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Abstract

Price elasticity studies analyze the effect of premium changes on customer behavior. In this memoir,
we focus on its effect on the renewal of non-life insurance contracts. Methodologies developped can
also be applied on new business. Every year, insurers face the recurring question of adjusting new
prices. Where is the trade off between increasing premium to favour higher projected profit margins
and decreasing premiums to obtain a greater market share?

This memoir aims to determine the price sensitiveness of a non life insurance portfolio taken
into account individual policy features. Three markets, namely Portugal, Québec and Germany, are
studied and compared. They reveal to be strongly different both in terms of insurance covers and
distribution channels: two main factors of price elasticity. Three regression models have been used
and compared: Generalized Linear Models, Generalized Additive Models and Survival Regression
Models.

Keywords : price elasticity ; non-life insurance; regression modelling ; generalized linear models.

Résumé

L’élasticité prix consiste à étudier l’effet d’un changement prix sur le comportement du client. Dans
ce mémoire, nous étudions l’élasticité dans le cadre de renouvellement de contrat d’assurance non-
vie. Cependant, les méthodologies peuvent être aussi utilisées pour l’élasticité prix des affaires
nouvelles. Chaque année, les assureurs font face à un dilemme pour établir les prix : soit augmenter
soit diminuer les primes, qui impacte logiquement le profit espéré et la taille du portefeuille. Par
conséquent, un compromis doit être trouvé.

Ce mémoire a pour but de déterminer la sensibilité au prix d’un portefeuille d’assurance non-
vie, en tenant compte des caractéristiques individuelles des polices le constituant. Trois marché
d’assurance vont être étudiés et comparés, à savoir le Portugal, le Québec et l’Allemagne. Ils
vont se réveler complètement différents, aussi bien en terme de couvertures que de canaux de
distributions. Trois modèles de régression vont être comparés : les modèles linéaires généralisés, les
modèles additifs généralisés et les modèles de survie de régression.

Mots-clés : élasticité prix, assurance non-vie, modèles de régression, modèles linéaires généralisés.
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Introduction

Price elasticity studies analyze how customers react to price changes. In this memoir, we focus
on its effect on the renewal of non-life insurance contracts. The methodologies developped can also
be applied to new business. Every year, insurers face the recurring question of adjusting premiums.
Where is the trade off between increasing premium to favour higher projected profit margins and
decreasing premiums to obtain a greater market share? We must determine a compromise to meet
these contradictory objectives. Price elasticity is therefore a factor to contend with in actuarial
and marketing departments in every insurance company.

Whether to target new market shares or to retain customers in the portfolio, it is essential
to assess the impact of pricing on the whole portfolio. To avoid a portfolio-based approach, we
must take into account the individual policy features. Moreover, the methodology to estimate the
price elasticity of an insurance portofolio must be refined enough to identify customer segments.
It is consequently the aim of this memoir to determine the price sensitiveness of non life insurance
portfolios with respect to individual policy characteristics constituting the portfolio.

We define price elasticity as the customer’s sensitivity to price changes relative to their current
price. In mathematical terms, the price elasticity is defined as er(p) = dr(p)

dp ×
p
r(p) , where r(p)

denotes lapse rate as a function of the price p. However, in this memoir, we focus on the additional
lapse rate ∆(dp) = r(p+ dp)− r(p) rather er(p) since the results are more robust and a lot easier
to interpret. In the following, we abusively refer ∆(dp) as the price elasticity of demand.

Chapter 1 presents the three datasets of the insurance markets, namely Portugal, Québec and
Germany ∗. Chapter 2 studies the use of generalized linear models, while chapter 3 uses generalized
additive models. Finally, chapter 4 tests the use of survival regression models. Unless otherwise
specified, all numerical applications are done with the R software, R Core Team (2011).

This subject is not new in actuarial literature. Two ASTIN workshops, Bland et al. (1997),
Kelsey et al. (1998), were held in the 90’s to analyze customer retention and price/demand elasticity.
The Shapiro & Jain (2003) book series also devoted two chapters to price elasticity: Guillen et al.
(2003) used logisitic regressions, whereas Yeo & Smith (2003) took a look at neural networks.
Brockett et al. (2008) should also be mentionned for their use of survival regression models.

What differentiates this memoir from previous research is the fact that we tackle the issue of
price elasticity from various points of view. Not only do we focus on different markets, but we
also investigate the impact of distribution channels. We have furthermore given ourselves the dual
objective of comparing regression models as well as identifying the key variables needed.

∗. In this memoir, we only exploits motor datasets, but methodologies can be applied to other non-life lines.
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Chapter 1

Data presentation

This chapter briefly presents the three insurance markets of the three datasets studied, namely
Portugal, Québec and Germany. Each section has an identical structure: (i) insurance market
presentation, (ii) data and (iii) short descriptive analysis.

1.1 Portugal market

1.1.1 Insurance market presentation

Compared to other European countries, Portugal has a quite high level of insurance penetration
(premium written as percentage of gross domestic product): 3.17%. For instance, in France, the
penetration rate is 3.15% as reported in Cummins & Venard (2007). As for many Europeans
countries, the insurance market has been consolidating in the 90s. The market was growing at a
high rate of 20% per year in term of premium. However, most of the growth comes from the life
market, whereas the P&C market relatively stagnes. Nowadays, the country still suffers from the
effects of the financial meltdown experienced by western countries in 2008-2009. Insurers struggle
to retain business and to attract new business.

Cummins & Venard (2007) also provides useful information on the distribution channels. The
policies are mainly sold through tied agents in Portugal (57%). In the Portugal market, AXA is
fourth in terms of premium written for non-life insurance. The top five insurers represents 56% of
the overall market (in P&C).

In motor insurance market, the third-part liability cover is mandatory. The minimum limits
for personal injury and material damage are standardized: 2.5 mEUR and 0.75 mEUR in 2009
respectively.

There is no standard system for no claims discount as in other countries. But generally, they
are similar between insurers: bonus can reach 50% and malus may in theory go up to 200%. Rules
to be upgraded or to be downgraded are similar as in France (e.g. it takes 14 claims-free years to
reach the best level). In practice, due to business reasons, the maluses are not entirely applied.

11



12 CHAPTER 1. DATA PRESENTATION

1.1.2 Portugal data

The database used for the analysis contains a very small set of variable: the policy number,
the proposed premium, the last year premium, the customer choice, the gender, the driver age, the
vehicle age, the policy age and the lapse reason.

Each line of the data represent a policy for a given vehicle. On this dataset, we are not able to
identify if a customer has multiple vehicle insured in AXA.

The Portugal data consists of 1 year of lapse history in 2003. The table 1.1 shows the age
structure of the Portugal portfolio. We can observe a cohort effect with policies aged of two and
seven years old being two groups of high business.

Policy age 1 2 3 4 5 6 7 8 9 10

Frequency 6653 8731 6159 5325 3509 3774 4391 4678 3464 2970

Table 1.1: Policy age in the portfolio

1.1.3 Short descriptive analysis

To better understand the lapse and its relation to the premium, we follow with an analysis of
the link between each explanatory variable and the lapse variable. All the outputs can be found
in the appendix B.1.1, we just show the most useful material here. As a general comments all
variables listed here are not independent from the lapse variable according to the Chi-square test.

Premium variables

Figure 1.1: Histogram of price ratios

Most of the portfolio seems to experience a
premium decrease (cf. figure 1.1), probably due
to the ageing and the market conditions. So we
expect to slightly underestimate the true price
elasticity of clients.

The proposed premium and price ratio (ratio
of proposed premium and last paid premium)
seems positevely correlated with the lapse, see ta-
ble 1.2 and appendix B.1.1. The same conclusion
can be drawn for last paid premium.

Undoubtly, those variables should be part of
the GLM explanatory variables.
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(0.925,0.955] (0.955,0.985] (0.985,1.02] (1.02,1.04] (1.04,1.08]

Lapse rate (%) 18.8 20 18 18 21.9
Prop. of total (%) 8.5 20 40 29 2.5

Table 1.2: Price ratio

Customer variables

We now focus on the gender and the (driver) age variable. As the age of the customer increases,
the lapse rate decreases. So the most sensitive clients seem to be the youngest clients. The gender ∗

does not have any particular impact of the lapse, however the GLM analysis may reveal some links
between the gender and lapses.

(30,47.5] (47.5,62.5] (62.5,77.5] (77.5,92.5] FEMALE MALE

Lapse rate (%) 20 17 14 14.6 18 19
Prop. of total (%) 38 42 17 3 20 80

Table 1.3: Driver age - Gender

Risk-specific variables

The latest variables to explore are the policy age and the vehicle age. The histograms do not
reveal any pattern, see appendix B.1.1. However from the below tables, some conclusions can be
derived. As the policy age decreases, the remaining clients are more and more loyal (i.e. lapse rates
decrease). Unlike the policy age, the vehicle age has the opposite effect. As it increases, the lapse
rate increases. One reason is that the customer may shop around for a new vehicle as well as for a
new insurer.

(2.5,5.5] (5.5,8.5] (8.5,11.5] (11.5,14.5] (14.5,17.5]

Lapse rate (%) 21 17 18 16.6 17.5
Prop. of total (%) 38 33 22 3.6 2.3

Table 1.4: Policy age

(2.5,5.5] (5.5,8.5] (8.5,11.5] (11.5,14.5] (14.5,17.5] (17.5,20.5] (20.5,26.5]

Lapse rate (%) 17 18 19 20 21 21.1 39.3
Prop. of total (%) 15 21 21 16 14 8.4 4.4

Table 1.5: Vehicle age

Finally, we categorize the continuous variable for GLM regressions that follow in the next
chapter.

∗. In a short future, insurers will no longer have the right to discreminate premium against the gender of the
policyholder according to the directive 2004/113/CE from the European comission.
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1.2 Québec market

1.2.1 Insurance market presentation

The insurance market penetration in Canada is about 5% of the Gross Domestic Product,
similar to European countries but half the US market. The market is mostly deregulated but there
are exceptions in motor third part liability and workers’ compensation.

In Québec, private motor lines have a very special feature compared to other countries. Policies
sold by insurers can only cover material damage and not bodily injuries. As well explained in
Dionne et al. (2009), bodily injury covers is a public monopoly by the SAAQ ∗. So private insurers
or mutual funds provide material damages for Québec citizen. However bodily injuries against non
Québec citizen can be covered by insurers and are generally additional covers.

In terms of distribution channel, policies are mostly sold through brokers (70%), which are in-
dependent agency writers. For property and casualties (P&C), the market is not very concentrated
where the top 5 players only represents 43% of the market. In 2004, AXA Canada was the ninth
insurers in terms of premium written.

Citing Cummins & Venard (2007), we conclude by saying that Canada and in particular Québec
is a very mature market (more than 200 years old) where insurers and mutuals play a major role
not only in providing risk management for their clients but also in facilitating efficient allocation
of resources, wealth management and asset protection.

1.2.2 Québec data

The Québec data consists of 4 years of lapse history between 2004 and 2007. The policy set is
open in the sense that each year new policies renewing for the first time enters the data.

Each line of the data represent a policy for a given vehicle. Note that policyholder who has
multiple vehicle insured in AXA a single policy number but a different vehicle number. In this
case, the customer is free to cancel one, many or all vehicles.

The database contains the following variables
– Premium variables: the proposed premium, the last paid premium,
– Customer variables: the policy number, the vehicle number, the customer choice (to renew

or to lapse), the gender, the driver age, the presence of a multi-vehicle discount, the cross-
selling of household policy, the cover type (all risk, basic third-part liability, options) before
and after renewal, a change of premium and/or wording by the broker,

– Risk-specific variables: the policy age, the vehicle age, the pricing group, the number of
claims (responsible, non responsible an accident) for the last two years

In the table 1.6, we put the frequencies of policy age for the four years. It is quite easy to see
the ageing of the portfolio on each diagonal.

∗. The Société de l’Assurance Automobile de Québec establishes the Québec Insurance Act in 1989.
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Year 1 2 3 4 5 6 7 8 9 10

2004 44247 38877 33723 59748 54584 25085 22721 13462 9811 9707

2005 53029 35053 31843 27982 52296 47996 19935 19946 11810 8628

2006 34492 37888 23522 21876 19704 39820 36828 15546 15686 9034

2007 33591 39304 31704 19680 19118 17188 36030 33922 10455 13202

Table 1.6: Policy ages in the dataset

In the following subsection, we show a short descriptive analysis for the 2004 data. In appendix
B.1.2, we provide the full descriptive analysis.

1.2.3 Short descriptive analysis

We put here only the main one-way tables, i.e. variables with the biggest impact on the lapse.

Cross-selling variables

In table 1.7, we see the strong impact of the cross-selling effect, i.e. having 2 or more vehicles
insured in AXA and/or a household policy.

Multi-vehicle discount Having house policy
N Y † N Y

prop. size (%) 59.16 40.84 56.46 43.54
lapse rate (%) 7.12 4.45 8.24 3.16

Table 1.7: Multi-vehicle discount / Have house policy at AXA

Claim variables

With the Québec data, we are able to observe the impact of claim history on the customer
choice to lapse or not. The table 1.8 is one example of it, with the number of responsible claims
during the last period of coverage.

0 1 2+

prop. size (%) 97.44 2.50 0.06476
lapse rate (%) 5.60 7.43 11.34

Table 1.8: Last year responsible claim group
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1.3 Germany market

1.3.1 Insurance market presentation

In Germany as in many industrialized countries, it is mandatory for any driver to be insured (at
least) in third-part liability. Insurers are enforced by law to warn authority if a driver is uninsured.
The limits for bodily injury, property damage and pecuniary loss have been standardized to 7.5
mEUR, 1 mEUR and 50 kEUR respectively.

Generally, insurance contracts are sold with add-on cover, specific deductibles, . . . We con-
sider three classes of coverage: third-part liability (TPL), full comprehensive (FC) and partial
comprehensive (PC) coverages. There is a bonus-malus system in Germany, called SchadenFrei-
heitsrabatt ∗, that will be discussed in a later subsection.

In the German insurance market, private motor is mainly sold in three different ways: tied-
agents (60%), brokers (15%) and direct online websites (8% †). This is a strong difference compared
to Québec or Portugal markets.

Unlike other European countries, the German market had been deregulated recently, during
the two years 1993/1994. Therefore, the competition rapidly increases from that year for the main
private line of business. For private motor, the total gross premium income jumped from 15 billlions
in 1992 of euros to 19 billions in 1993 and 21 billions in 1994.

The reduction in loss frequency and severity is an ongoing trend (as for other Western countries).
This increase in safety is especially true for death numbers in traffic accident: 4477 in 2008 compared
to 12000 in 1990 and 20000 ‡ in 1970. But this is counter-balanced by an increase in bodily injury
claim, and still the loss experience can be potentially high.

Nowadays, the competition is still fierce among insurers and risk selection is at stack. The top
5 non life insurers only represent 41% in 2003 according to Cummins & Venard (2007). Between
2004 and 2009 the premium rates decrease while the market loss ratio increase from 86% to 96%.
AXA is a leading insurer with the fourth position (in terms of premiums) behind Allianz, HUK
and R+V insurers.

1.3.2 Germany data

The Germany data consists of 2 years of lapse history between 2004 and 2005 . The policy set
is open in the sense that each year new policies renewing for the first time enters the data. As for
other datasets, a record is a policy purchased by an individual, so an individual may have different
records for the different covers he bought.

∗. meaning no claims discount.
†. The remaining 18% are sold through pyramid sales, typically with motor trade.
‡. Only for Western Germany.
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This dataset is unique and very rich because it contains policies sold through different distri-
bution channels, namely tied-agents, brokers and direct websites, see table 1.9.

Agent Broker Direct

prop. size (%) 65.1 20.1 6.1
lapse rate (%) 7.4 10.3 12.1

Table 1.9: Lapse rate by channel distribution

In terms of policy age, the portfolio has a wide range of policy ages. In the table 1.10 below,
we can observe that tied-agents can have a strong retention on their portfolio. More than 26% of
policies sold by tied-agents are 8 years old or more.

Channel 0 1 2 3 4 5 6 7 8+

Agent 19 539 18 362 15 455 † 7 715 † 7 330 † 6 380 † 3 084 † 3 242 29 351
Broker 7 828 7 155 6 115 2 630 2 644 1 287 1 223 1 232 1643
Direct 2 524 1 501 1 734 1 539 1 719 1 984 1 506 1 197 1 573

Table 1.10: Population by policy age

These two tables confirms that selling an insurance contract is totally different wether you sell
it through tied-agents, brokers or direct websites. So in the following we will separate the policies
between these 3 distribution channels.

1.3.3 Short descriptive analysis

Variable list

The German data is quite rich, therefore we have the detailed features of each policy. We write
below a subset of the available variables:

– Policy:
– a dummy variable indicating the lapse,
– the policy age,
– the cover type (TPL, PC or FC) and the product,
– the SF-class for PC and FC covers and the bonus evolution,

– Policyholder:
– the policyholder age and the gender,
– the marital status and the job group,

– Premium:
– the last year premium, the technical premium and the proposed premium,
– the payment frequency,
– the market premium, i.e. the tenth lowest NB premium for a particular category,

– Car:
– the mileage, the vehicle age,
– the car usage, the car class,
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Below, please find explanatory variables which are not in the two other datasets:
– Cross-selling:

– the number of AXA contract in household,
– a dummy variable on household policy,

– Claims:
– the claim amount,
– the claim number per year,

– Agent:
– the cumulative rebate, the technical rebate,
– the age difference between the agent and the policyholder.

Descriptive analysis

The full descriptive analysis can be found in appendix B.1.3. We put in table 1.11 the most
impacting explanatory variables.

