisé en lignes métiers (business lines)
et la méthode BIA est déclinée pour les différentes lignes métiers avec une pondération spécifique ; la
charge en capital correspond alors & la somme des charges en capital spécifiques.

— Les méthodes Advanced Measurement Approach (AMA) : la banque peut alors choisir entre différents
« modeles internes » pour quantifier son exigence de fonds propres.

Pilier 2 : surveillance prudentielle

Le processus de surveillance prudentielle (Supervisory Review Process) relatif au Pilier 2 vise a inciter les
établissements a développer leurs techniques de gestion des risques et des fonds propres. Il est aussi voué
a permettre aux autorités de controler que les banques disposent d’un niveau de fonds propres conforme
a leur profil de risques et, a défaut, d’engager des mesures correctrices. Il comprend trois composantes
essentielles :

(1) Le dispositif de contrdle interne (Internal Governance), incluant notamment le controle des opé-
rations et des procédures internes, I’organisation comptable et de traitement de I'information, les
systemes de mesure des risques, la surveillance des flux d’espéces et de titres. Ce dispositif doit étre
adapté a la taille, & la nature et au volume des activités de 1’établissement.

(2) Le processus d’évaluation de 'adéquation du capital interne (ICAAP, pour Internal Capital Ade-
quacy Assessment Process), mis en place par les établissements, qui a vocation & leur permettre
de correctement identifier, mesurer, agréger et surveiller les risques, et d’assurer la détention d’un
montant de capital interne en adéquation avec leur profil de risque;

(3) Le processus de surveillance et d’évaluation prudentielle (SREP, pour Supervisory Review and Eva-
luation Process), mis en ceuvre par les autorités de controéle, qui prend en compte la nature et la
complexité de l'activité des établissements, peut conduire a des mesures prudentielles. Il consiste
en ’évaluation du profil de risque des établissements, la vérification de I’adéquation et de la robus-
tesse des dispositifs de controle interne et du processus d’évaluation de 'adéquation du capital et
la vérification de 'adéquation du niveau des fonds propres au profil de risque.

Pilier 3 : discipline de marché

Le troisieme pilier concerne la discipline de marché. Il vise a améliorer la transparence financiére des
banques, en leur imposant de communiquer les informations nécessaires (structure du capital, de l’allo-
cation de fonds propres, de 'exposition aux risques et des pertes) pour permettre & des tiers d’apprécier
l’adéquation de leurs fonds propres. Une meilleure discipline de marché en est espérée.

1.2.3 Accentuation avec la norme Bale il

Sous 'impulsion du G20, le Comité de Bale a engagé une révision complete du dispositif prudentiel, les
Accords de Bale III, publiés en décembre 2010 et (en partie?) applicables depuis début 2013.

Cette réforme part du constat que la sévérité de la crise s’explique en grande partie par la croissance
excessive des bilans et hors-bilan bancaires (via, par exemple, les produits dérivés), tandis que dans le
méme temps le niveau et la qualité des fonds propres destinés & couvrir les risques se dégradent. En outre,
de nombreuses institutions ne disposent pas non plus de réserves suffisantes pour faire face a une crise de
liquidité. Dans ce contexte, le systeme bancaire s’est révélé incapable d’absorber les pertes intervenues
d’abord sur les produits structurés de titrisation et d’assumer ensuite la ré-intermédiation d’une partie
des expositions de hors-bilan. Au pire de la crise, les incertitudes pesant sur la qualité des bilans, la solva-
bilité des banques et les risques liés a leur interdépendance ont provoqué une crise de liquidité généralisée.

2. La mise en ceuvre intégrale du texte doit s’étaler jusqu’en 2019.
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Les enjeux de cette réforme sont considérables, non seulement pour le secteur bancaire et la stabilité
des marchés financiers, mais aussi pour 1’économie dans son ensemble. Le nouvel accord se concentre sur
quatre points d’attention majeurs.

Renforcement de la qualité et de la quantité des fonds propres

Définition plus restrictive des éléments de fonds propres. Le premier objectif est d’accroitre I’homo-
généité, la qualité et la transparence des fonds propres, c’est-a-dire s’assurer qu’ils sont constitués de
capitaux capables d’absorber des montants de pertes importants et non d’instruments financiers com-
plexes et sujets a fluctuations. En particulier, les établissements devront constituer un capital Common
Equity Tier 1 (CET 1) ne pouvant plus contenir que des actions ordinaires (comme les parts sociales
pour les groupes mutualistes) et des bénéfices mis en réserve. Parallélement, les participations dans les
entreprises financieéres (sociétés d’assurances par exemple) seront plus séverement déduits.

Constitution de coussins de fonds propres complémentaires.

— Coussin additionnel de conservation des fonds propres

Coussin de protection des fonds propres de 2,5% composé uniquement d’éléments CET 1, avec mise
en réserve obligatoire de résultat lorsque le coussin baisse en-dessous du minimum requis.

— Coussin contra-cyclique

Coussin additionnel destiné & limiter une progression excessive du crédit, compris entre 0% et 2,5%
et composé uniquement d’éléments CET 1.

— Coussin supplémentaire pour les institutions systémiques

Coussin supplémentaire de fonds propres en fonction du caractére plus ou moins systémique de la
banque, les institutions dites systémiques (systematically important banks, SIB) étant celles qui, par
leur taille ou leur activité, font peser un risque systémique sur ’économie

Renforcement de la couverture des risques

— Renforcement des exigences associées au calcul de I’Ezpected Positive Exposure (EPE) au titre du
risque de contrepartie sur instruments dérivés de gré a gré (over-the-counter, OTC), ainsi que la prise
en compte des risques de corrélation défavorable?® (wrong-way risk);

— Mise en place du Credit Value Adjustment (CVA), nouvelle charge en fonds propres destinée & couvrir
les variations défavorables du prix de marché des risques de contrepartie sur toutes les opérations sur
dérivés OTC.

— Prise en compte du risque lié aux institutions financiéres systémiques par une modification de la
formule de calcul des RWA (coefficient de corrélation de la formule IRB multiplié par 1.25) pour les
établissements de grande taille (bilan supérieur & 70 MEUR) et les établissements non régulés;

— Renforcement du cadre prudentiel des activités de marché (Béle 2.5, depuis 2009) :

Mise en place d’une exigence additionnelle en fonds propres (IRC, incremental risk charge) visant
a couvrir les risques de dégradation des dérivés de crédit du trading book, d’une exigence supplé-
mentaire au titre de la VaR stressée (destinée & réduire la procyclicité), d’une comprehensive risk
measure (CRM) vouée & couvrir le risque de corrélation entre les institutions financiéres, ainsi que
l’augmentation des pondérations relatives aux titrisations.

— Instauration d’une charge en fonds propres pour les expositions sur les chambres de compensation
centrales? : pondération des expositions de trading & 2%.

3. Risque que l’exposition & une contrepartie soit inversement corrélée & sa qualité de crédit, comme c’est le cas pour
une position acheteuse de CDS sur une entité dont la qualité de crédit est positivement corrélée a celle de la contrepartie.

4. Une banque est exposée a une chambre de compensation de deux manieres : au titre des transactions qui y transitent
(appels de marge, collatéral déposé auprés de la chambre), et au titre du fonds commun (default fund), qui permet de
mutualiser le cott du défaut d’un intervenant.
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Instauration de ratios de liquidité

Le Comité de Bale propose la mise en place de deux ratios de liquidité :

(1) Le LCR (liquidity coverage ratio) impose aux banques de détenir un stock d’actifs sans risque, qui
leur permettrait de résister pendant trente jours & une crise qui se traduirait par des retraits massifs

(en vigueur en 2015) :

Actifs liquides

LCR = > 100%.

Sorties de trésorerie

(2) Le NSFR (net stable funding ratio) vise le méme objectif sur un an. Plus contraignant, il doit inciter
les établissements de crédit a renforcer leur profil de financement en faveur de ressources de long
terme, supposées plus stables (en vigueur en 2018) :

Eléments fournissant un financement stable
NSFR = —— - - > 100%.
Eléments nécessitant un financement stable

Mise en place d’un ratio de levier

Le Comité envisage d’instituer un ratio de levier (leverage ratio) destiné a plafonner les expositions
en risques indépendamment de la qualité des risques encourus, et ce afin de limiter I’endettement des
banques. Précisément, les établissements devront vérifier, a partir de 2019 :

FPy > 3%
Actifs non pondérés ~

1.3 Parallele avec Solvency Il

En termes de structures, les réglementations Béle II et Solvency II sont tres similaires. En effet, les deux
cadres réglementaires s’organisent selon trois piliers dont les objectifs s’averent trés comparables :

(1) Pilier 1 : définit les modalités de I’exigence minimale en fonds propres.

2) Pilier 2 : fixe des exigences en matiére de controle interne et d’exhaustivité de la couverture de la
g
gestion des risques

(3) Pilier 3 : donne les exigences en matiére de communication financiére.

Néanmoins, ces deux réglementations different tres largement 'une de 'autre du fait des grandes diffé-
rences d’activités entre les banques et les compagnies assurances et des objectifs du controle prudentiel
inhérent. Le contréle de 'industrie bancaire se concentre avant tout sur la stabilité d’un systéme singu-
lisrement interconnecté et soumis & un risque systémique trés important. A inverse, Solvency II a pour
principal objectif de protéger les assurés contre le risque de faillite de leur compagnie d’assurance. En
effet, les risques liés a l'activité des compagnies d’assurance sont de natures bien différentes.

Contrairement a 'industrie bancaire, ils portent davantage sur le passif du bilan et sur des risques en
grande partie non-financiers comme les catastrophes climatiques qui sont souvent moins corrélés et spé-
cifiques. En outre, I'inversion du cycle de production permet un financement sur le long terme et les
compagnies d’assurances ne sont donc pas aussi exposées que les banques au risque de liquidité.

Ainsi, bien que leur structures soient comparables, Béle II et Solvency II poursuivent des objectifs tres
différents. Néanmoins, ces deux réglementations n’évoluent pas indépendamment I'une de I’autre, dans la
mesure ou I’Union Européenne souhaite harmoniser le traitement réglementaire des types d’actifs com-
muns aux domaines assurantiel et bancaire afin de limiter les possibilités d’arbitrages entre ces deux
industries.

Concernant le premier pilier, Bile II distingue principalement trois types de risques (risque de crédit,
opérationnel et de marché) alors que Solvency II en considére six (risque non-vie, vie, santé, de marché,
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de contrepartie et opérationnel). Alors que le capital réglementaire pour les assurances se fonde sur le
capital économique nécessaire aux paiements des prestations aux assurés sous une certaine probabilité, le
capital réglementaire balois est destiné a pouvoir absorber les pertes au sein de chacune des trois familles
de risque définies précédemment.

Par ailleurs, Solvency II définit un niveau « souhaitable » de capital SCR (Solvency Capital Requirement)
en-dessous duquel les compagnies d’assurance ne peuvent rester que pour une période de six a neuf mois et
un niveau de capital minimum MCR (Minimum Requirement Capital) situé dans une fourchette comprise
entre 25% et 45% du SCR et en-dessous duquel les autorités de controle peuvent retirer ’agrément.

Le prochain chapitre décrit le cadre et les approches réglementaires pour la mesure du risque opérationnel
(bancaire).
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2.1 Classification des risques opérationnels

Méme s’ils sont connus depuis longtemps, la gestion des risques opérationnels est un exercice encore
récent pour les banques, qui a largement évolué grace a la réforme Bale II. Le Comité de Bale définit
les risques opérationnels « comme le risque de pertes dues a une inadéquation ou a une défaillance des
procédures, personnels, systémes internes ou a des événements extérieurs ».

Pour répondre a la diversité des événements assimilables & des risques opérationnels, le Comité de Bale
présente une classification des différentes catégories d’événement (event line, EL) :

(EL 1) Fraude interne : pertes liées a des actes commis a l'intérieur de ’entreprise visant & commettre
une fraude ou un détournement d’actif ou a enfreindre une disposition législative ou réglemen-
taire, ou des regles de I’entreprise, a I’exclusion des cas de pratiques discriminatoires ou contraires
aux regles en matiere d’égalité professionnelle, et impliquant au moins un membre de I’entreprise.

(EL 2) Fraude externe : pertes liées a des actes de tiers visant & commettre une fraude ou un détour-
nement d’actif ou & enfreindre une disposition législative ou réglementaire.

(EL 3) Pratiques en matiére d’emploi et sécurité du travail : pertes liées a des actes contraires
aux dispositions législatives ou réglementaires, ou aux conventions en matiere d’emploi, de santé
ou de sécurité, a la réparation de préjudices personnels ou a des pratiques discriminatoires ou
contraires aux regles en matiere d’égalité professionnelle.

(EL 4) Clients, produits et pratiques commerciales : pertes liées & un manquement, délibéré ou
non, & une obligation professionnelle envers un client (y compris les exigences en matieére de
confiance et d’adéquation du service), & la nature ou aux caractéristiques d’un produit.

(EL 5) Dommages occasionnés aux actifs physiques : pertes liées a la perte ou a 'endommagement
d’actifs physiques résultant d’une catastrophe naturelle ou d’autres événements.

(EL 6) Interruption de l’activité et dysfonctionnements des systémes : pertes liées a une inter-
ruption de I'activité ou au dysfonctionnement d’un systeme.

(EL 7) Exécution, livraison et gestion des processus : pertes liées aux lacunes du traitement des
transactions ou de la gestion des processus et aux relations avec les contreparties commerciales
et les fournisseurs.

Ces différentes catégories d’événements sont observées suivant une répartition des lignes métier (business
lines, BL) de la banque, proposée par le Comité de Béle :

(BL 1) Financement d’entreprise (corporate finance) : placement d’instruments financiers avec engage-
ment ferme, services financiers aux entreprises, conseil et services en matiere de fusions et de
rachat d’entreprises, recherche en investissements et analyse financiére, financement des collec-
tivités locales et de ’administration, etc.

(BL 2) Activités de marché (trading & sales) : négociation pour compte propre, intermédiation sur les
marchés interbancaires, réception et transmission d’ordres sur instruments financiers, etc.

(BL 3) Banque de détail (retail banking) : réception de dépdts ; préts; octroi de garanties et souscription
d’engagements, etc.

(BL 4) Banque commerciale (commercial banking) : financement de projets, immobilier, financement
d’exportations, affacturage, crédit-bail, préts, garanties, etc.

12
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(BL 5) Paiements et réglements (payment and settlement) : émission et gestion de moyens de paiement,
paiements et recouvrements, transferts de fonds, etc.

(BL 6) Fonctions d’agent (agency services) : conservation, dépdts fiduciaires, certificats de titres en
dépdt, préts de titres, etc.

(BL 7) Gestion d’actifs (asset management) : gestion de portefeuille discrétionnaire ou non discrétion-
naire.

(BL 8) Courtage de détail (retail brokerage).

Cette répartition en deux dimensions permet d’obtenir une vision matricielle des risques opérationnels
que peut subir un établissement bancaire :

EL1 ... ELT

BL 1

BL 8

2.2 Dispositif réglementaire

Trois approches sont proposées pour le calcul de l'exigence de fonds propres réglementaires. Les fonds
propres sont déterminés de maniére & couvrir a la fois les pertes exceptionnelles (unexpected loss) et les
pertes attendues (expected loss), la mesure du risque opérationnel correspondant & une valeur en risque,
c’est-a-dire a la somme de ’expected loss et de I'unexpected loss.

Approche indicateur de base (Basic Indicator Approach, BIA)

Il s’agit de la méthode la plus simple : le calcul du capital se fait a partir d’un indicateur d’exposition fondé
sur le produit annuel brut (PAB), qui inteégre le produit net bancaire et d’autres éléments d’exploitation.
Au titre de I'année n, 'indicateur retenu est la moyenne des parties positives des produits annuels bruts
(PAB) des trois derniéres années :

3
1
IE, = 3 ; max(PAB,_;,0).

L’exigence en fonds propres FP,, vaut alors FP,, = 15% x IE,,.

Cette mesure est donc reliée aux résultats de la banque plutdt qu’a son exposition au risque opérationnel
(et & la qualité de sa mesure). Par ailleurs, cette méthode fournit le plus souvent des estimations de fonds
propres surévaluées au regard d’autres méthodes basées sur un modeéle interne. A l'inverse, en période de
crise, alors que la banque est plus exposée, les fonds propres mobilisés sont moindres, ce qui accroit la
vulnérabilité de la banque. Les établissements d’envergure internationale ont par conséquent opté pour
des méthodes plus complexes mais plus réalistes pour évaluer leur exposition aux risques opérationnels.

Approche standardisée (Standardized Approach, TSA)

I s’agit d’un prolongement plus fin de 'approche précédente qui décline ce calcul par type d’activité.
Dans cette approche, les fonds propres pour ’année n sont égaux a la somme des fonds propres FPS) de
chaque catégorie d’activité 7 :

8 8
FP, = > FP =>" 3 x IE}
i=1 i=1
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Les coefficients g; proposés par le Comité de Béle sont les suivants :

7 Ligne métier ¢ Bi

1 | Financement d’entreprise | 18%
2 Activités de marché 18%
3 Banque de détail 12%
4 Banque commerciale 15%
5 | Paiement et réglement 18%
6 Fonctions d’agent 15%
7 Gestion d’actifs 12%
8 Courtage de détail 12%

Pour utiliser la méthode TSA, une banque doit notamment étre en mesure de définir un produit annuel
brut pour chaque catégorie d’activité, en lien avec les processus de gestion des risques de 1’établissement.

Approche avancée (Advanced Measurement Approach, AMA)

En ce qui concerne 'approche avancée, le Comité de Béle ne précise pas la méthode a employer pour
estimer la charge en capital a mobiliser au titre du risque opérationnel. La banque doit cependant étre
a méme de démontrer que son modele prend en compte des « événements exceptionnels générateurs de
pertes potentiellement sévéres » et correspond a une période de détention d’'un an pour un niveau de
confiance a = 99,9%, ce qui correspond & la couverture d’un risque millénaire.

Bien que la méthode de calcul ne soit pas imposée dans le texte actuel, trois méthodes ont été envisagées
par le passé :

— PInternal Measurement Approach consiste a reproduire 'approche IRB utilisée en risque de crédit en
considérant notamment les probabilité d’occurrence et perte moyenne en cas d’événement ;

— l’approche Scorecard consiste a déterminer les facteurs de risque auxquels est exposé la banque, puis
a évaluer les niveaux d’exposition a ces facteurs sous forme de scores.

— l’approche par distribution de pertes (LDA, pour Loss Distribution Approach) est la méthode la plus
couramment utilisée actuellement par les banques et est décrite en détail dans la partie suivante.

2.3 Approche par distributions de pertes : méthode LDA

L’objectif de la méthode LDA est de modéliser la perte liée au risque opérationnel pour une période d’une
année afin d’en déduire la valeur en risque. La particularité de cette perte annuelle est qu’elle résulte de
plusieurs pertes (individuelles) successives. Elle se détermine autour de deux dimensions :

— la fréquence des pertes, qui correspond au nombre de pertes individuelles, a priori inconnu pour
I’année a venir, et que ’on modélise par un processus de comptage ;

— la sévérité des pertes, qui modélise le montant de chacune de ces pertes individuelles.

La perte annuelle est donc la somme (aléatoire) de ces pertes individuelles, sa distribution est donc déter-
minée a partir des distributions de fréquence et de sévérité. L’objectif est alors d’estimer avec précision
Pexigence en fonds propres réglementaires correspondant a la couverture d’un risque millénaire, la période
de détention h étant fixée & un an et le niveau de confiance a & 99, 9%.

En tant qu’approche par distributions de pertes, elle s’appuie sur ’ensemble des pertes collectées dans les
bases de données internes. Par mesure de fiabilité, les banques collectent les pertes a partir d’un certain
seuil H : aucune perte d'un montant inférieur & H ne figure dans les bases de données et ceci constitue,
on va le voir, une difficulté supplémentaire pour I’estimation des parameétres de sévérité.
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Formalisation mathématique

On fait 'hypotheése que les pertes individuelles sont indépendantes et identiquement distribuées. On
considere I catégories d’activité différentes (i = 1,...,1) et J types de risque (j = 1,...,.J). X(; ;) est
la variable aléatoire représentant le montant d’une perte pour l'activité i et le type de risque j. La dis-
tribution de la sévérité des pertes est notée F(; ;). Le nombre d’occurrences entre les dates ¢ et t + h
est modélisé par une variable de comptage IN; j, de fonction de probabilité p(; ;). La distribution de la
fréquence des pertes P; j) correspond alors & P; ;) (n) = >, _; p(i.j) (k).

La perte pour la ligne de métier i et le type de risque j entre les dates ¢ et ¢ + h vaut donc

N,
_ k
Lagy = D Xip
k=1

et sa fonction de répartition est donc la distribution composée suivante :

+o0
Py (B)El (v)  siz >0
) (@) =P[Li ) <z] = kzzo (é-7) (i-1)
D) (0) siz=0

ou F(]Yj) est la fonction de répartition de X(1i7j) +...+ X(km).

La charge en capital (CaR, pour Capital-at-Risk) pour l'activité i et le type de risque j correspond alors
au quantile a de A jy :

CaR; j) (o) = A&}j) (o) =inf {z | A j (z) > o}
Au sein d’une unité de mesure (i, 7), la méthodologie LDA utilisée pour le calcul du risque opérationnel
se décompose en quatre étapes :

(1) estimation de la distribution de sévérité;
2

(2) estimation de la distribution de fréquence;
(3) construction de la distribution annuelle des pertes;
(4)

4) calcul de la charge en capital (quantile & 99,9%).

2.3.1 Estimation des parameétres

Estimation de la distribution de sévérité

La troncature des données liée au seuil de collecte H affecte 'estimation des parameétres de sévérité
puisque la distribution empirique (pertes effectivement collectées) est différente de la vraie distribution
(celle que l'on doit obtenir si aucune perte n’est négligée). Il faut donc relier la vraie distribution a sa
version empirique, en considérant la densité conditionnelle :

fo (z) 1 fo ()

four (z) = —=20 gy =10 g
foim () 17 fo () du (@28} = T2 po () Mot

On suppose que l'on a collecté un échantillon de n pertes de montants 1, ..., z, (supposési.i.d.) au-dela
du seuil H, et on cherche a déterminer le "vrai" vecteur de parametres 6.

Les méthodes du maximum de vraisemblance (Maximum Likelihood, ML) et des moments généralisée
(Generalized Method of Moments, GMM) sont plus usuellement appliquées pour 'estimation des para-

metres de distribution de sévérité.

Ces méthodes sont décrites en détail dans la partie 3.3.
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Estimation de la distribution de fréquence

La distribution de la fréquence est le plus souvent modélisée par une loi de Poisson P()), de fonction de
probabilité p(k) = )‘k—?e”\. Cette distribution présente ’avantage de ne nécessiter qu'un seul parametre
A, qui s’estime aisément par la méthode du maximum de vraisemblance comme la moyenne empirique
du nombre annuel de pertes. Elle est par ailleurs largement utilisée dans le domaine de ’assurance pour
modéliser des phénomeénes similaires.

On calibre la distribution de la fréquence apres celle de la sévérité afin de prendre en compte la présence
du seuil de collecte. En effet, la probabilité qu’une perte soit supérieure au seuil de collecte est égale au
ratio du nombre de pertes collectées sur le nombre total "réel" de pertes. On corrige donc I'estimation du
parametre de fréquence en le divisant par la proportion de pertes supérieures au seuil H :

- AH An
N\ = -
P[X >H] 1-F;(H)

En pratique, il suffit de calculer la moyenne empirique du nombre de pertes annuel (qui est une estimation
de Ap) et d’utiliser Iestimateur de @ pour obtenir la vraie valeur du parametre de la distribution de la
fréquence.

