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Chapter 1

Introduction

This work is composed of two main objectives:

• The first objective is to measure credit risk of a fixed rate corporate bond
portfolio based on historical data under a through-the-cycle regime and a stress
period. It is crucial that this be accurate, robust, operational and as simple
as possible. I will therefore try to avoid strong assumptions in this work.

• The second objective is to find the best portfolio under constraints using our
credit risk assessment with CV aR as the risk measure. More precisely, I dis-
tinguish in an optimization framework the part of the portfolio that is already
invested from the one that has to be newly invested to determine a portfolio
strategy.

For insurance companies, corporate bonds are very often the largest asset class of
their investments after sovereign bonds. At the same time, it is not easy to measure
the credit risk of a bond portfolio. Credit risk refers to the potential failure of a
counterparty to make a contractual payment.

The current situation in which corporate bond spreads are significantly low naturally
raises questions about the market’s ability to properly assess the underlying risk.
The unconventional activities of central banks have been going on for a while and are
partly influencing bond prices. In addition, credit risk events and their magnitude
are difficult to predict. They very often appear as a surprise. These facts encourage
the measurement of credit risk based primarily on past long-term information rather
than current market information.

Moreover, there is a significant specificity of the bond portfolios of French life insur-
ers. These portfolios and their associated investment strategies are subject to French
accounting rules for the realization of gains and losses. A specific rule (”Code of In-
surance - Article A333-3”) may discourage the sale of fixed rate bonds, zero coupon
bonds or inflation-linked bonds prior to maturity in the case of a life insurance busi-
ness. This accounting rule has been established to prevent life insurance companies
from having an incentive to sell bonds in a declining interest rate environment. In
this situation, a life insurance company selling its bonds will make profits over the
purchased price, and then will have to reinvest its cash in lower coupon bonds than
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the first ones.

This rule protects clients against potentially overly aggressive investment strategies
in which the pursuit of short-term profits could destroy the future profits of cus-
tomers or affect the ability of a life insurance company to honor their contracts.
In this context, the investment decisions of French life insurance companies may
differ from those of other asset managers who simultaneously seek coupon gains and
bond market price gains. A life insurance company should therefore focus more than
other asset managers on credit risk because of their reduced ability to modify their
portfolios. This constraint often involves a ”buy-and-hold” strategy. This leads us
to measure the credit risk of bond portfolios assuming that there is no significant
investment decision in the portfolio other than holding the securities to maturity
and reinvesting cash flow.

Optimizing a portfolio often addresses a two-dimensional risk-return problem. How-
ever, as far as bonds are concerned, duration is a third major dimension that it is
more than legitimate to introduce into the optimization problem. The sensitivity
of a bond portfolio to market price fluctuations is directly related to its duration.
In addition, the interactions between the assets and liabilities of an insurance com-
pany highly depend on the adequacy of their duration. A duration constraint should
therefore be naturally added to the classic optimization problem. Another impor-
tant aspect of portfolio optimization is related to investment dynamics. When a new
investment has to be chosen, the positions already held must be taken into account.
I propose to make this remark clear in the optimization problem.

This work is composed of nine chapters. After this brief introduction, I will provide
an overview of the main factors that affect the assessment of credit risk: under-
lying information, credit risk models and risk measures. Next, the third chapter
presents the credit risk modeling framework. The fourth part is related to param-
eter estimation techniques. The fifth part presents the estimated values for each
parameter. The sixth part introduces some basic descriptive elements about the
empirical portfolio used to illustrate the results that can be obtained from the credit
risk framework. Results related to the measurement of credit risk losses are dis-
cussed in chapter Seven. A portfolio optimization technique using CV aR as a risk
measure with some variants is then developed in chapter Eight. A conclusion and
some perspectives constitute the last chapter of this work.
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Chapter 2

Key features around credit risk
assessment

This chapter analyzes successively the three main themes of any credit risk assess-
ment: underlying information, credit risk models and risk measures. A last section
gives my point of view on these three subjects.

2.1 Underlying data

The underlying data is probably the most important dimension of a credit risk as-
sessment. In this section, I propose to highlight the main elements that differentiate
sources of information with respect to credit risk. I categorize the sources of informa-
tion into four distinct sets: accounting data or business data, market data, historical
default event data, and macroeconomic data. These four sources of information are
complementary and should therefore naturally, but also in different ways, be useful
for assessing credit risk.

Accounting or business data

Accounting data, mainly based on balance sheets, profit and loss statements, income-
related information and press releases, provide idiosyncratic information on the fi-
nancial health of a firm. In assessing the risk of default, the assets and liabilities
that the company holds and expects to hold are particularly useful information for
assessing the risk of default of a given company. These data are regularly analyzed
by the asset managers for all issuers present in their corporate bond portfolio. They
also use this information to make new investment decisions, such as buying or not
a new bond issued by a given company.

Accounting data, although very useful at the individual level for measuring, finan-
cially, a company’s specific risk are rather limited in estimating the credit risk of
a portfolio made up of a large number of issuers. The lack of information when
considering interactions or dependencies between them do not make these data par-
ticularly useful for estimating the credit risk of a global set of bonds. Accounting
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data, however, are very informative in the expert judgment process.

We consider that accounting data, although relevant for asset managers, are not
relevant to our work because they are too specific to each issuer to analyze the
credit risk of a portfolio.

Market data

Market data relating to credit risk mainly include spread rates and CDS prices.
Market data on credit risk provide interesting insights into how market participants
measure, on average, the credit risk of an issuer. Market data have the advantage
of being at a high frequency and responding to news and any change on a near
instantaneous time scale.

The spread, which corresponds to the interest rate between the yield of a bond and
that of a bond that can not default, is the rate above the risk-free rate that the
operators are willing to receive for being exposed to an issuer. Spreads can then
directly and instantly assess credit risk. A CDS is a derivative instrument giving the
holder the right to sell a bond at face value in the event of a default by a particular
issuer. The price of a CDS is in a sense the quotation of the protection premium for
a given period in case of default. CDSs are directly related to failure events.

On the other hand, spreads and CDSs depend on several factors that can easily
deviate from the mere prospect of a credit risk assessment. Market data do not nec-
essarily reflect the risk of an issuer’s failure. In fact, they reflect market participants’
perceptions and not necessarily the fundamental risk of default. The view of market
participants is influenced by many factors. For example, liquidity or the global cap-
ital available to invest can cause prices to deviate from fundamentals, temporarily
affect market prices and create specific situations such as bubbles.

More generally, the parameters other than those related to the credit risk determin-
ing the spreads are, among others, the behavior of the financial markets, the invest-
ment decisions (the rolling of the portfolios, the hedging strategies), the macroe-
conomic situation and their forecasts (GDP, CPI, unemployment...), other oppor-
tunities in the markets materialized by the price of other assets, trust between
financial institutions, policies and activities of central banks (the target changes,
unconventional policies, central bank policy rates, public announcements) or regula-
tory changes. In the end, the spread and the CDS of an issuer are certainly not only
related to its credit risk. This fact is undeniable nowadays and, since the financial
crisis of 2008, it has even been amplified when one considers the excess of liquidity
injected by the various central banks as well as their political actions. Spreads,
which are currently very low, are a phenomenon that can not be entirely linked to
the reduction of corporate credit risk.

More specifically, concerning CDSs, prices are driven by over the counter banks’
market makers bid-offer prices. CDSs market participants willing to exposed them-
selves to credit risk as if it was a common asset can therefore raise prices to new
levels without providing a strong link with fundamental credit risk. Moreover, even
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if we assume that CDS prices correctly reflect credit risk, the implicit models used
to reverse the credit risk parameters imply different results depending on their re-
spective assumptions. For example, by reverse-engineering CDS prices to obtain
the probability of default of an issuer, assumptions must be made on the loss given
default. It will be set, for instance, to 60% in a reverse-engineering model, whereas
it is actually a random variable with a state space [0, 1]. Changing this type of
assumption regarding certain risk parameters can have significant effects on others.

Market data is obviously important when it comes to making an investment decision
at the best price on the financial market. However, when measuring the risk of
failure of an institution, the importance of these data decreases because their ability
to reflect the reality of failures is not obvious.

Default data

Information related to defaults is directly derived from past events. this information
has the specificity, compared to other sources of information, to be historical. In
fact, market data encapsulate present and forecast considerations.

Default information is very informative and accurate regarding default events. Rat-
ing agencies provide this information on the basis of a methodology grouping issuers
into homogeneous classes with regards to their credit quality. In this approach,
information with regards to default is then related to each rating and two firms
having the same rating will automatically have the same expected probability of
default 1. The information provided includes the number of defaults, per year and
per rating, the loss given default per year and per seniority class and rating tran-
sition matrices are as well provided. Rating transition matrices allow to know the
likelihood of an issuer to increase or to decrease its credit quality over a given period.

Historical default values are provided by rating agencies such as Standard & Poor’s,
Moody’s or Fitch. This information, provided on an annual frequency, is detailed
by rating. The rating agencies give a rating to each company requesting the service.
It is important to note that many companies simply do not want to be rated.

The first limitation, or strength, of default information is that they contain no
predictive elements. Second, the homogeneity property inside each rating class is
not always obvious.

Macroeconomic information

Macroeconomic information provides an insight on the health of the economy and
its forecasts. This information is often common and shared by the entire market.
This data is of great interest when considering predictive credit risk models. For
example, using econometric methods and the present macroeconomic information,
we may be able to predict rates of default for each rating for the next year. More
importantly, we may be able to predict the next recession that will surely go hand

1. The clustering of issuers is a key process because it must ensure homogeneity within each
rating class with respect to the probability of default.
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in hand with an increase in default rates.

However, it is well known that financial phenomena are not easily predictable and
a lot less when dealing with extreme events such as crises. Crises are surprises, at
least for the date, for everyone except for a few (who are not the same with each
crisis). Moreover, econometric models are very often difficult to calibrate and have
a low level of prediction and many statistical assumptions are not fully verified.

2.2 Credit risk Models

Most models have strong assumptions about the distributions underlying default
events. In addition, model calibration and the statistical quality of historical data
are not particularly analyzed. Many assumptions are encapsulated, such as default
distribution, common probabilities, or correlations of default events. When extreme
events are followed, these remarks will also amplify operational impacts in a measure
of credit risk.

To work, a model will always have to reduce the complexity of the real risk and
take into account the constraint of the available information. In this context, expert
judgment is irreplaceable and retains a prominent place in decision-making. But, at
the same time, this is not enough when the risk involves many distinct and interac-
tive dimensions that become difficult to manage without adequate tools.

The impacts of models in credit risk assessment can be significant, as shown by Frey
and Mac Neil in 2002 [14]. It is essential to consider the assumptions, limitations
and strengths of a credit risk model when used from a risk management perspective.
They can indeed have a significant impact on investment decisions. In addition, it
is important to keep in mind that the term ”credit risk” has a broad definition and
incorporates several different valuations.

Credit risk modeling has grown considerably since the 90s. Most of the time, lit-
erature reviews of credit risk models break down models according to how defaults
are modeled. Default event modeling is one of the most important parameters in
credit risk assessment, but not the only one. Frey and McNeil [15] (2003) or Joe [18]
(1997) propose to divide models into two groups: structural models and reduced
form models.

Jarrow and Protter [17] (2004) present structural and reduced-form models with
an abstract approach. They argue that structural models assume that the model
contains the same information as the company, namely a complete knowledge of the
assets and liabilities of the company. On the other hand, reduced-form models have
the same information as the market, an incomplete knowledge of the company’s
situation.
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Structural models

Structural models are related to the Merton [23] fundamental model (1974) where
firms are in default if the value of their assets is less than the value of their liabili-
ties. This model is based on the valuation methodology developed for the options by
Black and Scholes (1973) [4]. In practice, this model requires detailed and specific
information from the company which implies great difficulties in the implementation
process. As a result, the structural model approach simplifies the modeling of failure
events by using random variables passing below a threshold.

Then, dependency between default events of issuers must be integrated when ana-
lyzing a bond portfolio. In this context, the dependence is estimated through the
assets held by each issuer. The correlation of these assets is operationally difficult
to estimate. The structural models use rather the correlation between equities.

Reduced form models

Pfister et al. [28] conducted a recent (2015) and very complete literature review
regarding reduced form models. The reduced form approach models defaults through
an intensity function. They include Duffie and Singleton [11] (1999; a conditional
independent default model), Frey and McNeil [15] (2003; a copula model) and Frey
and Backhaus [13] (2004; an interacting intensity model).

Industry models

The mains industry credit risk models are:

• CreditRisk+ developed by Credit Suisse financial products’ [8] (1997);

• Credit Portfolio View developed by McKinsey & Co. (1998);

• Credit Monitor developed by KMV corporation [19] (2001);

• CreditMetrics originally developed by J.P. Morgan [31] (1997).

These models have been analyzed a tremendous amount of times. To have them
all in a simple, synthetic and complete form, please report to the analysis provided
by Brassard [5] (2002) or to Crouchy et al. [9] (2000). I give here a very short
presentation of these models.

CreditRisk+ analyzes only the defaults and not ratings migration. Instead of using
historical default rates, CreditRisk+ models the total number of defaults in a port-
folio through a Poisson process. Then, a recovery rate is applied to the securities in
default.