Claim number ∗ 0 1 2 3 [4 - 13]

prop. size 70.59 25.29 3.60 0.44 0.092
lapse rate 13.75 13.37 16.03 12.82 35.16

Policy age † (0,1] (1,2] (2,7] (7,34]

prop. size 24.97 16.79 34.38 23.86
lapse rate 17.43 15.27 11.26 8.78

Cover ‡ FC PC TPL

prop. size 36.16 37.61 26.23
lapse rate 14.26 12.64 12.79

Bonus evolution § down stable up

prop. size 33.32 62.92 3.76
lapse rate 16.69 11.53 12.02

Vehicle age ¶ (0,6] (6,10] (10,13] (13,18]

prop. size 26.06 31.01 21.85 21.08
lapse rate 15.50 13.56 12.72 10.67

Table 1.11: Impact on lapse rates (%)

∗. coded nbclaim08percust in the database.
†. coded polage in the database.
‡. coded cover in the database.
§. coded bonusevol in the database.
¶. coded vehiclage in the database.
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The bonus malus system

The bonus-malus system in Germany, called SchadenFreiheitsrabatt (SF in the following), aims
to reveals the true risk type of a driver. It takes into account the claim (or no claim) history of
the driver. The bonus-malus is characterized by a coefficient between 30% (best driver class) and
275% (worst driver class), which will be multiplied to a base premium for a given cover (TPL or
damage cover).

The bonus-malus system is common for all insurers operating in Germany. And when an insured
switch from one insurer to another, the full information on the SF class is transmitted between
the two insurers. So the SF class represents the full claim history of the driver. Upgrading and
downgrading on the SF class is governed by rules:

– a responsible claim will downgrade the SF class of the corresponding cover,
– in the case of no reported claims, the SF class is upgraded to the next level,
– a protected no-claims bonus can be applied if the class is higher than 5 such that an allowance

of two claims over three years is made.
At the beginning, policyholder will start in class SF-1, SF-1/2, S, O or M. The non responsible
claims include theft, natural catastrophes and glass claims.

A feature of the German bonus-malus is the distinction between TPL and damage (Full Com-
prehensive) cover, so that every driver has two SF classes, one for TPL and one for FC. The two
classes evolve independently. If a policyholder did not start with the FC cover, then it will take
the corresponding level of the SF class for TPL cover when the FC cover is purchased. In the case,
a customer drops the FC cover, then the SF class will be kept in the system.

In table 1.12, we put the bonus range which can be applied for the TPL and FC covers.

SF-class Bonus range SF-class Bonus range

SF 26 30 % SF 11 45 - 50 %
SF 25 30 % SF 10 45 - 50 %
SF 24 30 % SF 9 45 - 50 %
SF 23 30 % SF 8 55 - 55 %
SF 22 30 % SF 7 55 - 60 %
SF 21 30 - 35 % SF 6 55 - 60 %
SF 20 30 - 35 % SF 5 55 - 65 %
SF 19 30 - 35 % SF 4 60 - 70 %
SF 18 35 - 40 % SF 3 70 - 80 %
SF 17 35 - 40 % SF 2 75 - 85 %
SF 16 35 - 40 % SF 1 90 - 100 %
SF 15 40 % SF 1/2 115 - 140 %
SF 14 40 % S 145 - 190 %
SF 13 40 - 45 % O 125 - 240 %
SF 12 40 - 45 % M 245 - 275 %

Table 1.12: Bonus range on TPL-FC covers





Chapter 2

Generalized Linear Models

The Generalized Linear Models (GLM) were introduced in the 70’s to deal with non continuous
and/or bounded response variables, to get rid off the limitation of linear models that must have a
continuous unbounded response. GLMs are well known and well understood tools in statistics and
especially in actuarial science.

The pricing and the customer segmentation could not have been as efficient in non-life insurance
as it is today, without an extensive use of GLMs by actuaries. There are even books dedicated to
this topic, e.g. Ohlsson & Johansson (2010). Hence the GLMs seem to be the very first choice, we
can use to model price elasticity.

Furthermore, in AXA, previous memoirs also use GLMs for this topic: for instance Dreyer
(2000), Sergent (2004), Hamel (2007) study motor insurance lines, while Rabehi (2007) works on
household products. This chapter is divided into three sections: (i) model presentation, (ii) case
studies and (iii) conclusions.

2.1 Model presentation

In this section, we present the Generalized Linear Models, tagged as GLM in the following ∗.
GLMs were introduced in a 1972 paper of Nelder and Wedderburn, Nelder & Wedderburn (1972),
but become extremely popular with the book of McCullagh and Nelder. We use McCullagh &
Nelder (1989) as a guide book, since it is the reference on the topic. This section is divided
into three parts: (i) theoretical description of GLMs, (ii) a clear focus on binary models and (iii)
explanations on estimation and variable selection within the GLM framework.

2.1.1 Theoretical presentation

We cannot present GLMs without starting with linear models. So, the first sub-section is a
short description of linear models.

∗. Note that in this document, the term GLM will never be used for general linear model.

21



22 CHAPTER 2. GENERALIZED LINEAR MODELS

Starting from the linear model

Let X ∈ Mnp(R) be the covariate matrix, i.e. a matrix where row contains the value of the
explanatory variables for a given individual and Y ∈ Rk the vector of responses. The linear model
assumes the following relationship between X and Y :

Y = XΘ + E ,

where Θ denotes the (unknown) parameter vector and E the (random) noise vector. If we made
the following assumptions,

(i) white noise: E(Ei) = 0,
(ii) homoskedasticity: V ar(Ei) = σ2,
(iii) normality: Ei ∼ N (0, σ2),
(iv) independence: Ei is independent of Ej for i 6= j,
(v) identification: rg(X) = p < n,

Then the Gauss-Markov theorem gives us the following results
– the least square estimator Θ̂ of Θ is Θ̂ = (XTX)−1XTY and σ̂2 = ||Y−XΘ||2

n−p ,

– Θ̂ is a Gaussian vector independent of σ̂2 ∼ χ2
n−p,

– Θ̂ is the unbiased estimator with minimum variance of Θ, such that V ar(Θ̂) = σ2(XTX)−1

and σ̂2 is the unbiased estimator of σ2.
Let us note that the first four assumptions can be summarized in a single assumption E ∼

N (0, σ2In). But splitting the normality assumptions will help to identify the strong assumptions
of linear models and to present the differences with GLMs.

Examples:

1. The simple linear regression yi = a+ bxi + εi is a linear model:

X =

1 x1

...
...

1 xn

 and Θ =
(
a
b

)
.

2. The parabolic linear regression yi = a+ bxi + cx2
i + εi is a linear model:

X =

1 x1 x2
1

...
...

...
1 xn x2

n

 and Θ =

ab
c

 .

Many properties can be derived for the linear model, notably hypothesis test, confidence interval
as well as estimator convergence. See chapter 6 of Venables & Ripley (2002).

We now focus on the limitations of linear model resulting from strong assumptions. The
following problems have been identified. Numerically, the computation of Θ̂ can be an issue if
X contains colinear variables. This leads to an increase in the variance estimate and even the σ̂2.
In pratice, a solution is to test models with omitting one explanatory variable after another.

A stronger limitation is the fact the variance of the response is assumed to be the same (σ2)
for all individuals. One way to deal with this problem is to transform the response by a Box-Cox
transformation. However it can be unsatifactory.
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Finally the strongest limitation is the support of the response variable. By the normal assump-
tion, Y must lies in R, which excludes count variable (e.g. Poisson distribution) or positive variable
(e.g. exponential distribution). There is no answer to that problem unless to extend the model.

In our case of a binary variable, a linear model is inadequate. Mainly for the following reasons:
– since the value of E(Y ) is contained within the interval [0, 1], a linear predictor β . X would

fall out of this range for values of X that are high enough.
– the normality hypothesis of the residuals is clearly not verified: Y −E(Y ) will only take two

different values, −E(Y ) and 1−E(Y ). Therefore, the modelling of E(Y ) as a function of X
needs to be changed as well as the type of error.

Toward generalized linear models

A Generalized Linear Model is characterized by three components:

1. a random component: Yi follows a distribution of the exponential family Fexp(θi, φi, a, b, c) ∗,
2. a systematic component: the covariate vector Xi produces a linear predictor ηi = XT

i β,

3. a link function g : R 7→ S which is monotone, differentiable and inversible, such that E(Yi) =
g−1(ηi),

for i ∈ {1, . . . , n}, where θi is the shape parameter, φi the dispersion parameter and a, b, c three
functions.

Let us note that we get back to linear models with a Gaussian distribution and an identity link
function. However, there are many other distributions and link functions. Furthermore, we say a
link function to be canonical if θi = ηi.

There are many applications of GLM in actuarial science. The below table 2.1 lists the most
common distribution with their canonical link.

Law Canonical link Mean Used for

Normal N (µ, σ2) identity ηi = µi µ = Xβ standard linear regression

Bernoulli B(µ) logit ηi = log( µ
1−µ) µ = 1

1+e−Xβ
rate modelling

Poisson P(µ) log ηi = log(µi) µ = eXβ claim frequency

Gamma G(α, β) inverse ηi = 1
µi

µ = (Xβ)−1 claim severity

Inverse Normal I(µ, λ) squared inverse ηi = − 1
µ2
i

µ = (Xβ)−2 claim severity

Table 2.1: Family and link functions

Apart from the identity link function, the log link function is the most classically used link
function: with this link function, the explanatory variables have multiplicative effects on the
observed variable and the observed variable stays positive. Indeed, E(Y ) =

∏
i e
βixi .

∗. See appendix A.1
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For example, the effect of being a young driver and owning an expensive car on average loss will
be the product of the two separate effects, of the effect of being a young driver and of the effect of
owning an expensive car. The log link function is central to actuarial pricing models, as it is used
for modelling the frequency and the severity of claims.

Fitting procedure

To determine the vector β, we use the method of maximum likelihood. For n observations, the
log-likelihood of a distribution from the exponential family is written as follows:

ln(L(θ1, . . . , θn, φ, y1, . . . , yn)) =
n∑
i=1

[
yiθi − b(θi)

a(φ)
+ c(yi, φ)

]
. (2.1)

Let us define µi = E(Yi) and ηi = g(µi) = Xiβ, the linear prediction with i is the number of the
observation, n the total number of observations.

For all i and j,

∂ ln(Li)
∂βj

=
∂ ln(Li)
∂µi

× ∂µi
∂βj

= (g−1)′(g(µi))×
yi − µi
V ar(Yi)

Xij .

Maximum likelihood equations are then:
∑

i
∂ ln(Li)
∂βj

=
∑

i(g
−1)′(g(µi)) × yi−µi

V ar(Yi)
Xij = 0, for all j.

Therefore, we get the equations, as a function of the βi’s:∑
i

∂ ln(Li)
∂βj

=
∑
i

(g−1)′(Xiβ)× yi − g−1(Xiβ)
(b′)−1(g−1(Xiβ))

Xij = 0. (2.2)

These equations are not linear with respect to the βis, and cannot be solved easily. As always for
complex equation, we use an iterative algorithm to find the solution. In our case, most softwares
use an iterative weighted least-squares method, see section 2.5 of McCullagh & Nelder (1989).

2.1.2 Binary regression

Base model assumption

We now focus on binary regression, regression where the response variable is either 1 or 0,
respectively for success and failure. We cannot parametrize two outcomes with more than one
parameter. So we assume

P (Yi = 1) = πi = 1− P (Yi = 0),

with πi the parameter. The mass probability function can be expressed as

fYi(y) = πyi (1− πi)1−y,

which emphasizes the exponential family characteristic. Let us recall the first two moments are
E(Yi) = πi and V ar(Yi) = πi(1− πi) = V (πi).
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Assuming Yi is a Bernoulli distribution B(πi) implies that πi is both the parameter and the
mean value of Yi. So the link function for a binary model is expressed as follows

πi = g−1(xTi β).

Let us note that if individuals have identical covariates, then we can group the data and consider
Yi follows a binomial distribution B(ni, πi). However grouping is possible if covariates are only
categorical.

As indicating in Fox (2010), the link function and the response variable can be reformulated
as an unobserved variable. πi = P (Yi = 1) = P (xTi β − εi > 0). If εi follows a normal distribution
(resp. a logistic distribution), we have πi = Φ(xTi β) (πi = Flogistic(xTi β)).

Now we can derive the log-likelihood from 2.1

ln(L(π1, . . . , πn, y1, . . . , yn)) =
n∑
i=1

[yi ln(πi) + (1− yi) ln(1− πi)] ,

plus an omitted constant not involving π.

Link functions
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Figure 2.1: Link functions for binary regression

Generally, the following three functions are considered as link function for the binary variable

1. logit link: g(π) = ln
(

π
1−π

)
with g−1 being the standard logistic distribution function,

2. probit link: g(π) = Φ−1(π) with g−1 being the standard normal distribution function,

3. complementary log-log link: g(π) = ln(− ln(1 − π)) with g−1 being the standard Gumbel II
distribution function ∗.

∗. A Gumbel of second kind is the distribution of −X when X follows a Gumbel distribution of first kind.
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On the figure 2.1, we plot these three link functions and their inverse. Let us note that the first
two links are symmetrical, while the last one is not. All these three functions are the inverse of
a distribution function, so other link functions can be obtained using inverse of other distribution
function (e.g. with the Gumbel I distribution). In addition being the canonical link function, the
logit link is generally preferred because of its simple interpretation as the logarithm of the odds
ratio.

Log-likelihood for canonical link

Using the expression of the variance function and the logit function (g−1(x) = 1
1+e−x and

(b′)−1(x) = x(1− x)), 2.2 becomes

0 =
∑
i

e−ηi

1 + e−ηi
×

yi − 1
1+e−ηi

1
1+e−ηi

e−ηi
1+e−ηi

Xij =
∑
i

(yi(1 + e−ηi)− 1)Xij ,

for j = 1, . . . , p. These equations are called the likelihood equations. If we put it in a matrix
version, we get the so-called score equation

XT (Y − µ(β)) = 0.

The Fisher information matrix for β in the case of logit link to

I(π)
4
= −E

(
∂2 lnL
∂βj∂βk

)
= diag(πi(1− πi)).

Since we work the maximum likelihood estimator, the estimator β̂ is unbiased and asymptotically
Gaussian with variance matrix approximated by Fisher information I(π(β̂)) ∗.

2.1.3 Variable selection and model adequacy

Model adequacy

The deviance, which is one way to measure the model adequacy with the data and generalizes
the R2 of linear models, is defined by

D(y, π̂) = 2(ln(L(y1, . . . , yn, y1, . . . , yn))− ln(L(π̂1, . . . , π̂n, y1, . . . , yn))),

where π̂ is the estimate of the beta vector. However for binary data, the first term is infinite. So
in practice, we consider the deviance as

D(y, π̂) = −2 ln(L(π̂1, . . . , π̂n, y1, . . . , yn)).

Furthermore, the deviance is used as a relative measure to compare two models. In most softwares,
in particular in R, the GLM fitting function provides two deviances: the null deviance and the
deviance.

∗. see subsection 4.4.4 of McCullagh & Nelder (1989).
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The null deviance is the deviance for the model with only an intercept or if not offset only,
i.e. when p = 1 and X is a vector full of 1 ∗. The (second) deviance is the deviance for the model
D(y, π̂) with the p explanatory variables.

Another criterion introduced by Akaike in the 70’s is the Akaike Information Criterion (AIC),
which is also an adequacy measure of statistical models. Unlike the deviance, it aims to penalized
over fitted models, i.e. models with too much parameters (compared to the length of the dataset).
It is defined by

AIC(y, π̂) = 2k − ln(L(π̂1, . . . , π̂n, y1, . . . , yn)),

where k the number of parameters, i.e. the length of β. It is a useful criterion to compare two
models where the number of parameters is different.

In a linear model, the analysis of residuals (which are assumed to i.i.d. Gaussian variable)
may reveal that the model is unappropriate. Typically we can plot the fitted values against the
fitted residuals. In GLM, the analysis of residuals is more complex, because we loose the normality
assumption. Furthermore, for binary data (i.e. not binomial data), the plot of residuals are hard
to interpret.

Let us study the example of Bronchitis data of Turner (2008). The data consists of 212 patients,
on which we measure the presence/absence of bronchitis B for bron, the air pollution level in the
locality of residence P for poll and the number of cigarettes smoked per day C for cigs.

> head(Data)
bron cigs poll

1 0 5.15 67.1
2 1 0.00 66.9
3 0 2.50 66.7
4 0 1.75 65.8
5 0 6.75 64.4
6 0 0.00 64.4

Let us first regress the bronchitis indicator on all variables

Y =

B1

...
Bn

 and X =

1 P1 C1

...
...

...
1 Pn Cn

 ,

with a logit link function. We get

> model1 <- glm(bron ˜ 1 + cigs + poll, family = binomial)
> summary(model1)

Call:
glm(formula = bron ˜ 1 + cigs + poll, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.4023 -0.5606 -0.4260 -0.3155 2.3594

∗. It means all variation comes from the random component.
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Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -10.08491 2.95100 -3.417 0.000632 ***
cigs 0.21169 0.03813 5.552 2.83e-08 ***
poll 0.13176 0.04895 2.692 0.007113 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 221.78 on 211 degrees of freedom
Residual deviance: 174.21 on 209 degrees of freedom
AIC: 180.21

Number of Fisher Scoring iterations: 5

So the GLM fit seems good because all variables (including intercept) are significant with a
very low p-value. However the plot of residuals ∗ (see figure 2.2a) against fitted values † is quite
puzzling. Two distinct curves are shown: one for ill patients and the other for healthy ones.
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Figure 2.2: Analysis of residuals for binary regression

When categorizing the P variable, we lose information but we transform binary data into
binomial data. This makes the fit better on this aspect, see 2.2b. So for the same data, with
the same (significant) variable the two analyses of residuals lead to different conclusions. Hence
conclusions of the analysis of residuals must be taken with care.

∗. ε̂i = Yi − π̂i.
†. π̂i.
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Variable selection

From the normal asymptotic distribution of the estimator, we can derive confidence interval as
well as hypothesis test. Therefore a p-value is available for each coefficient of the regression, which
help us to keep only the most significant variable. However as removing one variable impacts the
significancy of other variables, it can be quite hard to find the optimal set of explanatory variables.
There are two ways to procede: either forward selection (i.e. from the null model add the most
significant variable at each step) or backward elimination (i.e. from the full model remove the least
significant variable at each step).