2.3.2 Calculs de charges en capital

Une fois que les parametres 0 et A sont calibrés, on a déterminé les distributions de fréquence N et de
sévérité X et le calcul de la charge en capital est assez simple. Il s’agit essentiellement de construire (au
moyen de méthodes numériques) la distribution de la perte annuelle

On détaille ci-apres la construction de la perte annuelle dans le cas log-normal, avec 0= (1, 0).

Méthode de Monte Carlo. Cette construction peut-étre menée grace a la méthode de Monte Carlo, en
simulant un grand nombre (noté S) de réalisations de la perte annuelle.
Pour chaque simulation s € [1, 5] :

(1) on effectue un tirage n® de la variable de comptage N ~ P (X) ;

(2) on simule un échantillon log-normal LN (i, ) de taille n®, (:ci, - ,xfls) ;

(3) on obtient une simulation de la perte annuelle en écrivant
s
I# = Z xy,.
k=1

On obtient ainsi un vecteur des pertes annuelles | = (ll, ceey ls)/ et la charge en capital (CaR) est alors
le quantile & o = 99,9% de [, c’est-a-dire la (o x S)*™® plus grande valeur de [.

Fast Fourier Transform (FFT). La perte annuelle étant une convoluée des distributions de fréquence
et de sévérité, il peut étre intéressant de recourir aux transformées de Fourier pour la déterminer. La
transformée de la densité de la sévérité fournit sa fonction caractéristique.

—+o0
F(fx) () = g(v) 1/ Flu)emdu

zﬂ .
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17 2 Risque opérationnel

L’algorithme FFT est employé pour le calcul de transformées de Fourier de facon rapide basé sur la
discrétisation des fonctions a transformer. La fonction caractéristique d’une somme de variables aléatoires
indépendantes étant le produit des fonctions caractéristiques de ces variables, on peut écrire

x4, () = [] ox, (w) = (6 (w)"
k=1

La fonction caractéristique de la distribution des pertes annuelles peut s’écrire (N étant indépendante de
X):

¢r(u) = gn 0 ¢x (u) = exp(A (ox (u) — 1))

avec gy (t) = SIS0 PIN = nt = 3125 AleApn = A=D1 fonction génératrice de N ~ P()).
La densité de la distribution des pertes annuelles f; se déduit par transformée de Fourier inverse :

fo=F"(¢r)

La fonction de répartition F, est construite par intégration et on détermine ainsi la charge en capital :

CaR(a) = F; '(a)

Prise en compte des assurances. Le Comité de Bale autorise les banques « a prendre en compte la
couverture d’assurance comme technique d’atténuation des risques » dans la mesure ou cette prise en
compte n’excede pas & 20 % de lexigence de fonds propres totale. Pour intégrer une couverture d’assurance
de montant A comprenant une franchise F, on définit chaque perte unitaire avec prise en compte des

4w TS5 _ .8 s _ . . N
assurances, soit rj = i x ]l{xi<F} + max (F, xg A) X ]I{Ii>F}, puis on calcule la charge en capital a

partir de la perte totale ainsi obtenue par la méthode de Monte Carlo.

Agrégation des charges en capital

Le Comité de Bale indique que la banque est autorisée a « appliquer des corrélations déterminées en
interne a condition de démontrer que ses systémes de détermination des corrélations sont sains, mis en
ceuvre avec intégrité et tiennent compte des incertitudes inhérentes a toute estimation de corrélations ».
II est raisonnable de penser que les pertes annuelles L; ; ne sont pas parfaitement corrélées et faire la
somme de toutes les charges en capital est donc siirement trés conservateur. Le modéle LDA impose
I’hypothese d’indépendance entre les pertes d’'un méme type de risque mais il est difficile de supposer
a la fois cette indépendance et de supposer une corrélation des pertes entre types de risque. On peut
donc faire ’hypotheése que la corrélation entre les pertes annuelles est une corrélation des fréquences.
Pour deux pertes annuelles L; = Zgil Xlet Ly = ZN2 1 X2, en supposant que les deux fréquences sont

— n=

parfaitement corrélées (N3 = Ny = N) et de loi P(A) :
Cov[Li,Ls] = E[N’E[X'|E[X?]] - NE[X']E[X?]
= (VIN]+E*[N]- ) E[X']E [X?]
= AE[X'] E[X?]
On en déduit que la corrélation entre L; et Ly ne dépend pas de A et vaut :
E[XE[X7]
VIVIXTHE [XT]) (VX2 + B2 [X7])

Cor [Ll, L2] =

. e, C1(p2442
soit, pour des sévérités log-normales : Cor [L1, Lo] = e z(01+03),

On peut alors établir des corrélations entre les différentes lignes métier et catégories de risque et en
déduire un calcul de la charge en capital global, en faisant par exemple ’hypothése que le vecteur des
pertes annuelles a la structure d’un vecteur gaussien. On peut dans ce cas écrire :
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K K
CaR(a ZELk + Z prpr (CaRy(a) — ELy) (CaRys () — ELy)
k=1 k =1

avec CaRy(a) = FL_k1 (o), ELg = E[Lg] = Xk exp (fix +07/2), ot k et k" représentent deux couples (ca-
tégorie de risque) x (ligne métier) et pi xs est la corrélation entre les pertes annuelles Ly et Ly, établie
selon la méthode décrite ci-dessus.

Il est par ailleurs possible de recourir a I'usage de copules pour mettre en ceuvre 'agrégation des charges en
capital. Cette méthode présente 'avantage de ne nécessiter qu'une hypothese sur la forme de la structure
de dépendance et pas sur les distributions marginales, au contraire de I’hypothese de vecteur gaussien.
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3 Modélisation de la sévérité des pertes

La grande difficulté de la méthode LDA est la spécification de la distribution de sévérité F' ainsi que
Pestimation de ses parametres 6. Ce chapitre se focalise sur I’état des lieux concernant I'ajustement de
cette distribution ainsi que sur les directives proposées par le Comité de Béle sur ce sujet. Par la suite,
on note (z1,...,x,) 'échantillon de pertes & modéliser.

3.1 Contraintes spécifiques

Les données de pertes opérationnelles possedent des profils tres atypiques. Malgré la classification des
risques et 'amélioration continuelle de la collecte des pertes, il existe toujours une hétérogénéité non
négligeable a l'intérieur des catégories mais aussi entre les catégories. Elles contiennent de nombreuses
pertes de montants faibles ainsi que quelques événements extrémes, ce qui les rend difficiles a ajuster.
De plus, elles comportent des particularités engendrant une perte d’information importante dont il faut
tenir compte dans l'inférence statistique.

Le seuil de collecte

Comme l'exige le Comité de Bale, et également a des fins de fiabilité, les pertes liées au risque opérationnel
ne sont collectées que si leur montant excéde un seuil de collecte noté H. Ce seuil de collecte est aussi
le seuil & partir duquel on choisit de mettre en place I'inférence statistique. Il est donc nécessaire de le
prendre en compte afin que le modele soit statistiquement correct. C’est pourquoi au lieu de considérer la
densité fy de la distribution sévérité lors de d’inférence, on considére la densité conditionnelle par rapport

a H: fole)
s €T
fota |2 > H) = 7 Gy Lo

Cela permet d’intégrer la présence de données tronquées dans I’estimation de la distribution de la sévérité.
Le parameétre 6 estimé est ainsi le parametre de la distribution globale, c’est-a-dire des pertes a partir
de 0 €. La distribution de fréquence doit aussi étre modifiée puisqu’on collecte alors un nombre plus
faible de pertes que le nombre réel. Le parametre de fréquence est donc corrigé, apres le calibrage de la
distribution de sévérité :

~

o~

)\obscrvé

>\corri (T ——
1 B(H)

Une fois les deux distributions estimées grace a ces corrections, il est possible de simuler un échantillon
de pertes représentatif de la réalité.

Les agrégats

Les bases de données de pertes opérationnelles présentent également la particularité de contenir des agré-
gats. En effet, certains montants de pertes sont reportés comme étant la somme de plusieurs évenements
dont les montants ne sont pas connus. Les bases de données sont constituées de cette fagon pour des
raisons de confidentialité (par exemple dans le cas de litiges juridiques) ou pour des raisons métiers (par
exemple dans le cas de la fraude a la carte bancaire). Il en résulte une perte d’information importante
puisqu’une perte de 10000 € composée de deux agrégats peut aussi bien étre la somme de 9999 € + 1 €

que de 5000 € + 5000 €. Le vecteur du nombre d’événements associés a I’échantillon est noté (k1,. .., kn).
On choisit donc de considérer pour I'ensemble de ’étude I’échantillon "réduit" X* = %, ey
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3.2 Lois de probabilité

De nombreuses lois de probabilités peuvent étre utilisées pour modéliser la sévérité des pertes opération-
nelles. Ces lois doivent étre a support positif et asymétriques avec une queue a droite plus épaisse. En
probabilités, il est d’usage de classer les lois a support positif en trois catégories : les lois "light-tailed" (a
queues fines voire finies), les lois "medium-tailed" (& queues moyennes) et les lois "heavy-tailed" (& queues
épaisses). Par exemple, la loi Beta appartient & la premiére catégorie, la loi Exponentielle & la deuxiéme
catégorie et la loi de Pareto translatée a la troisieme catégorie. Par conséquent, on peut dresser une liste

des lois les plus couramment utilisées en risque opérationnel (cf. Tableau 3.1)

Loi de probabilité | Densité
Exponentielle Aexp (—Az)
Weibull afz?~teoxf
Gamma mxoﬁl exp(—Az)
2
1 1 (logz—pu
log-Normale exp |—= | ———
& V2nxo P13 < o ) ‘|
o)
log-Logistique 17(3:7%
1+ (z—a)7]
a T —(a+1)
Pareto translatée 7 (1 + 5)
ay Y\ ™™
B — |1 =
u 7 1+ ()]

Table 3.1 — Exemple de lois utilisées pour la modélisation du risque opérationnel.

L’ajustement de la sévérité par différentes lois de probabilité a fait 1’objet de nombreuses projets de
recherche depuis quelques années. Suite a ces travaux, la loi adoptée pour la modélisation de la sévérité
est la loi log-normale. Elle donne en effet des ajustements de bonne qualité en comparaison avec d’autres
lois mais elle présente surtout 'avantage d’étre simple & estimer et d’étre la loi de référence depuis
plusieurs années au Crédit Agricole. Les parametres p et o permettent une interprétation directe du
modele estimé.

3.3 Meéthodes d’estimation standards

Deux méthodes d’estimation classiques des parametres d’une loi de probabilité sont présentées ici : le
maximum de vraisemblance et la méthode des moments généralisée. Elles sont décrites dans le cadre de
la loi log-normale ! LN (1, ), de densité

1 (nz—w?
)= ———¢ = 202
T () ox2m

Méthode du maximum de vraisemblance (ML)

C’est la méthode la plus couramment utilisée et celle qui a les meilleures propriétés sur données simulées.
Le principe est de rechercher les parameétres d’'une loi de sorte a maximiser la vraisemblance des don-
nées. En pratique, la maximisation s’effectue le plus souvent sur la log-vraisemblance, ce qui est équivalent.

La log-vraisemblance de ’échantillon x4, ..., z, s’écrit

0(O;xq,...,x,) = Zln fo(zp) = Zlnfg(xk.) —nln(1— Fy(H))
k=1

k=1

1. 11 s’agit de la loi la plus utilisée dans ’industrie bancaire.
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21 8 Modélisation de la sévérité des pertes

L’estimateur du maximum de vraisemblance @y, est alors défini par
Ovp, = argmax £ (051, . .., 2p)
0

et on peut montrer que éML est sans biais, asymptotiquement efficace et normal :
= L _
Vi (B —00) 5> N (0.7 (60))
n—-+o0o

avec Z (8y) la matrice d’information de Fisher et 6y la vraie valeur du vecteur des parameétres. Dans le
cas log-normal, la log-vraisemblance vaut :

n n 1 . nH —
(Inzy — p)° +ZIHM —nln <1 - q)(n,u))
1 k=1 Tk 7

Le dernier terme corrige le seuil de collecte et a un impact important sur l’estimation. Il dépend en effet
de u et o et il n’existe pas de formules fermées pour les estimateurs du maximum de vraisemblance. On
doit donc les calculer par optimisation numérique.

n 1
U, o521, ..., 2p) = —5111 (2#02) ~ 5,2

k=

Cette méthode peut s’appliquer a un échantillon tronqué dés lors que I'on connait une expression explicite
de la densité conditionnelle au seuil de collecte. L’optimisation de la vraisemblance se fait de fagon
numérique. En pratique, le seuil de collecte perturbe le programme d’optimisation ce qui rend la méthode
instable et parfois non-convergente. En effet, il est fréquent d’obtenir des estimations de y négatives pour
la loi log-normale 2. C’est la raison pour laquelle elle n’est pas mise en production.

Méthode des moments généralisée (GMM)

La méthode des moments généralisée consiste & déterminer le vecteur de parametres 8 qui minimise 1’écart
entre les moments théoriques et les moments empiriques. A 'ordre p, ils sont respectivement définis par :

m,(8) = E[X? | X > H] et i, = %Z (z1)"
k=1

En posant g(6) = (m1(0) —ma,...,mpy(0) — fﬁp), I'estimateur GMM est défini par :

§GMM = argming (9)/ Wlg (9)
0

ou W est une matrice symétrique définie positive, optimale en prenant W = V[g(8)]. L’estimateur §GMM
posséde également la propriété de normalité asymptotique.

Pour X ~ LN (u,0) et a Uordre p, on a

E[X? | X > H] ! YA
pry 20
- 1= Fuo(H) Ju o2 !

2)2—2puc?—p2st

_ (w=(ptpo
+oo e 20

1
1—® (LH*#) /lnH oV/27

dy

1-® (ln H*(u+p02)>
— i ePutpio’ /2

1 _ q) <1nH—u>

Alors pour obtenir les deux estimateurs figym €t anu, il suffit de déterminer les deux premiers moments
m1(p,0) et ma(u, o) puis de minimiser numériquement la forme quadratique.

Cette méthode a 'inconvénient d’étre biaisée. En effet, elle a tendance a sous-estimer la valeur du para-
metre o de la loi log-normale, ce qui entraine une sous-estimation de la charge en capital résultante.

2. Il n’est pas réaliste d’obtenir des valeurs de p négatives car cela voudrait dire que d’aprés le modeéle, plus de la moitié
des pertes sont inférieures & 1€. En effet, la médiane d’une loi log-Normale est e.
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3.4 Tests d’adéquation

Une fois I'estimateur 6 déterminé, on souhaite évaluer 'adéquation de la distribution estimée aux don-
nées. On teste pour ce faire I’hypothése Hy : "les données de ’échantillon suivent une loi de fonction de
répartiton Fg“ contre H; : "’échantillon ne suit pas une loi de fonction de répartiton Fg“.

Les données utilisées pour 'estimation étant tronquées, on utilise des statistiques de tests corrigées. On
choisit un niveau de test égal & 5%. On accepte alors I’hypothése Hy si la p-value® du test est supérieure
a 5%.

Dans cette étude, ’ajustement est mesuré au moyen de quatre statistiques de test différentes, prenant
en compte la troncature des données au seuil H. L’expression détaillée de ces statistiques est présentée
ci-apres, et sont issues de l'article de Chernobai et al. [2]. On note ici zy = Fp(H) et z; = Fp(x(;)) ou

;eme

x(j) est la j plus grande perte de 1’échantillon.

Test de Kolmogorov-Smirnov (KS)

Le test de Kolmogorov-Smirnov est un test local, qui mesure la distance maximale entre les fonctions de
répartition théorique et empirique :

KS = \/ﬁSUp{‘ﬁ(@ - F9|H($)'}
z€R
Apres discrétisation, on obtient :
KS = v/nmax{KS;,KS_}

%z j — -1
avec KS; = max {jw‘}etKS_ max {ZJZHJ}

J€El1n]

n 1—2zy jei,n] 1—2zy n

On a finalement :

. 1
KS = vn max {sup (ZH -z + 1(1 — zH)> , sup (zj —ZH — Ji(l — ZH)>}
].sz j n j n

Test de Cramér-Von-Mises (CvM)

Ce test de Cramér-von-Mises est un test global, qui mesure la distance quadratique entre les fonctions
de répartition théorique et empirique, en attribuant a chaque observation le méme poids :

+oo 9
CvM = n/ (Fo(z) — Foiu () "¢ (Fy(2))dFp (), avec ¢(Fy(z)) =1

— 00
Apres discrétisation, on obtient :
n nzZy 1

§+1—2H+n(1—zH)

CvM = (zj — 2m)?

1

Z(l - 2]')2’]' + (1 — ZH)Q ‘

n n
1
Jj=1 J=

Test quadratique d’Anderson-Darling (AD2)

Ce test est dérivé du test de Cramér-von-Mises, mais attribue un poids plus important aux queues de
distribution droite et gauche, avec v (Fy(z)) = [Fy(x)(1— Fyp(z))] ! Le test est focalisé sur les parties de
la distribution ot Fy(x) (1 — Fg(x)) prend de petites valeurs, c’est-a-dire sur les queues gauche et droite
de la distribution :

3. Qui correspond & la probabilité de rejeter a tort ’hypothése nulle.
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Apres discrétisation, on obtient :

1 n
2 — — _— — y — .
AD* = —n+2nln(1 — zg) nZ(l—FQ(n 7)) In(1 — z;) +

j=1

S|

2(1 —2§)In(zj — zp)

Test quadratique modifié d’Anderson-Darling (AD2up)

Ce dernier test est également dérivé du test de Cramér-von-Mises, mais attribue un poids plus important a
la queue de distribution droite qui contient donc les pertes les plus séveres, avec ) (Fg (x)) = (1 —Fy (m)) 2.

N A GRS T(C0) M
AD2, = /_ e TR

Apres discrétisation, on obtient :

1+2(n—j)
l—Zj

n 1— 2y n
ADip = —2n1n(1—zH)+22:11n(1 —z;) + - E:I
j= i=

Implémentation de ces tests d’adéquation

En raison de la troncature des données, les statistiques ci-dessus ne sont pas issues d’'une distribution
standard. On recourt donc & 'algorithme* suivant pour déterminer les p-values.

Algorithme : Calcul de p-value par bootstrap paramétrique.

On fixe le seuil de rejet d’hypothese «, la taille de ’échantillon initial ng, la valeur de la statistique pour
I’échantillon D, 'hypothese a tester Hy.

(1) Simuler un grand nombre S d’échantillons
(2) Pour s € [1,9] :
(a) estimer les parametres 8, de Iéchantillon s

(b) calculer la statistique ds correspondant a cet échantillon
18
3) Calculer la p-val p=—=> 1 .
(3) Calculer la p-value comme : p S; {d.>D}

(4) Sip < a, rejeter Hy.

En pratique, on prendra S = 1000, qui est un bon compromis entre temps de calcul et précision de la
p-value, et a = 5%.

Une analyse comparative de ces différents tests est menée dans article [13].

4. 1l s’agit de ’algorithme proposé par Chernobai et al. [2].
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3.5 Objectifs du mémoire

Le texte "Operational Risk - Supervisory Guidelines for the Advanced Measurement Approaches" [1] publié
par le Comité de Béle en juin 2011 est le premier texte donnant les orientations a suivre dans le cadre des
approches avancées. Il préconise un renforcement de la méthodologie employée pour estimer les besoins
en fonds propres et incite les banques a justifier et a documenter le choix du modele. Certaines de ces
directives concernent la loi utilisée pour la sévérité ainsi que la méthode d’estimation associée. Il est tres
important de prendre en compte ces préconisations pour pouvoir anticiper les exigences du régulateur.
D’apres le texte, un modele est dit pertinent s’il est :

(1) réaliste (il géneére une distribution de perte annuelle qui donne une estimation réaliste du capital
requis sans avoir a recourir a des ajustements correctifs)

(2) bien spécifié (les caractéristiques du modele sont similaires aux données de pertes et logiquement
cohérentes)

(3) flexible (le modele peut s’adapter & des profils de pertes divers)

(4) simple (facile & implémenter et & utiliser pour simuler la perte annuelle)

Concernant la distribution de sévérité, le texte précise que le choix d’une distribution de probabilité doit
reposer sur une analyse exploratoire des données renforcée ainsi que sur des outils de diagnostic de I'ajus-
tement, en particulier sur la queue de distribution. Le Comité de Béle recommande 1'utilisation de lois
dites "subexponentielles" qui représentent mieux le caractere leptokurtique des distributions de pertes. Il
incite fortement les banques a adopter une modélisation séparée corps-queue.

Il est mentionné que la méthode d’estimation employée doit respecter des critéres de robustesse sans
pour autant sous-estimer le risque en queue de distribution. Enfin, le texte met en garde les banques qui
voudraient utiliser des modeles & moyenne infinie, les charges en capital résultantes n’étant généralement
pas applicables®.

Au sujet des méthodes d’estimation, il est précisément indiqué dans le texte [1] :

Robust estimation methods (such as alternatives to classical methods as the Maximum Likelihood and
the Probability Weighted Moments), proposed recently in operational risk literature, are reasonably effi-
cient under small deviations from the assumed model. These methods also highlight which observations
or deviating substructures have the greatest influence on the statistic to be estimated. A bank may adopt
alternatives to classic estimators, provided it can demonstrate that its use does not underestimate risk in
the tail.

C’est dans ce contexte que ce mémoire a pour objet ’étude de la notion de robustesse des estimateurs.
Il propose également la définition d’estimateurs congus de maniére a vérifier la propriété de robustesse,
avant d’explorer de maniere détaillée leur comportement dans le cadre d’un calcul de capital réglementaire
au titre du risque opérationnel.

5. Dans le cas ou la moyenne de la loi est infinie, la CaR étant un quantile d’ordre tres élevé, elle est en général trop
élevée pour étre applicable.
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4 Statistique robuste

La statistique robuste est une branche de la statistique qui a vu le jour dans les années 1960 avec les
premiéres contributions de Tukey [20]) puis Huber [9] ou encore Hampel [8]. La statistique robuste a pour
vocation de fournir des méthodes d’estimation statistique que I’on qualifiera de "résistantes" par rapport
aux points marginaux s’écartant du modele sous-jacent, ainsi qu’a ’ajout ou au retrait de données dans
I’échantillon. Cette théorie a été utilisée dans de nombreux domaines, mais son application au risque
opérationnel est relativement récente, notamment avec les travaux d’Opdyke et Cavallo [15].

Une des motivations premieres a 'application de telles méthodes est le constat suivant : les pertes col-
lectées au titre du risque opérationnel ne s’inscrivent pas dans un cadre statistique idéal, qui serait que
ces données soient toutes identiquement distribuées suivant le méme modeéle paramétrique (iid).* (iid).
Cependant, cette hypothese doit étre satisfaite afin que les propriétés de l'estimateur du maximum de
vraisemblance (ML) soient vérifiées.

En effet, pour étre appliqué, 'estimateur ML requiert la vérification de trois hypotheses :

— les pertes sont indépendantes ;
— les données sont homogenes, c’est-a-dire identiquement distribuées;

— le modele probabiliste sous-jacent est clairement spécifié.

Si 'une de ces conditions est infirmée, alors I'estimateur ML perd ses propriétés statistiques, il n’est
alors plus asymptotiquement normal, sans biais et efficace. Cependant, la statistique robuste a un champ
d’application plus large que les méthodes classiques car cette théorie ne nécessite pas de telles contraintes,
rarement observées en pratique.

En outre, il est observable que I’ajout d’une seule perte peut perturber fortement l’estimation des para-
meétres du modele de risque opérationnel, ce qui a pour conséquence d’entrainer un calcul de charges en
capital erroné, pouvant atteindre des montants incohérents. L’enjeu est donc de pouvoir construire un

estimateur robuste capable d’étre "résistant" & la modification d’une partie des données de pertes, mais
également a l'ajout de pertes extrémes et arbitraires.