Credit Portfolio View is a model that uses macroeconomic information to estimate
the probability of default. This approach integrates business cycles into the credit
risk assessment. However, in finance, past events are not always informative for pre-
dictions. Even if they were, their heterogeneity over time is important. In addition,
each crisis has always had different impacts on credit events.
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CreditMonitor can be broken down into three steps: estimating the market value
and volatility of firms’ assets, calculating the distance to default, transforming the
distance to default into a default rate. This approach is based on strong assumptions
and relies on market data to estimate its own parameters.

CreditMetrics is often considered as the most operational model for measuring credit
risk. It takes default values into account and evaluates migration events. The neces-
sary data are: firms’ rating, recovery rates, a transition rating matrix, correlations
between securities and all the usual information on bonds (price, maturity, spread...).
This methodology is decomposed into three steps: assessing the credit risk of indi-
vidual securities, estimating the correlations between the securities and finally the
value at risk of the portfolio. The assessment of individual credit risk is based on
the historical average of default rates and transition matrices applied to each secu-
rity taking into account its rating, market price and spreads from the market. The
individual losses are then materialized by the price difference between the new esti-
mated price and the current price. In case of default, the model also uses a recovery
rate modeled by a Beta distribution and taking into account the seniority of each
security. The second step is to estimate the correlations between each security with
respect to transitions and default events. The credit metric reduces the number of
combinations to be estimated by using a sector-country correlation matrix applied
to each firm based on its level of participation in each category. Sector and country
correlations are estimated from market indices. The third step is to simulate the
multivariate random variables associated with all securities in the portfolio analyzed
with the estimated correlation matrix.

2.3 Risk measures

The main purpose of risk management is to assess the performance against the risk
taken. A loss distribution L is defined by the difference in value Vt of a portfolio
between t+ 1 and t: L = −(Vt+1 − Vt). In t, L is a random variable as Vt+1 is ran-
dom. L is defined by its cumulative distribution function F (l) = P (L 6 l). A risk
measure is naturally linked to a distribution function of losses, the most exhaustive
information, and is only a tool to reduce, more or less effectively, the information
coming from this function.

The most common risk measures are the Value at Risk (V aR) and the Conditional
Value at Risk (CV aR), also called Expected Shortfall:

• V aRα is the value of the loss distribution function at quantile α ∈]0, 1[

V aRα(L) = Inf{l : P (L 6 l) > α}

• CV aRα is the expected value of the loss distribution above the quantile α ∈
]0, 1[

CV aRα(L) = E[L|L > V aRα(L)] =
1

1− α

∫ ∞
V aRα(L)

ldP (l)
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A stressed V aR and a stressed CV aR can also be calculated. The only difference is
related to the L loss function that is here estimated on a stressed sample.

In parallel of these measures, the concept of coherent risk measures has been de-
veloped in [1] (1997) and [2] (1999). A coherent risk measure m is a function that
satisfies, for G, the set of loss distributions :

• monotonicity: for X,Y ∈ G and X 6 Y , m(X) 6 m(Y ) ;

• positive homogeneity: ∀λ > 0 and X ∈ G, m(λX) = λm(X);

• translation invariance: for X ∈ G, a ∈ R, m(X + a) = m(X) + a;

• subadditivity: for X,Y ∈ G, m(X + Y ) 6 m(X) +m(Y ).

The notions of subadditivity and positive homogeneity imply convexity 2: for X,Y ∈
G and λ ∈ [0, 1], m(λX + (1− λ)Y ) 6 λm(X) + (1− λ)m(Y ).

V aR is a standard reference for risk measurement. However, V aR is not a coherent
measure because it does not have the property of subadditivity neither convexity
[1] (1997). Subadditivity encourages diversification in finance. For example, with-
out subadditivity, the V aR of a portfolio may be greater than the sum of V aRs of
the individual assets of that portfolio. V aR is a coherent risk measure if the loss
distribution function is normally distributed. In addition, minimizing the V aR of a
portfolio may have several local minimums because it is not a convex function.

CV aR is, instead, always a coherent measure regardless of the loss distribution func-
tion and has therefore the convexity property ([26] and [29]).

Others risks measures are as well often used:

• the expected loss, E[L], is the average loss that we should experience; it can
be expressed as a CV aR for a continuous loss function:

E[L] =

∫ ∞
−∞

ldP (l) =

∫ ∞
V aR0+

ldP (l) = CV aR0+(L)

• the unexpected loss at the α level, ULα[L] = V aRα(L) − E[L], is the loss
difference between the V aRα and the expected loss.

2.4 Remarks

This section presents my view on these three precedent key features with regards to
our objectives before moving on to the model. The first objective is to measure the
current credit risk of a portfolio. I do not consider in this work interest rate and
spread risks changes. These risks should however be taken into account if we plan to
optimize the Solvency 2 ratio. The second objective is to find an optimal portfolio
under risk-return considerations.

2. Equality in this expression is convexity and non equality is strict convexity.
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Data

Since our goal is to measure the credit risk of a corporate bond portfolio, I chose to
use historical default data as much as possible as we want to measure the risk of a
default in a portfolio in which all securities are held until maturity. The goal of an
insurance company asset manager is, first of all, to take advantage of the coupons
rather than the price movements of the securities. The risk associated with this
objective is mainly related to defaults events where the coupons would no longer be
paid and the principal partially lost.

Market, corporate and macroeconomic data are more than useful in the expert
judgment process and in any decision-making approach. However, market data
relating to credit risk, spreads and CDS prices, do not always reflect the credit
risk of issuers. Accounting data is too granular to assess the risk of a portfolio, but
rather the most useful for tracking an issuer specifically. Macroeconomic information
is reliable for estimating the health of the economy, but crises have always been a
surprise for most investors.

Credit risk models

Regarding credit risk models, they are first numerous. All of them contain several
strong assumptions. Depending on the purpose of the work, some are more suitable
than others. Reduced form models are more related to market conditions and then
well adapted to pricing, for instance, derivatives products. Structural models seem
more suited to the purpose of this work.

The industry model that seems the most suited to our task is probably the one
implemented in the CreditMetrics approach. This makes it possible to take into
account historical information rather than forecasts or macroeconomic information.
Considering that a credit crisis is very often a surprise for any investor, a historical
approach is very well adapted to integrate these events into the risk assessment.

However, when estimating risk under high quantiles, a long-term average approach
such as the one used in the CreditMetrics becomes a limitation in the evaluation pro-
cess. The time heterogeneity of default events, migration events, and default losses
can no longer be captured. This average technique is in fact based on the assump-
tion according to which the annual observations of each of these three parameters
are realizations of independent and identically distributed random variables. This
assertion is unlikely to be verified. It is obvious that credit events are strongly linked
to business cycles [25].

Another limitation of the CreditMetrics approach is the way correlations between
securities are modeled. CreditMetrics uses asset price correlation, taking into ac-
count sectors and countries, to incorporate in the valuation the relationship between
securities with respect to credit events. Some critics appear around this correlation
approach. The correlations between market prices are naturally very different from
correlations related to credit events. For example, market prices may fluctuate in
the same way after a specific announcement and snowball effects are very common
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in the market. In these situations, the correlations will increase or decrease between
assets with no guarantee that we could have the same thing between credit events.

I therefore opt to use past default rates and transition rating matrices with a sam-
pling technique to reproduce the results encountered in each past years instead of
estimating averages. Correlations between securities with respect to default events
will therefore be as well integrated in my approach through the heterogeneity of past
events.

Risk measures

V aR is not suitable for measuring risk. The assumption of a normal loss distribution
guaranteeing its coherence is simply not respected. CV aR is much more useful with
its coherence property. Moreover, its convexity has also the very strong advantage
to be very useful in an optimization problem.
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Chapter 3

The credit risk model

This chapter introduces the credit risk model by separating default loss modeling
from migration loss. The link of these two risks is taken into account in this ap-
proach. Separating both phenomena allows to model them effectively, with their
own parameters, variables and framework. A probably more generic and very com-
mon point of view regards defaults as another rating (just below C) and then only
focus on rating transitions. In this case, the presentations specify in a second step
the differences in terms of losses for defaults and migrations.

The associated losses are very distinct between default events and migration events.
Accounting rules are very different for these two risks. In addition, in the event of
a default, the liquidation process is very long, while a change in rating goes hand
in hand with a change in the market value of the asset. An asset manager then
naturally considers default and migration differently, at least not with the same risk
aversion or utility function. This loss decomposition is simply expressed as:

LCredit = LDefault + LMigration

The next two sections describe how default and migration risks are measured over
a one-year horizon. I do not consider in this work a multi-period evaluation (please
report to [28] for an example). The presentation starts from the simplest case to
extend the approach towards the considered functionalities.

3.1 Default risk

Our default loss model is closely related to the generic loss expression of a portfolio:

LDefault =

I∑
i=1

1(Di=1).LGDi.EADi

where:

• I is the number of issuers;

• Di is a univariate Bernoulli random variable with binary outcomes chosen from
{0, 1} and probability pi to be in the state 1 (issuer i defaults in state 1); its
probability density function is fDi(di) = pdii (1− pi)1−di ;
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• LGDi is a random variable within the state space [0, 1] expressing the per-
centage of loss given default on securities issued by issuer i; LGDi is defined
by its cumulative distribution function FLGDi(x) =

∫ x
0 fLGDi(y)d(y);

• EADi is a deterministic value expressing the exposure amount on issuer i at
default.

Very often, a corporate bond portfolio is made up of several securities issued by
the same issuer. The losses given default can then be set at the security level. As
we will see below, losses given default from securities issued by the same issuer are
not independent from each other. Exposures at defaults can easily be expressed by
security rather than by issuer. The expression then becomes:

LDefault =

I∑
i=1

1(Di=1).

Si∑
si=1

LGDsi .EADsi

where:

• Si is the number of securities issued by i ∀i ∈ [[1, I]];

• LGDsi is the loss given default of security si issued by i;

• EADsi is the exposure at default that the portfolio holds on the security si.

For a given issuer i, each security si ∈ [[1, Si]] may hold different seniority levels.
In case of default of issuer i, its securities should have the same loss given default
for a same seniority level. The securities of issuer i can therefore be regrouped by
seniority level. The expression then becomes:

LDefault =
I∑
i=1

1(Di=1).

NSen∑
Sen=1

LGDi,Sen.EADi,Sen

where:

• LGDi,Sen is the loss given default of issuer i for the securities having the same
seniority level Sen ∀Sen ∈ [[1, NSen]];

• EADi,Sen is the sum of the exposures at default associated to issuer i for all
securities si having the same seniority Sen.

Issuers may exhibit a dependency between each other with regards to default events 1.
Issuers’ default events should be eventually modeled as correlated binary random
variables. As previously stated, we have a default event for issuer i if Di = 1
or not if Di = 0. Instead of considering I independent univariate Bernoulli ran-
dom variables, we now consider only one I-multivariate Bernoulli random vector
D = (D1, ..., Di, ..., DI) of possible correlated random variables taking values in the

1. The main common factors found in the literature regarding the dependence of credit events
are the rating classes, the business cycles, the domiciles and the business sectors of the issuers.
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Cartesian product space Ω = {0, 1}I . The size of Ω increases sharply with the
number of issuers (for instance, with 100 issuers, #Ω = 2100 > 1, 26 × 1030). The
probability density function for I = 2 can be written as:

P (D1 = d1, D2 = d2) = P (1, 1)d1d2P (1, 0)d1(1−d2)P (0, 1)(1−d1)d2P (0, 0)(1−d1)(1−d2)

with P (1, 1) + P (1, 0) + P (0, 1) + P (0, 0) = 1

Any marginal distribution of D follows a multivariate random Bernoulli distribution
[10]. For instance the marginal distribution of Di has density:

P (Di = di) =

1∑
d1=0

...

1∑
di−1=0

1∑
di+1=0

...

1∑
dI=0

P (d1, ..., di−1, di, di+1, ..., dI) (3.1)

The loss default expression is then

LDefault =

I∑
i=1

1(Di=1).

NSen∑
Sen=1

LGDi,Sen.EADi,Sen

with all Di ∀i ∈ [[1, I]] having for density the expression 3.1.

A last step is related to loss given default. As presented later on, the loss given
default should be unique for each seniority level of a given issuer. Securities issued
by a same issuer are now aggregated by seniority level to measure risk. But another
important aspect must be taken into account. In fact, the higher the priority of a
creditor is in a defaulting issuer’s liquidation process, the lower should its loss given
default be (loss given default increases as the seniority level decreases). For an issuer
i and ∀ Sen ∈ [[1, NSen]] ordered by decreasing seniority (Sen = 1 is the more senior
level and Sen = NSen is the less senior level), then if i defaults, I introduce new
truncated random variables denoted LGDTR

i,Sen∀Sen ∈ [[1, NSen]] with state space
[0, 1] and defined by the following cumulative distribution function:

FLGDTRi,Sen
(x) =

{ ∫ x
0 fLGDTRi,Sen

(y)dy ∀Sen ∈ [[2, NSen]]∫ x
0 fLGDi,Sen(y)dy if Sen = 1

(3.2)

with
fLGDTRi,Sen

(x) = fLGDi,Sen(x|LGDTR
i,Sen > xi,Sen−1)

=
1(x>xi,Sen−1)

fLGDi,Sen (x)

1−FLGDi,Sen (xi,Sen−1)

and xi,Sen−1 being a realization of the random variable LGDTR
i,Sen−1.