Another way to select significant explanatory variables is to use the analysis of deviance. It
consists in looking at the difference of deviance between two models, i.e. ratios of likelihood. Using
asymptotics distribution either chi-square of Fisher-Snedecor, a p-value can be used to remove or
to keep an explanatory variable.

2.2 Case studies

Before enjoying the study of the three datasets, let us remind the purpose of the study. We
want to study the individual behaviors relative premium change while taking into consideration
their fundamental features in order to derive an aggregate lapse function of the whole portfolio. As
we are concerned with lapse rate predictions, we are forced to use exogeneous variables.

Therefore, we need to exclude endogeneous variables from our analysis, typically the rebate
granted by the broker or a dummy variable indicating if the customer drops an optional cover.
Furthermore to avoid the underestimation of lapses, we need to remove records for which the
broker grants a rebate or for which the customer drops an optional cover: two actions implying a
price decrease.

Finally, as we focus on price, we also need to exclude the lapse by company to unbias our
predictions. Those lapse do not reveal a price sensitive behavior, since the customer did not have
a chance to renew its policy.

2.2.1 Portugal

Let us start with Portgual data, see 1.1.2 for details. For the GLM analysis, we have to remove
the lines with missing variables or the lines with aberrant variable value (for example, driver age
older than 100). In a second time, we need to look at the lapse reasons. In table 2.2, we put the
lapse reasons.

The lapse by company is clearly to remove. However, the default of payment must be taken
with care since it might represent an insured decision. We consider that it results from a too
high premium, the customer can’t afford. So we choose to keep those policies in our study (it was
checked with line managers). Finally, the lapse motive will not be used in the GLM regression
because this variable is endogeneous and so can not be known for prediction purposes.
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Lapse motive Renew Lapse

455615 0
Company decision 0 233
Insured decision 0 38134
Payment default 0 66596

Total 81.3 % 18.6 %

Table 2.2: Lapse motive

See 1.1.3 for a descriptive analysis of Portugal data.

GLM analysis

We investigate two models: the model with continuous variables and the model with categorical
variables. In appendix B.2.1, the full backward selection can be found for both approaches. We
put here only the final fitting result.

See below the summary table with coefficients values, standard errors, z-statistics and p-value.
To see the effect of one variable, say the driver age (age) we will plot additional graphics, because
as the variable is crossed with the price ratio, the interpretation is hard.

Call: glm(formula = did_lapse ˜ age_policy + priceratio * (gender + age + age_vehicle + premium_before),
family = binomial("logit"), data = workdata)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.3538 -0.6757 -0.6045 -0.5145 2.5791

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.7737301 0.1907634 -4.056 4.99e-05 ***
age_policy -0.0076121 0.0006013 -12.659 < 2e-16 ***
priceratio -0.4459493 0.1903878 -2.342 0.019164 *
genderMALE 0.7540763 0.1159249 6.505 7.78e-11 ***
age -0.0352652 0.0031278 -11.275 < 2e-16 ***
age_vehicle -0.0246664 0.0064425 -3.829 0.000129 ***
premium_before -0.0017755 0.0001777 -9.989 < 2e-16 ***
priceratio:genderMALE -0.6734653 0.1157564 -5.818 5.96e-09 ***
priceratio:age 0.0181797 0.0031110 5.844 5.11e-09 ***
priceratio:age_vehicle 0.0538313 0.0064235 8.380 < 2e-16 ***
priceratio:premium_before 0.0025015 0.0001790 13.973 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null deviance: 539837 on 56034 degrees of freedom
Residual deviance: 531382 on 56033 degrees of freedom - AIC: 53140

We also plot (but do not report) 1000 fitted probabilities against the price ratio (pi, π̂i)1≤i≤1000.
However there is no particular pattern, so it seems hard to explain the lapse just with the price
ratio variable.

We also test different link functions, but clog-log function did not converge, so the result is not
reported. In terms of residuals deviance, the gain is not big: the probit link function is the best
choice.
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Analysis of Deviance Table

Model 1: did_lapse ˜ age_policy + priceratio * (gender + age + age_vehicle + premium_before) - logit
Model 2: did_lapse ˜ age_policy + priceratio * (gender + age + age_vehicle + premium_before) - probit
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 560333 531382
2 560333 531339 0 43.354

Lapse rate prediction

As we are interested in deriving a portfolio elasticity based on individuals specificities, we
compute an average lapse probability function of the price ratio p:

π̂g,n(p) =
1
n

n∑
i=1

g−1
(
xTi β̂−p + zTi β̂+p × p

)
,

where β̂ = (β̂−p, β̂+p) is the fitted parameter ∗, xi price-independent explanatory variables, zi price-
dependent explanatory variables and g the link function. Beware, it is a functiont of the price ratio
p.

On the figure 2.3, we plot the average lapse function π̂g,n for two link functions. For a
global increase of 10% on the whole portfolio, the lapse rate could increase by 1.89 or 1.82 points
respectively for logit and probit link function. Therefore we have clearly a price elasticity below 1.
Those predictions seem unreliable.

Figure 2.3: Average lapse function for different link functions

We also plot the effect of a given explanatory variable on the average lapse function, see figure
B.7. Those plots emphasize the different behaviors in the portfolio, young vs. old drivers, male vs.
female or young vs. old policies.

∗. separated between coefficients for price-independent variable and price-dependent variable.
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We refine the GLM analysis by using the categorical data. Compared to the full model with
unsignificant variables, we observe that deviance residuals are better centered and less extreme in
absolute value with the final model.

Call: glm(formula = did_lapse ˜ agegroup3 + priceratio * (gender + agevehgroup) + priceratio:agepolgroup2,
family = binomial("logit"), data = workdata)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.4640 -0.6572 -0.6197 -0.5657 2.2263

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.140869 0.115413 -18.550 < 2e-16 ***
agegroup3(25,99] -0.399750 0.019230 -20.788 < 2e-16 ***
priceratio 0.929192 0.114767 8.096 5.67e-16 ***
genderMALE 0.625276 0.114278 5.472 4.46e-08 ***
agevehgroup(5,10] -0.788156 0.103377 -7.624 2.46e-14 ***
agevehgroup(10,15] -0.264146 0.117944 -2.240 0.02512 *
agevehgroup(15,99] -0.373172 0.126790 -2.943 0.00325 **
priceratio:genderMALE -0.576867 0.114071 -5.057 4.26e-07 ***
priceratio:agevehgroup(5,10] 0.960637 0.102957 9.331 < 2e-16 ***
priceratio:agevehgroup(10,15] 0.564691 0.117371 4.811 1.50e-06 ***
priceratio:agevehgroup(15,99] 0.722763 0.126233 5.726 1.03e-08 ***
priceratio:agepolgroup2(4,49] -0.234641 0.007087 -33.108 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null deviance: 539782 on 560267 degrees of freedom
Residual deviance: 536859 on 560256 degrees of freedom
AIC: 536883

We do not report the fit for the other two link functions, because results are similar to above.
Graphs to see the effect of one explanatory variable are put in appendix, figure B.8. Only for the
vehicle age, the shape of the predicted lapse function is really different between continuous and
categorical explanatory variables. The most unsensitive population are policies for young cars, but
as the car gets old, the insured lapses more and more (especially for 10-year-old cars and older).
Finally the effect of premium level paid last year by the client has the most important impact. As
we do not have the cover type, it is a very good proxy for it.

Sub-population study

A good and valuable output of the GLM analysis is that we can derive customer segmenta-
tions. By sorting individuals regarding their fitted lapse probabilites π̂i, we can group them into
homogeneous group. We make 7 groups:

1. people older than 60 year old, a policy age between 4 and 8 years and a last premium amount
less than 500 euros,

2. male between 35 and 60 years old with a policy age between 0 and 4 years,

3. female between 35 and 60 years old with a policy age between 0 and 4 years,

4. policies with premium amount above 1500 euros,

5. policies older than 8 years,

6. people between 20 and 35 years old,

7. people between 35 and 60 years old with a premium amount between 500 and 1500 euros.



2.2. CASE STUDIES 33

Then, to better see the heterogeneity between groups, we plot the central lapse rates (π̂g,n(1)) and
the “delta lapse rate” to a price incrase (∆ = π̂g,n(1.05)− π̂g,n(1)) ∗.

On the figure 2.4a, we can observe the big differences between the seven sub-population,
especially between young drivers and old drivers. However we are still thinking, we underestimate
the price elasticity: considering very high premium (blue point), 1.5 pts for a 5% increase seems
very little.
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Figure 2.4: Client behaviors and average behavior

To deal with this problem, we split the data according to their price ratio: a population
experiencing a price increase, those experiencing a price decrease. The fit summaries can be found
in appendix.

On figure 2.4b, one can observe the big differences between the two approaches: one GLM fit
for the whole portfolio vs. two GLM fits. Obviously, there is a break at a price ratio of 1, for
the black curve, and the slope is higher for a price increase rather than for a price decrease. This
conclusion is very informative on the market insurance, and is a strong difference to other types of
market.

In conclusion to this analysis, we must admit the price elasticity in non-life insurance is a
complex topic. We answer the basic questions on this topic, but many questions remain because
of the few data available. To further improve our understanding of the problem, we must have the
claim history and the market prices.

∗. the size of the circle corresponds to the proportion of the sub-population in the whole portfolio.
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2.2.2 Québec

Let us continue with Québec data, see 1.2.2 for details. For the GLM analysis, we have to
remove the lines with missing variables or the lines with aberrant variable value (for example,
vehicle age older than 50).

In a second time, we exclude endogeneous variable such as the indicator variable for a change of
wording by the insured and the indicator for a drop of cover (see the beginnning of section 2.2). To
unbias the GLM fit, we remove also those policies where an intervention of the broker is indicated.

GLM analysis

We first work on the 2007 dataset. In appendix B.2.2, the full backward selection of the
explanatory variables is available. Below, we only put a short summary of the GLM fit:

glm(formula = did_cancel ˜ prev_prem_group2 + pol_age_group2 + resp_claim_2 +
multi_veh_dsc + pricefactor * (house_pol + price_group2 + cover2) +
pricefactor:(drivage_group2 + veh_age_group3), family = binomial(), data = workdata)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.8569 -0.4280 -0.3379 -0.2525 3.0708

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.98228 0.22024 -13.541 < 2e-16 ***
prev_prem_group2(1e+03,2e+03] 0.29618 0.03021 9.803 < 2e-16 ***
prev_prem_group2(2e+03,Inf] 0.47842 0.09044 5.290 1.22e-07 ***
pol_age_group2(4,Inf] -0.32606 0.01769 -18.436 < 2e-16 ***
resp_claim_2Y 0.12788 0.04705 2.718 0.00657 **
multi_veh_dscY -0.27296 0.01865 -14.639 < 2e-16 ***
pricefactor 1.11083 0.23002 4.829 1.37e-06 ***
house_polY -1.25777 0.14541 -8.650 < 2e-16 ***
price_group2(15,25] -0.54633 0.21062 -2.594 0.00949 **
price_group2(25,99] -0.58014 0.22254 -2.607 0.00914 **
cover2TPL+opt 0.81110 0.14208 5.709 1.14e-08 ***
pricefactor:house_polY 0.36830 0.14671 2.510 0.01206 *
pricefactor:price_group2(15,25] 0.60226 0.21874 2.753 0.00590 **
pricefactor:price_group2(25,99] 0.69869 0.23060 3.030 0.00245 **
pricefactor:cover2TPL+opt -1.03533 0.14518 -7.131 9.95e-13 ***
pricefactor:drivage_group2(30,55] -0.22602 0.02424 -9.324 < 2e-16 ***
pricefactor:drivage_group2(55,99] -0.37122 0.02669 -13.910 < 2e-16 ***
pricefactor:veh_age_group3(5,Inf] 0.09327 0.02329 4.005 6.20e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null deviance: 118078 on 239927 degrees of freedom
Residual deviance: 113018 on 239910 degrees of freedom
AIC: 113054

Sub-population study

As in the previous sub-section, variable effect on the lapse is analyzed through the average lapse
function π̂g,n assessed for different groups, such young vs. old drivers.
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All the figures are plotted in appendix: figure B.9 and figure B.10. From them, we can
distinguish customer behaviors, summarised in the following table:

Sluggish customers Sensitive customers

TPL contracts, old policies All-risk cover, young policies
old drivers, no responsible claim young drivers, experienced a claim
cross selling house, multi-vehicle single contract, one vehicle

old car, low-value premium new car, high-value premium
low pricing group high pricing group

The analysis of the GLM fitted probabilities let us to identify segments of policies with similar
behaviors relative to price. The process of segmentation also includes marketing aspect, so the
conclusions are much more usable. We get the following segmentation:

(black) - young drivers with a low pricing group,

(blue) - young drivers with a high pricing group,

(red) - old drivers with full cross-selling (household and multi-vehicle),

(green) - old drivers with a household policy,

(yellow) - old drivers with a multi-vehicle discount,

(azure) - old drivers with no cross-selling,

(grey) - working class with all risk cover and responsible claims (in last 2 years),

(orange) - working class with all risk cover without responsible claims and young car,

(turquoise) - working class with all risk cover without responsible claims and old car,

(pink) - working class with third-part liability cover and possibly add-on cover.

On figure 2.5 below, we plot for each population the predicted central lapse rates and the delta
lapse rate (for a 5%-price increase).
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Figure 2.5: Customer behaviors
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Without surprises, the most price-sensitive segment are young drivers, especially those with a
high pricing group, i.e. with a valuable car. Among old drivers, there are big differences depending
if the customer has many policies in AXA. Finally the “working class” (between 30 and 55 years
old) cannot be well segmented, despite having a responsible claim has a significant impact on the
central lapse rate.

Note that there is a strong difference with the Portugal data on the effect of old vehicle. In
Portugal it is a factor of price-sensitiveness, while it has the opposite impact for Québec population.
This is explained mainly by the fact, Québec data, unlike Portugal data, does not contain any lapses
before renewal, in particular those customers who change vehicle and take the opportunity to shop
around for another insurer.

The segmentation seems intuitive but as for Portugal data, the value of the additional lapse rate
∆ are very low and so not very realistic. We split data between price increase and price decrease.
Unfortunately, fitted results are less realistic than the current model, see figure B.10 in appendix.

In the current subsection, we work only with the 2007 dataset. If we work other dataset (2004,
2005, 2006), we have generally similar conclusions: the same set of significant variables, the effect
of one variable on the lapse. We put all the regression summaries in appendix B.2.2 (one-variable
plots have been omitted since they are almost the sames).
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Figure 2.6: Heterogeneity of customer behaviors
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However, there is one big difference between the 2007 results and other results. The price
sensitiveness is much higher for other years. We can see it on figure 2.6 with results by populations.

As the time goes, the customers become less sensitive to price (increase) for all sub-populations
and lapse less. This is especially true for 2006 and 2007 (figures 2.6c, 2.6d). Furthermore, sub-
populations orange, turquoise, azure and grey stay pack together but moves from point (10%, 1pts)
to (8%, 0.5pts). The most decrease in price sensitiveness is for the subpopulation blue (i.e. young
drivers with high pricing group) going from (18%, 1.5pts) to (13%, 1pts).

We think a major reason for this phenomenon is the decreasing market trend at that time in
Québec province :

Year Market Premium Loss Ratio (%)

2004 619.14 57.71
2005 619.94 58.33
2006 604.41 59.64
2007 592.20 59.63

As all major insurers decrease their premium (in average), customers (especially those of AXA)
see their premium level decreasing. So, the market environment put the customer in a state of
“sluggishness”. This is reflected in figure 2.6.

We do not report here but we also try to use in the GLM regression prior explanatory variables,
say 2004 variables in the GLM regression of 2005. Unfortunately, it does not really improve the
model. In an attempt to take into account the dynamic, we fit a GLM three times a year, i.e. 12
fits. And then we try to model the GLM coefficients with time series. Again, it was not satisfactory.

GLM predictions vs. observed lapses The final test and challenge we can do with these data
and the GLM models is to try to predict next year lapses. That is to say we use the individual
lapse function

π̂(p) =
1
n

n∑
i=1

g−1
(
xTi β̂−p + zTi β̂+p × p

)
,

where β̂ = (β̂−p, β̂+p) is the fitted parameter ∗, xi price-independent explanatory variables, zi price-
dependent explanatory variables and g the logit function.

Assumed β̂ is calibrated on 2004 data, we compute π̂(p2005) for all the individuals of 2005
present in the 2004 data. To compare the fitted probabilities with the binary response of 2005, we
simply take the mean by sub-populations j ∈ {1, . . . , 10} : π̂j(p2005) vs. rj(2005).

In the table 2.3, we compare the predicted lapse rate and the observred lapse rate (σ(π̂) denotes
the standard error of π̂). Most of the time we overestimate the true lapse rate, e.g. population
grey. So we get a conservative picture of the lapses. Let us note for population blue, there is a kind
of lag on the lapse estimate. This suggest there is a dynamic of GLM parameters. Unfortunately,
we have a too few historic to verify this hypothesis with classic time series.

∗. separated between coefficients for price-independent variables and price-dependent variables.
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Pop. rj(2005) π̂j(p2005) σ(π̂j) rj(2006) π̂j(p2006) σ(π̂j) rj(2007) π̂j(p2007) σ(π̂j)

black 13.57 13.36 0.33 12.13 13.00 0.314 10.98 11.69 0.303
blue 16.11 17.12 0.456 12.75 16.07 0.413 10.68 13.42 0.394
red 3.30 3.58 0.106 3.11 3.99 0.112 2.45 3.22 0.0973

green 4.85 4.65 0.133 4.014 4.90 0.129 3.50 4.15 0.121
yellow 7.60 7.61 0.208 7.75 7.97 0.200 6.49 7.52 0.205

azure 9.66 9.70 0.238 9.44 9.79 0.227 8.49 9.55 0.240
grey 9.61 10.55 0.494 8.88 9.55 0.424 8.57 8.77 0.462

orange 10.06 10.11 0.225 7.96 10.02 0.207 6.73 7.96 0.182
turquoise 9.05 8.79 0.202 8.15 9.00 0.197 7.11 7.98 0.198

pink 8.32 8.35 0.203 7.61 8.45 0.205 6.32 7.58 0.198

2005 2006 2007

Table 2.3: Accuracy of GLM predicted lapse rate (%)

In conclusion to the Québec analysis, we see a good step further in understanding the price
elasticity in non-life insurance. The additional explanatory variables, we had compared to Portugal
data, really enhance the prediction of the lapse rates. However the lapse values seem still dubious,
despite our effort to identify distinct customer behaviors. Once we get the 10 sub-populations, we fit
a GLM on each segment, but the predictions were closed to the unique GLM approach. Futhermore,
the longer historic emphasizes a dynamic of price elasticity closely linked to the insurance market
cycle. So the next German dataset with market prices should improve further our understanding
of the problem.
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2.2.3 Germany

We finish this chapter with the Germany data, see 1.3.2 for details. Note that market data
are only available on TPL agent and TPL broker datasets. As for other datasets, we need to do
a cleaning process to remove missing or aberrant records. In the GLM analysis, we should only
consider exogeneous variables (see the beginning of section 2.2).