Cette partie est consacrée aux fondements de la statistique robuste ainsi qu’aux outils fondamentaux
dans I’étude de la robustesse d’estimateurs statistiques.

4.1 Fonction d’influence et B-robustesse

La fonction d’influence est un outil analytique puissant dans le domaine de la statistique robuste qui
généralise le concept de dérivée a un estimateur, ou plus généralement a une fonctionnelle.

C’est en se basant sur 1’étude de cette fonction que ’on peut déterminer si un estimateur est B-robuste ou
non. Avant d’aborder le concept de fonction d’influence, nous présentons la définition préliminaire d’une
fonctionnelle.

1. Cette caractérisation est développée dans les articles [3], [4] et [15].

26



27 4 Statistique robuste

Fonctionnelle statistique

Une fonctionnelle statistique T est une fonction prenant en argument une fonction de répartition Fy
paramétrée par . Ainsi, pour un échantillon (x1,...,z,) issu d’une loi de probabilité Fy, le principe de
I’estimation consiste a associer a un estimateur 9\” une fonctionnelle T'. On dit a ce titre qu’'un estimateur
est consistant au sens de Fisher si T'(Fy) = 6. Pour 'échantillon (x4, ...,x,) donné dans la pratique, la
fonction de répartition empirique associée est définie par

1 n
k=1

Dans ce cas, 'estimateur 6,, associé a la fonctionnelle 7', défini sur ’échantillon est donné par

0, =T(F,)
Les concepts d’estimateur et de fonctionnelle statistique sont trés proches et seront parfois interchangés
dans la suite. Voici deux exemples de fonctionnelles associées a la moyenne et la médiane :

— moyenne : T'(Fy) = /xng(m)

1
— médiane : T(Fp) = F, ! <2)

Une autre notion importante avant d’introduire le concept de fonction d’influence est celle de contami-
nation.

Contamination

Comme mentionné précédemment, les pertes collectées au titre du risque opérationnel sont rarement
identiquement distribuées. Afin de s’écarter d’un modele idéal pour lequel I’ensemble des données de
I’échantillon serait i.7.d. issues d’une distribution Fjy, une idée plutdt intuitive est de contaminer cet
échantillon "idéal", ou du moins de se placer dans un voisinage de cette distribution Fjp.

Plusieurs techniques de contamination existent (cf. articles [18] et [19]), la plus élémentaire et appréhen-
dable d’entre elles est appelée contamination convexe. Cette méthode consiste a contaminer un pourcen-
tage £ de I’échantillon, en supposant alors qu’une proportion (1 — €) suit le modele Fy et donc que la
proportion & restante provient d’un autre modele G. Ainsi, pour I’ensemble des observations, on a un
modele de la forme

Fope=(1—-¢)Fp+eG (4.2)

ou le modele G est inconnu, incontrdlable et imprévisible.

Il est important de comprendre qu’on ne s’intéresse ici ni a la distribution de contamination G ni au
pourcentage de contamination € qui représentent une partie de ’échantillon déviant du modele recherché
Fy, mais que le but de la statistique robuste est de pouvoir estimer avec précision le parametre 6§ malgré
la contamination, ou, dans une moindre mesure, de pouvoir contréler la perturbation induite par la
contamination.

4.1.1 Fonction d’influence

La fonction d’influence correspond a une dérivée d’une fonctionnelle T'. Or, pour définir une dérivée, il
est nécessaire de définir également un taux d’accroissement. Comme ’argument d’une fonctionnelle T est
une distribution F, il faut spécifier un accroissement élémentaire dans 1’espace des distributions F. Ainsi,
en utilisant la définition du voisinage d’une fonction de répartition donnée au paragraphe précédent (4.2),
on peut définir la dérivée de Gateaux pour un modele de contamination quelconque G
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4.1 Fonction d’influence et B-robustesse 28

T((1 - &)Fy + £G) — T(F,
GD(; Fy, T) = lim (1 -e) “’t_g) I (4.3)
e—

La fonction d’influence correspond au cas particulier de la dérivée de Gateaux pour laquelle G = A, la
fonction de répartition de la masse de Dirac en x. On définit alors la fonction d’influence d’un modéle Fy
et d’une fonctionnelle T' calculée au point x par

IF (2 Fy, T) = lim L= )+ eAe) = T(F)

e—0 S

(4.4)

Ce cas de contamination (G = A,) se traduit par une proportion ¢ de I’échantillon prenant la valeur x.
Cela revient donc a comparer une différence infinitésimale entre I’estimateur de I’échantillon et I’estima-
teur de ce méme échantillon auquel une proportion infime de valeur = a été ajoutée, le tout rapporté au
pourcentage de contamination.

Généralement, la fonction d’influence n’est pas utilisée de cette fagon, puisqu’il est souvent difficile d’ob-
tenir des expressions simples des fonctionnelles et donc de ce quotient. En pratique, c’est la fonction
d’influence empirique qui est utilisée sur des données réelles.

Le jeu d’écriture consiste uniquement a remplacer la fonction de répartition par son homologue empirique
et € par H%H, n étant le nombre de pertes de ’échantillon

T((1= 25 Fu+ 5580 = T(F,)

EIF (z; F,,T) = 1/(n+1)

Ceci permet de pouvoir quantifier réellement ’effet d’une seule donnée ajoutée sur les parametres esti-
més. De plus, méme pour des échantillons de petite taille, la fonction d’influence empirique et sa version
théorique sont souvent tres proches tracées simultanément. Cela permet de justifier son utilisation afin
d’approximer au mieux le comportement théorique de la fonction d’influence et d’en tirer ainsi des conclu-
sions sur la robustesse des méthodes d’estimation utilisées.

Cette fonction d’influence empirique est aussi appelée courbe de sensibilité de Tukey, dont la signification
est identique, et dont I’écriture pour un échantillon (x1,...,2,_1) est

SC(z, T)=n[T(z1,.. . Zp_1,2) — T(x1,...,2p_1)]

4.1.2 B-robustesse

L’observation graphique de la fonction d’influence permet donc de savoir si un estimateur est "résistant"
a un changement d’une faible partie de I’échantillon. Pour un montant x fixé, plus la valeur de la fonction
d’influence est élevée en valeur absolue, plus I’estimateur est sensible & 1’ajout d’une perte de ce montant.
A ce titre, on dit qu’un estimateur est B-robuste si les fonctions d’influence de chacun de ses paramétres
sont bornées.

Plus généralement, dans le domaine du risque opérationnel, la fonction d’influence permet de donner une
réponse quantitative aux questions suivantes :

— Pour une méthode d’estimation, est-elle B-robuste pour différentes lois de sévérité ?
— Pour une distribution de sévérité donnée, quels estimateurs sont robustes ?

— Quel est I'impact lors de I'ajout d’une nouvelle perte sur les parameétres estimés et sur le capital 7
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29 4 Statistique robuste

moyenne
médiane

Figure 4.1 — Fonction d’influence de la moyenne et la médiane (ici m = p)

Exemples de fonctions d’influence

Il peut s’avérer difficile d’obtenir les écritures théoriques des fonctions d’influence pour des fonctionnelles
non triviales, ou encore pour des modeles paramétriques complexes. Cependant, certaines d’entre elles
sont calculables, comme la moyenne ou la médiane mentionnées plus haut 2.

Ainsi, pour la moyenne, on a

IF(z; Fp, moyenne) = x — (4.5)

Pour I'estimateur du quantile d’ordre s, on a I’expression

-1
i pour x < F, !(s)

IF (; Fy, T) = @ our z > F, ' (s) -
FE @) P '

Comme la médiane correspond au quantile d’ordre 0.5, sa fonction d’influence est donnée par

IF(z; Fp, médiane) =

f(m) (4.7)
f(
m représentant la médiane de la distribution.

Ces résultats attestent que la moyenne n’est pas robuste contrairement a la médiane. Cela se comprend
intuitivement, car en prenant un échantillon de taille n et de moyenne i, on peut rendre cette moyenne
arbitrairement grande en ajoutant une seule donnée de cet échantillon, par exemple en lui donnant une
valeur démesurée. Or ce n’est pas le cas de la médiane dans le cas ot n > 3°.

Afin de rester dans une formulation trés mathématique de la notion de robustesse, nous énongons dans
le prochain paragraphe l'idée formelle de robustesse qualitative en termes de métrique et de distance.

2. Les étapes du calcul sont données en Annexe A.

3. Ceci nous conduit a 'introduction d’une définition usuelle en statistique robuste : le point d’effondrement. Le point
d’effondrement d’un estimateur est la proportion minimale d’un échantillon que ’on peut modifier arbitrairement sans que
l’estimateur ne tende vers 'infini. Ainsi le point d’effondrement de I’estimateur de la moyenne est 0 alors que celui de la
médiane est donné par L”T_IJ, ol |a] est la partie entiere de a.
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4.2 M-estimateurs et mazimum de vraisemblance 30

4.1.3 Robustesse qualitative

La robustesse qualitative est essentiellement équivalente & la continuité de la fonctionnelle T sur ’ensemble
des distributions F. Pour définir une continuité, il est nécessaire de définir une distance. La métrique
utilisée dans ce cas est celle de Lévy.

Distance de Lévy. Soient F,G € F de méme support X. La distance de Lévy 7 : F2 — R est définie
par
m(F,G) = ir;%{Va: eX, Flx—-e¢)—e<Gx)<Flx+e)+e}

g
Cette distance sur F nous permet alors d’introduire la robustesse qualitive, vue comme la continuité de
la fonctionnelle.
Robustesse qualitative. On dit que T est qualitativement robuste en F' si T est continue en F' pour la
distance de Lévy, ce qui s’écrit

Ve,30 w(F,G)<d=|T(F)-T(G)| <e
Avec cette écriture, on peut montrer que si F,, — F et si T est qualitativement robuste alors T(F,,) —

T(F).

Bien que 'on comprenne assez intuitivement cette idée, a savoir que deux échantillons relativement
proches en termes de fonction de répartition (au sens de la distance de Lévy) fournissent des estimations
proches en cas de robustesse qualitative, cette notion est assez difficile & mettre en place pour des esti-
mateurs plus compliqués. Ceci est d’autant moins commode qu’il existe d’autres distances un peu plus
complexes comme la distance de Lévy-Prokhorov, ce qui ne facilite pas les choix a effectuer afin d’utiliser
ce concept.

C’est pourquoi on préfere 'utilisation des fonctions d’influence, d’une part car la robustesse peut s’ob-

server graphiquement, d’autre part puisqu’on sait en obtenir des calculs explicites pour une certaine
catégorie d’estimateurs : les M-estimateurs.

4.2 M-estimateurs et maximum de vraisemblance

421 M-estimateurs

Les M-estimateurs sont une catégorie d’estimateurs popularisés par Huber [9] et se caractérisant par

T(F)= argm@in/x p(x,0) dﬁ(x)

qui se discrétise sur un échantillon donné (z1,...,x,) par

6 = argmin (Z p($i>9)>

i=1

Si de plus p est dérivable en 6, en notant ¥ = a—g, on a par équivalence

T(F) = {9| /X (. 0)dP (z) :0} (4.8)

ou encore sur un échantillon

0= {9 | mei,m = 0} (4.9)
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31 4 Statistique robuste

L’estimateur par maximum de vraisemblance est un cas particulier de M-estimateur pour lequel p(x, ) =

—1In ( f(z, 9)), avec f une densité paramétrique choisie .

L’intérét de tels estimateurs est que le calcul de la fonction d’influence est explicite ®.

| - Y(z, T(Fp))
IF(x; Fp,T) = _/ MAF( )
N 50 o\y
Og, ~ Ko 5 R
_ / el / o6, oW Yo, (4.10)
- awez 61/)92 1][}02
_/ 004 4E( / 062 "
= A_1(9)¢9

ol Py, = 89 . La seconde égalité est donnée pour une loi & deux parametres, cas couramment rencontré,
mais on pourrait généraliser pour k parametres de la méme fagon. De cette maniere, la fonction d’in-
fluence de n’importe quel M-estimateur peut étre calculée explicitement, et notamment pour I'estimateur
par maximum de vraisemblance, ce qui est présenté dans la section suivante.

En plus de leur fonction d’influence, on connait la variance asymptotique des M-estimateurs.
Ainsi, \/n (Tn =T (Fg)) est asymptotiquement de moyenne nulle et de variance©

V(Fy,T) = /YIF(x;Fg,T)QFe(Jx) (4.11)

4.2.2 Fonction d’influence de I’estimateur par maximum de vraisem-
blance

L’estimateur par maximum de vraisemblance (MLE, Maximum Likelihood Estimator) est communément
utilisé pour estimer les parametres d’une loi sur un échantillon donné. C’est en particulier le cas pour la
modélisation de la loi de sévérité des pertes collectées au titre de risque opérationnel. La détermination
de la fonction d’influence montre néanmoins que cet estimateur n’est pas B-robuste.

Le MLE est un M-estimateur pour lequel p(z,6) = —In (f(z,6)) de fonction de score

_ Op(x,0) 1 9f(x,0)
’(/}9(3779) - 96 - _f(I,e) 90 )
de dérivée )
02 f (2,0 of(x,0
, 240 f(z,0) + (252)
Vol 0= T 0P
Ainsi pour une distribution f & k parametres, il suffit de calculer
of . 0*f o 2
a6, i€ [1,k], m i,j € [1,k]

4. Les M-estimateurs font partie d’une famille encore plus vaste, les extremum estimateurs qui consistent a maximiser
une fonction objectif. L’estimateur par méthode des moments généralisée appartient également a la famille des extremum
estimateurs, mais ce n’est pas un M-estimateur.

5. La preuve est donnée en Annexe A.

6. La preuve est également donnée en Annexe A.
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afin de pouvoir obtenir la fonction d’influence associée.

Cette définition est explicitée ci-apreés pour la distribution log-normale, distribution la plus utilisée pour
modéliser la sévérité des pertes liées au risque opérationnel.

Loi log-normale

Pour obtenir la fonction d’influence, il est nécessaire de disposer de la fonction de score et de la matrice

A(0)7.

Le vecteur de score est donné par

pw—Inzx
o2
Yo = (1.12)
1 (u—lna)
o o3
et la matrice A(f) par
1
-~ 0
A9) = o 9 (4.13)
0 ——
o

Remarque : Dans le cas du maximum de vraisemblance, la matrice A(6) est aussi appelée Information
de Fisher, et notée Z(0)®.

Le calcul de l'inverse est élémentaire. On obtient alors la fonction d’influence pour le MLE avec une
densité log-normale suivante

Inz—p
IF(z;0,T) = (Inz — p)? — o2 (4.14)
20

IF et EIF de p IF et EIF de o

10

60

50

40

30F

201
5k

-10

Figure 4.2 — Fonctions d’influence empirique et théorique d’une loi lognormale LA/ (8,2) non tronquée

7. Ceux-ci se calculent a partir des dérivées premieére et seconde de la densité, le détail étant donné en Annexe A.

8. Généralement écrite au premier ordre, on a légalité Z(0) = E [(% In f(x, 9))2} =E |:_ai:§ In f(z,0)
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33 4 Statistique robuste

On retrouve ici un résultat bien connu sur la robustesse de I'estimateur par maximum de vraisemblance, a
savoir que ’estimateur ML n’est pas B-robuste. La figure 4.2 montre la non robustesse de ’estima-
teur, puisque les fonctions d’influence sont clairement non bornées, puisque divergentes lorsque x — 400
et x — 0. Ceci pose un probléeme de cohérence puisque I'ajout d’une seule perte peut rendre impossible
I’exploitation des résultats obtenus via cette méthode d’estimation.

Ceci est d’autant plus important que ce phénoméne se produit aussi bien pour des pertes
extrémement grandes que pratiquement nulles.

Une seconde chose intéressante est de noter l'adéquation quasi parfaite entre les fonctions d’influence
empiriques et théoriques, alors que pour 'obtention des valeurs empiriques, ’estimation ne s’est faite
que pour un échantillon de 250 données. Néanmoins, la fonction d’influence empirique a tendance a étre
légerement sous-évaluée pour des valeurs proches de 0. Méme si la tendance observée reste la méme, le
caractere infini de la fonction d’influence quand x tend vers 0 ne pourra étre observé pour la version
empirique qui ne donne que des valeurs finies.

Ceci permet en tout cas de légitimer 1’utilisation de fonctions d’influence empirique a des
estimateurs pour lesquels il est impossible de déterminer une expression explicite de sa
valeur théorique.

Cas tronqué. 1l est intéressant d’étendre ces résultats au cas d’une loi log-normale tronquée, étant
donnée la situation réelle de collecte des données a partir d’un certain seuil H. On utilise, dans le cas de
données tronquées, la densité suivante :

2 _ f=9)
qui est bien une densité sur [H, 4+o00[. Sa fonction de répartition se définit donc par
F(z,0) — F(H,0)
1—F(H,0)
On a donc p(z,60) = —In (f(2,6)) +In (1 — F(H,0)), dont la fonction de score est

F(z,0) =

1 0f(z,0) 1 OF(H,0)
f(z,0) 00  1—F(H,0) 80

Yo(x,0) = — (4.15)

de dérivée , ,
, B 1 of(x,0) 82 f(x,0) 1 OF(H,0) 9%F(H,0)
Vo0 = o (( 00 ) 02 ﬂw)) - [1-F(H,0)2 (( 00 > e (0 _F(H’G))>

(4.16)

Ce qui permet d’obtenir la fonction d’influence de la loi log-normale tronquée? :

1 9f(x,0) 1 OF(H.0)

0 1—F(H,0) 00

f(z,0) 0
L L 0f(y.0)\* _ 9*/(y.0)
_1—F(H,0)/yf(y,9) (( 90 ) - o f(yﬁ)) dy (4.17)

1 OF(H,0)\> 02F(H,0)
TR 2 << 06 >+ 96? “‘F(H’@)))]

A partir de la fonction d’influence pour une loi log-normale tronquée, on peut obtenir la représentation
graphique présentée en figure 4.3 en effectuant les calculs via Matlab 1°.

IF(z;0,T) =

9. Le détail des calculs permettant d’obtenir les formules exactes des éléments de A(6) et de ceux de 1y est donné
en Annexe dans le paragraphe A.A. Ainsi, les coefficients de la matrice A(0) sont donnés par les formules (A.13), (A.14)
et (A.15), ceux de g par (A.12).

10. Cependant, étant donnée la forme de la matrice A(#), il parait difficile de calculer I’expression analytique de la fonction
d’influence car il faudrait étre capable de calculer A1 (6)
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IF et EIF de p
T

IF et EIF de o
T T

Figure 4.3 — Fonctions d’influence empirique et théorique d’une loi lognormale LA/ (8,2) tronquée

A la lecture des graphes, on note plusieurs différences majeures entre les résultats sur données tronquées
et non tronquées :

— La premiére est le changement du sens de variation de la fonction d’influence du para-
metre p. Alors que celle-ci est croissante sur données non tronquées, elle est décroissante a partir
d’une certaine valeur de z. En revanche, la fonction d’influence du parameétre o garde le méme sens
de variation. Cela signifie que la relation entre les deux parameétres a changé. Pour un modéle non
tronqué, l’ajout d’une grande perte de montant = a pour effet 'augmentation des deux parametres.
Ceci est ici completement différent puisque pour de grandes valeurs, la fonction d’influence de g
devient négative, ce qui veut dire qu’une contamination arbitrairement grande diminue la valeur du
parametre p !,

— La non robustesse de la méthode est de nouveau observable. Les fonctions d’influence des
deux parametres sont en effet divergentes lorsque x — oo : celle de u tend vers —oc et celle de o vers
+00. Néanmoins, bien qu’un extremum local soit atteint en H, les valeurs des fonctions d’influence
en ce point sont élevées mais non infinies. Ainsi, I'ajout d’une perte arbitrairement faible n’entraine
pas une estimation complétement disproportionnée, mais contribue a la perturber notablement. Ceci
est différent du modele non tronqué, puisqu’on rappelle que le caractére non B-robuste s’observe
également lorsque z tend vers 0.

— On observe également que la troncature introduit une corrélation entre les parameétres
puisque les éléments extra-diagonaux de la matrice A~1(#) sont non nuls.

Malgré la bonne adéquation entre les fonctions d’influence empirique et théorique présentée figure 4.3,
on peut noter une plus grande instabilité de la version empirique. Bien qu’il ne faille qu'une centaine
de points pour assurer une bonne adéquation sur un modeéle non tronqué, un millier de points sont ici
nécessaires. Ceci est probablement di a la corrélation entre les parametres introduite par la troncature
au seuil H.

Afin de mettre en avant ce phénomene, on définit les courbes "critiques" pour une taille d’échantillon
donnée, comme les deux courbes s’écartant le plus de la courbe théorique au sens de la norme infinie
sur un ensemble de 100 courbes. Pour différentes tailles d’échantillon, la comparaison entre ces courbes
"critiques" pour des échantillons non tronqués (figure 4.4) et des échantillons tronqués (figure 4.5) met

11. Ceci est d’autant plus contrintuitif que ce parameétre correspond au parameétre de localisation de la loi log-normale, o
étant le parameétre d’échelle.
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IF et EIF de p IF et EIF de o

—IF
- EIF N=250
- EIF N=1000
EIF N=10000

Figure 4.4 — Fonctions d’influence empiriques "critiques" pour différentes tailles d’échantillon d’une loi
lognormale £N(8,2) non tronquée

IF et EIF de p

IF et EIF de o

—IF

20 - EIF N=250

- EIF N=1000
EIF N=10000 . 4

Figure 4.5 — Fonctions d’influence empiriques "critiques" pour différentes tailles d’échantillon d’une loi
lognormale LN(8,2) tronquée au seuil H = 1000 euros

en exergue cette variabilité.

A la vue de ces graphiques, il est préférable par la suite d’utiliser des échantillons de 1000 &
5000 données en cas de troncature afin de s’assurer que le tracé de la fonction d’influence empirique
coincide bien en moyenne avec le tracé théorique. De plus, il est & noter que tous ces résultats sont
d’autant plus marqués que le seuil de collecte H est grand, comme en témoigne le graphique
donné figure 4.6.

D’apres ces résultats, pour un échantillon de pertes donné, I’ajout d’une seule nouvelle perte peut aug-
menter le parametre d’échelle o et diminuer le parametre de localisation pu, et ce de fagon arbitrairement
importante. De plus, comme le calcul de la charge en capital dépend des parametres de la loi, et principa-
lement du paramétre ajustant 'épaisseur de la queue (ici o) puisque la méthode de calcul fait intervenir
des quantiles extrémement élevés, une augmentation démesurée de ce parametre peut avoir des consé-
quences considérables sur le montant de cette charge en capital. Au vu de ces constats, il semble nécessaire
d’implémenter une méthode d’estimation robuste concernant le calcul du capital réglementaire.
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Figure 4.6 — Fonctions d’influence théorique pour différents seuils de collecte d’une loi lognormale LN (8, 2)
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5 Etude d’estimateurs robustes

Sous des conditions idéales d’indépendance et d’homogénéité des données ainsi que de spécification du
modele statistique, I'estimation par maximum de vraisemblance est reconnue comme étant la méthode
optimale. Cependant, ce cas idéalisé n’est jamais observé dans la pratique sur des données collectées
pour le compte du risque opérationnel. En raison de sa non robustesse mise en évidence dans la partie
précédente, disposer d’'une méthode robuste qui ne souffre pas des restrictions mentionnées en début de
paragraphe apparait comme nécessaire.

Plusieurs pistes peuvent étre envisagées afin d’améliorer la robustesse d’'un modele, en agissant sur le
traitement des données en elles-mémes ou encore sur la méthode d’estimation directement. On peut en
effet envisager de :

(1) Procéder a un "nettoyage" préalable des données en éliminant les points marginaux du modele, puis
utiliser les méthodes classiques d’inférence statistique type MLE ou GMM. On peut par exemple
avoir recours a un a-trimming, qui correspond a la suppression du pourcentage « des données les
plus élevées. D’autres méthodes sont suggérées afin de ne pas supprimer de fagon drastique les
données, mais plutdt de se référer & un avis d’expert ou bien a des méthodes de détection des
points aberrants.