The default loss expression is then :

LDefault =

I∑
i=1

1(Di=1).

NSen∑
Sen=1

LGDTR
i,Sen.EADi,Sen

This model, measuring default risk, captures simultaneously :
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• at issuer level, the correlation between default events ;

• at security level, the loss given default according to the seniority with a trun-
cation approach.

3.2 Migration risk

The migration of ratings is the other important element in the credit risk assessment
of a bond portfolio. Migration risk is related to credit quality changes that may oc-
cur in the coming year. During this period, issuers may be in a weaker, stronger or
in an identical position with respect to their ability to meet their financial commit-
ments.

The migration of ratings is applied to issuers that do not default after applying the
default risk assessment. It is important to well distinguish both phenomena in our
modeling. Default risk involves a resolution process with levels of LGD depend-
ing on the seniority of the securities. This is quite different from rating migrations
(excluding default) where no resolution process is activated. They would however
imply market gains or losses as the prices of the securities could vary according to
the new rating class of each issuer. A downgraded issuer will cause losses through
market prices corrections for its securities.

Rating migrations are very often modeled using a Markov chain where possible states
are ratings : AAA, AA, A, BBB, BB, B, C and Default. As explained, we limit here
the possible states to AAA, AA, A, BBB, BB, B and C in order to have a modeling
approach consistent with the previous section 3.1.

The underlying phenomenon involving market price movements comes from market
participants who expect their income to correspond to the new, higher (lower) prob-
ability of default of a downgraded (upgraded) issuer. Since the coupons associated
with each security issued by a downgraded issuer are fixed at maturity 2, the only
way to offset an increase in the probability of default of a ”fixed income” instrument
is to correct the market price of the security to a level reflecting the new expectations
of investors in terms of risk-return.

These price movements can be modeled according to the concept of ”yield to matu-
rity” which we will call ”yield”. The yield of a security is the internal rate of return
of the financial transaction of buying the security now and holding it until maturity.
In other words:

− Psi,0
(1 + Y ieldsi,0)0

+

Msi∑
m=Msi−bMsic

Couponsi
(1 + Y ieldsi,0)m

+
Principalsi

(1 + Y ieldsi,0)Msi
= 0

2. This is true for fixed rate bonds but not for floating rate bond or inflation linked bonds.
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or

Psi,0 =

Msi∑
m=Msi−bMsic

Couponsi
(1 + Y ieldsi,0)m

+
Principalsi

(1 + Y ieldsi,0)Msi

where

• Psi,0 is the market price of security si in t = 0;

• Y ieldsi,0 is the yield of security si in t = 0;

• Couponsi is the value of the annual coupon of security si (we suppose that
coupons are annual);

• Principalsi is the value of the principal of security si;

• Msi is the residual maturity, in years, of security si.

In the case of a rating migration, the yield changes. We assume that the new yield
integrates the spread difference between the new rating class and the old one. This
can be expressed as:

Y ieldsi,1 = Y ieldsi,0 + ∆Spreadr0(i),r1(i),Msi ,Sensi

where

• Y ieldsi,1 is the new yield due and only due to an eventual rating migration
of security si; for instance, if there is no rating change for i then Y ieldsi,1 =
Y ieldsi,0;

• ∆Spreadr0(i),r1(i),Msi ,Sensi
= Spreadr1(i),Msi ,Sensi

− Spreadr0(i),Msi ,Sensi
is the

difference of spreads between the current rating and the rating after one year
of issuer i for the residual maturity Msi and the seniority level Sensi of the
security si

3.

The loss migration can therefore be expressed as follows:

LMigration = −
I∑
i=1

Si∑
si=1

(Psi,1 − Psi,0)

where Psi,0 is the price of security si in t = 0 and

Psi,1 =

Msi∑
m=Msi−bMsic

Couponsi
(1 + Y ieldsi,1)m

+
Principalsi

(1 + Y ieldsi,1)Msi

∆Spreadr0(i),r1(i),Msi ,Sensi
is estimated through a Markov chain approach where rat-

ing changes have a probability associated to the rating level held in t = 0. The only
random variable included in Psi,1 is r1(i), the new rating of i in t = 1. r1(i) is

3. Spreads take into account two different seniority levels. The associated yields are presented
in figure 5.7 page 38.
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the outcome of the random migration process that we model according to a Markov
chain approach. The transition matrix, defined as a n × n matrix where n is the
number of ratings, is such that:

TM =


tmr1,r1 tmr1,r2 ... tmr1,rn

tmr2,r1 tmr2,r2 ... tmr2,rn

... ... ... ...
tmrn,r1 tmrn,r2 ... tmrn,rn



where tmrk,rl > 0 ∀{rk, rl} ∈ [[1, n]]2 and
∑n

l=1 tmk,l = 1 ∀k ∈ [[1, n]].

tmrk,rl is the probability of an issuer rated rk to be rated rl one year later. For an
issuer i and its r0(i) rating, by simulating TM , we obtain its new rating associated
to TM and then ∆Spreadr0(i),r1(i),Msi ,Sensi

for each security si of issuer i.

I suppose that the rating change occurs almost instantaneously in t = 0 + ε for ε
very small. I therefore use the spreads known in t = 0 for those in t = 0 + ε.

Migrations modeled through a Markov chain have two strong assumptions:

• the Markov behavior, meaning that the future cannot be better estimated with
past information when we already uses the present

P (Xt+1/Xt = xt, Xt−1 = xt−1, . . . , X0 = x0) = P (Xt+1/Xt = xt)

• the time homogeneity, where transition probabilities are independent of time

P (Xt+1/Xt = x) = P (Xt/Xt−1 = x) ∀t

It is not obvious that the Markov behavior is verified. However, alternative models
are very complex to implement. The time homogeneity of the Markov chain is also
debatable. It is natural to expect that economic cycles, recessions or any change
in the macroeconomic situation will more or less change the migration of ratings
through time [25]. This last point will be treated in the next chapter.

20



Chapter 4

Methods for estimating
parameters

This chapter develops methodologies for estimating the different parameters when
necessary. We will successively discuss the loss given default, the probability of
default including default correlation, rating migration and exposure at default.

4.1 Loss given default

The Loss given default (LGD) is less analyzed in credit risk models compared to
probability of default. At the same time, many articles are exclusively related to
modeling the LGD as a random variable (see for example [16] for a comprehensive
literature review on this topic).

When measuring risk under low probabilities (extreme events) the LGD should be
modeled as a random variable with state space [0, 1] rather than a deterministic
value. The Value at Risk at 99% can considerably be underestimated by a model
with a fixed LGD instead of using a probability distribution covering all the possible
state space.

The number of parameters interacting with the LGD are numerous and quite strongly
specific to each security: the issuer, the security seniority, the economic environment,
the underlying jurisdiction of the recovery process...

Several years may pass before the end of the recovery. Failing issuers can therefore
see the value of their assets, which will likely be sold, evolve over time. Creditors
also carry an opportunity cost as they can not reinvest now the value they will re-
cover only at the end of the recovery process.

Forecast LGD is quite difficult to handle as we should, for instance, consider: the
time period of the recovery process; returns rate of missed investment opportunities
during this period; the price of the assets held by the defaulted issuer until the end
of the recovery process.
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There exist two main historical LGD values that we can potentially integrate in the
default loss measurement:

• workout LGD, based on the ultimate recovery, at the end of the entire workout
process (often several years);

• market LGD, calculated from market prices 30 days after default.

I opt to use the market LGD in the modeling. This implies a short-term estimate of
the loss that could be useful in the event that the asset manager wishes to liquidate
his position before embarking on the recovery process. Specific institutions purchase
defaulted bonds to speculate on the recovery process.

The Beta distribution is a very appropriate random variable for integrating a stochas-
tic LGD into credit risk models. The Beta distribution can be calibrated using the
mean and the standard deviation of the past market LGDs. Its [0, 1] state space
allows to express the loss as a percentage of the exposure at default. The assumption
of a Beta distribution for the LGD is usual in the academic literature as well as in
the industrial default risk models. This distribution leads to a family of continuous
probability distributions.

As mentioned in the previous chapter, the risks associated with securities issued by
the same issuer are closely linked. The seniority dimension implies a priority among
creditors in the recovery process. At the same time, creditors of a given security
should legally have the same recovery rate. In this situation, we should consider two
main assumptions when modeling LGDs related to the same defaulted issuer:

• the LGD of a low seniority security is higher than the LGD of securities with
higher seniority ;

• creditors with the same seniority level have the same LGD on issuer i.

After considering our previous remarks, the LGD modeling approach estimates an
LGD random variable by seniority level. Seniority is obviously one of the most
important parameter discriminating LGDs 1.

For a given security with seniority Sen issued by issuer i, we estimate the distribu-
tion LGDi,Sen. Based on historical data by seniority level provided by the historical
data report from Moody’s [24], I calibrate, for each level of seniority, a Beta distri-
bution based on the mean and the variance.

A Beta distribution is entirely determined by two non-negative parameters denoted
(a, b). The probability density function of X ∼ Beta(a, b) is :

1. The LGDs are assumed to be independent between the issuers in this work. This hypothesis
is not insignificant. For example, when two liquidation processes are launched at the same time
for two different issuers, the respective assets sold will be subject to the same market conditions,
possibly at the same discount price or under the same conditions of sale. This will automatically
correlate the amounts available for recovery.
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f(x, a, b) =

{
Γ(a+b)

Γ(a)+Γ(b)x
a−1(1− x)b−1 = xa−1(1−x)b−1∫ 1

0 u
a−1(1−u)b−1du

if x ∈ [0, 1]

0 otherwise

where Γ is the Gamma function.

The expectation of X is E[X] = a
a+b .

The variance of X is V [X] = E[X2]− E[X]2 = ab
(a+b)2(a+b+1)

.

To understand the shape of the Beta distribution, the interpretable parameters are
a+ b and a

a+b instead of expectation and variance. The second parameter is useful
for giving a measure of the asymmetry of the distribution as a function of its position
with respect to 0.5 and the higher a+b is, the more the distribution is concentrated.

This distribution is very flexible and allows many forms of curves:

• if a = 1 and b = 1, we obtain a uniform distribution;

• if a = b, we have a symmetric distribution in the point 0.5; if they are moreover
both higher than 1 the curve has a ”bell” form; if they are smaller than 1 the
curve has a ”U” form;

• if a > b, the curve is asymmetric to the right side (negative skewness).

The LGDs related to an issuer i are then LGD1
...

LGDNSen

 =

 B(a1, b1)
...

B(aNSen , bNSen)



There are two main general parametric techniques to estimate (a, b):

• the method of moments;

• the maximum likelihood.

The method of moments is certainly the easiest way to determine (a, b). Based on
a set of n pasts historical loss given default values denoted (x1, . . . , xn) assumed to
be independent and identically distributed, we obtain :

µ̂ = 1
N

∑N
i=1 xi, an estimator of E[X]

and

σ̂2 = 1
N−1

∑N
i=1(xi − µ̂)2, an estimator of V [X]
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so {
µ̂ = a

a+b

σ̂2 = ab
(a+b)2(a+b+1)

from which we easily have an estimation of (a, b):{
â = µ̂( µ̂(1−µ̂)

σ̂2 − 1)

b̂ = (1− µ̂)( µ̂(1−µ̂)
σ̂2 − 1)

The maximum likelihood estimation method is also very often used. Consider the
family of probability distribution function fθ. From the observations (x1, ..., xn), we
compute the multivariate probability distribution function fθ(x1, ..., xn|θ).

The likelihood function is Lθ = fθ(x1, ..., xn|θ) and the likelihood method consists
in estimating θ by maximizing the likelihood function Lθ : θ̂ = argmaxθLθ.

By considering that (x1, ..., xn) are independent and identically distributed, the like-
lihood function can be simplified by the product of n univariate probability densities:
Lθ =

∏n
i=1 fθ(xi|θ).

Then the log-likelihood transforms the product into a sum: logLθ =
∑n

i=1 log fθ(xi|θ).
The maximum of logLθ can be found by various optimization techniques.

The maximum likelihood technique estimating the parameters of a Beta distribution
is as follows. From a set of independent and identically Beta distributed observa-
tions (x1, ..., xn), we compute the likelihood function : L(a,b) =

∏n
i=1Ba,b(xi|a, b).

Using the expression of the density of a Beta distribution, we directly obtain the
following log-likelihood:

logL(a,b) =

n∑
i=1

log

(
Γ(a+ b)

Γ(a)Γ(b)

)
+ (a− 1) log(xi) + (b− 1) log(1− xi)

The maximum of logL(a,b) is reached for (â, b̂) defined by :

(â, b̂) = argmax(a,b) logL(a,b)

Beside these two parametric approaches, there is the non parametric method based
on the empirical cumulative distribution function defined as follows 2:

Fn(x) =
1

n

n∑
i=1

1(xi6x)

2. To go further on the non-parametric approach, Chen (1999) [7] proposes a Beta kernel esti-
mator.
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Returning to our model and considering an issuer with NSen successive levels of
seniority (sen = 1 being more senior than Sen = 2) with the random variables
LGDi,1, LGDi,2, ..., LGDi,NSen , we can incorporate them in the truncated distribu-
tion expression defined in the previous chapter in 3.2 page 17.