But excluding records where a rebate (ranging from 5% to 80% in some cases) is granted means
to remove two thirds of the dataset. . . This is not satisfactory. To convince us it is not the right
solution we fit a GLM without those records and a GLM with the full database (but without the
rebate variable), the predictions were not very different.

The final solution, we choose, is to keep the records with rebates but to always include the
rebate variable as explanatory variable in the GLM. We also need to take into account the granted
rebates in the predictions. So we force to a null rebate in the predictions.

At our disposal, we have quite a large (but not the whole) database with different channels and
cover types. Unless precised otherwise, the default dataset is the 2004 dataset. In table 2.4, we
put the relative portfolio size by channel distribution and by cover type.

TPL PC FC

Agent 11.104 20.324 30.026
Broker 5.155 9.573 11.728
Direct 2.625 5.284 4.176

Table 2.4: Proportions of portfolio by channel distribution and by cover type

Dataset split

The biggest part of policies are full comprehensive (FC) contracts sold through tied-agents
(30%) and then other distribution channels for that cover. To split or not to split, that is the
question?! Do we need (or not) to subdivide the 2008 dataset into the 9 nine subsets above before
fitting GLMs? We did some tests with different subdivisions of the dataset.

We report in table the average lapse prediction π̂(p) for three different values of price ratio
(p = 0.95, 1, 1.05) where π̂(p) is defined as

π̂(p) =
1
n

n∑
i=1

g−1
(
xTi β̂−p + zTi β̂+p × p

)
,

with xi’s and zi’s are explanatory variables. Note that zi’s might depend on the price ratio p, so
we need to update the covariate accordingly ∗.

∗. e.g. the diff2tech variable depends on p since it is the difference between the proposed premium and the
technical premium. We also force the rebate (one variable of the xi’s) to zero.
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In the following, we select by a backward approach the significant explanatory variables for
different datasets and report the prediction π̂’s.

Premium change -5% 0% +5% -5% 0% +5%

Agent 6.55 7.65 9.18 6.67 7.94 9.59
Broker 8.75 11.10 13.94 8.67 10.81 13.52
Direct 10.43 11.60 12.72 9.00 11.39 14.44

Channel One fit by channel One fit for all channels

Table 2.5: Predicted lapse rates for the TPL cover

On table 2.5, we can see that using the whole TPL dataset or the three subsets has a huge
impact on lapse rate predictions. There is no obvious orders between those predictions.

Premium change -5% 0% +5% -5% 0% +5%

TPL 10.43 11.05 12.76 10.89 11.52 12.10
PC 10.02 11.25 12.48 10.67 11.39 12.17
FC 11.94 13.01 14.16 12.94 12.97 13.03

Cover One fit by cover One fit for all covers

Table 2.6: Predicted lapse rates for the direct channel

On table 2.6, we observe that the predictions are quite close between the unique model for the
whole dataset and the three distinct models. But, the predictions for the three separated models
are higher than those for the unique model when considering a premium increase. Hence we are
tempted to conclude that separate GLMs are better.

The opposite is observed for the TPL cover, thus the predictions are probably underestimated.
However in table 2.5, we do not use the market data for the three-GLM approach. In table 2.7, we
put the results when using market data.

Premium change -5% 0% +5%

Agent 5.63 6.73 8.31
Broker NA NA NA
Direct 10.10 11.96 14.48

Table 2.7: Using market data

Those results are in line with the unique GLM approach of table 2.5. So in the following we will
consider a different GLM for the nine subpopulations. In appendix B.2.3, we put the regression
summaries for the nine regressions.
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Channel and cover effects

On figure 2.7, we plot the central lapse rates and the delta lapse rates for the nine lapse rates.
Unsurprisingly, broker and direct lines have the biggest lapse rates and the highest deltas. Moreover,
in terms of lapse levels, theses two liens are equivalent but in terms of price sensitiveness, the broker
deltas are clearly above.
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Figure 2.7: Comparison of distribution channels and cover types

Moreover, the better is the cover the lower is the price sensitiveness. When non tied-agent
channel, TPL contracts are the targets of very active customers, those that shop around the most.
But for tied-agent channel, the most price-sensitive population is PC contracts. As anticipated the
most sluggish population are customers with FC policies.

We try to split this population into 4 groups to see the deviations from the average behavior of
the FC agent black bubble. Four groups have been tested: (i) policies with no cross-sold products,
(ii) policies with cross-sold products and policyholder working in the public sector, (iii-iv) policies
with cross-sold products and policyholders working in private companies (splitting between “old”
and “young” policyholders). It reveals that most FC policies lapse differently (x-axis differentiation)
but do not react differently with respect to prices (y-axis differentiation).

Explanatory variables

In term of explanatory variables, we send the reader to the appendix B.2.3 for the regression
details. In summary, the most relevant explanatory variables across the nine regressions are the
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difference with technical premium (diff2tech), the policyholder age (polholderage) and the
number of AXA contracts in household (householdnbAXA).

Furthermore, when the database is sufficiently large, the region (region2), the claim number
(nbclaim0608percust, nbclaim0708percust and nbclaim08percust) and the bonus evo-
lution (bonusevol). Note that the market variables (diff2top10vip and diff2top10direct)
are also significant.

The table-figure 2.8 focuses on the effect of policyholder living region. We list the central lapse
rates and the deltas in table 2.8a for two distribution channels. Combining with the map (figure
2.8b), we see that state-cities such as Hamburg, Berlin have a higher lapse rates and deltas. This
can emphasize a different level of competition in big cities (than in rural areas) where it is easier
to see competitor offers.

Due to the small differences on lapse rates (around 13%) and deltas (around 3%) for the broker
channel, one can also conclude that brokers really do what they are pay for. The agent channel
appears more volatile both in terms of lapse levels and deltas, probably due to a different level of
competition in the German regions.
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Num Region Central rate Delta

1 Schleswig-H. 6.73 / 12.67 0.93 / 3.26
2 Hamburg 9.79 / 12.57 1.35 / 3.23
3 Niedersachsen 6.62 / 12.76 0.94 / 3.31
4 Bremen 8.92 / 13.46 1.27 / 3.32
5 Nordrhein-W. 8.03 / 13.28 1.11 / 3.28
6 Hessen 7.21 / 13.2 1.04 / 3.37
7 Rheinland-P. 6.52 / 12.76 0.93 / 3.32
8 Baden-W. 7.01 / 13.25 1.03 / 3.46

9 Bayern 6.69 / 13.18 1.03 / 3.52
10 Saarland 7.69 / 12.6 1.45 / 3.39
11 Berlin 8.91 / 12.74 1.11 / 3.11
12 Brandenburg 8.70 / 12.27 1.32 / 3.29
13 Mecklenburg-V. 8.90 / 12.7 1.42 / 3.40
14 Sachsen-A. 9.62 / 12.59 1.55 / 3.38
15 Sachsen 9.70 / 12.66 1.49 / 3.32
16 Thüringen 9.42 / 12.23 1.45 / 3.33

(a) Statistics for TPL agent/broker

(b) Map of Germany

Figure 2.8: Customer behaviors in the German market

Asymetric information and adverse selection testing

Definition Asymmetry of information occurs when two agents (e.g. a buyer and a seller of
insurance policies) do not have access to the same information. Thus one of agents takes advantage
additional information in the deal. Typically, two problems can result from this information
asymmetry: adverse selection and moral hazard. In insurance context, moral hazard can be
observed in certain cases for high risk individuals, who will take more risks than if they were
not insured.

Adverse selection is a different situation where the buyer of insurance coverage has a better
understanding and knowledge of the risk he will transfer to the insurer than the insurer. So the
buyer would choose a deductible according to its own risk. Hence high-risk individuals will have
the tendency to chooser lower deductibles.

(a) Statistics for TPL agent/broker (b) Map of Germany

Figure 2.8: Customer behaviors in the German market

The lapse is also higher in eastern Germany (states 11 to 15) than in western Germany (states
5 to 9). We do not have an answer to explain this phenomenon except that AXA might be cheaper
than competitors (especially Allianz and HUK) in those states.
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Fitted vs. observed values

As we want to challenge the GLM approach, we compare the observed lapse rates by region r
and the average of the fitted lapse rates for region r. Note that the average fitted lapse rate and
the predicted central rates are different concepts: the first one is defined as

π̃ =
1
n

n∑
i=1

g−1
(
xTi β̂−p + zTi β̂+p × pi

)
,

while the second one is

π̂(1) =
1
n

n∑
i=1

g−1
(
xTi β̂−p + zTi β̂+p × 1

)
.

In table 2.8, we report the observed lapse rates πr and the fitted lapse rates π̃r. For the agent
channel, the fitted values are close to the observed ones. But this is not the case for the broker and
the direct channel: fitted values are very poor.

Num. Region Observed Fitted Observed Fitted Observed Fitted

1 Schleswig-H. 6.53 6.67 8.93 10.08 10.79 11.12
2 Hamburg 8.60 9.65 9.27 11.02 8.00 10.98
3 Niedersachsen 6.85 6.61 12.66 11.12 11.49 11.21
4 Bremen 7.32 8.77 10.80 12.21 11.18 11.76
5 Nordrhein-W. 8.08 8.11 11.34 11.67 13.03 11.27
6 Hessen 6.80 7.20 11.03 11.63 11.63 10.97
7 Rheinland-P. 6.72 6.53 11.14 11.00 10.39 10.93
8 Baden-W. 6.91 7.02 10.51 10.53 10.28 11.24

9 Bayern 6.77 6.75 10.45 10.70 11.36 12.12
10 Saarland 9.67 9.74 10.57 10.24 11.15 12.16
11 Berlin 9.44 8.98 12.44 11.7 13.16 12.24
12 Brandenburg 9.25 8.73 14.04 10.98 13.37 13.03
13 Mecklenburg-V. 8.24 8.94 12.52 12.79 13.6 13.98
14 Sachsen-A. 9.84 9.68 15.1 13.05 16.17 13.54
15 Sachsen 9.13 9.72 12.81 13.19 15.37 14.07
16 Thüringen 9.41 9.47 13.12 12.61 12.78 13.74

Agent channel Broker channel Direct channel

Table 2.8: Lapse rates by region for TPL cover

We suspect that the gap of significant explanatory variables between the agent channel and
other channels explain the difference. And there are few significant variables for the broker channel,
because the datasets are small.

This is confirmed by the table B.30 (in appendix B.2.3), which contains observed-fitted lapse
rates for FC cover. The fitted lapse rates are in line with the observed lapse rates for all channels.
There is no wrong fitted lapse rates for broker and direct channels as there are in table 2.8.
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Asymetric information and adverse selection testing

Definition Asymmetry of information occurs when two agents (e.g. a buyer and a seller of
insurance policies) do not have access to the same information. Thus one of agents takes advantage
of additional information in the deal. Typically, two problems can result from this information
asymmetry: adverse selection and moral hazard. In insurance context, moral hazard can be
observed in certain cases for high risk individuals, who will take more risks than if they were
not insured.

Adverse selection is a different situation where the buyer of insurance coverage has a better
understanding and knowledge of the risk he will transfer to the insurer than the insurer. So the
buyer would choose a deductible according to its own risk. Hence high-risk individuals will have
the tendency to choose lower deductibles.

The topic is of interest in customer behaviors, since a premium increase in hard market cycle
phase (i.e. an increasing premium trend) can lead to higher loss ratio. Indeed if we brutally increase
the price for all the policies by 10%, only high-risk individuals will renew their contracts (in an
extreme case). Therefore the claim cost will increase per unit of sold insurance cover.

Deductible model In this report, we follow the framework of Dionne et al. (2001), which uses
GLMs to test the evidence of adverse selection ∗. The approach is derived from the pioneer work
of Rothschild & Stiglitz (1976), who models the insurance market with individuals choosing a
“menu” (a couple of price and deductible) from the insurer offer set. Within this model, high-risk
individuals choose contracts with more comprehensive coverage.

With this mind, Dionne et al. (2001) want to quantify the asymmetry of information benefic
to the insured. To test this effect, we must verify the independence of between the consumer
(deductible) choice and the endogeneous variables Y such as the observed claim number. Let Z be
the deductible choice (an univariate discrete variable in {0, 1, . . . ,K}).

Z is modelled with an ordered logit model.

P (Zi ≤ k/Xi, Yi) = g(θk +XT
i β + Y T

i γ),

for individual i and deductible k, with g a distribution function (typically the logistic distribution)
and Xi exogeneous explanatory variables as opposed to endegeneous variables Yi. The parameters
of this model equation are β and γ, the regression coefficients and θk the treshold parameter.

The treshold parameter is linked with the response variable Z by the equation

Z = k ⇔ θk−1 < U ≤ θk,

where U is a latent variable. So the trick to go from a binary model to a polytomous model is to
have different intercept coefficients θk’s for the different categorical value k.

∗. Similar works on this topic also consider the GLMs, see Chiappori & Salanié (2000) and Dardanoni & Donni
(2008).
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Alternative models could be multinomial models, (see, e.g., Fahrmeir & Tutz (1994)) where Z
would be a multivariate binary vectors. In this case, the probability are modelled by

P (Zi = ek/Xi, Yi) = πk

where ek is the unitary vector (0, . . . , 0, 1, 0, . . . , 0) ∈ RK with a one at the k position. So there is
vector of probabilities (π1, . . . , πK) linked to a linear predictor XT

i β+Y T
i γ to estimate rather than

multiple intercepts.

On explanatory variables To avoid drawing wrong conclusions about the adverse selection,
Dionne et al. (2001) suggest to have the following variables into the endogeneous part Y :

– the observed number of claims,
– the expected number of claims,

where the expected number of claims is computed with a GLM and a Poisson or a quasi-Poisson
family (see table 2.1).

In the application, many exogeneous explanatory variables will be tested for X, including the
policyholder age, the vehicle age, the car class, the bonus-malus SF and the bonus evolution.

Application We test the information asymmetry on two datasets: FC agent and FC broker sets.
Let us note that we cannot test it on TPL covers, since there is no deductible for this cover. We
process in two steps, first we fit the deductible regression and then use the deductible probabilities
in the lapse regression.

The numerical applications reveal that it is more relevant to regroup some deductible values
which are too few in the dataset. Typically, the deductible is valued in {0, 150, 300, 500, 600, 1000,
2000, 2500}. As 300 euros is the standard deductible, very high deductibles are rarely chosen. So
we regroup deductible values greater than 500 together, see table 2.9. Smaller deductible values
might reveal high-risk individuals, so we decide to keep those values.

Deductible (e) 0 150 300 500 0 150 300 500

Proportion (%) 5.17 10.29 70.85 13.68 4.78 7.85 68.21 17.46

Agent channel Broker channel

Table 2.9: Frequency table for FC deductibles values

In appendix B.2.3 , we put the regression summaries of the claim number and the deductible
choice. The main significant variables for the claim number regression are the policyholder age, the
difference between the driver and the policyholder, the SF class for FC cover.

Note that the intercept coefficients θk are denoted by y>=150, y>=300 and y>=500 in the
summary. While for the deductible regresion, the main significant variables are the policyholder
age, the SF class for FC cover and the estimated claim number coming from the GLM regression
(i.e. fitted values of the first regression).
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Looking at the coefficient p-values of the deductible regression, we can detect the presence
of information asymmetry if the observed claim number is significant (at a 5% level). So we
observe that this variable is significant for the FC agent dataset. However, the coefficient sign
is positive, which implies that policies experiencing the highest number of claims are those with
highest deductibles. This is a little counter-intuitive. However the sign of the expected claim
number is negative, so it is hard to draw solid conclusions.

For the FC broker dataset, both coefficients have a negative sign, but the observed claim number
is not significant. So we remove this variable for the following analysis. Nevertheless, we will use
the deductible choice probability in the lapse regression for both channels.

From this analysis, we get the individual deductible probability P (Zi = k) with k = {0, 150,
300, 500}. As the purpose of information asymmetry testing is to see a non-standard behavior of the
customers. We will use as explanatory variables the following probabilities P (Zi = 0), P (Zi = 150)
and P (Zi = 500) in the lapse regression.

In table 2.10, we put the overall lapse rate predictions. At this aggregate level, taking into
account the information asymmetry is not very convincing. The difference between the base and
the “enhanced” approaches is very small.

Premium change 0% +5% 0% +5%

Base fit 6.274 6.675 12.853 16.132
With deduc. prob. 6.268 6.666 12.911 16.193

Agent channel Broker channel

Table 2.10: Overall lapse predictions - Asymmetry of information impact

From the Germany analysis, we conclude that having the market variable to model insurance
lapse deeply increases the accuracy of the lapse rate prediction. And in some cases (such as direct
channel), it can unbias the original predictions. The lapse values seem correct for non tied-agent
segments, but still remain underestimated for the tied-agent channel. For the Germany data, we
do not spend time to identify customer segment, we only look at the region segment. But one can
identify customer segments using the significant explanatory variables. Finally, we test the use of
information asymmetry, but it proves to be inefficient at our aggregate output level.
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2.3 Pros and cons of the GLM methodology

This section summarizes the advantages and the drawbacks of the GLM methodology when
modelling lapse rates in non-life insurance.