(2) Implémenter des méthodes d’estimation congues de maniére a vérifier la propriété de robustesse.

Ce mémoire se concentre uniquement sur les méthodes d’estimation robustes, bien que combiner ces deux
options est envisageable.

Il existe plusieurs estimateurs robustes dans la littérature, parmi lesquels I'estimateur OBRE, I'estimateur
de Cramér-Von-Mises (CvM) ou encore l'estimateur par quantile-distance (QD). Ces trois estimateurs
sont définis dans cette partie, et leurs avantages et inconvénients sont discutés en termes d’estimation et
d’implémentation. Les propriétés de robustesse de ces estimateurs sont, quant a elles, abordées dans la
partie suivante.

Propriétés d’un estimateur

Avant d’étudier en détail les caractéristiques d’estimateurs robustes, on définit ici les propriétés classiques
d’un estimateur, telles que le biais, la convergence et l'efficacité d’un estimateur. Ceci permet alors de
caractériser et de comparer entre elle chaque méthode d’estimation présentée dans la suite de cette partie.

Convergence. Un estimateur GAn du parametre # d’un échantillon de taille n est dit convergent s’il
converge en probabilité vers 6, ce qui s’écrit

Ve >0, lim P[|f, — 0] =] =0
n—oo
Si de plus cette convergence est presque stire, alors 'estimateur est dit fortement convergent

lim P[d, =60] =1

n—oo

En pratique, une condition suffisante pour assurer la convergence est que
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lim E[6,] =60 et lim V[f,] =0

n— 00 n—oo

ol E[@n] et V[an] désignent respectivement 1’espérance et la variance de §n

Biais. FEn fonction de I’échantillon, ’estimateur va plus ou moins fluctuer autour de sa vraie valeur 6.
Le biais d’un estimateur permet de connaitre I’écart moyen entre 6,, et 6. Cette quantité se calcule de la
maniére suivante

B[0,] = E[0,] — 0

Un estimateur est dit sans biais si Vn, E(é\n) = 6. On dit également qu'un estimateur est asymptotique-
ment sans biais lorsque

lim E [/G\n

n—oo

] =0

Dans la suite, on utilise surtout le biais relatif, défini par ]Brel(é\n) = IB[@J /0.
On peut ainsi définir la convergence de I'estimateur par

lim B,[0,] =0 et lim /V[4,] =0
n— oo n—roo

Ce sont ces deux criteres qui sont utilisés dans la suite pour qualifier la convergence des estimateurs.

Efficacité. Un estimateur 6, est dit efficace s’il est de variance minimale parmi tous les estimateurs de
f ayant méme moyenne.

On parlera également d’écart-type relatif :

Mise en place d’un environnement simulé

S’assurer des propriétés "classiques' de l'estimateur revient donc a vérifier ses qualités en termes de
convergence. Afin d’avoir une étude la plus compléte possible, nous présentons ces résultats a partir de
données simulées provenant de quatre jeux de parametres différents.

En effet, dans la pratique, les données réelles récoltées proviennent des différentes entités et de différentes
catégories de risque. Les profils de risque associés sont donc hétérogenes d’une cellule de risque a l'autre.
C’est pourquoi on choisit de travailler sur quatre jeux de parametres différents d’une loi log-normale,
représentatifs de I’étendue des panels de risque rencontrés dans la pratique.

Les densités de probabilité associées sont représentées sur la figure 5.1 :
— (8,2) représentant un profil de haute sévérité & queue de distribution épaisse
représentant un profil de haute sévérité a queue de distribution plus fine

(8,1)
— (6,2) représentant un profil de faible sévérité a queue de distribution épaisse
(6,1)

)
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©10° Densité sur le corps

7 Densité sur la queue

45
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Figure 5.1 — Représentation de la densité de la loi log-normale selon les quatre jeux de parametres sur le
corps ([0,10%]) et sur la queue ([105,10])

5.1 Estimateur OBRE

L’application de l'estimateur OBRE au risque opérationnel a été I'objet de quelques travaux récents,
notamment ceux d’Opdyke et Cavallo ([15] et [16]). L’appellation anglophone "OBRE" signifie Optimally
Bias-Robust Estimator. Cet estimateur est en fait une version du MLE sous contraintes, transformée de
fagon & assurer sa B-robustesse. Il est en outre construit de fagon a étre ’estimateur a fonction d’influence
bornée avec une efficacité maximale, d’ou le terme Optimal.

Sur des données simulées idéales (c’est-a-dire ¢id issues d’un modele Fy explicite), 'estimateur par maxi-
mum de vraisemblance est reconnu pour étre optimal au sens de lefficacité (sa variance asymptotique

est minimale). Cependant, sur données réelles, il peut méme arriver que 'estimateur robuste OBRE soit
plus efficace *.

5.1.1 Définition
Pour un échantillon donné (z1,...,z,), I'estimateur OBRE 9 du parametre 6 est donné par
b= {9 Y (a0) = 0}
i=1

ol Y(z;,0) est défini par ¥ (z;,0) = A(0)(s(zi,0) — a(0))We(x;,0) avec s(z;,0) = %W la fonction
de score classique et W, (z;,0) une fonction de pondération donnée par

We(w;,6) = min (1 " 1A6) (s, 0) — a("))”>

Les quantités A(0) et a(f) de dimensions respectives dim(6)xdim(#) et dim(f) x 1 sont tels que les deux
équations suivantes sont vérifiées

E [(z,0) x ¢(2,0)] = I (5.1)
E[¢(z,0)] 5.2

1. Voir pour plus de détails, les articles [15], [16], [4], [21].

|
o
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5.1 Estimateur OBRE 40

Comme 'estimateur OBRE est un M-estimateur, sa fonction d’influence est définie par I’équation (4.10).
Elle est donc linéaire en 1g. Ainsi, si 9y est non bornée alors la fonction d’influence est non bornée
également, ce qui est le cas de ’estimateur ML. Dans le cas de 'OBRE, on s’arrange pour que la quantité
¥(x,0) soit bornée. C’est le rdle assuré par la fonction de pondération W, comprise entre 0 et 1. Elle
permet d’affecter un poids a chaque donnée, ce poids spécifiant la concordance entre ces données et le
modele paramétrique estimé. Ainsi, si une perte est pondérée par un poids quasi nul, c’est qu’elle est
considérée comme totalement divergente du modele sous-jacent, et inversement si ce poids est proche de 1.

A(0) et a(f) peuvent étre vus comme des multiplicateurs de Lagrange pour lesquels les équations (5.1)
et (5.2) permettent de satisfaire les contraintes de B-robustesse et de consistance de Fisher? que doit
vérifier 'estimateur OBRE.

La fonction de pondération W, est dépendante du parametre c¢. C’est un parametre de modulation permet-
tant un arbitrage entre robustesse et efficacité. Ce parameétre, choisi par 1'utilisateur, doit obligatoirement
vérifier y/dim(6) < ¢ < co. Plus ¢ est proche de son minimum, plus I'estimation gagne en robustesse mais
perd en efficacité, et inversement lorsque ¢ devient grand, I’estimateur OBRE coincide avec I'estimateur
ML.

Il existe plusieurs variantes de I’estimateur OBRE, mais celle décrite plus haut, appelée estimateur OBRE
"normalisé", est reconnue pour étre la plus stable numériquement.

5.1.2 Algorithme

Un algorithme permet de trouver 'estimation 6 satisfaisant les équations (5.1) et (5.2) de maniere itéra-
tive 3. Cet algorithme* en quatre étapes est établi comme suit :

1. Etape 1

— Choix du seuil de précision 7, inhérent a la convergence de 'algorithme.

— Choix d’une valeur initiale 6;,;;, généralement la valeur obtenue par maximum de vraisemblance
en intégrant ou non le seuil H.

— Initialisation des valeurs de A(6) et a(f) respectivement & \/[J(0)~1] et 0, avec

J(0) = /s(a:,@)s(z,&)’ng(x)
la matrice d’information de Fisher, que I'on retrouve plus communément écrite sous la forme
E |:<81ngéz,0)>2:| )

2. FEtape 2°
On obtient les nouvelles valeurs de A et a en résolvant le systéme suivant :

A(0) A(6) = M5 (8) (5.3)
[ s(z,0)We(x,0) dFy(x)
R AP EVES o0

avec My(0) = /(s(m,ﬁ) —a(0))(s(z,0) — a(8)) We(z,0)* dFy(z) pour k=1,2.

2. Cest-a-dire que lestimateur vérifie T'(Fy) = 0

3. En utilisant une méthode de convergence de type Newton-Raphson.

4. 1l est présenté dans les articles [15], [4] et [21].

5. A cette étape, Décriture de We(z,6) ne dépend des valeurs A(6) et a(f) calculées & I'étape précédente (Etapel si
initialisation, Etape2 précédente sinon).
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3. Etape 3
On calcule M avec les nouvelles valeurs de a(6) et A() calculées a1’ Etape2, puis on obtient la variation
de parametre 6 suivante

1 n
AG =M 0) |~ i,0) — a(0)|We(x;,0 5.5
; ()[n;[sm,) a(6) Wl >] (5.5)
Condition d’arrét : 'algorithme s’arréte lorsque ‘A‘gfj <m,pour j=12
Sinon, on pose :
Af
0—0— ~ (5.6)

et lalgorithme reprend a 1’ Etape2.

Remarque :

— Les équations écrites sous forme d’intégrale matricielle correspondent simplement a l'intégrale de
chacun des éléments de la matrice.

— Le parametre v permet de diminuer si besoin le pas A# a chaque itération. Son utilité est présentée
dans la suite.

Dans la suite, nous explicitons certains des calculs mentionnés dans l’algorithme dans le cadre d’une
loi lognormale tronquée, comme nous ’avons fait pour le calcul des fonctions d’influence. En effet, nous
rappelons que cette loi est la plus communément utilisée pour la modélisation de la sévérité. Ensuite,
nous exposons les difficultés rencontrées lors de I'implémentation de cet algorithme, notamment en raison
de la complexité des calculs.

5.1.3 Calculs pour une loi log-normale tronquée

Reprenons f la densité d’'une loi log-normale tronquée dont les propriétés ont déja été définies dans le
paragraphe 4.2.2. La fonction de score, appelée ici s(x, ), est celle d'une loi log-normale tronquée, et son
calculest donné en Annexe.

Concernant les éléments de la matrice d’information de Fisher utilisée afin d’initialiser la valeur de A(6),
ceux-ci sont calculables. Néanmoins, leur écriture étant tres lourde, le résultat est donné en Annexe A.

Malgré la complexité des éléments de la matrice J(6), ceux-ci ont avantage d’étre explicitables, ce qui
n’est pas le cas des autres calculs que I'on trouve dans l'algorithme. En effet les calculs des matrices
My (2) ainsi que celui de a(f) (5.4) font intervenir des intégrales dont la quantité W, intervient dans
I'intégrande. Cependant, étant donnée la forme de cette fonction, il parait impossible d’en donner une
expression explicite. C’est pourquoi on doit avoir recours a des approximations numériques sous Matlab.
De méme, bien qu’il existe des algorithmes pour obtenir la décomposition de Cholesky d’une matrice,
obtenir celle de A(#) (5.3) de fagon formelle semble difficile.

Problématiques numériques

Parmi ces deux problématiques d’ordre numérique, obtenir la décomposition de Cholesky d’une matrice
se fait tres facilement sous MATLAB. C’est donc 'approximation numérique des intégrales qui doit faire
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5.2 Estimateur de Cramér-von-Mises 42

I'objet d’une attention particuliere. Dans la littérature, on peut trouver des approches permettant de
contourner en partie ce probleme.

Comme cela est présenté en détail en Annexe B, on est amené a travailler sur deux versions différentes
d’implémentation de I’algorithme de I'estimateur OBRE. La premiere faisant intervenir la fonction de
répartition empirique associée aux données, est appelée méthode empirique, la seconde utilisant des mé-
thodes d’approximations numériques d’intégrales, est appelée méthode reparamétrée.

Avant de s’atteler aux propriétés de robustesse ainsi qu’a ’étude de la sensibilité des parametres d’entrée,
on doit s’assurer que 'estimateur vérifie les propriétés de convergence énoncés en début de partie dans le
paragraphe 5.5. Il est intéressant de comparer ces propriétés pour les deux méthodes proposées afin de
sélectionner la meilleure.

La comparaison entre ces deux approches est également proposée en Annexe B. Et a la vue de ces ré-
sultats, il est préférable de n’utiliser par la suite que la version empirique de ’algorithme d’estimation
OBRE. Ses propriétés techniques et la sensibilité de ses parametres sont présentés dans la prochaine partie.

Sensibilité des paramétres

Il est également intéressant de tester la sensibilité des estimations au niveau de précision n ainsi qu’aux
parametres initiaux. Les résultats détaillés de cette analyse sont présentés en Annexe B et aboutit aux
choix exposés ci-apres.

Sensibilité au paramétre . Nous choisissons = 0,001 afin de garder en plus une marge de sécurité,

la convergence étant assurée pour les quatre modeles pour 7 de 'ordre de 0,05.

Sensibilité aux paramétres d’initialisation. Dans ’algorithme, I'initialisation des parametres par la va-
leur obtenue par maximum de vraisemblance sur les données non tronquées. Cela signifie que, méme si
le seuil est de H = 1000, cette initialisation se fait pour un seuil H = 0. En effet, cela permet d’obtenir
des parameétres d’ordre de grandeur convenable, et de passer outre les estimations parfois aberrantes que
peut fournir le maximum de vraisemblance sur données tronquées (un p négatif et un o tres élevé).

En somme, rien n’invalide cette fagcon d’initialiser. Dans la suite, ’initialisation se fait donc
sur données non modifiées et non tronquées.

Les propriétés de convergence de l'estimateur OBRE sont vérifiées et le calibrage des parametres est
établi. Les propriétés de robustesse sont abordées dans le chapitre suivant.

5.2 Estimateur de Cramér-von-Mises
De fagon générale, le but de la méthode d’estimation de Cramér-von-Mises est de minimiser une distance
entre une fonction de répartition G donnée et un ensemble de fonctions de répartition paramétriques

F(0), tel que Fp € F(0), pour une mesure v.

La distance utilisée pour trouver ce minimum est

deon (F,G) = /X (F(z) — G(z))*v(dx) (5.7)

Mathématiquement, ’estimateur CvM se traduit par

T(Fy) = arg meindeM(F97G) (5.8)
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43 5 Etude d’estimateurs robustes

Il s’agit d’un extremum estimateur, puisqu’on cherche & minimiser une fonction objectif.

On utilise cet estimateur afin de trouver le paramétre # qui minimise la distance de Cramér-von-Mises
entre la fonction de répartition empirique de I’échantillon et la fonction de répartition de la famille
paramétrique Fp. Ainsi, dans cette configuration, G = F,,, v(dx) = Fp(dx). Si de plus on se place
dans un cadre ou les données sont tronquées au seuil H, on fait intervenir la densité tronquée f‘; et cet
estimateur devient

+oo

7(F) = argnjn [ (Fie) = Fu(a)) dFita)

ou encore
T(Fy) = argmindeun (Fp, Fr)

Puisque l'on travaille avec les fonctions de répartition, deux options sont envisageables pour prendre en
compte le seuil H dans l’estimation.

5.2.1 Prise en compte normale du seuil

On entend par prise en compte "normale" du seuil le fait que la minimisation de la distance par rapport
au parametre 6 se fasse de maniere usuelle, en faisant intervenir une distribution paramétrique tronquée
a gauche. Ainsi, si on note (x(1),...,%(,)) 'échantillon ordonné par ordre croissant, on consideére que (1)
est la plus petite de nos pertes, en faisant abstraction des pertes inférieures au seuil H. La fonction de
répartition empirique a alors la méme expression qu’énoncé dans ’équation (4.1), et que F, (x(l)) = %
Il n’y a donc aucune prise en compte des hypothétiques valeurs en-dessous du seuil dans 1’écriture de la
fonction de répartition empirique.

En pratique, sur un échantillon (21, ..., x,), on discrétise ’équation (??) sur cet échantillon pour obtenir
Pestimateur CvM

T(f‘;) = argmeini: (E(l‘i) - Fn(xi)>2

=1

En développant I’écriture de }7\;

— - Xi) — H 7 2
T(Fp) = argnbin; (W - n) (5.9)

Etude de convergence

On se place ici dans les mémes conditions que ’étude déja effectuée pour I'estimateur OBRE. On effectue
donc des tests de convergence pour les quatre jeux de parameétres de loi log-normale, en étudiant a la
fois le biais relatif et ’écart-type relatif pour les deux parametres i et 0. On procéde toujours pour 1000
simulations.

D’aprés les graphes fournis figure 5.2, on peut conclure que 'estimateur est convergent puisque le biais
relatif et 'écart-type relatif tendent vers 0 lorsque n tend vers I'infini, quelque soit le profil de risque.

Néanmoins, pour de petites tailles d’échantillon, les biais observés sur les profils LA (6,1) et LN (6,2) sont
trés importants. De plus, quelque soit le profil de risque, le biais relatif est toujours plus important que
celui observé avec ’emploi de la méthode OBRE.

En outre, 1’écart-type relatif du parameétre p est explosif pour les profils LN (6,1) et LN(6,2), et reste
plus important que celui observé pour 'OBRE pour les autres profils (méme si cela se voit difficilement
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Figure 5.2 — Convergence de I'estimateur CvM pour différents profils de risque

graphiquement ; par exemple, celui du couple LN (8,2) atteint une valeur de 10 pour n = 20).

D’apres ces graphiques, on peut conclure que cette méthode d’estimation est plus biaisée et plus volatile
que la méthode OBRE. Ceci semble d’autant plus vrai lorsque la quantité Fy(H) est importante. En
effet, plus cette quantité est élevée, plus la proportion de données censurées par rapport au modele sans
troncature est grande. Ainsi, pour un seuil de H = 1000 on observe numériquement

Fig)(H) < Fg2)(H) < Fig)(H) < Fg1)(H)

C’est pourquoi, dans le prochain paragraphe, nous testons une nouvelle approche abordant la prise en
compte du seuil différemment.

5.2.2 Prise en compte des données sous le seuil

Contrairement & la méthode utilisée pour une prise en compte "normale" du seuil de collecte énoncée
précédemment, 1’idée est ici de prendre en compte les pertes sous le seuil dans ’écriture de la fonction de
répartition empirique, celle-ci n’étant donc plus nulle en H.

On dispose d’un échantillon de n pertes (x1,...,x,) toutes supérieures ou égales au seuil H. On note
m le nombre de pertes sous le seuil, sur lesquelles on n’a aucune information en regle générale. On note
également

Niot =N+ M

le nombre total de pertes. En supposant que la distribution totale provienne d’un modele paramétrique
Fy, on a I’équivalence entre les proportions suivantes

m  Fp(H)
. = TR (5.10)

il en résulte que :

Vincent Lehérissé Mémoire d’actuariat



45 5 Etude d’estimateurs robustes

n

TR (5.11)

Niot =

En considérant alors ces m pertes inobservables, on peut exprimer la fonction de répartition empirique

m+>r  Lipcn
Fi(z) = Lz Uoiso) (5.12)
" Niot

ce qui peut se réécrire & partir des équations (5.10) et (5.11)

. 1— Fy(H) &
Fr(@) = Fo(H) + —— = Y lwica
k=1

Le but de I'estimation est toujours de minimiser la distance entre les fonctions de répartition empirique
et théorique. Comme on se place ici sur un modéle non censuré prenant en compte les données sous le
seuil, 'estimateur CvM devient

T(Fp) = argmein /000 (Fo(z) — F:{(x))Q dFy(x)

qui se discrétise sur un échantillon par

T(Fp) = afgﬂgnzn: (Fe(xz‘) - m+i>2

n
i—1 tot

ou encore

_ 1—Fy(H) Z)Q

T(Fy) = arg Hgnz <F9(:17i) — Fy(H) -

La recherche de minimum est faite sous Matlab, la fonction étant rentrée telle quelle, 'optimisation se
faisant en une seule étape. Les résultats de convergence sont donnés figure 5.3.

Mis a part le profil de risque LN (6,1), cet estimateur est convergent. En s’intéressant aux grandes valeurs
de n, sur les graphes, on montrerait que le biais relatif et I’écart-type des deux parameétres tendent vers
0.

Cependant, I’estimation est beaucoup trop instable pour des échantillons moins volumineux. En effet, les
biais relatifs se comptent en millier de pourcent, les écarts-types sont colossaux, il faut des échantillons
d’au moins 5000 pertes pour obtenir une convergence convenable.

La méthodes avec prise en compte des données sous le seuil apparait donc comme moins inadaptée dans
la pratique. Comme I’OBRE, les propriétés de robustesse de cet estimateur pour ses deux versions sont
étudiées dans la prochaine partie.

5.3 Estimateur Quantile-Distance

La méthode quantile-distance (QD) est une méthode d’estimation qui, comme 'estimation CvM, est ba-
sée sur la minimisation d’une distance. Cette méthode d’estimation ainsi que ses propriétés théoriques
ont été originellement présentées par LaRiccia [11], et LaRiccia et Wehrly [12]. Son application au risque
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Figure 5.3 — Convergence de l'estimateur CvM avec prise en compte des données sous le seuil pour
différents profils de risque

opérationnel a été proposée par Ergashev [5].
Alors que la méthode CvM se fonde sur ’écart entre fonction de répartition empirique et théorique, la

méthode QD réside dans la minimisation d’une distance quadratique pondérée entre quantiles empiriques
et théoriques. Cette distance est définie par

K

~ _ 2
Q% (0,{a,...,ax}) = Zwk (@) — Fy (o)) (5.13)
k=1
ou0<a; <...<ag <1 sont des niveaux de quantile, wy,...,wx sont des poids, F(,_1 correspond a la

fonction quantile de la distribution Fy, c’est-a-dire la fonction inverse de Fy, et ¢ est une interpolation
linéaire des quantiles empiriques, définie comme suit

qlag) = T(|nak)) T (nay — |nag]) (.’L‘(Lnaw+1) — x(LnakD) k€1, K] (5.14)

L’intérét d’utiliser une interpolation des quantiles est de pouvoir avoir une estimation plus flexible, dans
la mesure ou la distance a minimiser est "lissée".

Afin de prendre en compte le seuil de troncature H, il est nécessaire de travailler avec des quantiles
translatés. On peut en effet faire le constat que, pour une valeur de x donnée, le quantile associé pour la
distribution tronquée & est inférieur a celui associé pour la distribution totale «, puisque Fp(z) < Fp(z).
En reprenant ’expression de la fonction de répartition pour une distribution tronquée :

Fe) = P41~ ki)

on en déduit

a = ar + (1 - ax) Fo(H) (5.15)

La distance quadratique a minimiser devient par conséquent
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K 2
G (0, (o)) = S () — £ @+ (1= @) ) (5.16)
k=1
La méthode d’estimation QD peut donc se traduire par

T (’F; | {a,.. .,aK}) = argmin 02 (6, {as, ..., ax}) (5.17)

5.3.1 Spécification des paramétres

Dans ce paragraphe sont abordées les questions de calibration des différents parameétres entrant en jeu
dans la fonctionnelle d’estimation : la pondération wy, la réparititon des niveaux de quantile «y et leur
nombre, K.

Pondération

Selon Ergashev [5], les pondérations ont une influence négligeable sur 'estimation. Cependant, afin de
limiter I'instabilité numérique liée a l’estimation sur les valeurs les plus séveres, il parait opportun de
limiter le poids qui leur est accordé en utilisant la pondération suivante :

1
(o)
Cela permet notamment d’éviter que ’estimation ne soit fondée que sur les quantiles empiriques les plus

élevés.