4.2 Probability of default

Probability of default (PD) is related to issuers rather than securities. PD is unique
for each issuer. It is, however, quite difficult to estimate every individual PDs when
information regarding default events is often very scarce or nonexistent at the issuer
level.

A common method for estimating the PD of issuers is to assign each issuer a rating
class. Then, we can associate to each rating class an estimate of its PD assuming
that all the issuers belonging to the same class are identically distributed. Rating
agencies operate in practice this way. They associate to each issuer a rating 3 that
is then used by market participants to assess the credit quality of their portfolio, to
make new investment choices or to determine their regulatory capital requirements.
Assuming default events are identically distributed within the same rating class, the
complexity of the estimate of the probability of default moves from I values (number
of issuers) to R values (rating classes) with R � I. We denote by Dr the default
probability distribution of an issuer rated r. We assume that Dr follows a Bernoulli
distribution with parameter pr, the probability of default.

Figure 5.4 page 35 shows the number of corporate defaults registered for 10 000 is-
suers per rating and per year. These results are provided by the Standard & Poor’s
annual corporate default study (please report to [34] for the 2018 issue).

Another important dimension regarding PDs is their correlation. Correlations are
expected between issuers with respect to default events. For example, the macroeco-
nomic environment, the likelihood of a financial crisis, political instability, regulatory
changes, changes in central bank monetary policies or pro-cyclical effects can affect,
in different ways, multiple issuers simultaneously 4.

However, whereas the model described in the previous chapter makes use of a mul-
tivariate Bernoulli distribution to model default events, the simulation of correlated
binary data is not trivial and research in this domain remains active. Several so-
lutions exist under more or less restrictive assumptions. Papers in this topic are
numerous 5 since Bahadur (1961) [3]. Many methods involve adjusting a continuous
multivariate random variable to verify the Bernoulli marginals and their correlation
matrix. For instance, Emrich and Piedmonte method (1991) [12] uses a multivari-

3. Being rated by a rating agency is not compulsory. This is a paid service offered by rating
agencies to issuers of securities.

4. We exclude causality considerations in this work.
5. For some examples, please refer to [21], [27] or [30].
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ate normal distribution with specific means and correlation matrix. This method
involves solving nonlinear equations via numerical integration and does not always
guarantee a solution.

Moreover, in 2006, Chaganty and Joe [6] show that there are positive-definite corre-
lation matrices of order d > 3 that are not compatible with the marginal probabilities
of any d-multivariate Bernoulli. This is a major drawback for models using corre-
lations other than those related to default events (for instance correlations between
equities) as there is no guarantee that they will be compatible with default proba-
bilities.

In parallel, the estimation of correlations is based on two strong assumptions. for
instance, the method of moments, presented below, assumes that the data sample
of default rates per rating and year is composed of independent and identically dis-
tributed data over time.

There is a clear time dependence of default events coming from economic cycles in
which, after a recession characterized by higher default levels, the beginning of a
new business cycle will be followed by fewer failures as the weaker issuers are gone
(defaulted) and stronger remain present with an increasingly favorable economy.

The assumption of identically distributed data is also easily questionable for the
same reasons. In times of economic recession, the increase in defaults compared to a
normal situation is significant. Figure 5.4 page 35 indicates the number of defaults
per rating and per year y ∈ [[1981, 2017]] for 10 000 issuers. We clearly see that
before years in crisis, the number of defaults is low compared to an average rate
and strongly increases the year of the crisis. Then, the number of defaults slowly
decreases over several years before reaching a new low level.

Using average default rates may underestimate the number of defaults we may en-
counter. We mitigate the effects of years experiencing extreme numbers of defaults
with an average-based approach. The following figure 4.1 gives an overview of how
an average-based approach can underestimate default events. I assume, per rat-
ing, that historical defaults are independent observations generated from the same
Binomial random variable (identically distributed) with the following parameters:
average default rate between 1981 and 2017 and the number of rated issuers by Stan-
dard & Poor’s in 2017. I can then estimate the confidence interval, for instance at
quantile 0.95, and count the number of years that are not in the confidence interval.
At quantile 0.95, if the aforesaid assumptions are verified, we should have 1.85 year
over 37 years that are not in the confidence interval. Figure 4.1 shows that ratings
from A to C have clearly more than 1.85 year out of the confidence interval. For
instance, There are 24 years outside the confidence interval for BBB issuers. As-
sumptions of independent and identically distributed data are not verified for most
ratings.
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Figure 4.1 – Confidence intervals of default rates assuming annual observations per
rating are independent and identically distributed

Given the assumptions underlying the estimation process of pr ∀r ∈ [[1, R]] and pair-
wise correlations, the strong limitations regarding the simulation of correlated binary
data and the risk of underestimating long-term risk, I opt for a direct simulation
of observed past data. This technique consists in simulating randomly the years,
each having the same probability to be selected. Then, I use the default rates of
each rating of that given year to obtain one set of simulations for the I issuers. We
repeat this operation for each simulation: choosing randomly a year and then using
the default rate of the selected year for the I issuers. By doing this way, we nat-
urally capture the dependency between ratings with regards to default events that
was observed each year in the past. This approach replaces the need to estimate
correlations of default events.

I present however, below, how to estimate correlations of default events. Two main
ways are possible. First, assuming that all issuer are independent, we can estimate
the impact of exogenous variables on each rating. Then, the probability of a number
of defaults for a given portfolio conditioned by exogenous variables can be estimated
using a mixture model as presented by Frey and McNeil [15] (2003). Second, we can
directly estimate the correlations between pairs of ratings without considering the
sources of dependency as presented in the seminal and very intuitive paper of Lucas
[20] (1995). Since, our objective is to capture through-the-cycle (long-term estima-
tion) and stress period credit risk instead of forecasting credit events depending on
current macroeconomic information, I present the second approach. It is important
to keep in mind that this correlation, although it exists, is small as many empirical
studies have already shown. This point encourages diversification because its gain
is very strong.

The correlation expression between two Bernoulli random variables X and Y is:

ρX,Y =
Cov(X,Y )

σ(X)σ(Y )

ρX,Y =
E(XY )− E(X)E(Y )√

(E(X2)− E2(X))(E(Y 2)− E2(Y ))

This expression can be written with events probabilities if we consider, for two
Bernoulli random variables denoted X and Y , that:
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E(X) =

1∑
x=0

xP (X = x) = P (X = 1)

and

E(XY ) =
1∑

x=0

1∑
y=0

xyP (X = x, Y = y) = P (X = 1, Y = 1)

Then, ρ can be expressed as:

ρX,Y =
P (X = 1, Y = 1)− P (X = 1)P (Y = 1)√

P (X = 1)(1− P (X = 1))P (Y = 1)(1− P (Y = 1))

Using R rating classes following Bernoulli random variables, the correlation between
two issuers X and Y with respectively ratings r and r′ ∈ [[1, R]] depends on the
following parameters:

• Pr(X = 1) ∀r ∈ [[1, R]];

• Pr,r′(X = 1, Y = 1) ∀(r, r′) ∈ [[1, R]]2.

The correlation between X and Y is therefore expressed by:

ρr,r′ =
Pr,r′(X = 1, Y = 1)− Pr(X = 1)Pr′(Y = 1)√

Pr(X = 1)(1− Pr(X = 1))Pr′(Y = 1)(1− Pr′(Y = 1))

From this simple ρr,r′ expression, we clearly see the parameters needed to estimate a
portfolio default loss distribution function taking into account possible correlations
between issuers:

• Pr ∀r ∈ [[1, R]], individuals probabilities of default per rating;

• Pr,r′ ∀{r, r′} ∈ [[1, R]]2, joints probabilities of defaults for all pairs of ratings.

As for the estimation of the LGD, I now present the parametric method of mo-
ments 6 to estimate Pr and the Pr,r′ . The estimation of the joint probabilities Pr,r′

is less intuitive than the estimate of the marginals Pr. Lucas [20] (1995) explains
the meaning of Pr,r′ and uses the method of moments to identify it.

The method of moments provides a simple estimate of PDs per rating. It is fairly
easy to estimate a long-term average default probability per rating given that:

Pr = 1Pr + 0(1− Pr) = E(Dr)

The method of moments provides the following estimator of E(Dr):

µr =
1

Y

Y∑
y=1

Pr,y

6. For a Maximum likelihood approach based on mixture models, we may refer to Frey and
McNeil [15] (2003).
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where Pr,y is the historical default rate of issuers rated r in year y. We transform
this default rate expression for rating r and year y into numbers of defaults and
numbers of issuers for rating r and year y to get:

µr =
1

Y

Y∑
y=1

#dr,y
#Ir,y

where #dr,y is the number of defaulted issuers rated r in year y and #Ir,y is the
number of issuers (not in default) at the start of the period rated r in year y 7. This
expression can be written as:

µr =
1

Y

Y∑
y=1

(
#dr,y

1

)(
#Ir,y

1

)
with

(
n
k

)
= n!

k!(n−k)!

This last expression clearly shows the simplicity behind this estimation technique.
for r and y given, we are choosing, at the numerator, one issuer between the de-
faulted issuers, and, at the denominator, one issuer between all the issuers at the
start of the year (not in default). It is the probability of default of one and only one
issuer with rating r.

The simultaneous probability of default, in a year, of two issuers with same rating
r denoted Pr,r is similarly estimated as follows:
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For two distinct ratings r and r′, the probability is estimated by:
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As presented in the credit risk model (chapter 3), the probabilities of default are
modeled through a multivariate Bernoulli distribution to be able to integrate even-
tual correlation effects with regards to default events between issuers. With this
estimation approach, all the parameters defining the ratings’ multivariate distribu-
tion, of dimension R, are now available. We then can move to the issuer level with
a I-dimensions multivariate Bernoulli distribution such that:

• Pi = Pr(i) ∀i ∈ [[1, I]],

• Pi,i′ = Pr(i),r(i′) ∀(i, i′) ∈ [[1, I]]2,

where r(i) is the rating of issuer i.

7. It is important to keep in mind that issuers may encounter a rating change over the considered
year y period; point treated in the next section related to migration risk
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We obtained an estimation process determining the Bernoulli marginals and the
pairwise correlations of issuers regarding default events.

4.3 Rating migration

Rating migration is modeled as a Markov chain without the default and the NR
(Not Rated) states. As already explained in the previous chapter, since default
events are already modeled in the default risk assessment, we apply the migration
risk assessment to issuers that have not defaulted in the default risk assessment.

Most of the time an average historical transition matrix is used. As seen in the
previous section regarding probability of defaults, I use the same random technique
to choose years and their associated transition matrix for one simulation of the en-
tire set of issuers. For one simulation of the I issuers, the year chosen randomly
is naturally the same for default and migration to guarantee their coherence. The
annual past transition matrices provided by Standard & Poor’s have been resized
excluding the NR and default states. Please refer to the annex for a complete list
of annual transition matrices from 1981 to 2017.

As for default rates, with this approach, years in which transitions were more im-
portant or less important than an average-based approach will be considered. This
is useful when measuring extreme events rather than expectations.

4.4 Market yields

Market corporate yields are used in the migration loss assessment. They are cal-
culated by rating (AAA, AA, A, BBB, BB, B and C), seniority (senior and subor-
dinated) and by maturity (with an annual granularity). For each combination of
these three features, an average yield is calculated by weighting the amount issued
for each security on the market. These values are based on the information of 2 722
euro denominated corporate securities. These data are presented in more details in
figure 8.1 page 68.

4.5 Exposure at default

The exposure at default, EAD is the maximum amount that could, in the eventual-
ity of a credit event, never be recovered. The EAD does not require an important
level of modeling compared to other parameters. The EAD is deterministic and, at
a given moment t, an asset manager knows its exposure to a given security.
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Chapter 5

Parameter estimation results

This part presents the estimates of the different risk parameters introduced in the
previous chapter. The estimation of each parameter is carried out under two regimes:
a through-the-cycle and a stress period. The through-the-cycle estimate is linked
to long-term available historical information while the stress period estimate is re-
lated to the worst year for credit risk of corporate bonds over the last 37 years, 2008 1.

I use the default event history from 1981 to 2017 recorded by Standard & Poor’s
and Moody’s presented on an annual basis. They provide annual default rates per
rating, annual recovery rates per seniority and annual transition rates.

An exhaustive set of market securities is as well used to determine the yields per
rating, seniority and maturity.

5.1 Loss given default

Losses given default (LGD) are estimated by seniority. Figure 5.1 page 32 shows the
historical market LGD 2 averages by year and seniority computed from the recovery
rates (denoted rr) recorded by Moody’s [24] between 1982 and 2017 (LGD = 1−rr).
From this table we can calculate the mean and the standard deviation for each se-
niority level (senior secured, senior unsecured and subordinated), then obtain an
estimate of the two coefficients (a, b) of a Beta distribution by seniority level. The
same operation is carried out over the most unfavorable years in order to determine
the same parameters for the stress period. I estimate the stress period parameters
over a minimum set of worst years to be able to obtain a standard deviation even if
the number of observations is very small.