2.3.1 Advantages

GLM is a classic and well-known method in actuarial science. This fact motivates our use
to model lapse rate. Since it is a classic, fitting method and variable selection use state-of-art
algorithms. So there is absolutely no problem in applying GLMs for daily use and estimation are
also robust.

The goal of this memoir is to estimate an aggregate lapse rate curve function of the price ratio,
which takes into account the individual characteristics of each policies of the portfolio. The GLM
methodology fulfills this objective. Furthermore, using the predicted lapse rate values of GLMs, it
is easy to identify customer segments, which react very differently to premium changes.

Finally, the back-fit of the GLMs on the identified population is good. So at an aggregate
level or a customer segment, the GLM methodology provides a fair estimate of lapse rate and price
sensitiveness for reasonable premium changes. But at a policy level, we think the predictions should
be treated carefully.

2.3.2 Drawbacks

The GLM lapse rate predictions strongly depends on the data, so if the database present a
small range of premium change, the predictions will be reliable only for a relatively small range of
price change. We think, for high price change, the delta lapse rates are underestimated.

Moreover, as seen with the Québec data, the GLM follows the market cycle dynamic, i.e. in
a decreasing trend, the lapse rate level decreases despite the customers do not change. It is not
surprising since the GLM is a static setting which estimates the spot price elasticity. We also notice
that the standard errors seem too small.

Despite some efforts to catch the dynamics, a too short historic renders the use of time serie
modelling impossible. But we think this is a first step to model the price elasticity dynamic.

Finally, on the data we have, the use of information asymmetry testing does not reveal to be
very successful. At the aggregate level, it does not provide new insight on our topic. But it will
probably be useful at individual level for pricing and customer segmentation.





Chapter 3

Generalized Additive Models

The Generalized Additive Models (GAM) were introduced in the 90’s by Hastie & Tibshirani
(1990) by unifying the generalized linear models and additive models. So the generalized additive
models combines two flexible and powerful methods: (i) the exponential family which can deal
with many distribution for the response variable and (ii) additive models which relax the linearity
assumption of the predictor. This chapter is divided into three sections: (i) model presentation,
(ii) case studies and (iii) conclusions.

3.1 Model presentation

In this section, we present the Generalized Additive Models in two steps: from linear to additive
models and then from additive to generalized additive models. Smoothing and fitting algorithms
are then briefly presented. This section is divided into two parts: (i) theoretical description of
GAMs, (ii) explanations on binary models and model selection.

3.1.1 Theoretical presentation

From linear to generalized additive models

Assuming observations Xi and response variables Yi are i.i.d. random variables having the
same distribution of generic random variables X and Y respectively. In a linear model, the model
equation is

Y = XΘ + E
where Y as always stands for the response variable, X the design matrix and E the random noise.
The parameter vector Θ has an easy interpretation, but it is not the most flexible model to model
the relation between the response and the explanatory variables. One candidate to extend the
linear model is the additive models defined by

Y = α+
p∑
j=1

fj(Xj) + E ,

49
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with fj smooth function of the jth explanatory variable Xj and E is assumed to be a centered
random variable with variance σ2.

The extension to Generalized Additive Models (GAM) is very similar to the previous chapter.
A GAM is characterized by three components:

1. a random component: Yi follows a distribution of the exponential family Fexp(θi, φi, a, b, c) ∗,
2. a systematic component: the covariate vector Xi produces a linear predictor ηi = α +∑p

j=1 fj(Xij),

3. a link function g : R 7→ S which is monotone, differentiable and inversible, such that E(Yi) =
g−1(ηi),

for i ∈ {1, . . . , n}, where θi is the shape parameter, φi the dispersion parameter, a, b, c three
functions (characterizing the distribution) and fj ’s smooth functions.

Note that the linear model (and GLM) is a special case of additive model (and GAM) with
fj(x) = βjx. But much more complicated function can be used. The next subsection presents
possible smooth functions we can use for fj .

Smoothing for univariate data

In this sub-section, we present briefly some classic smoothing procedures. Probably the simplest
method to get a smooth function is to regress a polynom on the whole data. Assuming observations
are denoted by x1, . . . , xn and y1, . . . , yn, a multiple regression model

Y = α0 + α1X + · · ·+ αpX
p,

does the job. Let us work on the cars data containing braking distances of a vehicle for different
speeds. On the figure 3.1, we plot the fitted values for p = 1, 2, 3 †

Using f(x) =
∑

i αix
i is clearly not flexible and a better tool has to be found. One way to be

less rigide in the smooth function is to subdivide the interval [min(x),max(x)] into K segments.
And then we can compute the average of the response variable Y on each segment [ck, ck+1[. This
is called the bin smoother in the literature. As shown on Hastie & Tibshirani (1990) figure 2.1,
this smoother is rather unsmooth.

Another way to find a smooth value at x, we can use points about x, in a symmetric neighbor-
hood NS(x). Typically, we use the k nearest point at the left and k nearest at the right of x to
compute the average of yi’s. We have

s(y|x) =
1

CardNS(x)

∑
i∈NS(x)

yi,

where the cardinal CardNS(x) does not necessarily equal to 2k + 1 if x is near the boundaries.
Again we do not show the result and refers the reader to Hastie & Tibshirani (1990) figure 2.1.
This method, called the running mean, takes into account better the specificities of the data.
However we lose the smoothness of previous approches.

∗. See appendix A.1
†. The intercept α0 was removed to avoid predicting non null values for a null speed.
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Figure 3.1: Polynom regression

An extension of this approach is to fit the linear model y = µ+ αx on the points (xi, yi) in the
neighborhood (for i ∈ NS(x)). That is to say we have a serie of intercepts µ and slopes α for all
observations. We called this method the running line, which generalizes the running mean, where
α is forced to 0.

Another enhancement is to weight the points in the regression (for xi) inversely relative to the
distance to xi. Generally we use the tricube weight function

w(z) = (1− |z|3)311|z|<1.

So the weight for xj when computing the smooth value of xi is w(zj) with zj = |xi−xj |
b and b the

bandwith. Introduced by Cleveland (1979), this method is known as LOcally WEigthed Smoothing
Scatterplots (LOWESS). Other weight function can be used as long as it is a symmetric, decreasing
from 0, strictly positive on ]− 1, 1[ and null elsewhere.

Summarising the LOWESS approach, we have w a weight function, d the degree of polynoms
(1 for running line, 0 for running mean), f the span defined as the proportion of points to use in
the regression ∗. On the figure 3.2, we plot different LOWESS methods for 2 spans. Clearly the
righthand side plot is smoother than the lefthand one. For a given span, as one can expected the
running mean method is more robust, unlike the running square which goes up and down easily.

A popular method for smoothing is the Kernel smoothing. Choosing a Kernel function k, the
associated smoother is

s(y|x) =
∑n

i=1 k
(
x−xi
b

)
yi∑n

i=1 k
(
x−xi
b

) ,

where k denotes the Kernel function, similar to a weight function and b the bandwidth.

∗. closely linked to the bandwidth.
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Figure 3.2: LOWESS

As suggested in Venables & Ripley (2002), Kernel smoothing can be seen as a local weighted
running mean approach. However, the power of the Kernel approach is to use different Kernel
functions. Common Kernel functions are the standard normal density function or the Epanechnikov
function (a bisquare function).
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(a) Kernel smoothing
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Figure 3.3: Kernel and B-spline smoothing

As you can see on figure 3.3a, not surprisingly increasing the bandwidth increases the smooth-
ness of the fitted curve.
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The last and recent tool to fit a smooth curve is to use spline functions. The approach consists
in splitting the interval in K knots (t1, . . . , tK) and fit a polynom on each segment, while imposing
smooth conditions at the knots. One intuitive spline function is the polynom of third degree, since
the smooth conditions (f ′ = f ′′ = 0) are easily written done.

A crucial fact is that using K polynoms can be represented by a banded matrix, a band for
each segment. Using the matrix representation emphasizes that we use a basis of functions to
approximate the function f . Many polynomial basis can be used (e.g. Bernstein polynoms for
Bézier curves).

One popular basis is the B-spline basis. They are defined recursively starting polynoms of
degree 0 defined by Bi,0(t) = 11ti≤t<ti+1

∗ and higher order Bi,d obtained by convex combination
(with ti’s increasing knots) of (Bi,d−1)i’s. To fit the data, we then minimize a penalized least square
and use some quantiles as the knots (for instance quartiles).

On the figure 3.3b, we use the quantiles 20%, 40%, 60% and 80% as interior knots and three
different degrees. As one can expect, B-splines with high degrees better fit the data. To conclude
with this smoother presentation, all smoothers presented here are linear smoothers, since they can
be written by ŷ = Sy with S the smoother matrix (depending on observations x).

Fitting algorithms for GAM

In the previous subsection, we present a long list of smooth procedures. But we do not explain
how to use it in an additive model. All smoothers have a smoothing parameter λ, (the polynom
degree, the bandwidth or the span). By penalized least square we can fit a smoother Sλ for a
given λ. A first problem is how to choose a criterion on which to optimize λ (hence to have an
automatic selection). A second problem is to find a reliable estimate of the parameters α and
smooths coefficients given a smoothing value λ.

We take the problem in the reverse way. Assuming a value of λ, we present a fitting method
to calibre the model. In Hastie & Tibshirani (1990), they propose a local averaging generalized
Fisher scoring method. However Wood (2008) propose a most recent and reliable method: a PIRLS
method.

The Penalized Iteratively Reweighted Least Square method (PIRLS) is unsurprisingly an iter-
ative method aims to minimize the penalized deviance

D(f1, . . . , fp) +
p∑
j=1

λj

∫
f ′′j (xj)2dxj .

The second term penalizes the wiggly behavior of smooth functions. Given a set of basis functions
bjk, we can express fj as fj(x) =

∑Kj
k=1 βjkbjk(x). So the GAM can be represented as a GLM

with etai = X̃iβ with X̃i containing the basis functions evaluated at the covariate values and β
containing α and the βjk’s.

∗. See theorem 1.5 of Steihaug (2007).
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Hence the penalized deviance can be rewritten as

D̃(β) = D(β) +
∑
j

λjβ
TSjβ,

where Sj contains known coefficients and zero’s and D(β) the deviance defined the “GLM” version
of the GAM. The PIRLS has the following scheme

– Initiate µ0
i typically with yi.

– Iterate while no change in deviance D̃(βk)
– compute the weight wki = 1

g′(µk−1
i )

√
ωi

V (µk−1
i )

,

– evaluate the pseudo data zki = g′(µk−1
i )(yi − µk−1

i ) + ηk−1
i with ηk−1

i = g(µk−1
i ),

– minimize over β the least square objective

||yW (z − X̃β)||2y +
∑
j

λjβ
TSjβ,

with W = diag(w1, . . . , wn). We get βk.
– prepare next estimate with ηk = X̃βk and µi = g−1(ηki ).

Now we have a method PIRLS that for a λ gives the corresponding β̂(λ). We must find a
criterion to select the vector λ. In the literature, there are many criteria to select the smoothing
parameters:

– Restricted Maximum Likelihood REML,
– Maximum Likelihood ML,
– Generalized Cross Validation GCV,
– Generalized Approximate Cross Validation GACV.

These methods defer from one another if the smoothing parameter is treated as a random effect
or not. So we either maximize a quantity linked to the likelihood (ML/REML) or minimize a
prediction error (GCV/GACV).

Expressions of log-likelihoods ML and REML can be found in Wood (2010) with equation (4)
and (5). Their expression use the deviance of the model, the satured deviance and a third-term
penalizing the wiggliness of the smooth function fj . The optimization procedure consists in using
a Newton method for the optimization of the parameter λ where in each iteration a PIRLS is used
(to find β(λ)). So this is a nested optimization where outer iteration optimizes over λ and the inner
iterations optimized over β ∗.

As already said, an alternative approach seeks in minimizing the prediction error. The predictive
error seems to be counter-intuitive but the usual justification is a leave-one-out argument. The
leave-one-out consists in computing n deviances D−i where D−i is the deviance without the ith
observation. The deviance cross validation is just a sum of the D−i’s. In practice we do not
fit n times the model (clearly too expensive!) but an approximate is used to compute the GCV
or GACV (see Wood (2008) for details). Then again, a nested optimization procedure using the
PIRLS scheme is used.

∗. See page 8 of Wood (2010) for the overview of the algorithm and the rest of the paper for details on the
computation of the objective, the gradient and the Hessian functions.
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On figure 3.4, we plot smooth functions for the cars dara with different smoothing selection
and basis functions.
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Figure 3.4: Additive model tests

For the REML criterion, the function basis has no influence while the GCV leads to dramatic
different estimation of the smooth function f . Let us note that the estimated degrees of freedom
are also very closed, except for the “top-left” method. In the following, we will use the REML
criterion which seems more stable. It is also the recommended criterion by S. Wood.

3.1.2 Binary regression and model selection

As for GLMs, the binary regression means that we assume Yi follows a Bernoulli distribution
B(πi). So we have the model equation is

πi = g−1(ηi),

where g is the link function and ηi the predictor. Unlike the GLM where the predictor was linear,
for GAMs the predictor is a sum of smooth functions:

α0 +
p∑
j=1

fj(Xj)y or α0 +
p1∑
i=1

αiXi +
p2∑
j=1

fj(Xj),

the latter being a semi-parametric approach.
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As suggested in Hastie & Tibshirani (1995), the purpose to use linear terms can be motivated to
avoid too much smooth terms which can noise one another. For instance, if a covariate represents
the date or the time of events, it is “often” better to consider it as an increasing or decreasing trend
with a single parameter αi.

As for GLMs, we are able to compute confidence intervals using the Gaussian asymptotic
approximation of the estimators. So the variable selection for GAMs is similar to those of GLMs.
The true improvement is the higher degree of flexibility to model the effect of one explanatory
variables on the response.

The procedure for variable selection is similar to the backward approach of GLMs, but taking
into account a term has to be dropped only if no smooth function of it and no linear function of it
is relevant. So a poor significance of a variable modelled by a smooth function might be significant
when modelled by a single linear term.

We will use the rules of Wood (2001) to drop a term:
(a) Is the estimated degrees of freedom for the term close to 1?
(b) Does the plotted confidence interval band for the term include zero everywhere?
(c) Does the GCV score drop (or the REML score jump) when the term is dropped?

If the answer is “yes” to all questions (a, b, c), then we should drop the term. If only question (a)
answer is “yes”, then we should try a linear term. Otherwise there is no general rule to apply. For
all the computation of GAM, we will use the recommended mgcv package written by S. Wood.
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3.2 Case studies

This section focuses on the GAM analysis of the three datasets.

3.2.1 Portugal

The GLM analysis of Portugal data was an attempt to model price elasticity with a very limited
dataset. Let us see what the generalized additive model can explain what the GLM cannot. We
recall we have only few variables on the Portugal dataset, namely price ratio, driver age, policy
age, the vehicle age and the last-year premium ∗.

GAM analysis

First we estimate a GAM by modelling all the terms by a smooth function. And then we apply
the rules of previous section to remove, to linearize or to categorize the explanatory variables.
Between models, we keep the model with the highest likelihood (i.e. the minimum of the REML
score).

The final model is summarized below, while other fits can be found in the appendix B.3.1.

Family: binomial - Link function: logit

Formula: did_lapse ˜ s(age) + s(age_vehicle) + agepolgroup + s(priceratio, premium_before)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.432685 0.005291 -270.75 <2e-16 ***
agepolgroup(4,8] -0.167088 0.008709 -19.19 <2e-16 ***
agepolgroup(8,12] -0.191395 0.010606 -18.05 <2e-16 ***
agepolgroup(12,49] -0.172698 0.013638 -12.66 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(age) 8.213 8.797 2921 <2e-16 ***
s(age_vehicle) 7.927 8.508 4343 <2e-16 ***
s(priceratio,premium_before) 28.337 28.961 7581 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.0272 Deviance explained = 2.78%
REML score = 2.6134e+05 Scale est. = 1 n = 557693

The summary is composed of two parts: a part for the linear terms (Parametric coefficients)
and another for smooth terms (Approximate significance of smooth terms).

∗. the gender was partially tested and then rejected because it is not significant.
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As we can see with the term, the only term that we retain to link with price ratio is the last
year premium (premium before). The term s(priceratio,premium before) corresponds
to a bivariate smooth function f(x, y). Note that this term has a high estimate degree of freedoms
(28.337) compared to univariate smooth function (degree around 8). Other variables such as the
driver age (age) if linked with the price ratio do not add higher significance.

On the following figures 3.5a and 3.5b, we plot the smooth functions for the driver age and the
vehicle age. Beware the y-axis corresponds to the linear predictor scale. The solid line corresponds
to the estimated function, while the shaded area is the standard error bandwidth around the
smooth function. The plots show that the link between the lapse and those variables are not linear.
The corresponding GLM approach would consist to categorize the variable so we approximate the
smooth function by segments.

(a) Vehicle age (b) Driver age

Figure 3.5: Smooth function plots

The plot of the smooth function for the price ratio and the last year premium reveals that the
non-linear relationship between the response variable and the explanatory variables, see figure 3.6.

However for a given premium level, the function is linear. We try to model the term f(x, y) where
x corresponds to the price ratio and y to the premium level, by a simpler term xf(y). Unfortunately,
despite faster to compute, the model was worse in terms of REML score and deviance explained.
The fitted probabilities were also quite different, so we keep the bivariate smooth function.