Définition des niveaux de quantiles a ajuster, oy

La répartition des quantiles « peut aussi bien se faire de fagon uniforme que de fagon exponentielle. En
utilisant une répartition uniforme des quantiles sur [0,1], aucune partie de la distribution n’est privilégiée
dans l'estimation :

(unif) 1 1 k k
=(1- Z . ke[l,K 5.19
o = (1- =) % FELLKI (5.19)
On ne peut pas utiliser simplement Pécriture k/K, puisqu’alors on aurait g = 1 et par conséquent
F; (o) serait infini. Le coefficient (1 — %_H) permet ainsi de prendre en compte (au moins partielle-

ment) la perte la plus sévere©.

La figure 5.4 présente un exemple de répartition uniforme des niveaux de quantiles (représentés en points
rouges).

La répartition exponentielle permet quant & elle de densifier le nombre de quantiles sur la queue de
distribution. Cette option parait opportune dans le contexte du risque opérationnel, puisqu’elle permet
se focaliser davantage sur la queue de distribution, partie de la distribution qui importe le plus lors du
calcul de charge en capital. Les niveaux de quantiles peuvent étre distribués exponentiellement selon

(exp) _ 1 1 —exp(—km/K)
a, V= (1 - 1) T—oxp(—m) kel K] (5.20)

m est un parametre permettant de moduler la concentration de quantiles sur la queue de distribution.
Ainsi, plus m est grand, plus on se focalise sur la queue de distribution. A I'inverse, lorsque m tend vers
0, on retrouve une distribution uniforme des quantiles”.

6. Ergashev [5] choisit la valeur de 0.999 par défaut, mais il parait plus intéressant d’utiliser une valeur dépendant de la
taille de ’échantillon.
7. En effet, par développement limité on retrouve I’équation (5.19).
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Figure 5.4 — Pertes ordonnées et niveaux de quantiles uniformes a ajuster.

Dans la suite, on utilise la valeur m = 2 qui permet, tout en se focalisant un peu plus sur la queue,
de garder également un nombre de niveaux de quantiles suffisant sur le corps de la distribution®. Le
tableau 5.5 représente en pourcentage la répartition des quantiles sur différents intervalles de [0,1].

Répartition
Intervalle | Uniforme | Exponentielle
[0.5,1] 50% 71.7%
[0.9,1] 10% 24.7%
[0.99,1] 1% 3.1%
[0.999,1] 0.1% 0.3%

Figure 5.5 — Répartition des quantiles distribués uniformément et exponentiellement (m = 2)

La figure 5.6 illustre la répartition exponentielle des niveaux de quantiles, avec m = 2.
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Figure 5.6 — Pertes ordonnées et niveaux de quantiles exponentiels (m = 2) & ajuster

Finalement, la derniére grandeur a fixer est le nombre total de quantiles. On voit sur la figure 5.7 que
I'estimation des parametres de la loi est peu affectée par la valeur de K.

Afin d’arbitrer entre flexibilité et précision de I’estimation, et ainsi avoir suffisamment de quantiles pour

capter le comportement du corps et de la queue de la distribution et optimiser le temps de calcul, on
choisit de poser :

K= H (5.21)

8. Voir larticle [14].
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Figure 5.7 — Etude de différents nombres de quantiles & ajuster.

Deux versions de cette méthode sont proposées dans les prochains paragraphes, la différence réside dans
la méthode d’optimisation numérique de 1’équation (5.17).

5.3.2 Version par optimisation directe

L’équation d’optimisation (5.17) comporte deux valeurs de 6. Par optimisation "directe", on entend une
optimisation simultanée de ces deux valeurs. Cette optimation se fait sous Matlab.

Comme pour les autres estimateurs, une étude de convergence est menée dans les mémes conditions, qui
sont, on le rappelle, un modele général log-normal, 4 profils de risques, un seuil de H = 1000, différentes
valeurs de n et les parametres de Pestimateur QD donnés par les équations (5.18), (5.20) et (5.21). Les
graphiques de cette étude sont présentés figure 5.8.

L’examen de ces graphes nous apprend que ’estimateur est convergent, avec une convergence appré-
ciable quelque soit le profil de risque a partir d’une taille d’échantillon de 1000 données. Le compor-
tement de l’estimateur QD est d’ailleurs comparable a celui de ’estimateur CvM, a savoir
des biais de méme grandeur selon les profils de risque, un parametre ¢ biaisé a la hausse, un parametre
w1 biaisé un peu plus fortement a la baisse et un écart-type important pour de faibles tailles d’échan-
tillon. La convergence s’avere cependant un peu plus rapide avec ’estimation par méthode CvM. Le biais
a la hausse sur o est cependant problématique, puisque il entrainera automatiquement une estimation
surévaluée de la CaR. C’est pourquoi testons une seconde méthode afin de tenter de pallier a ce probléme.

5.3.3 Version par optimisation scindée

Le parametre # apparaissant deux fois dans 1’équation (5.17), il est possible que cela entraine une insta-
bilité lors de la phase d’optimisation. L’idée est donc de procéder en deux étapes en estimant d’abord
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Figure 5.8 — Convergence de I'estimateur QD par optimisation "directe" pour différents profils de risque

une premicre valeur de 6, que Pon notera 6, pour obtenir F;(H), puis de fixer cette valeur afin d’obtenir
la valeur définitive de I’estimation en minimisant la distance quadratique. Une autre raison a l’origine de
I’élaboration d’une autre nouvelle version est que les résultats obtenus sur données réelles avec la premiére
version ne sont pas satisfaisants.

La procédure est donc la suivante. On introduit I’estimation des quantiles empiriques translatés

q(on) = q(ax) — (1 — o) H (5.22)

utilisés afin de minimiser la distance translatée correspondante

K

6 = argmin Y wi ((a(@) — (1 — @) H) - F; ' (ar)° (5.23)
k=1

Puis, I’estimation finale est obtenue, en fixant # pour Fy(H), en minimisant la distance

K

Q%(0,{a1,...,ax}) = Zwk (qlow) — F; " (ap + (1 — azg)Fg(H)))2 (5.24)
k=1

Les résultats obtenus avec cette optimisation en deux étapes sont résumés figure 5.9.

La premiere chose a noter a la vue de ces graphiques est que cet estimateur n’est pas convergent,
puisque le biais ne tend pas vers 0, méme si c’est le cas pour ’écart-type. Cependant, on peut observer une
propriété de l'estimateur encore inobservée sur les méthodes d’estimation précédentes (OBRE,CvM,QD
version directe) : pour un jeu de parameétres donné, le biais de 1’estimation ne dépend pas de la
taille de I’échantillon. Graphiquement, cela se constate tres bien par la forme plane des courbes. De
plus, si on compare I'écart-type relatif des parametres estimés pour des petites tailles d’échantillon, on
remarque qu’il est inférieur a toutes les autres méthodes d’estimation en ce qui concerne p, et équivalent
a celui de TOBRE (qui est actuellement le plus faible) en ce qui concerne o.
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Figure 5.9 — Convergence de I'estimateur QD par optimisation "scindée" pour différents profils de risque

Comme dans la pratique, la taille des échantillons est trés variable (de 20-30 pertes & 10000), cette mé-
thode d’estimation apparait trés adaptée puisque la qualité et la précision de I’estimation ne dépend pas
(ou trés peu) du nombre d’observations.

Malgré ces propriétés remarquables, il n’en demeure pas moins que I'estimation reste biaisée. De plus, ce
biais est lié au seuil de collecte H comme le montrent les courbes figure 5.10 obtenues pour le profil de
risque LN (6,2) pour différentes valeurs du seuil.
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6 Tests de robustesse

Cette partie aborde les propriétés de robustesse des estimateurs, le but étant de pouvoir les comparer
entre eux sur ce critere.

Les tests de robustesse proposés dans cette partie sont de deux natures. Les premiers tests concernent
la robustesse locale, qui se résument a des études de fonctions d’influence ; les seconds sont des tests de
robustesse dite globale, dans lesquels on étudie le comportement de I’estimateur face & des contaminations
de plus grande envergure.

L’étude présentée ici est réalisée pour tous les estimateurs robustes présentés ci-dessus, ainsi que les
estimateurs par maximum de vraisemblance et par méthode des moments généralisée. Elle est également
effectuée pour différents profils de risque, afin d’avoir une vision plus globale du comportement de ces
estimateurs.

6.1 Robustesse locale

On étudie la fonction d’influence de chacun des estimateurs afin d’évaluer s’ils sont bien B-robustes. On
rappelle que la fonction d’influence correspond a I’équivalent de la dérivée pour une méthode d’estima-
tion, et qu’un estimateur est dit B-robuste si sa fonction d’influence est bornée.

On utilise ici les fonctions d’influence empiriques afin d’approximer les fonctions d’influence théoriques.
On présente les fonctions d’influence des estimateurs pour un échantillon de 500 pertes simulées & partir
d’une loi-lognormale de paramétres (8,2) tronquée au seuil H = 1000 *.

Les fonctions d’influence empiriques sont tracées sur I'intervalle [H, Q(0.99999)], ot Q4(0.99999) est le
quantile & 99.999% de la distribution log-normale de parameétre 6. x balaye cet intervalle en 250 valeurs
reparties de fagon exponentielle, afin d’avoir une répartition uniforme a 1’échelle logarithmique. On repré-
sente également la variation relative de la CaR suite a I'ajout de la nouvelle perte x, qui est donc égale a
la variation relative entre la CaR calculée a partir des nouveaux parametres estimés et ceux estimés sans
ajout de la perte x. Outre fournir I'impact d’une nouvelle perte = sur les parametres estimés, cela nous
permet également de quantifier 'impact final de cet ajout sur le calcul de capital.

Les graphes sont présentés séparément suivant les estimateurs. Ainsi, 'estimateur OBRE est présenté
pour trois valeurs de ¢, les deux versions de la méthode QD sont proposées (dans les légendes, "QD" cor-
respond a la méthode par optimisation directe et "QD scindé" par optimisation scindée), les deux versions
de Vestimateur CvM (dans les 1légendes, "CvM" correspond & la méthode avec prise en compte normale du
seuil "CvM v2" correspond & la version modifiée avec prise en compte des données sous le seuil), ainsi que
Pestimateur ML et GMM. Enfin, les fonctions d’influence sur le parametres p sont toujours représentées
en trait plein, celles sur ¢ en trait pointillé.

o4
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. EIF de u(-) et o(:) Erreur relative sur la CaR
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Figure 6.1 — Fonction d’influence empirique et variation relative de la CaR associée pour un échantillon
de 500 données issues d’une loi LN(8,2) et tronquées au seuil H = 1000 estimé par ML

B-robustesse de I’estimateur ML

Les résultats pour 'estimateur ML sont donnés figure 6.1. On retrouve des fonctions d’influence pour p
et o évoluant en sens opposé et non bornées. Les fonctions d’influence restent proches de 0 sur [H, 10°],
ce qui signifie que 'impact d’une nouvelle perte z € [H,10°] ne fait que peu varier les paramétres. Ce
qui explique la variation de la CaR quasi nulle sur cet intervalle. La valeur de 10° correspond environ
au quantile & 95% de la distribution. Cependant, pour des valeurs supérieures, les fonctions d’influence
deviennent non bornées, celle de ¢ tendant vers 400 et pu vers —oo. Comme o est le parameétre influant
sur I’épaisseur de la queue, si sa fonction d’influence tend vers +oo, cela signifie que sa valeur augmente
indéfiniment, on observe alors une queue de plus en plus épaisse. Ceci se retrouve en regardant la variation
relative de la CaR, la forme de cette courbe étant analogue a sur la fonction d’influence de o. On observe
ainsi une variation relative de la CaR non bornée, ce qui signifie que la nouvelle CaR estimée est non
bornée également et donc tend vers +oc.

En somme, en plus de retrouver que 'estimateur ML n’est pas B-robuste, on constate que 1’ajout d’une
seule perte de montant x peut aboutir a une estimation tres élevée de la CaR.

B-robustesse de I'’estimateur GMM

Pour des soucis de lisibilité diis a ’échelle, les résultats pour la méthode GMM sont également présentés
avec un focus sur lintervalle [H,10°] figure 6.2. On constate que cet estimateur n’est pas B-robuste,
car les fonctions d’influence sont clairement non bornées, atteignant respectivement -700 pour u et 500
pour o. Ceci s’explique par le procédé de la méthode d’estimation, puisque il consiste a se baser sur les
moments empiriques d’ordre 1 et 2 des pertes. Or, la moyenne (moment d’ordre 1) n’étant pas robuste,
donc rajouter une perte extrémement élevée modifie nettement cette moyenne. Ceci est d’autant plus ex-
tréme pour le moment d’ordre 2. Ainsi, puisque I’estimation résulte de la mise en égalité entre moments
empiriques et moments théoriques, on observe des fonctions d’influence empiriques trés importantes pour
de grandes valeurs de x.

Parallelement, pour de plus petites valeurs de x et des valeurs autour de la moyenne, la fonction d’in-
fluence empirique observée est plane et proche de 0. C’est d’ailleurs, parmi les estimateurs présentés, celle

1. Les autres résultats pour les paramétres de simulation (8,1), (6,2) et (6,1) sont présentés en Annexe C, et les conclusions
que nous pouvons en tirer sont similaires.
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qui est la plus proche de I'axe des abscisses sur 'intervalle [H, 10°]. Néanmoins, pour de grandes valeurs
de z, l'estimateur devient fortement biaisé, ce qui conduit a des estimations de CaR aberrantes. C’est
ainsi qu’on observe des variations relatives de CaR dépassant les 1000%, c’est-a-dire que I’ajout d’une
seule perte dans un échantillon de 500 données peut aboutir & une multiplication par 10 du capital.

EIF de p(-) et o(:) Erreur relative sur la CaR
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Figure 6.2 — Fonction d’influence empirique et variation relative de la CaR associée pour un échantillon
de 500 données issues d’une loi LN (8,2) et tronquées au seuil H = 1000 estimé par GMM

B-robustesse de I'estimateur OBRE

Les résultats présentés ici sont donnés pour trois valeurs de ¢, & savoir v/2, 2 et 5. Ces valeurs sont un
moyen de jauger I'impact sur la robustesse de cet estimateur, puisqu’elles correspondent & trois niveaux
de robustesse, en ordre décroissant. Les graphiques pour ces trois valeurs sont représentés figure 6.3.
Comme l'estimateur OBRE est un estimateur dérivé du ML que l'on a rendu B-robuste, sont également
superposés les graphes déja obtenus pour 'estimateur ML afin de se rendre compte de 'apport de "TOBRE.

On peut constater que la valeur de ¢ a bien un impact sur la robustesse de l'estimation puisque
plus cette valeur est proche de v/2, plus I'influence de I’ajout d’une nouvelle perte x sur les parameétres
estimés est asymptotiquement faible. Mise a part la valeur ¢ = 5 pour laquelle les fonctions d’influence
des parametres semblent non bornées, les valeurs /2 et 2 donnent des estimateurs B-robustes.

En comparant ces résultats avec ceux de ’estimateur ML, on constate plusieurs choses. La premiere est
que, pour la valeur ¢ = 5, les fonctions d’'influence de 'OBRE et du ML sont égales, puis le caractere
robuste opére dés lors que la valeur de perte 5 x 10° est dépassée, valeur correspondant au quantile &
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EIF de pu(-) et o(:)
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Figure 6.3 — Fonction d’influence empirique et variation relative de la CaR associée pour un échantillon
de 500 données issues d’une loi LA (8,2) et tronquées au seuil H = 1000 estimé par OBRE pour trois
valeurs de ¢

99.5% de la distribution. En revanche, pour les deux autres valeurs de ¢, bien qu’ayant la méme forme, les
courbes des EIF sont un peu plus élevées en valeur absolue au niveau du seuil et de "la bosse" (autour de
x = 10%), ce qui signifie que I'impact de 'ajout d'une nouvelle perte z dans ces zones a plus d’incidence
sur l'estimation des parametres que la méthode ML. Cependant, c’est pour permettre d’étre B-robuste
que cette méthode est impactée sur ces certaines zones. Ainsi, asymptotiquement, la variation rela-
tive de la CaR reste modérée, elle est au maximum de 4% pour ¢ = v2 et de 5% pour ¢ = 2, bien
que les pertes les plus importantes représentent des quantiles de niveau 99.999%.

B-robustesse de I’estimateur QD

D’apres les graphes obtenus figure 6.4, on constate que les deux versions sont B-robustes. On peut
par ailleurs remarquer que la version scindée de I'estimateur QD est plus robuste que la version par opti-
misation directe. La encore, Iinfluence des points entre H et 10° est faible comparée a celles correspondant
4 des quantiles plus élevés. Le maximum des fonctions d’influence est atteint pour un z avoisinant 10 qui
correspond quasiment au niveau de quantile pour lequel est calculée la CaR, & savoir 99.9%. A partir de
cette valeur, les courbes se stabilisent, voire, chose intéressante, décroissent lentement. Ainsi, la variation
relative de ’estimation par optimisation directe est au maximum de 27% et atteint 25% pour la valeur
de x la plus élevée, alors que celle par optimisation scindée est de 17% au maximum puis retombe a 16%.

B-robustesse de I’estimateur CvM

Si on observe qu'une seule couleur de courbe sur la figure 6.5 (graphe de gauche), c’est que les fone-
tions d’influence empiriques de I'estimateur CvM avec prise en compte normale et modifiée du seuil sont
confondues. On constate que cet estimateur est bien B-robuste pour ses deux versions, et que
lallure de ses fonctions d’influence est comparable & celle de TOBRE pour ¢ = /2, & savoir une amplitude
importante au niveau du seuil (-11 pour I'EIF de p et 6 pour o), un extremum local tout juste avant
x = 10* ainsi qu'une stabilité asymptotique aux alentours de 5 x 10° et une valeur limite comparable (6
pour o et -3 pour x). De méme que ’OBRE, les variations de CaR associées sont semblables, celles avec
prise en compte des données sous le seuil étant 1égerement supérieures. La valeur maximale atteinte est
simplement de 4%.

Cette étude de robustesse locale a partir des fonctions d’influence empiriques prouve que
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Figure 6.4 — Fonction d’influence empirique et variation relative de la CaR associée pour un échantillon
de 500 données issues d’une loi LN (8,2) et tronquées au seuil H = 1000 estimé par les deux versions de
la méthode QD
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Figure 6.5 — Fonction d’influence empirique et variation relative de la CaR associée pour un échantillon
de 500 données issues d’une loi LN (8,2) et tronquées au seuil H = 1000 estimé par les deux versions de
la méthode QD

les estimateurs présentés dans la partie 5 sont B-robustes. Afin d’affiner la comparaison entre ces
estimateurs, un examen plus approfondi, portant sur la robustesse globale, est présenté dans la section
suivante.

6.2 Robustesse globale
Alors que dans le cas de la robustesse locale, on ne contamine que par une seule perte, la robustesse
globale consiste en une contamination d’'un pourcentage « de la distribution, ce pourcentage pouvant

étre non négligeable.

On procede a une contamination comme proposée équation (4.2), a savoir :
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Iy o= (1 — a)Fe + aGG

La distribution Fjy reste toujours une loi log-normale de parametre 6, et G est le modele contaminant sur
lequel nous pouvons travailler. Ainsi nous présentons dans la suite différents modeéles de contamination
qui se divisent en deux catégories : les modeles de contamination a queue fine, qui sont modélisés par des
distributions log-normales, et les modeéles & queue épaisse, modélisés par des distributions de Pareto.

L’objectif de I'estimation robuste est, dans la mesure du possible, d’estimer correctement le parametre
0 de la distribution contaminée, et cela quelque soit le pourcentage de contamination « et le modele
contaminant G. Dans cette étude, on observe 1’évolution de ’estimation en fonction de « et de G pour
deux modeles Fy, un modele LN (8,2) et un LN (8,1).

On se place dans des conditions pour lesquelles les estimateurs sont non biaisés en moyenne, c’est-a-dire
des tailles d’échantillon de 1000 données. La procédure de I’étude est la suivante :

(1) On se donne un modele de base Fp, un modeéle contaminant G et un vecteur regroupant différentes
valeurs de contamination a.

(2) 1000 échantillons de 1000 données sont simulés a partir de la distribution non contaminée Fp.

(3) Pour chaque estimateur, on effectue alors 1000 estimations sur ces 1000 échantillons. Elles servent
de référence pour les estimations sur données contaminées.

(4) Ensuite, pour chaque valeur de « et chaque échantillon simulé & I’étape 2., on retire aléatoirement
un pourcentage o de données non contaminées que I’on remplace par des données issues du modele
contaminant G.

(5) Pour chaque estimateur, on réeffectue 1000 estimations des parameétres du modele Fy 4.

(6) Pour chaque estimateur, on compare les estimations sur les modeles contaminés Fy ,, et le modele
de référence Fy.

(7) Les estimateurs peuvent étre comparés entre eux.

La comparaison faite a I’étape (6) se base sur trois criteres :
— les parametres estimés ;
— les biais relatifs ? ;
— les CaRs.

Pour comparer les parametres estimés, on s’intéresse a la moyenne des estimations, a leur écart-type ainsi
qu’a lintervalle de confiance empirique & 95%. Pour obtenir cet intervalle de confiance, on ordonne les
1000 estimations des parameétres (fi;, 0;) par rapport a &, les quantiles empiriques a 2.5% et 97.5% sont
calculés pour le parametre o, en supposant qu’ils correspondent respectivement aux indices k et [ des
1000 estimations, on obtient alors l'intervalle de confiance [(fix, ok ), (f1, 01)]-

Il est important de comprendre I'intérét de ne pas prendre simplement les quantiles empiriques de o et
de p. Si on regarde, pour 1000 échantillons, la répartition des parametres estimés entre i et & n’est pas
uniforme sur un pavé, mais a la forme d’une "diagonale", ceci étant dli aux parametres extra diagonaux
non nuls de la matrice de covariance de I'estimateur. Un exemple est donné figure 6.6. Ainsi, on peut voir
en rouge les deux points correspondant & l'intervalle de confiance & 95%, et en vert ceux correspondant
& une prise en compte des quantiles sur i et sur o. On comprend ainsi que les quantiles calculés de cette
fagon ne correpondent pas a une estimation pouvant étre observée.

Pour chacun des 1000 échantillons contaminés, on obtient un biais relatif en comparant I’erreur relative
entre 'estimation de cet échantillon contaminé et ’estimation de ce méme échantillon non contaminé.
On obtient ainsi 1000 biais relatifs, dont on calcule la moyenne et I'intervalle de confiance empirique a 95%.

2. On entend par biais, la différence relative entre les parameétres estimés sur données contaminées et sur données non
contaminées, et non pas celle entre les parameétres estimés et le vrai parametre 6§ du modele Fy.
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Figure 6.6 — Fonction d’influence empirique et variation relative de la CaR associée pour un échantillon
de 500 données issues d’une loi LN (8,2) et tronquées au seuil H = 1000 estimé par GMM

Les CaR moyennes sont obtenues a partir de ’estimation moyenne des parametres, et lintervalle de
confiance & 95% est obtenu a partir de I'intervalle de confiance & 95% des estimations. L& encore, on voit
I'interét de la prise en compte des quantiles choisie qui aboutit a des estimations de capital cohérentes
avec I’échantillon, alors que la prise en compte "basique" (points verts sur la figure 6.6) ameénerait quant
a elle a une borne haute de la CaR surévaluée et une borne basse sous-évaluée.

Les résultats de robustesse globale sont réalisés sur les modeles LA (8,2) et LN(8,1) que 'on contamine
aussi bien par une loi log-normale de parametres différents que par une loi de Pareto. La loi de Pareto
P(a, B) est une loi puissance & queue épaisse & deux parametres. Sa fonction de densité est définie par

—(a+1)
f<x>=§(1+j§) . (@p) eR:?