The set of historical LGDs are annual averages. A more advanced and accurate
technique would consist to use individual recorded LGDs instead of annual averages.
We could then estimate an LGD distribution for each year and each seniority instead
of one by seniority level. In this case, the simulation technique of years used for
default rates and rating migration could then be also applied to LGD figures. This

1. 2008 is the worst year for AA and A default rates as illustrated by the figure 5.4 page 35.
2. Please refer to section 4.1 for a definition.
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would increase the coherence of the approach as market LGDs and default rates are
correlated through time.

Figure 5.1 – Loss Given Default historical rates by year and seniority (source:
Moody’s [24]; market LGDs 30 days after default)

The two following figures 5.2 and 5.3 present probability distribution functions and
cumulative distribution functions for each regime and seniority level. Differences of
distribution law between seniority levels are important. For instance, under the
through-the-cycle regime, the senior secured securities have a median of 40% while
the subordinated class is at 65%.
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Figure 5.2 – Loss Given Default - Probability Distribution Function by seniority
level
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Figure 5.3 – Loss Given Default - Cumulative Distribution Function by seniority
level

5.2 Probability of default

Figure 5.5 page 36 presents the estimates using the method of moments on the
Standard & Poor’s information of default rates presented in figure 5.4 page 35. We
successively obtain the average default rate per rating, the joint probability distribu-
tion of two simultaneous defaults and the correlation matrix between ratings. These
estimates are here presented for illustration purposes. As explained in the precedent
chapter, they are not used to obtain loss distributions.
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Figure 5.4 – Historical corporate default rates by year and rating (number of defaults
for 10 000 corporate issuers by year and rating; source: Standard & Poor’s [34])

The mean of default rates already exhibit interesting things. For instance:

• a AAA rating has never defaulted in 37 years (some of them experienced a
downgrading in the year);

• a AA rating has, on average, 1 chance out of 10 000 to default in the year;

• a A rating has 6 times more chances to default than a AA rating;

• a BBB rating has 3.5 times more chances to default than a A rating;
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• a BB rating has 4.3 times more chances to default than a BBB rating;

• a B rating has 4.8 times more chances to default than a BB rating;

• a C rating has 5.5 times more chances to default than a B rating.

The two-dimensional joint probabilities of default presented in figure 5.5 page 36
are obviously very small and mechanically smaller than individual marginals default
probabilities. For instance, two issuers rated respectively B and BB have on aver-
age 0.06% chance to default simultaneously in a year whereas an issuer rated B has
4.34% chance to default in a year and an issuer rated BB 0.90%.

Correlations (figure 5.5 page 36) are as well very small but not null. Any correlation
between ratings AAA, AA, A, BBB and BB is below 1.10%.

Figure 5.5 – Estimations by the method of moments - Probability of default (mean
and variance), joint probability of default and correlation between ratings

5.3 Rating migration

As explained in the previous chapter, instead of using an average transition matrix
for the through-the-cycle approach, I use all the annual transition matrices provided
by standard & Poor’s, presented in the annex, to simulate first, the year and then,
the associated rating migration matrix as done for default events.
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Otherwise, Standard & Poor’s provides a long-term (1981 to 2017) average of tran-
sition rates (figure 5.6 page 37). The probability to move into the default state,
denoted D, is 0 as we only consider this Markov chain to issuers that have not de-
faulted in the default loss model. Given the long-term average Markov chain, an
issuer rated BB, that has not defaulted in the year, has for instance 7,72% chance
to be rated B in the year and 9,02% chance under the stress period.

Figure 5.6 – One-year transition rates excluding default state (source: Standard &
Poor’s [34])

5.4 Yields

Market yields are used to calculate the new yield of bonds for issuers having ex-
perienced a rating migration. When computing the through-the-cycle estimate, we
use the 2017 yields. 2008 yields are used for the stress period. We also distinguish
yields by seniority level (senior and subordinated).

The spread difference to apply in case of migration can directly be performed on the
yield figures.
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Figure 5.7 – Yields by rating and maturity (in years) recorded in 2017 and 2008 for
senior and subordinated corporate bonds

38



Chapter 6

A short portfolio description

This chapter provides a brief description of a real insurance company’s portfolio used
in the next two chapters for numerical applications. It is composed of 127 securities
issued by 109 different corporate issuers. I present some elements of this corporate
bond portfolio:

• the distribution of the issuers by rating and seniority;

• the distribution of the securities by coupon and yield;

• the distribution of the securities by residual maturity and duration;

• the distribution of the weightings of the invested capital in each security.

A last section presents the main outcomes of this portfolio.

6.1 Rating and seniority

Figure 6.1 presents the rating distribution of the 109 issuers and the same weighted
distribution by the amounts of invested capital. The first table includes not rated
(NR) issuers, counting for 13% of the issuers. Not rated issuers have many different
reasons for not being rated and their level of credit risk can be quite heterogeneous.
For risk measure considerations, NR issuers are considered as BB issuers in our
approach 1. The second table of figure 6.1 shows the weights with NR issuers con-
sidered as BB rated issuers.

The portfolio is made up for more than 80% of issuers rated at least BBB. Only
1% of the issuers have a rating of less than or equal to B.

1. The solvency capital requirement (SCR) for spread risk under Solvency 2 takes into account
specific shocks for unrated securities or issuers. For NR bonds, the shocks to determine the solvency
capital requirement are between BBB and BB ratings and closer to BBB than to BB.
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Figure 6.1 – Number of issuers by rating

With regards to the seniority of the securities, the 127 securities are broken down
into:

• 3 senior secured;

• 99 senior unsecured;

• 25 subordinated.

6.2 Coupons and yields

Figure 6.2 presents the coupons distribution weighted by the capital. 54% of the
invested capital has an annual return between 2% and 4%. The average annual
coupon, weighted by the invested capital in each security, is of 2.96%.

Figure 6.2 – Distribution function of annual coupons (expressed in percentage of
principal)

Figure 6.3 shows the portfolio yield distribution. The average yield of the portfolio
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is of 1.05%. The yield of a security s satisfies the following equation:

Prices =

Ms∑
m=Ms−bMsc

Coupons
(1 + Y ields)m

+
Principals

(1 + Y ields)Ms

The yield of a portfolio composed of S securities is:

Y ield =
S∑
s=1

ws × Y ields

where ws is the market value proportion of s into the portfolio.

Figure 6.3 – distribution function of yields

6.3 Residual maturity and duration

Figure 6.4 shows the residual maturity distribution function of the portfolio. The
average residual maturity of the portfolio is of 6.44 years. 57% of the bonds have a
residual maturity between 3 and 7 years.

Figure 6.4 – Distribution function of residual maturities (expressed in years)
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The duration of a security s is expressed as:

Durations =

∑Ms

m=Ms−bMscm×
Coupons

(1+Y ields)m
+Ms × Principals

(1+Y ields)Ms∑Ms

m=Ms−bMsc
Coupons

(1+Y ields)m
+ Principals

(1+Y ields)Ms

The duration of a portfolio composed of S securities is given by:

Duration =
S∑
s=1

ws ×Durations

Figure 6.5 presents the distribution of the duration. The duration of the portfolio
is 5.64 years.

Figure 6.5 – Distribution function of durations (expressed in years)

6.4 Granularity

Portfolio weights range from 0.5% to 3% of the total capital of the portfolio. More
than 70% of the investments are made with only 1% of the total invested capital.
The diversification of this portfolio is very high.
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Figure 6.6 – Securities weight distribution function

6.5 Key features

To summarize, the portfolio used in this study:

• consists of 127 securities issued by 109 different issuers;

• is composed of more than 80% of issuers rated above or equal to BBB with
13% of not rated issuers (considered as rated BB in the analysis);

• is composed of 20% of subordinated securities;

• has a weighted capital average coupon of 2.96%;

• has a weighted capital average yield of 1.05%;

• has a weighted capital average residual maturity of 6.44 years;

• has a weighted capital average duration of 5.64 years;

• is very granular with over 70% of trades with an amount invested representing
1% of the portfolio’s total capital.
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Chapter 7

Credit risk results

After introducing in the previous chapter, some descriptive elements of the portfolio
used for the empirical analysis, I present the main results related to the model and
applied to this portfolio. The results are broken down into five sections: number of
defaults, default loss, number of migrations, migration loss and the total loss related
to credit risk. Each section measures risk considering two regimes: a through-the-
cycle regime and a stress period regime. The through-the-cycle regime considers
long-term levels for the different parameters while the stress period is only based on
2008 credit risk events.

A first section presents the simulation technique process. The results were obtained
with 100 000 simulations of the credit risk model applied to the portfolio presented
in the previous chapter.

7.1 Simulation technique

The simulation of default risk is conducted with the following approach for the
through-the-cycle regime. For one simulation of the portfolio:

1. I choose randomly one year between 1981 and 2017 with equal probability;
this year is denoted y;

2. for each issuer, the parameter of its univariate marginal Bernoulli distribution
related to the default event is equal to the default rate of its rating in year y;

3. for each issuer, I simulate its Bernoulli distribution; we obtain the number of
defaults of the portfolio;

4. for each issuer having defaulted in the precedent step, I simulate for each of
its securities, the through-the-cycle truncated Beta distributions associated to
their LGD considering their seniority; I then multiply them by the EAD of
each of its securities to get the default loss of the portfolio;

5. for each issuer not having defaulted, I simulate the migration rates of year y
(without default state) presented in the annex; we obtain the number of rating
migrations of the portfolio;
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6. for each issuer having a change of its rating, I calculate the associated mar-
ket price change of each of its securities; we obtain the migration loss of the
portfolio;

7. I add the default loss and the migration loss of the portfolio to get the total
loss of the portfolio.

By repeating this algorithm many times, we obtain the empirical distributions pre-
sented in the next five sections.

For the stress period, all the steps are the same. Only the values of the parameters
change.

7.2 Number of defaults

This section presents the default risk results taking into account the number of de-
faults. The next section concerns losses due to these defaults.

Figure 7.1 shows the cumulative distribution function of the number of defaults that
we may encounter in a year over the 109 issuers for the through-the-cycle and the
stress period regimes. The probability of having at least one default in the year is
of 25% under the through-the-cycle regime and 43% under the stress period regime.
The probability of having at least two defaults is 5% under the through-the-cycle
regime while it is twice as high under the stress period. Highest numbers of defaults
have then very similar probabilities for the both regimes.

Figure 7.1 – Number of defaults over 109 issuers - Cumulative distribution function
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Figure 7.2, introducing the V aR and the CV aR for different quantiles, shows that
the number of defaults that we can expect under extreme circumstances (quantiles
above or equal to 0.95) is the same whether we are in the through-the-cycle regime
or in the stress period regime. Expressed as a percentage of the number of issuers,
the V aR and the CV aR at 0.99 are almost the same for both regimes (2.75% for
V aRs and 3% for CV aRs). For the quantile at 0.999, the estimate of CV aR under
the through-the-cycle regime is even greater than that of the stress period while
their V aR are identical.

Figure 7.2 – V aR and CV aR - Number of defaults over 109 issuers expressed in
percent

Figure 7.3 presents the expected and unexpected losses 1. The expected loss is of
0.29 default for 100 issuers under the through-the-cycle regime and 0.51 default for
100 issuers under the stress period. The unexpected number of defaults at quantile
0.99 for 100 issuers are at 2.46 defaults under the through-the-cycle regime and 2.24
under the stress period.

In other words, under the through-the-cycle regime, when we normally expect to
experience 0.29 default over 100 issuers in a year, in the same time, the unexpected
loss, at the 0.99 quantile, is more than 8 times higher (2.46%). In the same time,
under the stress period regime, the unexpected loss (2,24%) is lower compared to
the through-the-cycle regime and is less than 5 times higher than the expected loss.
These results illustrate the common fact that the surprise with regards to default
events is higher under a normal regime than under an already stressed regime.

1. The unexpected loss at quantile α is the difference between the V aRα and the expected loss
(please refer to section 2.3 related to risk measures for more details).
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Figure 7.3 – Expected and unexpected loss - Number of defaults over 109 issuers
expressed in percent

To summarize, under the through-the-cycle regime, we expect 0.29% default in a
year with an unexpected loss, at quantile 0.99, 8 times higher. The CV aR0.99 is of
2.98% under the through-the-cycle regime and almost the same for the stress period.

7.3 Default loss

This section is dedicated to the measurement of losses due to defaults. To obtain
the losses incurred, we use the defaults simulated and presented in the previous
section, the loss given default and the exposure at default. The exposure at default
is the principal of the security and the loss given default is stochastically modeled
as previously presented.

Figure 7.4 shows the default loss cumulative distribution functions for both regimes.
The losses obviously start to be strictly positive when we encounter at least one
default. The default loss of the stress period regime is significantly higher than
the through-the-cycle regime. Since the number of defaults is the same under both
regimes for high quantiles (see figure 7.2), the difference in losses is due to the issuers
into defaults and to the disparity between losses given default of both regimes (see
figures 5.1 and 5.2 pages 32 and 33).
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Figure 7.4 – Default loss (in percentage of the exposure amount of the portfolio) -
Cumulative distribution function

The V aR is now clearly higher for the stress period (2.16% at the 0.99 quantile)
compared to the through-the-cycle regime (1.37% at the 0.99 quantile).