A first comparison with the GLM approach is the average predicted lapse function defined as

π̂g,n(p) =
1
n

n∑
i=1

g−1

xTi β̂ +
d∑
j=1

f̂j(zi)

 ,

where xi denotes the categorical variables (modelled linearly), zi the continous variables modelled
by a smooth function and g the link function (i.e. logit).
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Figure 3.6: Bivariate smooth function for price-linked variables

On the figure 3.7 below, we can see the difference between the GLM and the GAM approaches.
The average lapse function is steeper with GAMs. The central lapse rates (for price ratio 1) are
roughly the same around 18.7%.
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Figure 3.7: GAM vs. GLM

In a second time, we can compare the effect of explanatory variables on the lapse. All the
graphs of one-variable effect have been put in appendix B.11. We observe that the explanatory
variables have the same effect, such as the younger is the driver the more he lapses, etc. . .
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Sub-population study

Finally we compare the behavior of customers by the populations we identify in the previous
chapter. We recall here the populations:

1. people older than 60 year old, a policy age between 4 and 8 years and a last premium amount
less than 500 euros,

2. male between 35 and 60 years old with a policy age between 0 and 4 years,

3. female between 35 and 60 years old with a policy age between 0 and 4 years,

4. policies with premium amount above 1500 euros,

5. policies older than 8 years,

6. people between 20 and 35 years old,

7. people between 35 and 60 years old with a premium amount between 500 and 1500 euros.

Then we plot for all populations the predicted lapse rate against the “delta lapse rate” a price
increase (5%) ∗ on figure 3.8. Comparing figure 3.8 with figure 2.4a, we note the delta lapse rates
are higher for all population except high-value customers (in blue). However as for GLM, we think
we underestimate the price-sensitivity of customers.
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Figure 3.8: Client behaviors

In conclusion to the GAM analysis, we can say that additive modelling let us to model complex
relationship within explanatory variables and between explanatory variables and the response
variable. Despite this gain in modelling, the Portugal dataset has too few variables in order to
have a very good predictive power.

∗. the size of the circle corresponds to the proportion of the sub-population in the whole portfolio.
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3.2.2 Québec

The GLM analysis of Québec data reveals that many explanatory variables impact the choice
of the customer to lapse or to renew. The central assumption of linearity contraints a bit the
relationship between the explanatory variables and the response variable. We will test the potential
benefit to use a generalized additive model. Let us recall that the main drawback of the Québec
GLM analysis is an uncapicity to take into account the dynamic aspect. However the GAM do not
add solution in this direction.

GAM analysis

Nevertheless, we carry out the GAM analysis for Québec data. First we estimate a GAM by
modelling all the terms by a smooth function. And then we apply the rules of previous section to
remove, to linearize or to categorize the explanatory variables, as in the Portugal analysis. We put
below the final model, but the full models with and without price ratio interaction can be found in
appendix B.3.2.

Family: binomial - Link function: logit

Formula:
did_cancel ˜ claim_1 + house_pol + pricefactor:(multi_veh_dsc + cover)

+ prev_prem_group2 + pricefactor * (veh_age_group4) + s(pol_age) + s(driv_age)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.36024 0.11690 -37.299 < 2e-16 ***
claim_1 -0.08108 0.02725 -2.975 0.00293 **
house_polY -0.89234 0.02195 -40.645 < 2e-16 ***
prev_prem_group2(1e+03,2e+03] 0.24977 0.03065 8.151 3.62e-16 ***
prev_prem_group2(2e+03,Inf] 0.48359 0.09285 5.208 1.90e-07 ***
pricefactor 2.26238 0.11945 18.940 < 2e-16 ***
veh_age_group4(10,15] 1.12287 0.23519 4.774 1.80e-06 ***
veh_age_group4(15,Inf] 1.79452 0.26276 6.830 8.52e-12 ***
pricefactor:multi_veh_dscY -0.28079 0.02065 -13.597 < 2e-16 ***
pricefactor:coverTPL -0.21333 0.03116 -6.846 7.59e-12 ***
pricefactor:coverTPL+opt -0.17159 0.02457 -6.983 2.90e-12 ***
pricefactor:veh_age_group4(10,15] -1.17859 0.24348 -4.841 1.29e-06 ***
pricefactor:veh_age_group4(15,Inf] -1.85951 0.27591 -6.740 1.59e-11 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(pol_age) 6.951 8.026 315.9 <2e-16 ***
s(driv_age) 8.643 8.957 320.9 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.0219 Deviance explained = 4.21%
REML score = 49772 Scale est. = 1 n = 202919
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Let us note that the categorical variable such as the cover type cannot be smoothed, so compared
to Portugal many variables of the Québec dataset must be modelled linearly. As we can see with
the summary, we keep no term smoothed with the price ratio. However, some linear terms are
crossed with price ratio, e.g. cover.

We plot on figures 3.9a and 3.9b. The policy age and the driver age are clearly not linear, which
justifies the additive approach. Note that we try the model where the policy age and the driver
age are modelled jointly by a smooth function. However in addition to being long to fit, the model
was worse in terms of likelihood.

(a) Policy age (b) Driver age

Figure 3.9: Smooth function plots

Now let us take a look at the average predicted lapse function.
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Figure 3.10: GAM vs. GLM - average lapse function
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From figure 3.10, we observe that the GAM approach provides a steeper lapse function compared
to the GLM approach. The central lapse rate for the whole population is about 7.47% and the
additional lapse rate for a 5% price increase is 0.6% (3.4% for a 25% price increase).

This was for an aggregate level for a price change considering other variables fixed. On figure
B.12 in appendix, we plot the effect of each variable individually on the average lapse function. As
for GLM, the most significant variables are cross-selling variables such as household or multi-vehicle
discount, both in terms of the lapse level and the price sensitivity.

Sub-population study

Another criterion to compare the GLM and the GAM approach is to compare the (predicted)
price-sensitiveness of customer subpopulations. In order to have comparable results, we use exactly
the same segmentation:

(black) - young drivers with a low pricing group,

(blue) - young drivers with a high pricing group,

(red) - old drivers with full cross-selling (household and multi-vehicle),

(green) - old drivers with a household policy,

(yellow) - old drivers with a multi-vehicle discount,

(azure) - old drivers with no cross-selling,

(grey) - working class with all risk cover and responsible claims (in last 2 years),

(orange) - working class with all risk cover without responsible claims and young car,

(turquoise) - working class with all risk cover without responsible claims and old car,

(pink) - working class with third-part liability cover and possibly add-on cover.

As we can see on figure 3.11, we observe additional lapse rates (ordinate) are always greater
for the GAM model than for the GLM model. That’s a first good point, because we thought we
underestimate the effect of price increase with the GLMs.
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Figure 3.11: GAM vs. GLM - client behaviors
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In terms of lapse levels, we roughly have the conclusions, working class with no claim and an
old car (population turquoise) lapse 6 times more than the working class insured all-risk cover and
experienced a responsible claim (population grey).

As for GLMs, we want to backfit the model, i.e. to predict next year lapse rates (by suppopu-
lation). So we fit a GAM model on the 2006 data. As for the 2007 dataset, only few variables are
modelled with smooth functions, namely the policy age and the driver age. In appendix B.3.2, we
provide the fit summaries of the backward approach.

We also plot the two smooth functions in appendix. The figures B.13 is very similar to the
one for the 2007 dataset, while for the policy age, we keep a bivariate term with the price ratio.
Furthermore, we compare the average predicted lapse function between the two years, the 2006 fit
is clearly steeper (see figure B.15). The same thing was observed for the GLM fit.

Similarly to the previous dataset, we make predictions for the 10 identified populations. The
graph has been put in appendix also. From figure B.16, we again conclude that the price-
sensitiveness estimated with GAMs is higher than the one fitted with GLMs.

Pop. rj(2007) π̂GAMj (p2007) σGAM (π̂j) rj(2007) π̂GLMj (p2007) σGLM (π̂j)

black 10.975 12.087 0.510 10.975 11.687 0.303
blue 10.684 13.667 0.610 10.684 13.421 0.394
red 2.446 3.498 0.171 2.446 3.220 0.097

green 3.495 4.363 0.219 3.495 4.150 0.121
yellow 6.487 7.905 0.354 6.487 7.524 0.205

azure 8.486 9.946 0.443 8.486 9.547 0.240
grey 8.568 9.009 0.471 8.568 8.773 0.462

orange 6.729 8.349 0.319 6.729 7.960 0.182
turquoise 7.105 8.358 0.313 7.105 7.981 0.198

pink 6.319 7.942 0.332 6.319 7.584 0.198

GAM GLM

Table 3.1: GAM and GLM predicted lapse rate (%)

Finally we present the most interesting part: the backfit. In the above table 3.1, we see that the
prediction from the GAM model are always higher than the GLM prediction, which are also always
higher than the observed lapse rates. So using a GAM makes the prediction more conservative. As
for the GLM, the GAM reveals the strong differences among populations, so additive models can
also be used to segment customers.

In conclusion, the GAM analysis of the Québec data reveals to be a further degree of complexity
compared to GLM. This higher sophistication permits to get a more cautious view of the price-
sensitiveness of the customers. This is a positive aspect of the GAMs, but the variable selection is
longer and the fitting time also. So we may wonder if this additional complexity does come with a
too high cost.
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3.2.3 Germany

The GLM analysis of the Germany dataset reveals that the channel distribution strongly impacts
the GLM outputs. Especially, the lapse gap between tied-agent and other channels is far stronger
than we could expect. However the price sensitiviness gap measured by the lapse deltas is also
high. Let us see if it is still true with GAM results.

GAM analysis

On each channel and cover, we first estimate a GAM by modelling all the terms by a smooth
function. And then we apply the Wood’s rules to remove, to linearize or to categorize the
explanatory variables. In appendix B.3.3, we provide the full list of regression summaries for
the nine sub-datasets. Below, we list some comments:

(i) TPL cover
Agent: Using the market variables, we finally keep four non linear terms (diff2tech,
diff2top10vip, diff2top10direct, typeclassTPL) all modelled jointly with the
price ratio. We test to model these terms independently of price ratio, but it was worse in
terms of REML scores.

Broker: We finally keep two non linear terms (diff2tech and vehiclage). Only the first
term is modelled jointly with the price ratio, because the second term has a linear effect
with the price ratio.

Direct: Due to the small dataset, it was hard to fit. We finally restrict the price ratio to be
a smooth term of small order. This dataset also reveals some weird results with a negative
elasticity for small premium increase, that the market variables could not deal with.

(ii) PC cover
Agent: Despite many attempts, only the price ratio (alone) has a real benefit to be mod-

elled non linearly. This dataset is sufficiently big to make a lot of explanatory variables
significant. And so we believe a big part of price sensitiveness is explained by linear terms.

Broker: As for the TPL covers, the variables are modelled non linearly (diff2tech and
vehiclage), both joinly with the price ratio. The high estimated degrees of freedoms
emphasizes this non linearity.

Direct: Only the diff2tech term is modelled through a smooth function, jointly with the
price ratio.

(iii) FC cover
Agent: Three terms (diff2tech, polholderage, typeclassFC) are smoothed together

with the price ratio. Again, the estimated degrees of freedom are high, especially for the
diff2tech variable. So this is a real benefit compared to the GLMs.

Broker: Four terms (diff2tech, vehiclage, polholderage, typeclassFC) are mod-
elled non linearly. This is astonishing because we retrive the difference with technical
premium and the vehicle age as non linear terms. There might be a process made by
brokers to target old vehicles and/or to detect a strong difference with technical premium.
So the brokers have a major impact on the lapse decision.

Direct: Only two terms are modelled non linearly (diff2tech, polholderage): the
estimated degree of freedom for the policyholder age variable is high. This may be linked
to the close relationship between the motor (technical) premium and the policyholder age.
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The regression coefficient analysis reveals some trends between channel distribution. Notably,
the broker channel results are sensitive to the difference with technical premium and the vehicle
age variables. There is also a datasize effect, since the datasets gradually increase in sizes from
TPL to PC to FC covers. Obviously, the more we have data, the more we are confident with the
regression.

On figure 3.12, we plot two smooth functions from two different GAM regressions ∗. The figure
3.12a represents the smooth function for the price ratio variable of the PC-agent regression: let us
note the sharp increase for price ratio around 1.
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Figure 3.12: GAM smooth functions

The figure 3.12b is the plot of the bivariate smooth function of the price ratio and the difference
to technical premium variable for FC broker dataset. Note that there is a hollow in the curve around
a price ratio of 1 and a zero difference with technical premium. In there, the price elasticity of the
lapse decision is negative. Fortunately, this derived business inconsistency is small and located. If
we had market variables for this dataset, it could be interesting to check this hollow vanish.

Sub-population study

On figure 3.13, we plot the traditional bubble plot to compare the differences between GAMs
and GLMs on the different distribution channels and cover types. We observe that GAM delta
predictions are higher than GLM ones in most cases. This is especially true for PC agent or FC
broker: there is a high jump upward. Two channel-covers have a lower delta with GAMs: the FC

∗. The bandwith represents the standard error bandwidth around the smooth function.
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direct case, a case where the dataset is small (so the GAM model selection was hard) and the FC
agent case where the difference is limited.
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Figure 3.13: GAM vs. GLM - comparison of distribution channels and cover types

Study by region

Now we compare the GLM and the GAM results by looking at the central lapse rates and the
deltas for the 16 regions. In the four-dimensional table 3.2, we put the results for the 16 regions of
TPL agent and TPL broker channels.

We can observe that generally GAM predictions are higher than GLM ones, both for central
lapse rates and deltas. This may be unconvenient for lapse rates to be overestimated, but we do
not think it is a problem for deltas, because price sensitiveness is hard to catch and to estimate.
So a conservative picture of deltas (additional lapse rate for 5% premium increase) is good.

As for GLMs, there are strong differences between agent and broker channels (9% against 13%).
The central lapse rates are very high for brokers, which reflect the competition enforced by brokers.
Deltas are relatively of the same order (2% against 3%).

In table 3.3, we compare the lapse rate fitted values for GAMs and GLMs by region. For the
agent channel, the fitted values are close to the observed ones, as for GLMs. But for smaller datasets
(i.e. broker and direct), the fitted values do not catch the specificity of the region. Typically, the
observed lapse rate in Hamburg is 8.27%, while GLM and GAM fit a lapse rate of 12.02% and
12.11% respectively. The same bias can be observed for Saarland with a lapse rate of 14.57%, while
fitted values are 11.24% and 11.29%.

This fact is explained by the regrouping process we did on the region variable. As a categorical
variable with 16 values is hardly significant for all its categories, we group the regions according
to their lapse rates. But for relative small datasets, we probably mix regions with quite different
lapse rates.
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Region Central rate (%) Delta (pts) Central rate (%) Delta (pts)

Schleswig-H. 6.73 6.92 0.93 1.32 12.67 12.20 3.26 3.50
Hamburg 9.79 10.05 1.35 1.88 12.57 12.21 3.23 3.61
Niedersachsen 6.62 6.77 0.94 1.33 12.76 12.31 3.31 3.58
Bremen 8.92 9.22 1.27 1.78 13.46 13.23 3.32 3.78
Nordrhein-W. 8.03 8.18 1.11 1.57 13.28 12.93 3.28 3.66
Hessen 7.21 7.39 1.04 1.48 13.20 12.83 3.37 3.72
Rheinland-P. 6.52 6.66 0.93 1.38 12.76 12.50 3.32 3.51
Baden-W. 7.01 7.16 1.03 1.48 13.25 12.54 3.46 3.66

GLM GAM GLM GAM GLM GAM GLM GAM

Bayern 6.69 6.82 1.03 1.50 13.18 12.77 3.52 3.73
Saarland 7.69 9.92 1.45 2.07 12.60 12.32 3.39 3.76
Berlin 8.91 9.08 1.11 1.66 12.74 12.37 3.11 3.20
Brandenburg 8.70 8.89 1.32 1.89 12.27 12.00 3.29 3.55
Mecklenburg-V. 8.90 9.11 1.42 2.06 12.70 12.47 3.40 3.67
Sachsen-A. 9.62 9.82 1.55 2.14 12.59 12.50 3.38 3.61
Sachsen 9.70 9.89 1.49 2.09 12.66 12.51 3.32 3.60
Thüringen 9.42 9.54 1.45 2.06 12.23 12.02 3.33 3.67

TPL agent TPL broker

Table 3.2: Customer behaviors in the German market

Region Observed GLM GAM Observed GLM GAM Observed GLM GAM

Schleswig-H. 6.53 6.67 6.66 8.93 10.08 10.32 10.79 11.12 11.11
Hamburg 8.60 9.65 9.62 9.27 11.02 11.11 8.00 10.98 11.07
Niedersachsen 6.85 6.61 6.60 12.66 12.12 12.17 11.49 11.21 11.15
Bremen 7.32 8.77 8.76 10.80 12.21 12.42 11.18 11.76 11.31
Nordrhein-W. 8.08 8.11 8.11 11.34 11.67 11.79 13.03 11.27 11.25
Hessen 6.80 7.20 7.21 11.03 11.63 11.68 11.63 10.97 10.97
Rheinland-P. 6.72 6.53 6.53 11.14 11.00 11.12 10.39 10.93 10.92
Baden-W. 6.91 7.02 7.03 10.51 10.53 10.55 10.28 11.24 11.22

Agent Broker Direct

Bayern 6.77 6.75 6.75 10.45 10.70 10.79 11.36 12.12 12.18
Saarland 9.67 9.74 9.78 10.57 10.24 10.29 11.15 12.16 12.12
Berlin 9.44 8.98 9.00 12.44 11.70 11.65 13.16 12.24 11.26
Brandenburg 9.25 8.73 8.76 14.04 10.98 11.02 13.37 13.03 12.06
Mecklenburg-V. 8.24 8.94 8.91 12.52 12.79 11.05 13.60 13.98 13.98
Sachsen-A. 9.84 9.68 9.69 15.10 13.05 13.25 16.17 13.54 13.59
Sachsen 9.13 9.72 9.63 12.81 13.19 13.37 15.37 14.07 14.00
Thüringen 9.41 9.47 9.37 13.12 12.61 12.74 12.78 13.74 13.71

Table 3.3: Observed vs. fitted lapse rates for TPL cover
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3.3 Pros and cons of the GAM methodology

This section summarizes the advantages and the drawbacks of the GAM methodology when
modelling lapse rates in non-life insurance.

3.3.1 Advantages

GAM are less known tools than GLMs in actuarial, but they are used in reserving or claim
modelling. GAMs introduced in the 90’s are well known models, and the corresponding fitting
procedures use state-of-the-art algorithms. But there are various ways to do model selections:
prediction errors vs. likelihoods. In this memoir, we follow the advices of Wood’s rules on the
restricted maximum likelihood. We tested other statistical quantities and the impact was limited
or inexistant.