On ne présente ici que les résultats obtenus pour un modele LN (8,2) contaminé par un modele LN (8,4),
car ce modele de contamination est celui qui affecte le plus les données et donc les estimations sur un
modeéle LN (8,2).

En Annexe C sont également donnés les résultats de contamination pour LN(8,2)/LN(8,3), LN (8,1)/LN(8,2)
et LN(8,1)/LN(8,3) ainsi que pour les modeles LN (8,2)/P(0.7,4000) et LN (8,2)/P(0.6,4000). Les
conclusions et les constats généraux énoncés dans ce paragraphe pour une contamination LN'(8,2)/LN(8,4)
sont également valables aux autres modeles de contamination présentés dans cette annexe.

Les différents pourcentages de contamination o utilisés sont les suivants : 1%o, 5%o0, 1%, 5%, 10%, 15%,
20%, 256% et 50%. On choisit des valeurs de « tres élevées afin de pouvoir dégager une tendance plus
globale, mais ’hypothése d’un pourcentage de contamination tres important est discuté par la suite.

Contamination LN/ (8,2) par LN (8,4)

Le modeéle LN (8,4) est extrémement sévére comparativement au modele LN (8,2), comme en témoigne
le tableau 6.1.
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Distribution | Moyenne | Moment d’ordre 2 | Quantile & 99.9%
LN (8,2) 2.21 2.610 1.45
LN (8,4) 8.9° 7.0 7.0°

Table 6.1 — Comparaison des distributions LN(8,2) et LN(8,4)
Résultats obtenus pour I'estimateur ML
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Figure 6.7 — Etude sur 'estimateur ML de la contamination d’une loi LN (8,2) par une loi LN (8,4) pour
différents pourcentages de contamination

On constate sur la figure 6.7 que le biais relatif sur o augmente et que celui sur p est négatif et augmente
en valeur absolue en fonction de a. Les graphes sont ici représentés en échelle logarithmique sur ’axe des
abscisses afin de mieux visualiser les courbes pour les faibles valeurs de «. Néanmoins, sur une échelle
linéaire, on pourrait constater que les biais relatifs sont linéaires en « sur [1%0,25%], et que la pente
devient plus faible sur [25%, 50%].

Pour une contamination treés faible, a = 1%0, 5%0 et 1%, I'impact sur 'estimation des parameétres est
faible, méme si on peut observer tout de méme un biais relatif de 2% et 3% en moyenne sur o pour
a = 5%, et 1% respectivement. On observe également que la CaR augmente de 11% et 20% pour ces
deux valeurs de a.

Pour 5% et 10% de contamination, le biais sur u reste modéré (5% et 10% respectivement) mais celui
sur o devient non négligeable avec des valeurs de 16% pour o = 5% et 32% pour a = 5%. En consé-
quence, la CaR obtenue est multipliée par 1.7 pour a = 5% et par 6.4 pour o = 10%. Bien que le biais
soit linéaire en «, ce n’est pas le cas de la CaR : on le constate ici car, en doublant « pour passer de
54 10%, le biais relatif sur les parametres est bien doublé, mais I’erreur relative sur la CaR est quadruplée.

Pour des valeurs de « plus élevées, on observe toujours une linéarité entre le biais relatif et «, ainsi qu’une
augmentation exponentielle de la CaR par rapport au pourcentage de contamination.

Résultats obtenus pour I'estimateur GMM

Le comportement de I'estimateur GMM face a la contamination est différent des précédents. En effet, la
premiere chose a remarquer est que le biais relatif sur p devient positif, alors qu’il est négatif pour les
autres estimateurs, et nul dans le cas de la méthode QD scindée. La seconde est que les intervalles de
confiance & 95% sont trés étendus, et ce méme pour de faibles contaminations.

Sur lintervalle [1%0,10%)], le biais sur u reste d’abord trés bas pour atteindre ensuite 13% pour oo = 10%.
Le biais sur ce parameétre reste acceptable pour des contaminations ne dépassant pas 10%.
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. Biais relatif sur p et IC & 95% . Biais relatif sur o et IC & 95% Errzegur relative sur la CaR et IC & 95%
.7 8 : .

06 L N L d
0.5
0.4
0.3
0.2

0.1

Figure 6.8 — Etude sur I'estimateur GMM de la contamination d’une loi LA(8,2) par une loi LN(8,4)
pour différents pourcentages de contamination

Le biais sur o est en revanche plus problématique. En effet, méme pour une contamination de 1%o, c’est-
a~dire en ne remplacant qu’une seule perte de 1’échantillon de taille 1000 par une observation issue d’une
loi LN(8,4), le biais moyen obtenu est de 2%. Il passe ensuite & 10% pour o = 5%o, puis 16% pour 1%
et se stabilise ensuite & hauteur de 36% a partir de 5% de contamination.

Ainsi, on observe parallélement une erreur relative sur la CaR de 5%, 51%, 108%, 1172% puis 2995%
pour les valeurs respectives de o : 1%o0, 5%o, 1%, 5% et 10%.

Résultats obtenus pour I'estimateur OBRE
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Figure 6.9 — Etude sur Pestimateur OBRE pour 3 valeurs de ¢ de la contamination d’une loi LN(8,2)
par une loi LN (8,4) pour différents pourcentages de contamination

On constate premierement figure 6.9 que, pour chacune des trois valeurs de ¢, les biais relatifs et 'erreur
relative sur la CaR pour un a donné sont bien inférieurs a ceux de 'estimateur ML, cela étant d’autant
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plus marqué lorsque ¢ diminue. En effet, alors que pour a = 5% le biais relatif moyen est de -5% pour
et 16% pour o pour le ML, il est de -1%, -1% et -2% sur p et 5%, 6% et 10% sur o, respectivement pour
les valeurs de ¢ : v/2, 2 et 5. Pour o = 10%, on peut également comparer les valeurs moyennes de biais
—10% sur p et 31% sur o aux valeurs -2%, -2% et -6% sur p et 10%, 12% et 22% sur o obtenues pour
I’OBRE. Ainsi, l'erreur relative sur la CaR est aussi minimiser puisque les biais sont réduits. On observe
pour o = 10%, une erreur relative de 99%, 127% et 326% pour les valeurs respectives ¢ = /2, 2 et 5,
alors que cette erreur était de 643% pour I’estimateur ML.

Méme pour des valeurs de « tres élevées, l'estimateur reste tres résistant a la contamination, principale-
ment pour ¢ = \/5 et c = 2.

Les intervalles de confiance empiriques a 95% restent équivalents a ceux obtenus pour la méthode ML.

Les résultats obtenus pour 'estimateur OBRE sont donc bien meilleurs que ceux pour 'estimateur ML.
On peut également se rendre compte de 'impact du parametre ¢ sur 'estimation des parametres et donc
sur la CaR estimée.

Résultats obtenus pour I'estimateur QD

On observe figure 6.10 que les comportements des deux versions de 'estimateur sont tres différents.
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Figure 6.10 — Etude sur les deux versions de I’estimateur QD de la contamination d’une loi LA (8,2) par
une loi LN (8,4) pour différents pourcentages de contamination

En effet, 'estimation de p par optimisation scindée est tres robuste, puisque, méme pour des contamina-
tions extrémes, le biais moyen reste proche de 0% avec un intervalle de confiance trés concentré autour
de la moyenne, alors que le biais sur u par optimisation directe est comparable a celui de ’estimateur
ML, voire plus important (-13% de biais pour ae = 10% alors qu’on observe -10% pour le ML).

De méme, le biais relatif moyen observé sur ¢ par optimisation directe est plus important que par op-
timisation scindée. Il est méme légerement plus important que celui obtenu avec l'estimateur ML. En
revanche, pour l'autre version, les biais obtenus sont trés ressemblants a ceux obtenus avec ’estimateur
OBRE pour la valeur ¢ = 2, en restant supérieurs de quelques pourcents.

D’apres ces observations sur les parameétres, il est logique de constater que l'erreur relative sur la CaR par
optimisation directe est équivalente a celle obtenue avec la méthode ML, et que cette erreur obtenue par
optimisation scindée est du méme ordre que celle obtenue avec 'OBRE pour ¢ = 2, en étant légerement
supérieure. Pour o = 5%, on peut vérifier que cette erreur relative est de 150% par version directe alors
quelle de 166% par ML, et qu’elle est de 66% par version scindée alors qu’elle est de 46% pour 'OBRE
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avec ¢ = 2.

D’aprés ces résultats, I’estimateur par optimisation directe n’apparait pas adapté au probléme
de contamination globale, puisque ses performances sont comparables a celles de 'estimateur ML.
L’estimateur par optimisation scindée semble quant & lui plus apte a répondre & ce probléme.

Résultats obtenus pour I'estimateur CvM
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Figure 6.11 — Etude sur les deux versions de 'estimateur CvM de la contamination d’une loi LN(8,2)
par une loi LN (8,4) pour différents pourcentages de contamination

Alors que leurs courbes étaient indiscernables dans ’étude de robustesse locale, ce n’est plus le cas ici pour
de hauts pourcentages o comme on peut le voir figure 6.11. D’ailleurs, ’estimation moyenne par méthode
de prise en compte des données sous le seuil devient trés instable & partir de 20% de contamination, mais
sur [1%0,15%] les deux estimateurs apportent les mémes résultats.

Les résultats avec prise en compte "normale" du seuil sont presque superposables & ceux obtenus pour
I’OBRE avec ¢ = /2. C’est également le cas de la version avec prise en compte des données sous le seuil
mais sur Uintervalle [1%0,15%)]. Ainsi, on peut observer pour une valeur a« = 10% des biais de -1% sur p
et 11% sur o, que 'on peut comparer & celles de 'TOBRE pour ¢ = v/2, & savoir —2% et 10%, ou encore
-2% et 16% pour a = 15%, valeurs identiques & celles de ’TOBRE.

Comme les biais sont comparables, les erreurs relatives obtenues sur les CaR sont également similaires.

L’intervalle de confiance & 95% sur les parametres est également analogue & celui de POBRE pour ¢ = /2,
a savoir concentré autour de la moyenne.

D’apres ces résultats de robustesse globale, 'estimateur CvM apparait comme une méthode d’estimation
concurrencant la méthode OBRE.
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En conclusion de cette étude de robustesse, on peut affirmer que, malgré la B-robustesse des
estimateurs OBRE, QD et CvM, leur caractére robuste est trés variable d’un estimateur a 'autre
sur données contaminées de fagon globale. Il ressort que les estimateurs OBRE, QD par
optimisation scindée et CvM avec prise en compte normale du seuil sont les mieux
adaptés pour traiter ce probléeme. Les estimateurs OBRE et CvM sont également ceux
produisant les résultats les plus satisfaisants, 'TOBRE ayant de plus I’avantage d’étre modulable via
son parametre c.

D’autre part, cette étude montre que les estimateurs ML et GMM ne sont pas capables
d’aborder de tels problémes de contamination. Ceci est d’autant plus vrai pour I’estimateur
GMM, qui ne parvient pas a pallier cette difficulté, méme pour des contaminations tres faibles.
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Apres avoir constaté les propriétés théoriques de ces estimateurs sur données simulées, il est intéressant
de les tester sur données réelles.

7.1 Résultats généraux

Afin de tester I'’ensemble de ces estimateurs, nous disposons d’un panel de 14 échantillons, notés E1 a
E14, provenant de différentes entités du groupe et de différentes cellules de risque. Pour I’ensemble de
ces échantillons, le seuil de collecte H est de 1000€, sauf pour ’échantillon E3 dont celui-ci est de 1€. Le
nombre d’observations varie de 55 a 7474 selon les échantillons.

Pour chaque échantillon, nous estimons les parameétres de la loi de sévérité par 9 méthodes d’estimations :
ML, OBRE pour les valeurs ¢ = {v/2,2,5}, QD par optimisation directe et scindée, CvM avec et sans
prise en compte des données sous le seuil, et GMM. Nous calculons également la valeur des fonctions de
répartition au seuil H et les CaR associées a ces estimations, ainsi que les p-values des 4 tests d’adéquation.

Les tableaux de résultats sont fournis en Annexe D. Afin de rendre ces tableaux plus lisibles, nous adop-
tons le code couleur suivant :

— Une cellule coloriée en vert correspond & une p-value supérieure a 5%, ce qui signifie que le test
d’adéquation n’est pas rejeté au risque de 5%. Dans le cas contraire, le test est rejeté.

— Une cellule coloriée en rouge correpond soit a une p-value que l'on ne peut calculer a cause des
parameétres estimés tels que F/B\(H ) &~ 1, ce qui ne permet pas son calcul par méthode de Monte
Carlo, soit a une valeur de CaR qu’on ne peut calculer pour les mémes raisons.

— L’estimation du parametre [ est écrite en rouge lorsque celui-ci est inférieur a 0.

La premiere conclusion que nous pouvons tirer a la vue de ces tableaux, est que, pour un échantillon
donné, (i1,0) difféere nettement d’une méthode d’estimation a ’autre. Alors que dans un cadre
7id ou méme dans des tests de contamination, ces estimations sont du méme ordre. Cela souligne donc
I’hétérogénéité des échantillons rencontrés dans la pratique.

On peut remarquer beaucoup d’estimations g inférieures a 0, ce qui n’a pas réellement de sens d’un point
de vue métier. En effet, les fonctions de répartition en H associées a ces estimations sont toutes égales
a 100%, ce qui signifie que toutes les pertes se situent sous ce seuil. De plus, comme la moyenne d’une
loi log-normale est égale a exp (u + 02/ 2), une estimation [ négative revient & supposer que la perte
moyenne est proche de 0, ou du moins tres inférieure au seuil H.

A ce titre, on peut voir que les résultats obtenus avec estimateur CvM avec prise en compte des données
sous le seuil sont ceux pour lequel ce phénomeéne est le plus observé (12 cas sur 14). On constate que, pour
I'autre version de 'estimateur CvM, ce probléme est rencontré pour la moitié des échantillons. Parmi ces
estimateurs, le CvM est celui qui engendre le plus d’estimations i négatives. Bien que ces deux versions
de l'estimateur CvM donnent des résultats analogues sur données simulées et données contaminées, ce
n’est plus le cas sur données réelles.
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67 7 Calcul de capital sur données réelles

Estimateur | B-robustesse | Nb ;i <0 | Nb F(H) >50% | Nb Tests "OK"
GMM Non 1 6 5
ML Non 5 10 21
OBRE ¢ = V2 Oui 6 10 15
OBRE ¢ =2 Oui 5 10 19
OBRE c=5 Oui 5 10 21
QD "scindé" Oui 0 2 7
QD "direct" Oui 5 10 20
CvM "normal" Oui 7 10 19
CvM "seuil" Oui 12 12 4

Table 7.1 — Tableau comparatif des résultats sur données réelles

On note que lestimateur ML conduit également & des estimations négatives de p (5 sur 14). L’OBRE
étant dérivé de I'estimateur ML, lorsque I'estimation de p est négative, elle ’est aussi pour 'OBRE, méme
si sa valeur est atténuée en valeur absolue. De plus, ’estimation n’est pas linéaire en c. En effet, alors que
cette linéarité est observable sur données simulées et contaminées, on peut voir ici, pour ’échantillon E4,
des estimations du couple (i1, ) valant (7.47,3.12), (8.86,0.62) et (8.41,1.74) pour les valeurs respectives
c=1+/2,2et5.

L’estimateur QD par optimisation directe souffre du méme probleme, 5 des estimations de p étant né-
gatives. Les estimateurs GMM et QD par optimisation scindée semblent le pallier, puisque une seule
estimation est inférieure a 0.

Cependant, c’est pour ces deux estimateurs (CvM avec prise en compte des données sous le seuil mis &
part) que l'on observe le moins de tests d’adéquation concluant : 7 pour le QD et seulement 5 pour la
méthode GMM, la majorité étant le test AD2up qui, au vu des résultats de ces tests, est le plus simple
a satisfaire. A l'inverse, le nombre de tests concluants pour les autres estimateurs est plus satisfaisant :
21 pour la méthode ML, 20 pour I'estimateur QD par optimisation directe, 19 pour le CvM avec prise
en compte normale du seuil, et ce nombre décroit pour I'estimateur OBRE en fonction de sa robustesse,
21, 19 et 15 pour les valeurs respectives ¢ = 5, 2 et /2.

Ces résultats se résument dans le tableau 7.1.

Ces résultats mettent en relief la complexité du choix de I'estimateur. D’un c6té, nous disposons
d’estimateurs pour lesquels les tests d’adéquations sont satisfaisants, mais dont les modeles estimés
n’ont pas d’interprétation métier. De 'autre, c’est 'inverse, les méthodes estiment des parameétres
pour lesquels le modele est appréhendable, mais qui ne satisfont pas ces mémes tests d’adéquation.

Dans le prochain paragraphe, nous présentons plus précisément trois des différents échantillons afin de
comprendre pourquoi I'estimation est si complexe.

7.2 Focus sur trois échantillons

Les échantillons que nous présentons ici sont le reflet de la variété des données observables dans la pratique.
Pour chacun d’eux, nous présentons des caractéristiques générales de ’échantillon, sa fonction de densité
empirique et le diagramme en boite associé, représentant la médiane, les quantiles & 25 et 75%, les points
extrémes (en pointillés), ainsi que les points considérés aberrants par Matlab (tracé individuellement en
rouge). Nous présentons également les estimations obtenues pour chacun des estimateurs.
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7.2 Focus sur trois échantillons 68

Echantillon E4

Nombre Maximum moyenne médiane écart-type skewness kurtosis
E4 529 1585 394 25 258 6 046 88 355 15 239

E4
Densité empirique du logarithme des pertes
0.4 T — T ————] !

10
Boxplot
Y } 777777777 TR

1 il 1

10° 10" 10° 10°
Estimateur m o Fy(H) | KS CVM AD2 AD2up CaR
GMM 8,60 1,66 15% 0 0 0 0,012 | 9,84E+406
ML 8,22 1,94 25% 0 0 0 0,021 | 2,09E+07
OBRE ¢ =2 747 3,12 43% 0 0 0 0,006 | 1,70E+09
OBRE ¢ =2 8,86 0,62 0% 0 0 0 0 | 1,26E+06
OBRE c=5 8,41 1,74 19% 0 0 0 0,026 | 1,09E+07
QD "scindé" 8,66 1,49 12% 0 0 0 0,007 | 5,81E+406
QD "direct" 8,66 147 12% 0 0 0 0,008 | 5,53E+06
CvM "normal" 7,30 2,60 44% 0 0 0 0,041 | 1,46E+08
CvM "seuil" -677,87 79,78  100% - - - - -

Cet échantillon est un cas atypique puisqu’on peut observer 2 modes distincts sur le tracé de la densité
empirique. Or, la loi log-normale n’ayant qu'un seul mode, on comprend que Iestimation délicate, ce qui
est constaté en regardant les couples (fi,0) qui différent significativement d’une méthode d’estimation a
l'autre, notamment pour ’OBRE suivant les trois valeurs de c.

Etant données les deux modalités observées, le modeéle log-normale apparait inadapté. Ce qui est d’ailleurs
confirmé par les tests d’adéquation, car toutes les p-value sont nulles quelque soit lestimateur. Une
alternative permettant de modéliser ce genre de sévérité serait un modele mélange qui se définit comme
suit

X ~ LN (p1,01) avec probabilité p
X ~ LN (p2,02) avec probabilité (1 — p)
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69 7 Calcul de capital sur données réelles

Echantillon E14

Nombre Maximum moyenne médiane écart-type skewness kurtosis
El4 7 474 44 703 038 32 393 2 986 616 862 56 3813
E14
Densité empirique du logarithme des pertes
0.8 —— ———] ———
| L il
10° 10
Boxplot
I B s
L | L | L | L Ll
10° 10* 10° 10° 10
Estimateur m o FyH) | KS CVM AD2 AD2up CaR
GMM 5,76 2,65 67% 0 0 0 0,003 | 2,50E408
ML 2,64 3,06 92% 0 0 0 0,004 | 1,84E408
c=+"2 561 2,17 72% 0 0 0 0 | 3,32E+07
c=2 4,62 2,51 82% 0 0 0 0 | 6,32E+07
c=35 2,72 3,04 92% 0 0 0 0,01 | 1,78E+408
QD "scindé" 7,25 1,77 42% 0 0 0 0 | 2,72E+07
QD "direct" -7,88 4,79 100% 0 0 0 0,025 -
CvM "normal" 5,87 2,09 69% 0 0 0 0 | 3,06E+07
CvM "seuil" -815,74 98,05 100% - - - - -

Cet échantillon est en revanche un cas plus couramment rencontré dans la pratique. Ici, la distribution
est extrémement sévere, la queue de distribution étant trés épaisse. Sur cet exemple, on peut se rendre
compte de 'impact de la valeur ¢ de 'OBRE régissant la robustesse, puisque les estimations des para-
métres obtenus est de (5.61,2.17) et (4.62,2.51) pour ¢ = v/2 et 2 respectivement, et de (2.64,3.06) pour
Iestimateur ML.

Cependant, pour ce type d’échantillon, le modeéle log-normale semble impropre car celui-ci est & queue fine.
Comme précédemment, ceci est confirmé par les tests d’adéquation qui rejette unanimement le modele
estimé. Etant donné ce profil tres sévere, une distribution a queue épaisse serait plus adéquate, comme la
loi de Pareto. On peut également penser a des modeéles composites qui permettent de modéliser une loi
pour le corps et une loi différente pour la queue, la coupure se faisant a partir d’un certain seuil u. On
pourrait alors obtenir des modeles de la forme C (LN (u,0), P(e, 8), u).
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Echantillon E11

Nombre Maximum moyenne médiane écart-type skewness kurtosis
Ell 89 4013108 333 290 76 030 636 494 4 19

El1
Densité empirique du logarithme des pertes

0.2

0.15

0.1

0.05

Boxplot
T
. b pooeee- |
L Ll L
10° 10" 10° 10°
Estimateur m o FNH) KS CVM AD2 AD2up CaR
GMM 11,95 1,24 0% 0 0 0 0,136 | 2,56E407
ML 11,42 1,72 0% | 0,155 0,205 0,207 0,49 | 7,97E4+07
c=141 11,38 1,85 1% | 0,331 0,321 0,26 0,343 | 1,24E+08
c=2 11,45 1,91 1% | 0,412 0,253 0,162 0,201 | 1,63E+08
c=5 11,43 1,74 0% | 0,189 0,214 0,216 0,471 | 8,34E+07

QD scindé | 11,39 1,71 0% | 007 0,157 0,141 0,424 | 7,35E+07
QD direct | 11,39 1,71 0% | 0,132 0,243 0253 0,401 | 7,27E+07
CvM normal | 11,37 1,87 1% | 0,158 0,16 0,266 0,464 | 1,28E+08
CvM seuil | 11,37 1,87 1% | 0,386 0279 0317 0,364 | 1,34E+08

Nous présentons également cet échantillon car il est le seul de 'ensemble de notre panel pour lequel les
estimations des parametres par chacun des 10 estimateurs sont comparables bien qu’il n’y ait que 89
observations. Ceci s’explique par le fait que sa fonction de densité empirique a 1’échelle logarithmique
est approchante d’une loi normale, et que le mode de cette densité n’est pas tronqué par le seuil de collecte.

Ce focus permet de rendre compte de la diversité des échantillons sur lesquels nous travaillons. Il
suggere également que la loi log-normale n’est pas la plus adaptée a certains profils et que d’autres
alternatives doivent étre examinées.
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Conclusions

L’application de méthodes d’estimation robustes a la sévérité des risques opérationnels a fait 'objet de
nombreuses études récemment. Ce type d’estimation permet en effet de prendre en compte ’hétérogénéité
des données, chose qui n’est pas possible avec les méthodes d’estimation standards.