Figure 7.5 – V aR and CV aR - Default loss (in percentage of the exposure amount
of the portfolio)

The expected loss under the through-the-cycle regime represents 0.15% of the expo-
sure. This is twice more important under the stress period (0.33%).
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Figure 7.6 – Expected and unexpected loss - Default loss (in percentage of the
exposure amount of the portfolio)

Finally, the V aR at quantile 0.99 for losses due to default risk are respectively
estimated at 1.37% of the invested capital under the through-the-cycle regime and
at 2.16% under the stress period regime. The expected loss is 0.15% under the
through-the-cycle and of 0.33% under the stress period.

7.4 Number of migrations

In this section we explore the migrations of ratings of the issuers. More Specifically,
I focus the analysis on the net number of rating changes. Here, an issuer being
either downgraded or upgraded by several ratings, for instance by 3 ratings, will be
considered as 3 rating changes for the whole portfolio. A net positive number of
changes corresponds to a net downgrade of the portfolio.

Figure 7.7 shows the cumulative distribution function of the net number of rating
changes. This function shows the low probability to improve the ratings of the
issuers of this portfolio. Under the through-the-cycle regime, the probability to im-
prove ratings is below 15% and below 3% for the stress period. The mode is at
4 under the through-the-cycle regime meaning that the highest probability of net
rating changes in the year is 4 out of 109 issuers and 6 for the stress period regime.
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Figure 7.7 – Net number of rating changes (over 109 issuers) - Cumulative distri-
bution function (if the number of downgrades are higher to the number of upgrades,
the net number of changes is positive)

For high quantiles, the V aR under both regimes are very similar. The V aR at
the 0.99 quantile of the net number of rating changes is 16.51% for both regimes
(figure 7.8).

Figure 7.8 – V aR and CV aR - Net number of rating changes (over 109 issuers)

The expected loss in terms of net rating changes is estimated at 4.07% of the number
of issuers under the through-the-cycle regime and at 6.57% under the stress period
regime.
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Figure 7.9 – Expected and unexpected loss - Net number of rating changes (over
109 issuers)

The number of rating changes is obviously much larger than the number of default
events. The unexpected net number of rating changes is higher under the stress
period regime for 0.95 and 0.99 quantiles, whereas for the higher quantiles we find
the opposite. This phenomenon is explained by the fact that some years simulated
for the through-the-cycle regime have encountered a number of downgraded ratings
more important than the year of the stress period, 2008.

7.5 Migration loss

Losses due to rating migrations are materialized by market price changes. I explore
migration considering market losses in the same way as in the default loss section.
Prices adjustments are based on yields by rating, maturity and seniority (see section
3.2 page 18 related to the migration risk model; you may refer to section 5.4 page 37
for yield levels).

The cumulative distribution functions for migration losses are shown in figure 7.10.
While the losses due to migration imply market value losses, I express them in per-
cent of the sum of the principal of each security. This will allow to add default
losses and migration losses expressed in percentage of the principals. The through-
the-cycle regime uses 2017 end of year (low) spreads while the stress period is based
on 2008 end of year (high) spreads. The shapes of the loss curves are significantly
different between the two regimes.
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Figure 7.10 – Migration loss (expressed in percentage of the exposure amount of
the portfolio) - Cumulative distribution function

The 0.99 quantile V aR of the migration loss is 1.37% under the through-the-cycle
regime and 3.34% for the stress period (see figure 7.11).

Figure 7.11 – V aR and CV aR - Migration loss (expressed in percentage of the
exposure amount of the portfolio)

The expected migration loss is of 0.32% of the invested capital for the through-the-
cycle regime and 0.89% for the stress period.
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Figure 7.12 – Expected and unexpected loss - Migration loss (expressed in percent-
age of the exposure amount of the portfolio)

7.6 Total credit risk loss

The total loss of credit risk is the sum of the default loss and migration loss (fig-
ure 7.13).

Figure 7.13 – Total loss (expressed in percentage of the exposure amount of the
portfolio) - Cumulative distribution function

At the 0.99 quantile, the V aR is 2.09% under the through-the-cycle regime and
3.96% under the stress period regime (figure 7.14).
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Figure 7.14 – V aR and CV aR - Total loss (expressed in percentage of the exposure
amount of the portfolio)

The expected loss is 0.47% of the total invested capital under the through-the-cycle
regime and 2.5 times higher under the stress period (figure 7.15). The unexpected
loss at quantile 0.99 is 1.62% under the through-the-cycle regime and less than twice
higher under the stress period. When we are already in a stress period, the surprise
is, in a sense, proportionally smaller with respect to the expected loss than under
the through-the-cycle regime.

Figure 7.15 – Expected and unexpected loss - Total loss (expressed in percentage
of the exposure amount of the portfolio)

7.7 Main outcomes

This specific portfolio presents quite interesting risk results. Under the through-the-
cycle regime:

• The number of defaults expected in a year is of 0.29% of the number of issuers
(1 issuer out of 344) while the net number of rating changes is of 4.07% (1
rating change out of 24 issuers) rating changes.
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• When considering adverse low probability events, V aRs as well as CV aRs at
quantiles 0.950 and 0.999 are significantly different. For instance, the total
loss 0.999 quantile V aR is (2.87% of the total exposure) twice higher than the
total loss 0.95 quantile V aR (1.44%).

• The expected default loss is 0.15% of the total exposure whereas the expected
migration loss is 0.32%.

• The V aRs at quantile 0.99 are the same for the default loss and migration loss
(1.37% of the total exposure).

• The V aR at quantile 0.999 for the default loss is higher (2.15%) than the one
for migration loss (1.85%).

The model allows to decompose in several elements the risk analysis of a portfolio:

• The number of defaults and the net number of migrations distribution func-
tions give a general idea of how many credit events we can encounter in a
year.

• The default loss and the migration loss functions estimate how much we can
lose as a percentage of the exposure. The aggregation of the two losses corre-
sponds to the total credit loss function.

• The synthetic risk measures (V aR and CV aR) provide information about the
risk that can be encountered under different levels of probability.

• Expected and unexpected losses are useful indicators to measure how much we
should expect to lose and how much we should be surprised to lose in a year.

• Considering two distinct regimes gives strong indications of risk from a long-
term economic perspective and on the risk under a very adverse event.
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Chapter 8

Portfolio optimization

This chapter makes use of a risk-return optimization framework to find an optimal
portfolio of corporate bonds under constraints.

Most of the time, portfolio optimization is related to the seminal Markowitz ap-
proach [22] based on variance to measure risk. This method uses basic concepts
of probability theory and leads to convenient expressions to find an optimal port-
folio, for instance, for stocks under some assumptions. Stocks returns are random
variables. When using their expected return, their variance and covariance, we can
formulate a portfolio optimization problem that minimizes variance for a return ob-
jective.

When looking at credit risk, variance is not an appropriate risk measure. Instead of
stocks, fixed rate bonds have a fixed and known return, the coupon, with no concept
of variance. They are rightly called fixed-income securities. Fixed-income securities
promise the holder a fixed and defined income over a period of time. However, they
carry the risk that issuers will not honor their commitments. Risk appears through
default and migration rating events captured by their associated loss distribution as
presented and calculated in the previous chapters.

V aR and CV aR are synthetic measures of risk. They reduce the information of a
loss distribution function to a singleton. Since CV aR is a coherent measure hold-
ing the convexity property while V aR does not (please refer to Chapter 2 for more
details), I opt for an optimization framework based on return and CV aR.

This chapter is composed of five sections. The first section presents, the general op-
timization framework using CV aR as the risk measure. A second section introduce
some optimization variants with among others a duration constraint. A third sec-
tion defines an optimized dynamic portfolio strategy. The fourth section is related
to the corporate bonds market used in the last section for an empirical example of
the dynamic approach.
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8.1 Optimization framework

The optimization problem consists in finding the optimal portfolio composition,
through the invested capital weights to associate with each security, minimizing
CV aRα for a fixed return objective denoted R. Having S possible securities, the
weights allocation is defined by the set w = {w1, ..., ws, ...wS} such that:

S∑
s=1

ws = 1 and ws > 0,∀s ∈ [[1, S]]

meaning that all the available capital is invested and that we do not short sell assets 1.

Each corporate bond security has its own fixed-income. We denote returns 2 associ-
ated with the set of securities as Ret = {R1, ..., Rs, ..., RS}.

The exposures at default (EADs) appearing in Chapter 3 (Credit risk modeling)
are now, in some sense, replaced by w. To integrate our decision vector w in the
loss function, I denote f(w,L) a loss univariate random variable. f(w,L) is the loss
distribution associated simultaneously to weights w and to the S-dimensional loss
random variable L with cumulative distribution probability

G(l) = G(l1, ..., ls, ..., lS) = P (L1 6 l1, ..., Ls 6 ls, ..., LS 6 lS)

where Ls is the marginal random variable related to the loss distribution of one unit
of security s. The cumulative distribution function of the loss function for a fixed w
decision vector is given by:

F (w, x) =

∫
f(w,l)6x

dG(l)

The optimization problem can then be expressed as:

minw CV aRα(f(w,L))

subject to
∑S

s=1wsRs = R∑S
s=1ws = 1

ws > 0, ∀s ∈ [[1, S]]

Before going further, we should have a look at the V aR and the CV aR expressions
for a continuous f loss function and a fixed w.

1. These two conditions can be easily released.
2. In the case of non fixed-income assets, such as stocks, returns are random variables that

should be defined as an S-multivariate random variable.
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At quantile α, V aR is

V aRα(f(w,L)) = minl∈Rf(w, l) > α

and CV aR is

CV aRα(f(w,L)) = E[f(w,L)|f(w,L) > V aRα(f(w,L))]

=
1

1− α

∫
f(w,l)>V aRα(f(w,L))

f(w, l)dG(l)

= V aRα(f(w,L)) +
1

1− α

∫
l∈RS

(f(w, l)− V aRα (f(w,L)))+ dG(l)

with x+ = max{0, x}

The resolution of the previous optimization problem is not obvious because CV aR
does not appear as a simple function of w and depends on V aR. An optimization
framework of CV aR has been presented in the seminal paper of Rockafellar and
Uryasev [32] in 2000. The objective function of the previous optimization problem
can indeed be expressed as a convex function and then be solved by classic non-
stochastic methods considering the two following theorems:

• Rockafellar and Uryasev first theorem (proof in [32]):

Hα(f(w,L), γ) = γ +
1

(1− α)

∫
l∈RS

(f(w, l)− γ)+ dG(l)

is convex as a function of γ and CV aRα(f(w,L)) = minγ∈RHα(f(w,L), γ)

• Rockafellar and Uryasev second theorem (proof in [32]):

minwCV aRα(f(w,L)) = minw,γ∈RHα(f(w,L), γ)

and Hα(f(w,L), γ) is convex as a function of w and γ.

The optimization problem can then be expressed as:

minw,γ∈R Hα(f(w,L), γ)

s.t.
∑S

s=1wsRs = R∑S
s=1ws = 1

ws > 0,∀s ∈ [[1, S]]
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However, the credit risk loss measure defined in this work and estimated empirically
by simulations is not a continuous function. Its empirical estimate is similar to a
S-dimensional discrete random variable function composed of the N simulated sce-
narios as space of possible states. The CV aR expression for a discrete loss function
is:

CV aRα(f(w,L)) = V aRα(f(w,L)) +
1

(1− α)N

N∑
n=1

(f(w, ln)− V aRα(f(w,L)))+

with f(w, ln) =
∑S

s=1 ln,sws and ln,s being the loss under scenario n for one unit
of security s (all the ln,s ∀s ∈ [[1, S]] are related to each other via the previously
presented credit risk model).

We can now write CV aR as :

CV aRα(f(w,L)) = V aRα(f(w,L))+
1

(1− α)N

N∑
n=1

(
S∑
s=1

ln,sws − V aRα(f(w,L))

)+

The optimization problem is then:

minw CV aRα(f(w,L)) = V aRα(f(w,L)) + 1
(1−α)N

∑N
n=1

(∑S
s=1 ln,sws − V aRα(f(w,L))

)+

s.t.
∑S

s=1wsRs = R∑S
s=1ws = 1

ws > 0,∀s ∈ [[1, S]]

Rockafellar and Uryasev published in 2002 a second important article generalizing
their theorems to non-continuous loss functions [33]. The previous optimization
problem is then equivalent to the following one:

minw,γ Hα(f(w,L), γ) = γ + 1
(1−α)N

∑N
n=1

(∑S
s=1 ln,sws − γ

)+

s.t.
∑S

s=1wsRs = R∑S
s=1ws = 1

ws > 0,∀s ∈ [[1, S]]

γ ∈ R
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To solve this optimization problem as a linear program, we introduce artificial vari-
ables z = {z1, ..., zn, ...zN} to replace

∑S
s=1(ln,sws − γ)+ with two new sets of con-

straints:

zn >
S∑
s=1

ln,sws − γ and zn > 0, ∀n ∈ [[1, N ]]

The problem is then equivalent to:

minw,γ,z γ + 1
(1−α)N

∑N
n=1 zn

s.t. zn > 0,∀n ∈ [[1, N ]]

zn >
∑S

s=1 ln,sws − γ,∀n ∈ [[1, N ]]∑S
s=1wsRs = R∑S
s=1ws = 1

ws > 0,∀s ∈ [[1, S]]

γ ∈ R

All the constraints being linear, the problem is a linear programming problem that
can be solved, for instance, with the simplex method.