As for GLMs, we meet the objective of this memoir with GAMs, since the overall estimated
price elasticity takes into account the individual features of each policy. When data has enough
variables, it is easy to identify customer segments with GAMs.

The additional complexity coming with additive modelling compared to GLMs permit to really
fit the data. Especially for broker lines in Québec and Germany, we get a more cautious view of
the price sensitiveness.

3.3.2 Drawbacks

For small datasets, GAM predictions may lead to irrelevant results, so we need to be careful
when using the GAM methodology. However this was already noted for GLMs: with a small range
of price change it is hard to extrapolate without having inconsistent results.

GAMs are generally longer to fit than GLMs and they require better computers with a lot of
RAMs to be fitted. This is a limitation for GAMs to be used easily by everyone. Furthermore,
some user judgement is needed to select the final appropriate model for GAMs. With Wood’s rules,
it is hard for newcomers to choose between two GAM models with the same “score” (i.e. likelihood
or prediction errors).

Finally, we do not test the use of information asymmetry since GLMs reveal it was very useful
at our aggregate level. But it will probably be useful at individual level for pricing and customer
segmentation.





Chapter 4

Survival Regression Models

In this chapter, we use Survival Regression Models (SRM) to explain the dynamic price behavior.
Using survival regression models to explain insurance lapses is recent but not new. Brockett et al.
(2008) compares a classic logistic GLM with a Cox proportional hazard model.

The need for a dynamic model is obvious, because none of the previous models (GLMs and
GAMs) can be used in a dynamic framework. The attempt to use time serie modelling on the GLM
coefficients reveals to be rather inefficient. The following sections will provide good arguments in
favor of survival regression models.

The chapter is divided into three sections: (i) model presentation, (ii) the application Québec
data, (iii) the conclusions on the methodology.

4.1 Model presentation

In this section, we present the classic survival models, namely the non-parametric methods
and the parametric regression models. Finally, we present the Cox PH model, a semi-parametric
regression model for survival data.

In all this chapter, we stop to consider the lapse rate as a random variable independent of time,
but rather the lapse rate of policies of age t is

rt = P (T < t+ 1|T ≥ t),

where T denotes the life span of the policy. Therefore in the following, we model directly the
variable T with a survival model.

Survival models is a long-time studied topic, with roots in biology and failure time in mechanics.
In actuarial science, it is also a well known topic for life insurance pricing since the 19th century.
Survival models require specific tools, we present below:

– the survival function is ST (t) = P (T > t) = 1− FT (t),
– the hazard rate is a positive function λT (t) such that λT (t)dt = P (t ≤ T < t+dt) = −S′T (t)

ST (t)dt.

71
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From the hazard rate, we can retrieve the survival function with

ST (t) = e−
R t
0 λT (s)ds.

So both quantities characterize the distribution of the variable T . In the following subsections, we
present the non parametric estimation of the survival function S, the parametric regression model,
Cox proportional hazard (PH) model and more advanced models ∗.

4.1.1 Non-parametric estimation

Kaplan & Meier (1958) provides a nonparametric estimator of the survival function defined by
a step function. Let ti be the exit times of the population and di the indicator of noncensored
deaths. Then we have

Ŝ(t) =
∏
t(i)≤t

ni − di
ni

,

where ni stands for the cardinal of the population at risk for the ith period, di the number of
“deaths” for the ith period and t(i) the ith ordered statistic. There exists a formula for the variance
of this estimator (Greenwood’s formula):

σ̂
(
Ŝ(t)

)
= Ŝ(t)

∑
t(i)≤t

ni
ni(ni − di)

.

Using the normal approximation for binomial events and a log-minus-log transformation, confidence
intervals can be computed [

Ŝ(t)
exp

„
y± bσ( bS(t))bS(t)(1−bS(t))

ẑ1−α2

«]
,

where z1−α
2

the quantile of the standard normal distribution.

In the survival package, the Kaplan-Meier estimator is available in the survfit function
as well as the confidence intervals. In the literature (but not presented here), the Nelson-Aalen
estimator for the hazard rate function (and so for the survival function) is a competitive non
parametric estimator.

4.1.2 Parametric regression model

Definition Let us continue with parametric models. There are three widely used distributions for
T : the Weibull, the loglogistic and the lognormal distribution. Each of them can be characterized
equivalently on T and ln(T ).

The table 4.1 summarizes the relationship between the distributions of T and ln(T ). Note that
with a shape α = 1, the distribution of Weibull is the exponential distribution. We pass from T to
Y with σ = 1/α, µ = − ln(λ) and y = ln(t).

∗. We remove the index T for simplicity.
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T Weibull loglogistic lognormal

ST (t) e−(λt)α 1
1+(λt)α 1− Φ(α ln(λt))

Y = ln(T ) extreme (min.) value logistic normal

SY (y) e−e
y−µ
σ 1

1+e
y−µ
σ

1− Φ(y−µσ )

Table 4.1: Survival distributions

Link with GLMs Hidden in those expressions, we have the three link functions for binomial
GLM.

– logit link: g(π) = ln
(

π
1−π

)
,

– probit link: g(π) = Φ−1(π) ,
– complementary log-log link: g(π) = ln(− ln(1− π)),

whose inverse are the distribution function of standard distributions. Let us note Z the variable
characterized by g−1. Then we have Y = µ+ σZ.

To take into account, explanatory variables xi of individual i, we will change the location
parameter µ:

Yi = µ+ xTi β + σZ,

with β an unknown coefficient. This implies that

ST (t) = ST0(ex
T
i βt),

where T0 is a baseline distribution (i.e. one of the distributions in table 4.1). From the last equation,
we get the name of that type of model : accelerated / decelerated failure time model, since the
coefficient ex

T
i β changes the scale of time implying a decrease / increase of the survival function.

The estimation of the accelerated failure time model is done simply by maximising the loglike-
lihood. From the asymptotic normal behavior of maximum likelihood estimators, we can deduce
confidence interval, hypothesis test for the β’s components. Therefore a p-value is available for
each coefficient of the regression, which help us to keep only the most significant variable. Hence
we can adopt a backward or forward variable selection as for GLMs.

Base example Let us study a simple example. The dataset is aml from Therneau & Lumley
(2009), a survival in “patients with Acute Myelogenous Leukemia. The question at the time was
whether the standard course of chemotherapy should be extended (’maintainance’) for additional
cycles.” The set consist of three variables, a survival time, a censoring status and a dummy variable
indicating the “maintainance” of the chemotherapy.

> head(aml)
time status x

1 9 1 Maintained
2 13 1 Maintained
3 13 0 Maintained
4 18 1 Maintained
5 23 1 Maintained
6 28 0 Maintained
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First, we fit the three above distributions without using the covariate x indicating wether the
chemotherapy was maintained. On figure 4.1a, we observe that all fits are quite good for small t
but rather inadequate for large t. This is partly due to the fact that there are few individuals living
a very long time. The standard error for the Kaplan-Meier estimation is really huge.

The model assumptions can be checked graphically (see (Tableman & Kim 2005, Chap. 6)).
In appendix 4.1 , for each distribution we put the following plots: the qq-plot, the pp-plot, the
survival function comparison and the deviance residuals against the fitted values. It is easy that
for all distribution, the qqplot reveals extreme quantiles are not well explained by the model.
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Figure 4.1: Survival functions for AML data

In terms of loglikelihood, the three distributions have similar scores: -83.2, -80.7, -80.6 respec-
tively for Weibull, lognormal and loglogistic.

Adding the covariate for the treatment maintainance makes the regression models much better.
This is especially true for the survival functions or the qqplots (in appendix). In terms of likelihood,
-80.5, -78.9, -79.4, the worst model is still the Weibull model.

We plot on figure 4.1b the survival function for the lognormal model. The group 2 corresponds
to individuals where the chemotherapy was not maintained. We can see that their survival function
is always lower than for group 1. The lognormal distribution captures this effect, especially for time
below 50.
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4.1.3 Cox PH model

From parametric regressions The Cox proportional hazard (PH) model can be seen as an
extension of the accelerated failure time model. Let us recall that in the accelerated failure time
model, the hazard function has the following form

h(t|xi) = ex
T
i β ×


αλαtα−1 if Weibull
φ(t)

1−Φ(t) if lognormal
αλαtα−1

1+(λt)α if loglogistic
,

where φ and Φ denote respectively the density and the distribution function of the standard normal
distribution.

To a semi-parametric regression A natural extension is therefore to consider models with
hazard function

h(ty|xi) = θ(xi, β)× h0(t)

with θ models the effect of covariates on the response (with an unknown parameter β) and h0 is
an arbitrary function. The name comes from the fact that h(ty|xi)/h(ty|xj) = θ(xi, β)/θ(xj , β) is
constant with respect to time t, so the hazard functions are “proportional”.

Due to Efron (1977), the model can be interpreted by the following example: the survival of an
individual i is represented by a time-varying coin. If the individual i is at risk during time interval
[t, t + ε[, we flip his coin with probability of heads equal to h(t|xi). In the Cox model, we assume
θ(xi(t), β) = ex

T
i β.

Estimation Given the risk set R(tj) (i.e. population at risk), the probability that an individual
ij failed at time tj is

pij =
θ(xij (t), β)∑

l∈R(tj)

θ(xl, β)
,

conditionnally on the failure times t1 < · · · < td, since the h0’s cancel. So we can deduce a partial
loglikelihood is

∑d
j=1 ln(pij ). By maximising this partial likelihood, we get an estimate β̂, then by

differentiating we get the information matrix at the estimate.

Assuming λ0 is non-null at failure times t(i), λ0(t) has the form λiδt,t(i) . The author of the
model considers the following form for λ0(t(i))

π(i)e
−z̃T

(i)
β̂

1− π(i) + π(i)e
−z̃T

(i)
β̂
,

where z̃(i) is an arbitrary covariate constant at time t(i). Maximising the likelihood for π’s, Cox
(1972) derives a likelihood equation, that can be solved numerically.

However, the estimation of the baseline hazard function has been improved to a step function
by Kalbfleisch & Prentice (1973), Breslow (1974) and Efron (1977).
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The estimation process can summarized in two steps:

1. maximise the partial likelihood to find β̂ using an iterative scheme (such as Newton),

2. given β̂, estimation of h0 at failure times ti’s using a nonparametric approach.

Thus, the Cox model belongs to the family of semiparametric regression model.

Summary The Cox PH model assumes the following equation for the survival function

S(t|yxi) = S0(t)e
xTi β ,

where S0 is the baseline survival function, xi the covariate vector of individual i and β the regression
coefficient. The baseline survival function S0 is derived from the non parametric estimator of
the hazard rate h0, after having estimated the regression coefficient β by maximising the partial
likelihood.

Extensions There have been various extensions of the Cox model. To increase a step further the
flexibility of the Cox model, one extension, the stratified Cox model, considers different baseline
hazard function h0,j ’s. This is intended to model a categorical variables with different baseline. So
for that variable, the fit will be closer to the data. Obviously, the goal of this extension is not to
transform all values of categorical variables into a stratum j.

Another extension is a refinement of the Cox PH model, which allows to have a time dependent
coefficient xit(t). So the transformation on the hazard equation is relatively simple:

h(ty|yxit) = (θ(xit, γ)× θ(xi, δ))× h0(t),

where θ being the exponential function generally, i.e. θ(xit, γ) = ex
T
itβ. So this extension only

affects the estimation of the regression coefficients (from β to (γ, δ)). Note that this is reacher than
the classic approach, we can use lag-time variables. Statistical inference ∗ can be done to derive
standard errors, hypothesis test,. . . With this extension, the Proportional Hazard assumption is
no longer satisfied.†However, it is still compatible with the stratified Cox model.

∗. See Martinussen & Scheike (2006).
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4.2 Case study - Québec

4.2.1 Non-parametric approach

Unless specified otherwise, we consider in the dataset the Québec policies facing their first
renewal in 2004 during four years. We plot below the Kaplan-Meier survival curve for the whole
population (figure 4.2a) and for two subpopulations (figure 4.2a).
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Figure 4.2: Heterogeneity of customer behaviors

With these basic plots, we retrieve the effect of one variable of the lapses found in previous
chapters. Two other plots can be found in appendix B.4.2. We can mix explanatory variables in
the non-parametric approach to subdivide the dataset, but we do not get any further explanations
about lapses.

4.2.2 Parametric regression

In a second step, we consider a full parametric regression for the three distributions presented
previously, namely the Weibull, the lognormal and the loglogistic distributions. We consider two
models for each distribution a simple intercept-only model (i.e. having no covariates xTi β = 0) and
a model with covariates crossed with priceratio.

In appendix B.4.2, we give the regression summaries for these parametric regression. We use a
backward approach to select the most significant variables. In table 4.2, we show the goodness-of-fit
statistics for all the fitted models. Statistics subscripted with a zero denote the statistics for the
intercept-only model, otherwise, it is for the with-covariate model.
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ln(L0) AIC0 ln(L) AIC

Weibull -37111.4 74224.8 -35360.3 70750.6
loglogistic -36890.8 73783.7 -34956.7 69945.3
lognormal -36295.3 72592.6 -34553.9 69141.8

Table 4.2: Goodness of fit

From those critertion, the lognormal model appears to be the best for all criteria. However
the graphs to check model assumptions reveal that all the three distributions are inadequate, see
appendix B.4.2.

On figure B.24, we compare the fitted survival functions for those models. The intercept-only
models are particularly poor because we clearly overestimate the survival function for year 1, 2 and
3 and underestimate for year 4. Including explanatory variables enhances the model to fit the data
with respect to the survival function.

With qq-plots B.25 and B.26, the inadequacy of the regression models is obvious (blue lines).
However on the qq-plots, we also show the Ordinary Least Square estimate of the parameters.
So this suggests the maximum likelihood estimators are not adapted for our datasets. One think
that could improve the fit is to use the slope of the OLS method (i.e. the scale parameter).
Unfortunately, it does not improve the adequacy with the survival function.

A last attempt we did for the parametric regression models is to extend the dataset. We consider
the policies of age between 1 and 4 years old in 2004. With this, the resulting dataset is larger (see
table 4.3).

Policy age 2004 2005 2006 2007

1 12117 0 0 0
2 9292 9663 0 0
3 7405 7843 7905 0
4 15416 6326 6375 11205
5 0 15136 5731 9731
6 0 0 13770 9594
7 0 0 0 29441

Table 4.3: Policy ages

In appendix B.4.2, we plot the usual figures: Kaplan Meier (fig B.27 and B.28), qq-plots (fig
B.29 and B.30) and survival functions B.28. We do not report here any figures, because adding
more policies worsen the model fit. We also test the use of the Ordinary-Least-Square estimate for
the shape parameter. But again it does not solve the bad fitting.

In conclusion to this section, we arrive to the fact that parametric regression models despite their
simplicity are not adequate for our problem. They are simplest model where explanatory variables
can be used. However the parametric hazard rates assumed for each distribution is probably the
weakness of this approach.
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4.2.3 Cox regression

Baseline estimator

As presented in the previous section, the Cox model considers a hazard function which is the
product of two components h(ty|xi) = ex

T
i β × h0(t). The first term corresponds to an individual

specific adjustment and the second to a baseline hazard function. In this subsection, we investigate
briefly the differences between two estimators: Breslow (1974) and Efron (1977).

We work on a 4-generation Québec dataset, i.e. in 2004, we have policies of age below or equal
to 4 years old, and in following years their renewal. See table 4.3.
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Figure 4.3: Baseline hazard estimators

To better judge the effect of the base-
line estimator, we do not incorporate any
explanatory variables: only an intercept will
be estimated. We recall the estimator of
h0 is a non parametric estimator. As the
Kaplan-Meier estimator, the survival func-
tion is a (decreasing) step function where the
jumps occur at observed death times.

As we can see on figure 4.3, the Efron
baseline estimator is always below the Bres-
low estimator. Efron’s estimator in the
case of covariate is nothing else than the
Kaplan-Meier estimator. In the following,
we keep the Efron estimator, the closest to
the Kaplan-Meier estimator and the most
conservative estimator of policy survival.

Cox model

Now we add all explanatory variables and their interaction with the price ratio. Again we
use a backward approach to select the most significant variables. In appendix B.4.2, we put the
regression summary. The most significant variables are similar to other regression models: the
dummy variables indicating a household policy or a TPL cover.

By taking the exponential of the estimated coefficient for a given covariate, we have the effect
on the hazard rate. If the exponentiated coefficient is greater than 1, thus fixing other covariate
values, the variable increases the hazard rate (so decreases the survival function), whereas a value
below than 1 decreases the hazard rate (so increases the survival function).

For the dummy variable indicating a household policy (alone), the exponentiated coefficient is
0.35351. Fixing other covariates, the hazard rate is reduced by 65% if an insured has a household
policy compared to a single product customer. Other coefficients can be interpreted in a similar
way.
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The coxph function provides an estimate β̂j of each coefficient βj as well as p-values, standard
errors and other useful statistics. However, this function (itself) does not provide an estimate of the
survival function for each policy but rather the risk score ex

T
i β̂. To get the fitted survival functions

for each policy, we need to use the survfit function ∗.
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Figure 4.4: Survival functions

On figure 4.4a, we plot the histogram of risk scores. This is a few skewed distribution, even
after keeping the risk score below 10. A lot of policies (around 46%) have a score below 1 (i.e. a
survival function greater than the baseline function), but few policies have very high risk scores
(14% of policies have score above 2).

On figure 4.4b, we plot the Kaplan-Meier survival function, the survival function for an ideal
average policy (blue line) † and the average of all survival functions (red line). As one could expect
from the 4.4a figure, the ideal average policy is not a good proxy for the average of individual
policies. That’s why in the following, we will focus on the “real” average of policies rather than
the “average” policy.

Before going into further the conclusions, we will test the validity of the Cox model assumptions.
The Cox-Snell residuals are designed to assess the overall fit a Cox model. If we have a positive
random variable T with survival function ST , we have ST (T ) is uniformly distributed in [0, 1] (hence
HT (T ) = − ln(ST (T )) is exponentially distributed with parameter 1).