Dans ce mémoire, nous mettons en avant le fait que l’estimation des parametres de la distribution de
sévérité des risques opérationnels est un probleme trés délicat. L’hétérogénéité des données complexifie
grandement I’estimation, et les méthodes d’estimation standards, que sont le maximum de vraisemblance
et la méthode des moments généralisée, apparaissent inadaptées.

En effet, apres avoir présenté la fonction d’influence, outil analytique fondamental de la théorie de la
statistique robuste, qui permet a partir de déductions graphiques de juger de la robustesse des estimateurs,
nous constatons effectivement la non robustesse de ces deux estimateurs standards. En adéquation avec les
directives du Comité de Béale, nous présentons ensuite trois estimateurs robustes, les estimateurs OBRE,
CvM et QD.

Le premier, 'estimateur OBRE, qui est une version robuste de I'estimateur ML, est celui qui a demandé
le plus de travail, aussi bien sur le plan de la théorie, que sur celui de I'implémentation et du calibrage
des différents parametres du modeéle. Concernant les deux autres estimateurs, robustes par construction,
la prise en compte de la troncature a gauche des données a donné lieu a deux versions distinctes par
estmateurs. On constate, pour ’ensemble de ces paramétrages, la robustesse locale de ces estimateurs en
se basant sur I’étude de la fonction d’influence.

Par ailleurs, il est apparu opportun de vérifier la robustesse globale de ces estimateurs, en mettant en
place des tests de contamination & plus grande échelle afin de se rapprocher des conditions observables
dans un échantillon de pertes réelles particulierement hétérogenes. Enfin, afin d’étre étre le plus exhaustif
possible, tous ces résultats sont présentés pour différents profils de risque théoriques et pour différents
tests de contamination.

Si les tests de robustesse globale sont concluants pour les estimateurs robustes implémentés, leur appli-
cation a des données réelles apporte des résultats mitigés. Ainsi, nous identifions deux caractéres bien
distincts des estimateurs : les estimateurs validant les tests d’adéquation mais donnant des estimations de
parametres aberrantes d’un point de vue métier, et les estimateurs pour lesquels les parameétres estimés
sont appréhendables mais avec un ajustement aux données médiocre.

Cependant, une étude plus poussée de ces données de production suggere que la loi log-normale, bien
qu’étant la plus appliquée par les institutions bancaires, n’est pas appropriée a certains types de données.
Une piste a poursuivre serait alors de s’intéresser a des modeles plus complexes mais plus flexibles comme
des modeles mélanges ou des modeles composites.

Mais alors, la mise en place de méthodes d’estimation spécifiquement robustes s’en trouverait considé-
rablement complexifiée. De méme, pour certains échantillons, le recours aux distributions issues de la
théorie des valeurs extrémes. L’estimation de leurs parametres et en particulier de l'indice de valeurs
extrémes est alors tres sensible et peut conduire a des niveaux de capital aberrants.
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De maniere générale, ces travaux viennent contribuer aux nombreuses études dédiées a la modélisation
de la sévérité des risques opérationnels, qu’il s’agisse des nombreuses distributions de probabilité envisa-
geables ou des méthodes a mettre en place pour estimer leurs parametres. Cela demeure un sujet délicat,
pour lequel aucun modele générique ne parvient a faire consensus au sein des établissements bancaires.

Ces constats soulevent la légitimité d’un autre élément fondamental : le niveau de quantile (99.9%)
imposé pour déterminer le capital. Il semble en effet particulierement difficile de fonder la quantification
du capital réglementaire a ce niveau de précision quand on constate la complexité de ’estimation de la
sévérité.

C’est en raison de ces différents challenges que se sont ouvertes depuis quelques mois des discussions
entre le Comité de Béle et les fédérations bancaires internationales afin de modifier en profondeur 1’ap-
proche avancée. Le niveau de quantile utilisé pourrait ainsi étre abaissé (et compensé par des coefficients
multiplicatifs pour maintenir un niveau de capital équivalent), et surtout des exigences plus prescriptives
pourraient étre formulées pour s’appliquer au modele interne.

Vincent Lehérissé Mémoire d’actuariat



Références bibliographiques

(9]
[10]

[11]
12
[13]
[14]
[15]
[16]
[17]
18]
[19]
[20]

21]

Bank of International Settlements (2011), Operational Risk - Supervisory Guidelines for the Advanced Mea-
surement Approaches.

Chernobai, A., Rachev, S.T., and Fabozzi, F.J. (2012), Composite goodness-of-fit tests for left-truncated loss
samples in Handbook of Financial Econometrics and Statistics, C.-F. Lee (ed), Springer.

Chernobai, A., and Rachev, S.T. (2006), Applying robust methods to operational risk modeling, Technical
report.

Dupuis, D.J. (1998) Exceedances over high thresholds : a guide to threshold selection, Technical report.
Ergashev, B. (2008), Should Risk Managers Rely on Maximum Likelihood Estimation Method While Quan-
tifying Operational Risk ?, The Journal of Operational Risk, 3(2), 63-86.

Frachot, A., Georges, P. and Roncalli, T. (2001), Loss distribution approach for operational risk, Crédit
Lyonnais, Groupe de Recherche Opérationnelle, Working paper.

Frachot, A., Moudoulaud O. and Roncalli, T. (2003), Loss distribution approach in practice, in M. Ong (ed.),
The Basel Handbook : A Guide for Financial Practitioners, Risk Books.

Hampel F.R., Ronchetti E.M., Rousseeuw P.J., Stahel W.A. (1986), Robust statistics : the approach based
on influence functions, Wiley.

Huber, P. (1981), Robust statistics, Wiley.

Klugman, S.A., H.H. Panjer and G.E. Willmot (1998), Loss Models : From Data to Decisions, Wiley Series
in Probability and Mathematical Statistics, John Wiley & Sons.

LaRiccia, V. N. (1982), Asymptotic properties of weighted L* quantile distance estimators, The Annals of
Statistics, 10, 621.62.

LaRiccia, V. N., and Wehrly, T. E. (1982), Asymptotic properties of a family of minimum quantile distance
estimators, Journal of the American Statistical Association, 80, 742.747.

Lavaud, S., and Lehérissé, V. (2014) Goodness-of-fit tests and selection methods for operational risk, The
Journal of Operational Risk, 9(3), 1-30.

Lehérissé, V. and Renaudin, A. (2013), Quantile distance estimation for operational risk : a practical appli-
cation, The Journal of Operational Risk, 8(2), 73-102.

Opdyke J.D., Cavallo A. (2012), Estimating operational risk capital : the challenges of truncation, the hazards
of mazimum likelihood estimation, and the promise of robust statistics, The Journal of Operational Risk.

Opdyke J.D., Cavallo A. (2012), Operational risk capital estimation and planning : exact sensitivity analysis
and business decision making using the influence function, Chapter submission for Operational risk : new
frontiers explored.

Roncalli, T. (2009), La Gestion des risques Financiers, Economica.

Ruckdeschel, P., Horbenko, N., Bae, T. (2011), Robust estimation of operational risk, Journal of operational
risk.

Ruckdeschel, P., Horbenko, N. (2011), Optimally robust estimators in generalized pareto models, Research
article.

Tukey, J. W. (1960), A survey of sampling from contaminated distributions. Contribution to probability and
statistics, Stanford University press.

Victoria-Feser, M.P. (2000), Robust income estimation with missing data, Discussion paper.

73



Annexes

74



A Calculs de fonctions d’influence

IF de la moyenne

La fonctionnelle associée & ’estimateur de la moyenne est donnée par T'(F') = f z dF(z) = p. Comme celle-ci est
linéaire, le calcul de la fonction d’influence se fait de la facon suivante

IF (x; Fp, T) = lim T((L —e)Fp +eAs) — T(Fp)

e—0 9

iy (L= T (Fo) + eT(Ar) = T(Fp)
e—0 (3

i L= tez—p
e—0 3

IF de la médiane

Pour la médiane, prenons le cas plus général de 'estimateur du quantile d’ordre s, Ti(Fy) = F, '(s) ou encore
T.(Fy,c) = F; ! (s) avec une distribution contaminée.
Partons de I'identité

Fo.e (F;; (s)) =s

L’idée est maintenant de dériver cette expression par rapport a €. On rappelle que, si f et g sont deux fonctions
& deux parameétres (z,t), alors on obtient par la régle de la chaine

D 1ot £t = 202, 000 ) 90T )

En appliquant ce résultat a notre identité de départ, on obtient

O [Foe (Ft )] = Pl ol %0 4 09 o (52 9) + 16— o (i (s)
8T9(F0)

= < f(Fy ' (s) + G (Fy ' (s) = Fo (Fy ' (s))

e=0 Oe
d 2 Fy. (F, ! =2 = i d’obteni
et d’autre part [ 0,e ( 0.c (s))] =% = 0, ce qui nous permet d’obtenir

OT.(Fy) s~ G (F;'(s))

Oe F(F'(9)

En prenant G = A, cela donne la fonction d’influence de Ts au point x

s—1 )

_s=-1 o

IF(x; Fp, Ts) = f (FH;(S)) pour z < F, ' (s)
TEw) e
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Ainsi, comme la médiane correspond au quantile d’ordre 0.5, sa fonction d’influence est donnée par

—1
pour £ < m
IF (z; Fp, médiane) = 2f %m)
pour £ > m
2f (m)

Propriétés des M-Estimateurs - Démonstrations

Calcul de la fonction d’influence

On rappelle que 'on veut montrer que le résultat de I’équation (4.10).
On commence par remplacer Fy dans (4.8) par sa distribution contaminée puis on différencie par rapport a e.

o [ / w<y,T<Fe,e>>Fe,s<dy>} - [ PB4y + [ vt 2L

— 8T(F »5) 8¢(97T(F ,E))
7/X o go Foe(dy)

+ / By, T(Fs.2)) G — F] ( dy)

=0 d’apres (4.8)

En prenant maintenant G = A, et € = 0, on obtient

(e 1) [ P ) — [t TR a0t ) <0

On en déduit

Variance asymptotique

On veut démontrer ici le résultat de ’équation (4.11).
On utilisera pour cette démonstration les trois théorémes énoncés plus haut dans cette méme annexe.

D’apres (4.9), Z:L:l (s, 5) = 0. En utilisant un développement en séries de Taylor au voisinage de 6, on obtient

3 (@i, 0) = Zw(xi,e) + (5— 9) Z % +o()

\/ﬁx%zw(m, nxfzwml, —l—f(@ 9) Zaw(gé’) O(l/\/ﬁ)

Comme E [¢(X,0)] = 0, par le théoréme central limite, on a

x (;Zwme)) S Z~N(0,8) (A1)
avec
& =V(X,0)]=E[(X,0)7°] (A2)
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7 A Calculs de fonctions d’influence

De plus, d’apres la loi faible des grands nombres, on a

p( :177.7 BN IY(X, 0)
Z 2 E [ae (A3)
Puis, en utilisant le théoréme de Slutsky, on obtient
N (57 9) 4 L N(0,0?) (A.4)
novee TOB(X,0)
| 99
ou )
D (A.5)
B [20(X.0)
00

or, d’apres (4.10)

V[IF(X; Fp,T)] =V

e o2 s o5

=0

=E [IF(X;FQ,T)Q]
= / IF (x; Fp, T)* Fo( da)

Ce qui nous donne bien le résultat (4.11).

Calculs complémentaires pour la loi log-normale

Loi log-normale non tronquée

Nous aurons besoin dans la suite des différentes dérivées premiéres et secondes de la densité log-normale f(x; u,0) =

27ro'z‘ Xp{ 3 (hlzo' H)Q} :

of lna:—,u
@ O' f(l. o )
0 Inz—p)? 1
a£_<(nx03 M) _O'> f(x,/j,,o’)
0? Inz—p)? 1
87]; = (W - 02> f(@;p,0) (A.6)
% = (; —5(lnxaz W + U”{; M)4> flz;p,0)
o f _ (Inz — p)? Inx —p ) _ 0% f
oudo < o’ -3 o3 > Fapm o) = OO

Le vecteur de score s’obtient naturellement comme étant
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_Lof p—lnz
fou o?
o = =
_10f 1 (u —Inz)?
f oo o o3

0602

f 2
Comme 9y (z,0) = ( 921 (z,0) f(z,0) + (W) > /1f(x,0)]?, le calcul des éléments de la matrice A(0) se fait

assez facilement en utilisant des intégrations par partie ainsi que des changements de variables. Ainsi, en se servant
des dérivées de f (A.6).

|

92 f(2) 1)
oo =5 f(@) + | 5
Mo 4P () :—/ 0 ( o ) dF (z)
0

o f(z)?

= —/Oo (—(lnm_”)Z +1+(lnz_“)2) dF (z)

__ L
7 021 (x) or@)\?
o (42)
81/)0 . do do
D dF(z) = _/0 O dF(x)

o2

car la derniére intégrale, qui correspond au moment d’ordre 2 d’une loi normale centrée réduite, vaut 1.

|

oo _D2f(@) p(y) 4 Oflx) Of(x)
%n gp(a) = - / 3u00 1)+ "o 5 dF (z)
0

9 [£ ()]

_ o B (lnm—u):)’_ Inz —p Inz —p (lnx—u)Q_l
B /0 |: ( od 3 o3 + o2 o3 o f(@) dz
o] 2
:% Inz—p 1 exp 1 (Inz—p da
% Jo o 2mox 2 o

2 [ 2 1
== ue % /2 en posant u= 22K
o o

—o0
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79 A Calculs de fonctions d’influence

car la derniere intégrale, qui correspond au moment d’ordre 1 d’une loi normale centrée réduite, vaut 0.

Ainsi :

0 -»

Loi log-normale tronquée

L’expression de la fonction de score s’obtient & partir de (4.15) et du vecteur de score pour une loi log-normale
non tronquée (4.12).

Ty —p
/ Tf(yye) dy

Inz —p o
2 1— F(H,0)
v (A7)
Ty —p? 1
<(]nx—u)21)/o ( 0-3 (J’) f(y,@)dy
o o 1— F(H,0)

Pour obtenir expression de la matrice .A(#), nous avons besoin de la formule de la dérivée da la fonction de score
donnée par 'équation (4.17) et des formules de dérivées premiéres et secondes de la dérivée de la densité données
plus haut.

Reprenons d’abord la formule de la dérivée du score (4.16) appliquée & la dérivée seconde en p :

M _ L 21,0\ 8 f(y,0)

1 OF(H,0)\> 02F(H,0)
T [T=F(H,0)7 (( o ) + o2 (1—F(H79))>

en intégrant sur[H, co)

_/H B 0= _/H a7 ((8% e)) R <%9>> dFa(y)

L ((aF(H, 0)) L EPULO) i, 9)))

(1—F(H,0) o op?

en utilisant les expressions des dérivées données en (A.6) et en explicitant les dérivées de F'

e A Iny—p, ’
7/1:1 6’“ dFG(y)_ix/I{ [f(y79)]2 [< o2 f(y,,u,g))

— (W — 12) fyin, 0)2} dFy(y)

| " 91 (y,6) :
T FH, )2 (/0 o dFG(y))

- ey [ L0 dF9<y>]

0
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Finalement, il reste

(A.8)
1 (Iny—p)” 1
+1 —F(H.0) /0 ( g 5 | f(y,0) dy
De la méme maniére, on trouve les expressions des autres éléments de la matrice, a savoir
* e = 1 1 * 3(lny — p)?
- dF(y) = — / fy,0) dy
/H Oo 02 1—F(H,0) . ot
" lny u 1 ’
v a—raE | ( - 2) rweray (A9)
H 4
5(In Iny —
+1_ / < v w* y06u)>f(y79)dy

_ Oy dF 1 00_2(111?!—#) ) d
/H 90 W) = 17F(H,0)/ o5 JWw0dy

1 Hlny—M
+ [1—F(H,0)> [/0 s f(y,0) dyl %

l /0 (W - i) f(y.0) dy] (A.10)

T / ((m v 3y “)) 7(5,6) dy

:7/H 561/: dF(y)

Afin de calculer complétement les éléments de A(0), il nous faut les expressions exactes des différentes intégrales
intervenant dans les équations (A.8), (A.9) et (A.10).

Prenons l'intégrale suivante
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A Calculs de fonctions d’influence

[ () ron [ (5 ()
0 g ' 0 o) V2roy 2 o
on pose le changement de variables suivant v = (Iny — p) /o
/OH (myg_u)2f(y,9) dy = /_(:H—“)/f’ V%uZexp{—u;} du
puis par IPP en posant v = uexp {7u2/2} et w=u

H 2 2 (InH—p)/o (InH—p)/o 2

Iny —p 1 U 1 U

et Al 0)dy = —— |- —= T=expy 5 d
/0 ( o ) T 0y \/ﬂ[ uexp{ QH_M +/—oo \/27Texp{ 2} ‘

on reconnait une fonction de répartition d’une loi normale centrée réduite

[ () e (2222 o (2

et enfin :

f(y,0)dy = — (tha_'u> exp{—; (IDHU_N) }+F(H79)

5~
3

H
/ <lny—u
0 g

N————

De maniere identique, en utilisant le méme changement de variables et une IPP, on peut prouver les résultats
suivant

4 3
F(y,0) dy = 3F(H, 0) — — ((“‘i‘”) +3lni_“> x (A.11)

En réinjectant ces formules dans les expressions (A.8), (A.9) et (A.10) ainsi que dans celle de la fonction de
score (A.7) on obtient les équations suivantes :
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2
Inz —p 1 1 1 (InH—p
o2 +1—F(H,9)( 27m>6Xp[ 2( - )]

Yo = (A.12)

B /: aaiﬂ AF() = 7% - FzH, o) (27r1g2> P l <lnHa_M>2]

1 InH —p 1 (InH —pu ?
TI1-FH O\ Vames )P T2\ T o
T oz 2 1 In H — p
_/H = dF(y) = o2 1- F(H,0) ( \/%03)
<o [; (=) ] e
1 (In H — p)? InH—pu :
TOoFR@oE 2mer O [( - ) ]
O, _ 1 1 InH—p :
_/H 90 W =T F g (mc;?) <1+< o ))
X exp [; (IHHU_M> 1 (A.15)
1 InH—p InH —p 2
+[1—F(H,9)]2< 370 >exp [( - >]

Matrice d’initialisation J(#) (OBRE)

L’information de Fisher J(#) servant & initialiser la valeur de A(6) dans 'algorithme de calcul de POBRE est
définie par

(A.13)

J(0) :/s(x,é))s(m,0)'dF9(x)

ou s(z, 0) est la fonction de score pour la loi log-normale tronquée, qui a déja été calculée, donnée formule (A.12).
Ainsi en écrivant, J(6)

Tia(6) Ji2(0)
J((’):(Jz,l(a) J2,2(e)>

on peut obtenir J; ;(0), 4,5 € {1,2}? par

/ el 08 (2,0) dF (x)

Apres des calculs fastidieux faisant encore intervenir changements de variables et IPP, on peut obtenir
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J1a(0) = (1229”) + 1_F1(H’9) (éﬁ) (2102 Q1(6) + Q2 (0)]
i (S ()2 s

=J2,1(9)
Qi1(0) = 0” exp l—; (lan—u) +V2rou (1 — F(H,9))
Q2(0) = 0® (In H + p) exp l—; (th_M) 1 +V2ro (02 +u2) (1-F(H,0))
Ri(0) = P2 g l—; <1“Ii_“> V3R (1= F(H,0))

+3V2r (1 — F(H,9))

R2(0) = ((M{:u) +3 <MO_N>> exp [; <1HHJ_N>
50) = ((W{;ﬂ) o () ) [; &=

+ gx/ﬂu — F(H,0))

Mémoire d’actuariat Vincent Lehérissé



B Problématiques numériques liées a 'OBRE

Obtenir la décomposition de Cholesky d’une matrice se fait trés facilement sous MATLAB. C’est donc ’approxi-
mation numérique des intégrales qui doit faire I'objet d’une attention particuliere. Dans la littérature, on peut
trouver des approches permettant de contourner en partie ce probléeme. La plus courante consiste a discrétiser ces
intégrales sur I’ensemble des données, en remplagant la fonction de répartition par sa version empirique. Ainsi,
pour une fonction ¢ sur un domaine X, on obtient la transformation sur les données (z1,...,x,) suivante

[ owaro) - [ owafw =13 o)

Cette écriture est applicable aux calculs des matrices My (2). En revanche, il faut veiller & garder I'intégration
pour le calcul de a(f) (cf article [4]). Cela permet donc de réduire de deux le nombre d’intégrales que ’on doit
approximer numériquement. On notera également que cette approche est applicable aux termes de la matrice
d’information de Fisher initialisant la valeur initiale de A(9).

La seconde démarche consiste & approximer ces intégrales'. Afin d’obtenir des bornes finies, on effectue le chan-
gement de variables u(z) = 1 (qui est bien C' bijectif sur [H, co[) pour aboutir & une intégrale de la forme

oo 2 1/H 2
1 1 (lnz—p (1) 1 1 (Int+p
z)———exp |-z | —— de = = exp |[—= | —— dt
/H o) roz ¢ 2( o ) /0 ¢ /) \2rot P12 o

dans le cas de la loi log-normale.

On peut donc définir deux versions différentes d’implémentation de l’algorithme de ’estimateur OBRE. La pre-
miére faisant intervenir la fonction de répartition empirique associée aux données, est appelée méthode empirique,
la seconde utilisant des méthodes d’approximations numériques d’intégrales, est appelée méthode reparamétrée.

Ces deux programmes prennent les mémes arguments, a savoir :

— mnorme : qui correspond & la norme utilisée dans la fonction de pondération W,.. Les modalités testées sont la
norme euclidienne, la norme infinie et la norme 1.

— 7 : le seuil de précision dont dépend la convergence.

— H : le seuil de collecte.

— ¢ : le paramétre de modulation robustesse/efficacité.

donnees : ’échantillon de données collectées.

limite : le nombre maximal d’itérations autorisées dans ’algorithme.

— 7 : le parameétre permettant de faire varier le pas Af dans I’algorithme.

Il peut arriver que, pour certains échantillons, I’algorithme ne converge pas. Il est donc important de définir un
nombre limite de boucles dans ’algorithme. Dans la suite, on prend un nombre maximum de limite = 1000.

Avant de s’atteler aux propriétés de robustesse ainsi qu’a 1’étude de la sensibilité des parameétres d’entrée, on doit
s’assurer que ’estimateur vérifie les propriétés de convergence énoncés en début de partie dans le paragraphe 5.5.
Il est intéressant de comparer ces propriétés pour les deux méthodes proposées afin de sélectionner la meilleure.

1. Plusieurs routines sont disponibles sous Matlab, chacune d’entre elles utilisant des méthodes mathématiques diffé-
rentes. On peut citer & ce titre, la méthode des trapeézes, la quadrature de Lobatto, la quadrature de Simpson ou encore
celle de Gauss-Kronrod. Quelle que soit la méthode choisie, ’appel de la fonction Matlab nécessite de prendre en arguments
des bornes finies a et b. Dans notre cas, celles-ci valent respectivement H et +oo.
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Choix de I'algorithme sur critéere de convergence

Les figures B.1 et B.2 présentent les biais relatifs moyens et les écarts-type relatifs moyens de ’estimateur pour
les méthodes empiriques et reparamétrées respectivement en fonction de la taille d’échantillon. Les parameétres de
I’OBRE sont fixés & n = 0.001, ¢ = 5 (pour ne privilégier ni robustesse, ni efficacité), limite = 1000 et la norme
choisie est euclidienne (elle apparaissant comme la plus intuitive). Nous prenons également v = 1. Les parameétres
initiaux sont ici obtenus grace a une estimation par maximum de vraisemblance des données sans prendre en
compte le seuil. Les courbes sont obtenues pour les quatre profils de risque mentionnés ci-dessus, les données
étant tronquées au seuil H = 1000 €. Les graphiques sont obtenus pour différentes tailles d’échantillon, celles-ci
balayant I'intervalle [20,50000] en se focalisant principalement sur les échantillons de petites tailles, et les biais et
écarts-type relatifs moyens sont obtenus a partir de 500 simulations.