8.2 Optimization variants

The optimization framework seen in the previous section can be adapted to other
possible characteristics. This framework makes it possible to include other con-
straints or to modify the objective function to be minimized.

First, the objective function can weight the default loss and migration loss functions
as desired (the weights should be in any case positive to keep the convexity property).
For example, if we consider that the default losses should be avoided more than
migration losses, for example twice more, we can write the function to be minimized
as follows:

Hα(f(w,L′), γ) = γ +
1

(1− α)N

N∑
n=1

(
S∑
s=1

l
′
n,sws − γ

)+

with l
′
n,s = 2lDefault,n,s + lMigration,n,s

It can be noted that V aRα(f(w,L′)) does not appear in the optimization process. It
is therefore not necessary to calculate it even if the loss function has been modified.
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The problem of minimization is then:

minw,γ,z γ + 1
(1−α)N

∑N
n=1 zn

s.t. zn > 0,∀n ∈ [[1, N ]]

zn >
∑S

s=1(2lDefault,n,s + lMigration,n,s)ws − γ,∀n ∈ [[1, N ]]∑S
s=1wsRs = R∑S
s=1ws = 1

ws > 0, ∀s ∈ [[1, S]]

γ ∈ R

Second, in terms of constraints, insurers often set a duration target for their bond
portfolio. Duration has several implications for the activity of an insurer. Here are
some points illustrating how the duration intervenes in its activity:

• bond price movements may have significant impacts on a Solvency 2 pruden-
tial balance sheet depending on the duration mismatch between assets and
liabilities;

• Solvency 2’s standard capital requirements increase with duration. The sol-
vency 2 paradigm for spread risk depends on the rating and duration of the
individual securities; the longer the duration and the lower the rating are, the
higher the capital required is;

• the portfolio strategy with respect to expected future interest rates and spreads
movements will at a certain level define a portfolio duration objective in order
to obtain earnings from futures market conditions; an asset manager expecting
a rise of interest rates should hold a shorter duration portfolio than an asset
manager expecting the opposite;

• the value of a bond portfolio is more sensitive to interest rates changes with a
higher duration.

We would naturally like to incorporate a duration constraint into the classic two-
dimensional approach of portfolio optimization based on risk and return. The deter-
mination of a duration target for a corporate bond portfolio is generally defined by a
forward-looking analysis of financial markets and an asset and liability management
analysis.

Assuming that the duration target, denoted D, is already defined, we add the fol-
lowing additional linear constraint to the optimization problem:

S∑
s=1

wsDs = D
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where Ds is the duration of security s.

minw,γ,z γ + 1
(1−α)N

∑N
n=1 zn

s.t. zn > 0,∀n ∈ [[1, N ]]

zn >
∑S

s=1 ln,sws − γ,∀n ∈ [[1, N ]]∑S
s=1wsRs = R∑S
s=1wsDs = D∑S
s=1ws = 1

ws > 0,∀s ∈ [[1, S]]

γ ∈ R

By calculating the previous optimization problem for different D durations and R
return levels, we get a three-dimensional efficient frontier surface. Each result of w
is an optimal combination considering simultaneously return, duration and CV aRα.

8.3 Dynamic portfolio management framework

This section proposes to go a little further by considering the case where only a
part of the portfolio is reinvested while the other is unchanged. This situation is
similar to that of a life insurance company often encouraged to hold its bonds until
maturity and to invest only the new available capital. This new capital, free of any
investment, is the net sum of the cash flows that will occur in the next period. We
set this period to one year. For reasons of simplification, we assume that the new
capital to be invested and free from any commitment is made up of the principal of
bonds maturing in the year. In other words, the capital invested in bonds with a
residual maturity of more than one year represents the unavailable portion of capital
to make new investments, while bonds with a residual maturity of less than one year
determine the capital available for investment at the end of the year.

The optimization problem of the previous section is therefore slightly modified to
take into account the distinction between the fixed part of the portfolio and the
capital available for new investments in the objective function. The available capital
can be invested in all securities, denoted u ∀u ∈ [[1, U ]], available on the market. The
previous expression of CV aR:

CV aRα(f(w,L)) = V aRα(f(w,L))+
1

(1− α)N

N∑
n=1

(
S∑
s=1

ln,sws − V aRα(f(w,L))

)+
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is then replaced by the following one:

CV aRα(f(w,L)) = V aRα(f(w,L))+
1

(1− α)N

N∑
n=1

(
S′∑
s′=1

ln,s′ws′ +
U∑
u=1

ln,uwu − V aRα(f(w,L))

)+

where:

• ws′ ∀s′ ∈ [[1, S′]] is the set of unchanged weights associated to securities with
more than one year residual maturity in relation to the unavailable portion of
capital to make new investments;

• wu ∀u ∈ [[1, U ]] is the set of weights associated to the available part of the
capital to invest which need to be optimally determined;

• ln,u ∀u ∈ [[1, U ]] and ∀n ∈ [[1, N ]] represents the discrete distribution loss func-
tion of securities available on the market; ln,u ∀u ∈ [[1, U ]] and ∀n ∈ [[1, N ]] are
estimated simultaneously with all the others ln,s′ ∀s ∈ [[1, S′]] and ∀n ∈ [[1, N ]]
to integrate dependency effects between securities in the credit risk model.

The objective function can then be changed into the following one:

CV aRα(f(w,L)) = V aRα(f(w,L))+
1

(1− α)N

N∑
n=1

(
Cln +

U∑
u=1

ln,uwu − V aRα(f(w,L))

)+

where Cln =
∑S′

s′=1 ln,s′ws′ ,∀n ∈ [[1, N ]], are constants given that ws′ , ∀s′ ∈ [[1, S′]],
are now fixed.

The optimization objective function being only minimized on weights wu, ∀u ∈
[[1, U ]], the problem becomes:

minwu∀u∈[[1,U ]] V aRα(f(w,L)) + 1
(1−α)N

∑N
n=1

(
Cln +

∑U
u=1 ln,uwu − V aRα(f(w,L))

)+

s.t. Cw +
∑U

u=1wu = 1

CR +
∑U

u=1wuRu = R

CD +
∑U

u=1wuDu = D

wu > 0, ∀u ∈ [[1, U ]]
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with Cw, CR and CD constants such that :

Cw =
∑S′

s′=1ws′

CR =
∑S′

s′=1ws′Rs′

CD =
∑S′

s′=1ws′Ds′

that we can transform as previously into:

minwu∀u∈[[1,U ]],γ,z γ + 1
(1−α)N

∑N
n=1 zn

s.t. zn > 0,∀n ∈ [[1, N ]]

zn > Cln +
∑U

u=1 ln,uwu − γ,∀n ∈ [[1, N ]]

Cw +
∑U

u=1wu = 1

CR +
∑U

u=1wuRu = R

CD +
∑U

u=1wuDu = D

wu > 0, ∀u ∈ [[1, U ]]

γ ∈ R

This problem can be applied to the already analyzed empirical portfolio to which
we add the securities available on the market.

In addition, insurers’ internal management rules can be added to this problem. For
instance, two linear and therefore convex rules can be added to the optimization
problem:

• individual exposure to issuers rated A or above should not exceed 3% of the
total invested capital;

• issuers rated BBB or less should be below 1.5% of the total invested capital.
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minwu∀u∈[[1,U ]],γ,z γ + 1
(1−α)N

∑N
n=1 zn

s.t. zn > 0,∀n ∈ [[1, N ]]

zn > Cln +
∑U

u=1 ln,uwu − γ,∀n ∈ [[1, N ]]

Cw +
∑U

u=1wu = 1

CR +
∑U

u=1wuRu = R

CD +
∑U

u=1wuDu = D

wu 6 0.030 for u rated AAA, AA, A

wu 6 0.015 for u rated BBB, BB, B, C

wu > 0, ∀u ∈ [[1, U ]]

γ ∈ R

8.4 Corporate bonds market data

As stated in the previous section, the capital available for investment is represented
by all the corporate bonds publicly available. The number of corporate bonds de-
nominated in euros is obviously very large. We have identified 2 722 potential
corporate bonds denominated in euros for a total market value of 2 230 billions
euros at 2017 year-end.

The number of securities (2 722) is quite important for an optimization framework
solved with a single processor. The linear problem defined previously would be com-
posed of 2 722 dimensions, for the securities available on the market, 127 dimensions
for the securities included in the portfolio at the start of the period, 100 000 dimen-
sions (the number of simulations) for the zn and 1 dimension for γ. In addition,
the 2 722 securities have to be previously evaluated, in terms of risk, simultaneously
with the 127 securities already included in the portfolio.

To reduce the size of operational calculations and to integrate the fact that insur-
ers are major players on the corporate bond primary market rather than on the
secondary market, I use securities available on the market to build simple generic
artificial securities considering the 7 rating classes (AAA, AA, A, BBB, BB, B, C), 2
seniority levels (senior and subordinated), all the residual maturities (on an annual
granularity). I can then calculate the average yield for of each index, one for each
combination of rating, seniority and maturity. They are calculated by weighting
yields by the amount in euros issued for each security. We thus obtain 134 artifi-
cial securities for which market data are available. I assume that they are issued
by 134 different issuers. Then, with a simple arbitrage argument, we can consider
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that for each combination of the three features (rating class, seniority and residual
maturity), the yield is equivalent to the coupon of a bond priced at par that would
be issued on the primary market with maturity, the residual maturity of the index
and with the same rating and seniority characteristics.

A description of available bonds

Figure 8.1 provides a general overview of the set of securities listed on the market
and used for the implementation of indices. It successively presents by combination,
the number of securities, the capital market value expressed in percent of the total
capital market and the average yield weighted by the capital market value.

We can first observe the kind of corporate bonds (denominated in euros) available
on the market. Most of the bonds are concentrated on ratings BBB and A with high
seniority and less than 10 years residual maturity. The mode of this distribution is
reached for the following characteristics: BBB, senior with a residual maturity of 4
years (125 securities).

Regarding the capital (second table of figure 8.1), its distribution is strongly linked
to the number of bonds issued. The mode of this distribution is the same as for
the previous distribution (senior, BBB and 4 years of residual maturity representing
4.6% of the total market value).

Finally, the third table of figure 8.1 presents the yields. The average yield weighted
by the capital amount issued is of 1.05% at 2017 year-end. This table regarding
yields shows how much the market thinks it needs to be rewarded considering rating,
seniority and maturity.

Expected loss of available bonds

To give some indications with regards to risk, I apply the credit risk model on this
set of indices to get their loss default distribution, loss migration distribution and
total loss distribution. The results are based on 100 000 simulations.

Figure 8.2 presents the expected losses in percentage of the exposure. For instance,
the expected default loss (first table of figure 8.2) of a senior BBB security is of
0.08% of the invested capital. Default losses do not depend on the maturity of the
security (please refer to section 3.1 page 15 related to the default loss model for
more details). For a given combination of rating and seniority, the discrepancies
for default losses that we may encounter are due to noise around simulations. By
increasing the number of simulations, the discrepancies over the maturity dimension
decrease.

The expected migration loss for the combination BBB, senior and 4 years maturity
is of 0.39% of the exposure (please report to the second chart of figure 8.2). For
migration loss, maturity is an important factor of the model. For instance, a 10
years maturity, BBB, senior security has an expected loss for migration twice more
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important than a 4 years maturity, BBB, senior.

As we know, the higher the rating is, the lower the probability of default is. But, in
the same time, higher is the rating, higher is the contribution of migration loss to
the total loss. This effect is amplified with the increase of maturity. For instance,
the expected default loss of a AA senior 5 years maturity security is of 0.01% and
its expected migration loss is of 0.08%, 8 times more important. On the other hand,
a B senior 5 years maturity security has an expected default loss (1.79%) and an
expected migration loss (1.71%) almost equal. When observing the same values for
a 10 years maturity, the expected migration loss (0.14%) is 14 times higher than
the expected default loss for a AA senior security and less than twice higher for a B
senior (3.37%).

CVaR of available bonds

Figure 8.3 presents the 0.99 quantile CV aR, denoted CV aR0.99, for default loss, mi-
gration loss and total loss in percentage of the exposure. Again, the CV aR of default
loss does not depend on maturity as the default loss distribution calculation does
not rely on maturity. The differences for a given combination of rating and seniority
through maturities are due to the number of simulations. By increasing the number
of simulations, for a given combination of rating and seniority, the CV aR default
losses values will converge to the same value independently of the maturity. The
discrepancies are moreover more important for the CV aRs than for the expected
losses as only the worst 1% cases (1 000 simulations) are integrated in the CV aR0.99

calculation while the 100 000 simulations are used to compute the expected losses.
Lastly, we can observe that higher is the rating, higher are the differences between
the simulations for the CV AR0.99 as the number of defaults events are rarer. These
operational issues can easily be mitigated by increasing the number of simulations
with more adapted computer resources.

From figure 8.3 we see, for instance, that a BBB senior 4 years maturity security
has a default loss CV aR0.99 of 9.1%, a migration loss CV aR0.99 of 17% and a total
loss CV aR0.99 of 23.2%. The total loss manifests a clear behavior with regards
to risk: higher is the rating, higher is the contribution of migration loss to the
total loss CV aR0.99; lower is the rating, higher is the importance of default loss in
the determination of the CV aR0.99 total loss. This fact is directly implied by the
1% worst losses counting for the computation of the CV aR0.99 total loss. As the
rating increases, extreme losses are dominated by migration losses and, conversely,
as the rating decreases, extreme losses are dominated by default losses. For instance,
CV aR0.99 total loss of B and C rated securities is equal to their default loss meaning
that over the 100 000 simulations, the 1 000 worsts with respect to the total losses
are all default losses and no one is a migration loss. This implies that, in the
case of extreme adverse events, the highest-rated securities carry potential (market
value) losses that are more sensitive to maturity (a characteristic integrated in the
migration loss model) than the lowest-rated ones. In the end, while lower ratings
are riskier (with eventual losses related to defaults), their extreme risk depends less
on maturity.
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Figure 8.1 – Market securities per residual maturity, rating and seniority (2017
year-end; euro denominated): number of securities, market values and yields
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Figure 8.2 – Expected loss of market securities (expressed as a percentage of the
exposure amount): default loss, migration loss and total loss
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Figure 8.3 – CV aR0.99 of market securities (expressed as a percentage of the expo-
sure amount): default loss, migration loss and total loss
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Artificial securities for optimization

The 134 indices presented in the previous three figures are then used to define the
list of assets available to make new investments in the primary market. The benefit
of using yields lies in the fact that, under a non-arbitrage assumption, we can create
artificial primary issued securities with a price at par, with an annual coupon equal
to the yield and with a maturity equal to the residual maturity of market securities.
This approach leads to 134 artificial securities. However, this number of artificial
securities is small considering the importance of diversification in determining an
optimal portfolio. In this case, there would be only one artificial security for each
combination of rating, seniority and maturity while it might be optimal to invest
several times in securities having the same features but issued from different issuers.
x% invested in a portfolio composed of two securities having the same profile makes
a portfolio having the same return but less risky than a portfolio with x% invested
in only one of these two securities. To solve this problem, the 134 indices are
transformed into 228 securities where some indices are repeated to create other new
artificial securities. They are created in proportion to the number of securities in
each index as follows:

• the combinations having less than 15 securities are present once as artificial
securities;

• the combinations having between 16 and 25 securities are present twice as
artificial securities;

• the combinations having between 26 and 60 securities are present three times
as artificial securities;

• the combinations having more than 61 securities are present four times as
artificial securities.

This leads to 228 artificial securities available for the amount of capital to be invested
in the dynamic portfolio framework. We assume that none of them are issued by
a same issuer. This approach indirectly assumes, for instance that when having
less than 15 securities on the market for a given combination of rating, seniority
and maturity, asset managers will be able to consider only one security for their
potential investments. Asset managers often reduce the space of potential securities
by using their expert judgment. For instance, a concentration into a sector or a
country or, be more or less exposed to some kind of securities are choices that will
automatically eliminate several securities. In addition, the information specific to
each issuer defines the views of asset managers and reduces again the number of
securities that can be considered as potential attractive investments. Some issuers
will exhibit better expectations than others.

8.5 Dynamic portfolio management results

In this section, we apply the dynamic optimization framework simultaneously to the
empirical portfolio aged by one year presented in chapter 6 and to the 228 artificial
securities created from the securities available on the market.
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The optimization problem seen in the precedent section is:

minwu∀u∈[[1,U ]],γ,z γ + 1
(1−α)N

∑N
n=1 zn

s.t. zn > 0, ∀n ∈ [[1, N ]]

zn > Cln +
∑U

u=1 lu,swu − γ,∀n ∈ [[1, N ]]

Cw +
∑U

u=1wu = 1

CR +
∑U

u=1wuRu = R

CD +
∑U

u=1wuDu = D

wu 6 0.030,∀u rated AAA, AA, A

wu 6 0.015,∀u rated BBB, BB, B, C

wu > 0,∀u ∈ [[1, U ]]

γ ∈ R

The portion of the portfolio that is still invested after one year has the following
characteristics:

• 109 securities are still left instead of 127 at the beginning of the period;

• represents Cw = 90.04% of the total capital available;

• has a return CR = 2.74%;

• has a duration (one year later) CD = 5.38 years.

The amount of capital available after one year represents 9.96% of the total capital.
If we are seeking the minimal CV aR0.99 for a portfolio return of 2.80% and a 5.50
years duration, the 9.96% to reinvest should generate a return of 3.31% and have
a duration of 6.55 years. The figure 8.4 below presents the levels that the part to
invest must achieve in terms of return and duration to reach different objectives.
Some of them are not feasible. For instance, it is not possible to build a portfolio
with a return of 2.40% (without short selling) given that the still invested part of
the portfolio has a return of 2.74%. Indeed, even if we were not investing the 9.96%
of capital available, the return would be of 90.04%× 2.74 + 9.96%× 0 = 2.47%.
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Figure 8.4 – Decomposition of return (in %) and duration (in years) objectives
between the still invested part of the portfolio and the available part for new invest-
ments

Figure 8.5 represents the minimal CV aR0.99 surface solved by the previous opti-
mization problem for many combinations of returns and durations. This surface is
convex on both dimensions and shows how credit risk, return and duration interact.

Figure 8.5 – Dynamic portfolio management efficient frontier surface (with man-
agement rules) - CV aR0.99 and return in percentage of the exposure amount and
duration in years
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Figure 8.6 presents the minimal CV aR0.99 values of the overall portfolio for combi-
nations of return and duration objectives with management rules. A dot indicates
a non-feasible combination (For instance, the 2.9% return and 6.5 years duration
combination is not feasible).

We deduce from this table some elements. For instance:

• the combination having the lowest CV aR0.99 (2.23%) is reached for a portfolio
return of 2.6% and a duration of 5.5 years;

• lowering the duration to 5.25 years for the same 2.6% objective return increases
by 0.02 point the CV aR0.99 (2.25%);

• with an objective return of 2.7%, the fact to move duration from 5.5 years to
5.25 years increases now by 0.1 point the CV aR0.99

3;

Figure 8.6 – CV aR0.99 dynamic portfolio efficient frontier (with management rules)
- CV aR0.99 and return in percentage of the total exposure and duration in years

When excluding management rules (figure 8.7):

• wu 6 0.030, ∀u rated AAA, AA, A;

• wu 6 0.015, ∀u rated BBB, BB, B, C;

the number of feasible combinations increases. The new feasible combinations are
shown in gray in figure 8.7. Their risk is much higher than that of the other combi-
nations, which means that these management rules only exclude combinations that
would have presented levels of risk too important to be considered. Moreover, as
one might expect, by removing the management rules, as any other constraint, the
minimum values of CV aR0.99 are equal or slightly lower than the one including the
management rules. The largest decrease in risk is of 0.35 point for the following

3. These increases of risk observed when decreasing duration are due to the fact that the newly
invested 9.96% are less diversified and therefore riskier for low duration objectives.
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objective: return of 3.0% and duration of 5.75 years.

Figure 8.7 – CV aR0.99 dynamic portfolio efficient frontier (without management
rules) - CV aR0.99 and return in percentage of the total exposure and duration in
years

The following four figures detail the 228 artificial securities 4 (lines) that should be
purchased to get the minimal CV aR0.99 for 12 main return and duration objectives
(columns) with management rules. For instance, to reach an objective of 2.6% re-
turn and 5.5 years duration for the whole portfolio, we have to invest 6.3% of the
available capital for investment (representing 9.96% of the total capital) into a AAA,
senior security with 2 years duration and a return of 0.01%, 7.0% into a AAA, senior
security with 9.6 years duration and a return of 1.01% and so on...

The 3% and the 1.5% management rules constraints are equal to 30.1%(= 100% ×
3%/9.96%) and to 15.1%(= 100% × 1.5%/9.96%) in this table. For instance, For
a 2.5% return and 5 years duration objective, a AA senior security with 1.1 year
duration should be invested at 30.1% of the available capital for investment. This
means that the 3% limit management rule has been reached for this security.

Many securities are never selected by the optimization framework under those 12
objectives of return and duration. for instance, BBB senior securities have too low
returns compared to their risk while BBB subordinated securities present a more in-
teresting risk-return ratio (please refer to the last table of figure 8.1 related to yields
and to the last table in figure 8.3 for CV aRs0.99 levels of total losses for an overview
of individual risks and returns). The opposite occurs for BB and B securities were
senior securities are selected while subordinated not.

As the return objective increases, the rating quality of the optimal securities to be

4. The first figure is related to artificial securities rated AAA and AA, the second figure to rated
A, the third figure to rated BBB and the forth figure to rated BB, B and C.
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held declines rapidly. 0.1% variation in returns implies significant changes in weights
as only 9.96% of the capital is newly invested and 90.04% is unchanged. A return
objective of 2.6% implies a return of 1.33% for the available capital, while a return
objective of 2.7% implies a return of 2.34% for the available capital.

The 5.5 years and 6 years duration objectives have almost the same risk (CV aR0.99)
for target returns of 2.6%, 2.7% and 2.8%. As a result, an asset manager anticipating
a rise of interest rates should choose, for a same level of risk, the 5.5 years duration
portfolio rather than the 6 years duration.

Figure 8.8 – Optimal weighting of assets in relation to the capital to be invested
for 12 pairs of selected return and duration objectives - part 1/4 (ratings AAA and
AA)
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Figure 8.9 – Optimal weighting of assets in relation to the capital to be invested
for 12 pairs of selected return and duration objectives - part 2/4 (rating A)
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Figure 8.10 – Optimal weighting of assets in relation to the capital to be invested
for 12 pairs of selected return and duration objectives - part 3/4 (rating BBB)
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Figure 8.11 – Optimal weighting of assets in relation to the capital to be invested
for 12 pairs of selected return and duration objectives - part 4/4 (ratings BB, B and
C)
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Chapter 9

Conclusion and perspectives

The analysis of the key features around credit risk gave us a general overview of
the main determinants impacting a credit risk assessment. My choices, motivated
by robustness, accuracy and simplicity, lead to choose historical data, to define a
model close to the CreditMetrics approach and to consider CV aR as the major risk
measure.

The presented model breaks down default from migration events as those risks are
different in many respects. I moreover integrated a truncated structure of losses
given default into the credit risk model.

Operational and empirical considerations led to consider a simulation of years to
estimate defaults and transition rates. The basic assumption of independent and
identically distributed sets of data is not verified and the simulation of correlated
binary data is still a research field. The simulation of historical data better captures
extreme events compared to a long-term average approach.

The credit risk model run on a real corporate bond portfolio of a life insurance
company was calculated under two regimes (through-the-cycle and stress period). I
showed the risk distribution of different outcomes: number of defaults, default loss,
number of migrations, migration loss and total credit risk loss. The results consider
several risk measures for different levels of risk: V aR, CV aR, expected loss and
unexpected loss.

The last chapter related to portfolio optimization presented an application with
empirical results derived from the seminal papers of Rockafellar and Uryasev [32]
[33]. By introducing a duration constraint, this approach led to a three-dimensional
efficient frontier. Considering the rolling mechanism behind a bond portfolio, I in-
tegrated in the optimization framework a clear distinction between the part of the
capital to newly invest and the part already invested. The weights based on the
empirical portfolio and the securities available on the market are also presented.

An analysis of the securities available on the market broken down by rating, seniority
and residual maturity gives interesting indications of their expected loss and CV aR
for default loss, migration loss and total loss.

80



Perspectives are numerous.

There is room for refinement of the suggested credit risk framework. We may con-
sider more granular classes than ratings when analyzing default and transition rates.
For instance, sector or country dependencies are not considered in this methodology.
We indirectly assume that this kind of more granular information is actually part
of the expert judgment. The first risk management layer is directly implemented
by the financial division with a clear investment policy. The expert judgment of as-
set managers and the fact that not everything can be incorporated into the models
makes this first layer crucial. The second layer consists to assess credit risk in order
to measure risk, follow investment decisions and propose new ones in light of the
risks incurred.

Extensions can be made to consider the current macroeconomic situation in order
to predict next year default and transition rates as well as loss given defaults using
well known econometric techniques. This approach would define a third analysis
regime: the ”forecast regime”.

Other risks, such as interest rate risk, can be added to the actual optimization frame-
work by including them in the loss function used in the optimization framework.
Other asset classes can also be assessed and added to the optimization framework.
Sovereign bonds or stocks, with their own risk function, would allow to find the best
allocations by asset class minimizing CV aR for given objectives.

The strategic plan of insurance companies is, since Solvency 2, presented in the
RSR and tested in the ORSA. It often incorporates a forecast of market conditions
and some stress scenarios. The optimization framework can also use a loss function
calculated based on these hypothetical market views to measure, for example, how
the optimal strategy based on past and present events (through-the-cycle) deviates
from that of the optimal strategy based on forward market assumptions.
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