Biais Relatif de Biais Relatif de o
01 0.2
0.05¢ 01f
5‘5 of - “5 0.08
< < <
= =
T -0.05F / O 0.06F
~ ~
@ -01f / .2 0.04F
M -0.15- v — (82 M o.02r
81
-0.2r (6,2) or
—(6.1)
025 . . . , —0.02 . . ,
10 10° 10° 10* 10° 10* 10° 10° 10* 10°
n n
Ecart-type Relatif de u Ecart-type Relatif de o
1 07
—(82)
o 81) < 0.6F
= os (62) b= .
éi — 61 é 0.51 \
06
g, 2 0.4t
= N 203
S04 \ 0
+ \ +
z \ = 02F
Q o
= 02 \ AN S
N e 0.1
05 = 77777‘73 — . 5 05 = 3 4 s
10 10 10 10 10 10 10 10 10 10
n n

Figure B.1 — Convergence de l'estimateur OBRE par méthode empirique pour différents profils de risque

La premiere chose que 'on peut conclure a I’étude de ces graphiques est que ’estimateur OBRE est bien
convergent pour les deux méthodes puisque, quel que soit le profil de risque, le biais et ’écart-type relatifs
moyens convergent vers 0 lorsque la taille de ’échantillon augmente. Dans I’ensemble, le comportement de cette
convergence est similaire entre les deux modeles, les modeles les plus séveres semblent également converger plus
rapidement. Du reste, la convergence apparait comme légérement plus rapide pour le modeéle reparamétré. Dans
I’ensemble, un seuil satisfaisant de convergence en termes de biais et de dispersion est atteint pour
une taille d’échantillon de 500 données, valeur que nous utilisons par la suite pour calibrer les
parameétres du modeéle.

La figure B.3 présente le taux de non convergence ainsi que le taux d’erreur pour ces deux méthodes. On considére
que l'algorithme est non convergent lorsque le nombre d’itérations maximal, est atteint sans que la condition d’arrét
ne soit respectée. Par ailleurs, une erreur est rencontrée dans I’algorithme lorsque 'une des matrices M} devient
non inversible ou & valeurs complexes, ou bien encore lorsque la matrice M, ! n'est pas définie positive, et donc
qu’il n’est pas possible d’utiliser la factorisation de Cholesky.

On peut observer deux comportements bien distincts selon la méthode employée. D’un c6té, I’approche empirique
fournit un faible taux d’erreur (inférieur & 0.5% pour la plupart des profils) mais un taux élevé de non convergence,
celui-ci variant entre 10 et 25% selon les profils de risque pour les petits échantillons. De I'autre, la méthode re-
paramétrée donne un taux de non convergence quasi nul mais un trés fort pourcentage d’erreurs rencontrées dans
la procédure. Aucun de ces deux estimateurs ne semble donc se dégager puisqu’'un fort taux de non convergence
ou d’erreur lors de estimation d’échantillons de faible taille n’est pas recevable, d’autant plus que cette étude se
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Figure B.2 — Convergence de l'estimateur OBRE par méthode reparamétrée pour différents profils de
risque

fait sur données simulées. En effet, pour les échantillons de petite taille, les conditions optimales utilisées pour la
simulation ne sont plus respectées.

Cependant, il semble surprenant que I’algorithme ne converge pas pour 1000 itérations, alors que dans les cas de
convergence, le nombre moyen d’itérations est trés largement inférieur a la centaine. Pour comprendre pourquoi
la condition d’arrét n’est pas atteinte, nous avons tracé les valeurs de p et de o a chaque itération. Un tel cas
de non convergence est présenté figure B.4 & gauche. Le couple d’initialisation est de couleur rouge, les couples
représentant les itérations impaires de couleur cyan et les paires de couleur bleue. On peut constater une oscillation
entre les itération paires et impaires sans jamais converger, la condition d’arrét se basant sur la variation relative
des parametres n’étant jamais atteinte. On peut alors supposer que la "vraie" solution se trouve entre les nuages
de points des itérations paires et impaires, le probléeme étant que la variation A dans I’équation (5.6) est trop
importante pour entrainer la convergence.

II semble naturel, qu’en de telles circonstances, la variation des parameétres appliqués dans cette équation soit
revue & la baisse. C’est pourquoi nous modifions la valeur de ~.

De la sorte, le pas a chaque itération va pouvoir étre affiné en augmentant la valeur de ~. Il est important de
noter que dans les cas ou l'algorithme converge déja (c’est-a-dire pour v = 1), augmenter - ne va pas altérer
la valeur limite des parameétres finaux obtenus. Ainsi, dans le graphe de droite donné figure B.4, la trajectoire
verte correspond aux couples de parametres p et o obtenus pour le méme échantillon de données mais pour une
valeur v = 2. L’algorithme devient alors convergent, sa limite étant bien celle présupposée, et cela en seulement
10 itérations.

Le tableau B.5 présente le pourcentage de convergence de ’algorithme ainsi que le nombre d’itérations moyen
suivant différentes valeurs de -« pour 1000 échantillons de taille 50 générés a partir d’une loi lognormale de
parameétres LA (8,1) pour lesquels I'algorithme par méthode empirique ne convergeait pas initialement, atteignant
le nombre maximal de simulations fixé a 1000. On constate que la convergence a lieu & chaque fois quelque soit
la valeur de =, et que le nombre d’itérations moyen est minimal pour la valeur minimale 2, ce qui est logique. La
méthode empirique apparait donc comme fonctionnelle puisque le probléme de non convergence se régle de fagon
simple.

Cette méthode peut également s’employer lorsqu’une erreur est rencontrée dans ’algorithme, typiquement lors
de ’emploi de I'approche par reparamétrage. De fagon similaire, on obtient le tableau B.6 reportant des résultats
obtenus également pour 1000 échantillons de taille 50 générés & partir d’une loi lognormale de paramétres LA (6,1)
pour lesquels une erreur a été rencontrée dans l'algorithme. On observe cette fois-ci que 'augmentation de v ne
permet pas d’entrainer a coup sur la convergence. Une valeur de v faible maintient en effet un fort pourcentage
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Figure B.3 — Taux d’erreur et de non convergence par méthode empirique (en bas) et reparamétrée (en
haut) selon la taille de 1’échantillon pour différents profils de risque

d’erreur, cependant 'augmenter entraine également la non convergence de l'algorithme. Le pourcentage maximal
de convergence est seulement de 54%, obtenu pour les valeurs 50 et 100.

On peut donc en conclure que cette version reparamétrée n’est pas opérante puisque pour de petits échantillons,
une quantité non négligeable de procédures n’aboutit pas. Par exemple, en prenant un échantillon d’une loi
LN(6,2) et en prenant le meilleur cas étudié dans le tableau, au moins 10% des échantillons verra 1’algorithme
d’estimation échouer. Ce constat s’aggravera d’autant plus sur données réelles.

Sensibilité des parameétres

Dans cette partie, nous testons la sensibilité de I’estimation aux parametres 7 et aux parameétres initiaux afin de
définir un calibrage optimal.

Sensibilité au parameétre 1. Comme la condition d’arrét dépend du paramétre 6, il est intéressant de connaitre
le comportement du critére de convergence lorsque 7 varie. C’est pourquoi nous avons tracé figures B.7 et B.8
les informations relatives a la convergence de I'estimateur et celles relatives aux problemes algorithmiques. Les
résultats sont obtenus en faisant variant 77 de 107% & 0.5 en 20 valeurs également reparties & I’échelle logarithmique,
et en fixant les autres parameétres a n = 500, ¢ = 5, limite= 1000, H = 1000€, et divTheta= 1.

On constate que, d’une part, lorsque le seuil 7 est trop faible, le biais relatif des deux parameétres est trop élevé
(>10%), d’autre part, quand le seuil est trop fin, la convergence ne s’améliore plus en ce que le biais relatif
n’évolue plus. De plus, le temps de calcul est logarithmiquement décroissant avec la valeur de 7. En se référant
a ces graphiques, on peut calibrer notre seuil de convergence pour optimiser le rapport biais minimal/temps de
calcul. Nous choisissons donc 1 = 0,001 afin de garder en plus une marge de sécurité, la convergence étant
assurée pour les quatre modeles pour 1 de 'ordre de 0,05.

Sensibilité aux paramétres d’initialisation. Dans I’algorithme, nous avons choisi d’initialiser les paramétres
g ) p
par la valeur obtenue par maximum de vraisemblance sur les données non tronquées. Cela signifie que, méme
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Figure B.4 — Valeurs des couples (u,0) & chaque itération de l’algorithme pour un jeu de données, dans
un cas de non convergence v = 1 (& gauche), dans un cas de convergence pour v = 2 (& droite)

ol | 2 5 10 20
% convergence 99,9 100 99,9 99,9
Nombre d’itérations moyen | 11,78 29 58,075 116,152

Figure B.5 — Taux de convergence et nombre d’itérations moyen selon v pour la méthode empirique

si le seuil est de H = 1000, cette initialisation se fait pour un seuil H = 0. En effet, cela permet d’obtenir des
parameétres d’ordre de grandeur convenable, et de passer outre les estimations parfois aberrantes que peut fournir
le maximum de vraisemblance sur données tronquées (un p négatif et un o treés élevé).

L’objectif de ce paragraphe est de montrer que cette approche ne contrarie en rien la convergence de ’algorithme.
Pour prouver cela, nous proposons d’étudier 3 initialisations :

— Une initialisation par ML sur données non tronquées sans modification de ces données. C’est ce qui a été fait
dans notre algorithme. On la note Init1.

— Une initialisation par ML sur données non tronquées en translatant les données de la valeur du seuil. Ainsi,
une perte x générée au-dessus du seuil devient z — H. On la note Init2.

— Une initialisation par ML sur données tronquées. On la note Init3.

Pour ces trois initialisations et pour différentes tailles d’échantillon, nous calculons le biais moyen obtenu sur un
modele LN (8,2) pour 500 simulations, ainsi que le nombre d’erreurs algorithmiques rencontrées, le nombre moyen
d’itérations et le nombre de fois ou la limite a été atteinte. Ces résultats sont fournis par la table B.1 pour les
parametres n = 0.001, ¢ = 5, limite = 1000 et v = 1.

On peut remarquer que linitialisation n’importe que trés peu. En effet, pour ces 3 initialisations, le biais relatif
moyen est nul pour n = 100 et n = 1000, le nombre d’erreurs algorithmiques reste nul, le nombre d’itérations reste
bas et le nombre de fois o la limite est atteinte reste trés faible (d’autant plus que ce probléme est remédiable
en augmentant la valeur de ). L’initialisation que nous proposons, Init!, apparait légérement meilleure que I'ini-
tialisation Imit2. Méme si le nombre moyen d’itérations est deux fois plus faible pour l'initialisation Init3, nous
évitons de 'utiliser, puisque I’estimateur ML sur données tronquées peut étre tres sensible sur certains échantillons
(typiquement une valeur de u négative et une valeur de o trés importante).

En somme, rien n’invalide notre fagon d’initialiser. Dans la suite, nous initialisons donc sur données
non modifiées et non tronquées.
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divTheta ‘ 2 5 10 20 50 100 500
% erreurs 8 72 60 47 42 38 40
% non convergence | 0 0 2 6 2 6 56

Figure B.6 — Taux d’erreur et taux de convergence selon v pour la méthode reparamétrée
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Figure B.8 — Taux d’erreurs et de non convergences, et temps de calcul nécessaire par méthode empirique
selon 7 pour différents profils de risque

Byei(pt) | Brei(o) | Nb erreurs | Nb boucles moyen | Nb limite atteinte
Init1 0% -0.2% 0 4.9 0
n = 1000 | Init2 0% -0.3% 0 7.5 0
Init3 0% -0.2% 0 2.7 0
Init1 -0.7% -0.1% 0 17.7 5
n =100 | Init2 | -0.7% -0.3% 0 19.3 5
Inits | -0.7% -0.7% 0 9.0 3

Table B.1 — Analyse de différentes initialisations de ’algorithme sur plusieurs critéres pour deux tailles

d’échantillon

Vincent Lehérissé
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C Résultats de robustesse complémentaires

Fonction d’influence des estimateurs

Les résultats présentés ici sont faits dans les mémes conditions que le cas LN (8,2) étudié dans le corps du rapport.
Les graphiques sont arrangés dans l'ordre des estimateurs suivant : ML, OBRE, QD, CvM et GMM.
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C Résultats de robustesse complémentaires
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C Résultats de robustesse complémentaires

EIF de u(-) et o(:)

Erreur relative sur la CaR
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Contamination par un modéle log-normal

Les résultats présentés ici sont faits dans les mémes conditions que le cas LN (8,2)/LN(8,4) étudié dans le corps
du rapport. Les graphiques sont arrangés dans I'ordre des estimateurs suivant : ML, OBRE, QD, CvM et GMM.
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Contamination d’un modéle LN (8,2) par un modéle LN (8,3)

Erreur relative sur la CaR et IC & 95%
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Contamination d’un modéle LN (8,1) par un modele LN (8,2)

Erreur relative sur la CaR et IC & 95%
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Contamination d'un modéle LN (8,1) par un modele LN (8, 3)

Erreur relative sur la CaR et IC & 95%
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Contamination par un modele de Pareto

Les résultats présentés ici sont faits dans les mémes conditions que le cas LA(8,2) étudié dans le corps du rapport.
Les graphiques sont présentés dans 'ordre des estimateurs suivant : ML, OBRE, QD, CvM et GMM.
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Erreur relative sur la CaR et IC & 95%
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C Résultats de robustesse complémentaires

Erreur relative sur la CaR et IC & 95%
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D Reésultats sur données réelles

1L o F(H) [ KS CVM AD2  AD2up
ET | 449 324  77% | 0271 008 0,012 0295 | 9.47E+07
E2 | 657 203 57% | 0013 0009 0003 0774 | 1L12E+07
E3 | 5,86 1,68 0% 0 0 0 0,114 | 9,14E405
E4 | 8,22 1,94 25% 0 0 0 0,021 2,09E4-07
E5 | 21095 529  100% | 0,001 0,004 0,015  0.204 :
E6 1,75 3,39 94% 0 0,001 0,001 0,056 6,37TE+07
E7 | -396 373 100% | 0,048 0,072 0097 0105 | 9.18E-+06
E8 | -30,01 6,09 100% - - - = =
E9 | -77,39 10,11  100% - - = = =
E10 | 755 100  26% | 0146 0,062 0,056 0,172 | 1,96E+05
Ell | 1142 172 0% | 0155 0205 0207 049 | 7.97E+07
E12 | 2114 831  100% . - - . :
E13 | 4,64 2,52 2% 0,412 0,117 0,009 0,074 | 2,29E407
El14 | 264 3,06 92% 0 0 0 0,004 | 1,84E+08
Table D.1 — ML
o o H) [ KS CVM  AD2  AD2up
E1| 914 1,43 6% 0 0 0 0,053 | 3,29E4-06
E2 | 735 1,77 40% 0 0 0 0,148 7,80E406
E3 | 565 327 96% | 0 0 0 0 5.76E-+04
E4 | 8,60 1,66 15% 0 0 0 0,012 | 9,84E406
E5 | 6,84 2,19 51% 0 0 0 0,013 | 3,13E4-07
E6 | 805 1,57 23% 0 0 0 0,058 | 3,50E4-06
E7 | 5,09 2,28 79% 0 0 0,001 0,026 4,10E4+-06
ES | 243 28 94% | 0 0 0 0 5.85E+07
E9 | 8,49 1,48 14% 0 0 0 0,02 1,52E+06
E10 | 7,85 0,80 12% 0 0 0 0,149 1,59E+05
Ell | 11,05 124 0% | 0 0 0 0136 | 2.56E+07
E12 | 10,96 1,80 1% 0 0 0 0,009 9,64E407
E13 | 6,15 224 63% | 0 0 0 0021 | 210E+07
E14 | 5,76 265 67% 0 0 0 0,003 | 2,50E4-08
Table D.2 - GMM
7 5 I (H) | KS CVM AD2 AD2wp
BT [ 1,08 4,03 890% | 0355 0,186 0,026 0,111 | 3,84E+08
E2 | 6,55 2,05 5% 0,022 0,021 0,003 0,775 1,16 E+4-07
E3 6,15 1,31 0% 0 0 0 0,01 4,05E+4+05
E4 | 747 312 43% 0 0 0 0006 | 1.70E-+09
E5 | -8,97 506 100% | 0,003 0,001 0,008 0,293 -
E6 | -0,02 3,79 97% 0 0,002 0,004 0,048 1,17E408
E7 | -3,52 3,66 100% 0,06 0,094 0,119 0,124 | 8,84E+06
E8 | -5,37 3,66 100% | 0,001 0 0,001 0,003 -
E9 | -27.84 855 100% : - : : -
E10 | 7,18 1,41 42% 0 0,008 0,003 0,033 | 4,87E+05
Ell | 11,38 185 1% | 0331 0321 026 0343 | 1.24E+08
E12 | -1892 801  100% . . . . :
E13 | 579 212  70% | 0471 0329 0,019 0014 | 1,00E+07
E14 5,61 2,17 2% 0 0 0 0 3,32E+07

Table D.3 — OBRE ¢ = v2
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103 D Résultats sur données réelles

n e Fg(H) KS CVM AD2 AD2up

El 2,89 3,76 86% 0,285 0,145 0,026 0,174 | 2,36E+08

E2 | 6,54 2,04 57% 0,03 0,013 0 0,783 1,11E407

E3 | 6,02 1,45 0% 0 0 0 0,016 | 5,10E+405

E4 | 8,86 0,62 0% 0 0 0 0 1,26E+406

E5 | -9,01 5,06 100% | 0,002 0,007 0,006 0,292 -

E6 | 0,72 3,63 96% 0 0 0,004 0,054 | 8,93E+07

E7 | -3,52 3,66  100% | 0,048 0,093 0,108 0,116 -

E8 | -5,30 3,64  100% 0 0 0,001 0,003 -

E9 | -28,17 8,57  100% - - - - -
E10 | 7,45 1,15 32% 0,076 0,081 0,063 0,081 2,67TE+05
E11 | 11,45 1,91 1% 0,412 0,253 0,162 0,201 1,63E+08
E12 | -18,82 8,02 100% - - - - -
E13 | 5,45 2,24 74% 0,481 0,315 0,025 0,015 1,29E407
El4 | 4,62 2,51 82% 0 0 0 0 6,32E+07

Table D.4 — OBRE ¢ =2
n e Fg(H) KS CVM AD2 AD2up

E1 | 4,23 3,33 79% 0,286 0,076 0,007 0,27 1,06 E408

E2 | 6,58 2,03 56% 0,02 0,016 0,006 0,755 1,09E+407

E3 | 5,86 1,67 0% 0 0 0 0,108 | 8,82E+405

E4 | 841 1,74 19% 0 0 0 0,026 1,09E+4-07

E5 | -9,09 5,06 100% | 0,001 0,005 0,008 0,278 -

E6 1,65 3,41 94% 0 0 0,001 0,054 | 6,53E4+07

E7 | -3,51 3,66  100% | 0,044 0,085 0,103 0,088 | 825E+06

E8 | -5,18 3,62 100% 0 0 0 0,001 -

E9 | -28,8%8 8,59  100% - - - - -
E10 | 7,52 1,03 27% 0,168 0,073 0,068 0,146 | 2,04E+05
E11 | 11,43 1,74 0% 0,189 0,214 0,216 0,471 8,34E+07
E12 | -18,77 8,02  100% - - - - -
E13 | 4,73 2,49 81% 0,444 0,157 0,013 0,086 | 2,12E+07
El4 | 2,72 3,04 92% 0 0 0 0,01 1,78E408

Table D.5 - OBRE ¢ =5
n o F/e\(H) KS CVM AD2 AD2up
E1] 787 218 33% 0 0 0 0,388 1,77E407
E2 | 767 1,65 32% 0 0 0 0,067 | 6,44E+06
E3 | 534 1,92 0% 0 0 0 0,027 | 1,31E406
E4 | 8,65 1,49 12% 0 0 0 0,007 | 5,81E+406
E5| 694 208 49% 0 0 0 0,01 2,20E+07
E6| 7,31 196 42% 0 0 0 0,12 8,17TE+06
E7 | 7,00 1,53 48% 0 0 0 0 9,85E+05
E8 | 6,76 150 54% 0 0 0 0 7,96E+06
E9 | 5,07 3,10 2% 0 0 0,005 0,047 | 4,67E+07

E10 | 764 0,90 21% 0,033 0,01 0,009 0,111 1,66E+405

E11 | 11,39 1,71 0% 0,0 0,157 0,141 0,424 | 7,35E+07

E12 | 6,95 3,06 49% 0 0 0 0,019 | 4,07E408

E13 | 7,32 1,71 40% 0 0 0 0,006 | 6,90E406

El4 | 725 1,77  42% 0 0 0 0 2,72E4+07

Table D.6 — QD scindé
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Table D.9 — CvM seuil

I o Fs(H) | KS CVM AD2 AD2up
E1l 6,67 2,54 54% 0,037 0,043 0 0,472 2, 70E+07
E2 6,67 1,99 55% 0,068 0,196 0 0,728 1,01E+407
E3 5,69 1,70 0% 0 0 0 0,056 2,31E4+07
E4 | 866 147 12% 0 0 0 0008 | 553E+06
E5 | -1,20 3,86 98% 0 0,004 0 0,522 2,39E+08
E6 5,11 2,54 76% 0 0 0 0,135 1,68E+407
E7 | 2,29 2,66 96% 0,22 0,305 0 0,064 | 3,38E+06
ES | 4188 6.92 100%
E9 | -6745 9,65 100%
E10 7,75 0,85 16% 0,027 0,02 0,025 0,122 1,62E+05
Ell | 11,39 171 0% | 0132 0243 0253 0401 | 7.27E+07
E12 | -10,78 6,80 100;{6 0,823 0,847 0,822 0,259 3,39E+(1)9
E13 2,77 2,95 92% 0,08 0,027 0,009 0,28 4.23E+
El4 | 788 479 100% | 0 0 0 0,025 =
Table D.7 — QD direct
i o F;;(H) KS CVM AD2 AD2up
E1 | -9,73 6,35 100% 0,08 0,086 0 0,335 5,83E409
E2 6,50 2,07 58% 0,001 0,003 0 0,853 1,23E4-07
E3 5,98 1,39 0% 0 0 0 0,013 1,81E407
E4 7,30 2,60 44% 0 0 1,46 E4-08
E5 | -6442 10,17  100%
E6 | -77,02 11,58 100%
E7 | -2,58 3,55 100% 8,59E+06
E8 | -3,34 3,38 100% 0
E9 | -36,68 5,59 100%
E10 7,13 1,28 43% 0,089 0 3,09E405
E11 | 11,37 1,87 1% 0,158 0,16 0 1,28 E4-08
E12 | -10,60 6,69 100% | 0,846 0,597 0,617 0,373 2,52E+410
E13 5,64 2,18 72% 0,362 0,222 0,026 0,032 1,15E4-07
E14 5,87 2,09 69% 0 0 0 0 3,06E+07
Table D.8 — CvM normal
7 5 ()| KS COVM ADZ ADZuwp
E1 | -4597 5,62 100%
E2 | -476,64 57,70 100%
E3 5,98 1,39 0% 0,013 1,82E4-07
E4 | -677,88 79,78 100%
E5 | -7,01 1,61 100%
E6 | -911,36 109,83  100%
E7 | 6581 776  100%
E8 | -302,15 33,69 100%
E9 | -22,40 3,45 100%
E10 | -79,32 6,04 100%
El1 11,37 1,87 1% 0,386 0,279 0,317 0,364 1,34E408
E12 | -47,22 5,68 100%
E13 | -230,81 11,07 100%

Vincent Lehérissé
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