∗. Hence using this function on each policy is quite long on modern computers.
†. a policy having each covariate at the average value. For categorical variable, this means after computing the

design matrix (of zeros and ones), we take the proportions of all variable values except the “first” value.
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(a) Cox-Snell residuals
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Figure 4.5: Residual plots

From this feature, the Cox-Snell residuals are defined as hazard rates rCS,i = H(Ti|yxi) =
H0(Ti)ex

T
i β. The Cox-Snell plot displays (rCS,i, HCS(rCS,i))i, where HCS is an estimator of the

cumulative hazard rate of the (random) residuals rCS,i. Under the assumption H is the true
hazard function, the points should be closed to the 45◦ line.

Another diagnostic plot is the hazard rate plot by value of categorical variables. It consists in
plotting (t, h(t|xi))t for different values of a covariate xi. On figure 4.5b, we observe the effect of
the cover type on the hazard rates. The Cox model assumes that the hazard ratio between two
covariates is contant with respect to times. This cannot hold for the cover type variable since the
hazard rates on figure 4.5b cross over time.

Other hazard rate graphs can be found in appendix B.4.2. From these two graphs, we conclude
the Cox model is not well adapted because the proportional hazard assumption is not met for all
variables. There exists other graphs such as the deviance residuals against an explanatory variables,
but their purpose is to detect outlier or observation influence.

To test the proportional hazard assumption, Grambsch & Therneau (1994) considers a time-
varying coefficient approach: β(t) = β+θg(t) with g(t) an unknown function. Using the Schoenfeld
residuals covariance matrix, they can derive an estimate β̂ of the function t→ β(t). Note that the
Schoenfeld residuals ∗ are designed to detect outliers in explanatory variables. So the diagnostic
test consists in plotting the β̂ function for the different covariates.

∗. For j covariate index and the ith individual, the Schoenfeld residuals are defined as rS,j(i) = xi,j−
P
m
xm,je

xTmβ̂P
m
ex
T
mβ̂

,

where xi,j is the jth covariate value.
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On figure 4.6, we plot the Grambsch and Therneau’s test for two covariates, namely the vehicle
age and the dummy variable indicating TPL cover. On figure 4.6a, the PH assumption seems
validated. However, the figure 4.6b strongly rejects the PH assumption, since the beta function is
everything but linear. In appendix B.4.2, the figure B.32 shows other examples of PH violation or
validation.
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Figure 4.6: Grambsch and Therneau’s test

Several options are available to tackle this problem. According to Tableman & Kim (2005),
we can either stratifies some variables (i.e. use a different baseline function h0 for the different
variable value) or use a time dependent variable. The model resulting from the last option is called
an extended Cox model.

Extended Cox model

The extended Cox model consists in modelling the hazard rate by h(t|xi) = exi(t)
T βh0(t). The

value of the covariate xi(t) depends on time but is deterministic. In terms of data, this additional
complexity adds flexibility in the explanatory variables we can use.

i t0 ti yi x1,i x2,i x3,i

1 3 4 0 4 34 28

2 1 5 0 12 17 74

3 3 7 0 3 28 64
4 0 1 1 14 8 18
5 0 2 0 12 18 40
6 0 3 1 2 24 31

...

⇒

i ti−1 ti yi x1,i,ti x2,i,ti x3,i,ti

1 3 4 0 4 34 28

2 1 2 0 9 17 71
2 2 3 0 10 17 72
2 3 4 0 11 17 73
2 4 5 0 12 17 74

3 3 4 0 5 25 61
...
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This flexibility however increases the datasize since variables are needed by interval. The supra
example clearly presents the expanding effect happening to policy number 2.

A second strong difference between this sub-section and the previous one is the use of a stratified
Cox regression. Two categorical variables for which the proportional hazard assumption is not
verified will be stratified: the cover type and the household cross-selling dummy variable.

Then we use a backward selection for the other explanatory variables. In appendix B.4.2, we put
the regression summaries. Except two variables (cover and household) are no longer present,
almost the same variables remain significant.
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Figure 4.7: Survival functions

On figure 4.7a, we plot the Kaplan-Meier estimator and the average of all individual survival
functions predicted by the stratified Cox model. As with the Cox model, the predicted survival
probability are a little bit overestimated.

Unlike the previous figure, figure 4.7b focuses on the heterogeneity of customer behaviors in
the studied insured portfolio. The step functions are the predicted survival function for an ideal
“average” customer in each stratification or group. As detected by the GLM, the most price
sensitive population is the individuals with the “basic” TPL cover and having no household policy.

The black line on figure 4.7b indicates the Kaplan Meier survival estimator. For two out three
cases, having a household policy is a sufficient condition to get a small decreasing survival function.
However these effect are softer for the average of the whole portfolio then the “average” individual.
As shown on figure B.33 in appendix, the survival curves decreases slower. Note that the order is
not respected.
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The difference with the previous sub-section is that we stratify explanatory variables for which
the PH assumption was not satisfied, namely the cover and housepol variables. So we cannot
test these variables with the Grambsch and Therneau’s test. However, for other explanatory
variables, the test can be used. As reported in appendix B.4.2, the figures B.34a and B.34b
do not show any strong violation of the PH assumption.

Average behavior As for previous chapters, we are interesting in computing an average lapse
function. From the Bayes’ rule, the lapse probability is written as

π̂t(xit)
4
= P (T < t+ 1/T ≥ t, xit) =

Ŝ(t|xit)− Ŝ(t+ 1|xit)
Ŝ(t|xit)

, (4.1)

for a policy i with characteristic xit. Note that even if a policy i is terminated in year t0, we have
a predicted survival function Ŝ(t|xit) for t ∈ [0, Tmax] with Tmax = 7 the maximum policy age.

To compute the average lapse function at time t, we take the average over the whole population
and a given value of the price ratio,

π̂t(p) =
1
n

n∑
i=1

π̂t(xit),

where p denotes the price ratio, one of the explanatory variables xit. On the figure 4.8a, we plot
the average lapse function from the extended cox model estimated at different time t. As the time
increases, the lapse probability decreases, except between year 1 and 2. Note that this aging effect
was already observed when using GLMs (see figure 4.8b) and GAMs. So it is a good point that the
SRM does not contradict this fact.
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Figure 4.8: Model comparison - average lapse function

In appendix B.4.2, we give the regression summary. By observing the sign of each coefficient,
we can deduce the impact of each explanatory variable. We conclude the same effects as for GLMs
and GAMs, e.g. the higher is the previous premium group, the greater is the lapse rate.
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Segmentation The most interesting thing is now to study the subpopulations identified in the
GLM analysis. We recall below the subpopulations:

(black) - young drivers with a low pricing group,

(blue) - young drivers with a high pricing group,

(red) - old drivers with full cross-selling (household and multi-vehicle),

(green) - old drivers with a household policy,

(yellow) - old drivers with a multi-vehicle discount,

(azure) - old drivers with no cross-selling,

(grey) - working class with all risk cover and responsible claims (in last 2 years),

(orange) - working class with all risk cover without responsible claims and young car,

(turquoise) - working class with all risk cover without responsible claims and old car,

(pink) - working class with third-part liability cover and possibly add-on cover.

We want to compare π̂mt,j(p) for p ∈ {1, 1.05} for different population j at time t ∗ with different
models m ∈ {SRM, GAM, GLM}. As in previous chapters, the delta lapse rate is defined as
∆m
t,j = π̂mt,j(1.05)− π̂mt,j(1).

Nevertheless, there is a strong difference between static GLMs and GAMs and the dynamic
SRM. The first ones estimate the regression coefficients and/or functions using one year of data in
order to provide a lapse function for a given year (e.g. t = 2007), while the second one uses four
years of data and provides a lapse function for a given policy age (e.g. t = 2).

This is completely different because a given year, there are multiple policy age and vice-versa.
So to solve this issue, we decided to use for each population the average policy age as the time to
compute the lapse rate in equation 4.1.

On figure 4.9, we plot the bubble plots for the three models, namely GLM, GAM and SRM.
Beware the y-axis has the same scale for all graphs but not the x-axis. We can observe that the
SRM provides less different estimates of lapse rate and delta lapse rate for the 10 groups.

On figure 4.9c, three main groups appear: high-value clients (red and green), working class or
other old drivers (pink, yellow, turquoise, orange, grey) and young drivers (black, blue); whereas
on figures 4.9a and 4.9b almost all subpopulations have distinct lapse rates and delta’s. This is
maybe due to the approximation on the policy age t used to compute π̂SRM

t,j (p), where t must be
an integer †. Hence, there is an approximation.

However, the ten populations are arranged in the same order in all models, so we can conclude
that the most price-sensitive and the less loyal population is the blue population, young drivers. At
the opposite, the most loyal population and the less price-sensitive population is the red population,
old drivers with full cross-selling. Finally, we notice that with the SRM methodology customers
are less loyal to the insurer, i.e. higher central lapse rates.

∗. which denotes the year or the policy age.
†. since the observed times were all integers.
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Figure 4.9: Model comparison - client behaviors
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Back-testing On table 4.4, we put the lapse rate predictions by the three models π̂mt,j(p2007)
against the observed lapse rates rj(2007) for each population j. Note that π̂GAM

2006,j(p2007) is the
lapse rates predicted by the GAM (estimated on 2006 data) for the (observed) price ratio p2007 and
population j.

Pop. rj(2007) π̂SRM
t2006+1,j(p2007) π̂GAM

2006,j(p2007) π̂GLM
2006,j(p2007)

black 10.975 12.838 12.087 11.687
blue 10.684 13.642 13.667 13.421
red 2.446 2.578 3.498 3.220

green 3.495 2.754 4.363 4.150
yellow 6.487 6.234 7.905 7.524

azure 8.486 7.395 9.946 9.547
grey 8.568 7.948 9.009 8.773

orange 6.729 7.544 8.349 7.960
turquoise 7.105 6.490 8.358 7.981

pink 6.319 7.181 7.942 7.584

SRM GAM GLM

Table 4.4: SRM, GAM and GLM predicted lapse rates (%)

Unlike static models, the SRM does not always overestimate the lapse rates. For the most
sensitive populations (black, blue), the lapse rates is really overestimated while for other populations
(azure, grey, turquoise), it seems to be underestimated. Unfortunately, we cannot benchmark the
delta lapse rates: we can only guess. So the analysis of subpopulations stops here.
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4.3 Pros and cons of the SRM methodology

This section summarizes the advantages and the drawbacks of the SRM methodology when
modelling lapse rates in non-life insurance.

4.3.1 Advantages

Survival regression models are widely known and used in life insurance, but their use in non-
life insurance is relatively limited. And for the price elasticity topic, it is even harder to see an
application of such model. Only Brockett et al. (2008) seems to be the only one to use such model.

However in terms of estimation process and variable selection, it is not hard to find a rich
literature in biology or in social sciences. As for GLMs and GAMs, the parametric and Cox
regression models have good algorithms and software implementations.

Since we can have as many explanatory variables as we want, SRMs meet the requirement of
this memoir to use individual characteristics to derive an aggregate elasticity. Compared to GLMs
and GAMs, they take into account the dynamic aspects of a policy life. The (extended) Cox model
allow to use dynamic explanatory variables, which lead to relevant results.

4.3.2 Drawbacks

Despite its easy use, the (extended) Cox model is not the ultimate methodology since the
coefficients of the explanatory variables, say for price ratio, cannot evolve through the time. There
is no possibilities to include a dynamic on the regression coefficients. The model of Fahrmeir
(1994) has been tested to deal with such issue: this model uses a latent approach to incorporate
a dynamic on the regression coefficients. They use the Kalman filter (an estimation procedure) to
fit the model. However this model reveals to be unreliable in the coefficient estimate and heavily
depends on the initial parameter values. So we discard this model.

It was not possible with our data to use a full dynamic approach, but the survival regression
models should be useful the full lifetime of a policy where termination can occur for different reasons:
insured lapse, company lapse, disappearance of the risk. In addition in a dynamic framework,
we could model the cashflows: the incoming premiums and the outcoming claims. The survival
approach is the only method that can deal with such matters.



Conclusion

Being dependent on the market’s environment, price elasticity forecasts require rigorous atten-
tion to detail to prevent the risk of erroneous conclusions. Not surprisingly, a data cleaning process
has also found to be essential prior to regression fitting. In short, some explanatory variables
supplied significantly affect the results attained. Omitting these variables in the data can, in itself,
lead to unreliable findings.

These must-have variables include distribution channels, market premium proxies, rebate levels,
coverage types, driver age, and cross-selling indicators. As the Portugal dataset only provides the
driver age, this example leads to inconclusive results. Whatever the model we use, the old versus
young segmentation alone, cannot in itself substantiate the lapse reasons.

In the Quebec dataset, the coverage type, and the cross-selling indicators were added to the
regression fit. This enabled us to refine our analysis and to zero in on customer segments. Having
or not having a household policy with AXA was thus proven to be a driving factor in renewing or
allowing a contract to lapse.

In the German dataset, the price sensitiveness fit was significantly enhanced along with our
ability to fine tune the results thanks to the inclusion of distribution channels, a market proxy, and
a rebate level. Disposing of market variables proved to make testing market scenarios possible (e.g.
-5%, +5%). Being able to provide such forecasts is highly valuable in taking pricing actions.

Generalized Linear Models (GLM) of McCullagh & Nelder (1989), are widely known and
respected methods in non-life insurance, especially in pricing policies. They are the first regression
models that have dealt with a binary response. As a base tool, they serve as the benchmark
model. We must remember, nonetheless, that GLMs are generally too approximate for they tend
to underestimate the price sensitiveness of customers.

With the gradual addition of explanatory variables, we have seen an increased accuracy of the
lapse rate predictions. Additionnaly, the market variables, along with the technical premium have
enabled us to gain a better understanding of the portfolio elasticity. We are consequently more
confident with the accuracy of our forecasts reached in studies of the caliber of the Germany study.

Generalized Additive Models (GAM) of Hastie & Tibshirani (1990) are a generalization of
GLMs, in the sense that they allow for non linear terms in the predictor. Like GLMs, the quality
of the findings attained is directly related to the data provided. Exploiting limited variables in the
Portugal dataset produced approximate results, whereas, dealing with an extensive set of variables
in Germany database, lead to proven results.

89



90 CHAPTER 4. SURVIVAL REGRESSION MODELS

Applying GAMs despite their additional complexity can be justified in cases where GLMs fail to
provide realistic lapse predictions and substantial datasets. It should also be noted that GAMs can
model interactions between explanatory variables. Not restricted to linear terms, they consequently
provide us with a more adaptive tool. Caution should however be exercised, as they may overfit
the data when applied to limited datasets. This could then imply business inconsistency.

GLMs and GAMs are static models, however, and this is a major drawback. One option could
have been to use time serie models on regression coefficients. This was impossible with our datasets
due to a limited number of years. Generalized Linear Mixed Models (GLMM), where the linear
predictor becomes the sum of a (unknown deterministic) fixed term and a random term, are a
natural extension of GLMs, when it is necessary to deal with heterogeneity across time.

Among others, Frees (2004) presents GLMMs in the context of longitudinal and panel data.
Since a panel data model cannot deal with right-censoring (when a policy is terminated), we need
survival models. Despite discarding GLMMs for dynamic lapse modelling, we try to use the GLMMs
to model endogeneous effects such as dropping coverage for a random term. Unfortunately, this
has been inefficient.

The Survival Regression Models of Cox (1972) were applied to eliminate the inherent limits of
the static regression models previously used. They, by their nature, take into account the lapse that
is the modeled variable’s dynamic aspects. GLMs and GAMs clearly demonstrate that renewing a
policy for the 1st time is not motivated by the same factors as renewing one for the 10th time.

As explained, the full power survival models could not be applied to the Quebec and German
datasets as these only gave the lapse by the insured. With other policy termination factors, it
would be feasible to model the complete life cycle of a policy. With a full picture integrating cash
flow, claims, and premiums, risk could also be better evaluated, and risk managers could be better
equipped. Further advanced models such as Fahrmeir (1994), mentioned in chapter 4, exist, yet,
at present, they remain difficult to put into place due to the fitting process involved.

In this memoir we have explored the wide range of existing statistical regression models. Each
of the three models presented are informative forecasting tools. To sum up, survival regression
models allow the modeling of a policy’s life cycle. On the other hand, GLMs and GAMs provide
more proven results. Once again, our research has further demonstrated that the quality of data
used in actuarial studies unequivocally affects the findings reached.

The conclusions drawn from customer price sensitiveness studies should in any respect be
weighed carefully. Charging higher premiums to loyal customers could seem unfair in light of the
fact that those same customers usually have a better claims history. By the same token, relying on
the market context with its inherent uncertainty to predict price sensitiveness could be misleading.

In summary, insurers must have a well informed overview of the market, the customer base,
and a keen awareness of the pros and cons of potential pricing adjustments. The models presented
herein serve as decision-making support tools and reinforce business acumen.
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Chiappori, P.-A. & Salanié, B. (2000), ‘Testing for asymmetric information in insurance markets’,
Journal of Political Economy 108(1), 56–78. 44

Clark, D. R. & Thayer, C. A. (2004), ‘A primer on the exponential family of distributions’, 2004
call paper program on generalized linear models . 94

Cleveland, W. S. (1979), ‘Robust locally weighted regression and smoothing scatterplots’, Journal
of the American Statistical Association . 51

Cox, D. R. (1972), ‘Regression models and life-tables’, Journal of the Royal Statistical Society:
Series B . 75, 90

Cummins, J. D. & Venard, B. (2007), Handbook of international insurance, Springer. 11, 14, 16

Dardanoni, V. & Donni, P. L. (2008), Testing for asymmetric information in insurance markets
with unobservable types. HEDG working paper. 44

Dionne, G., Gouriéroux, C. & Vanasse, C. (2001), ‘Testing for evidence of adverse selection in the
automobile insurance market: A comment’, Journal of Political Economy 109(2), 444–453. 44,
45

Dionne, G., Pinquet, J., Maurice, M. & Vanasse, C. (2009), Incentive mechanisms for safe driving:
a comparative analysis with dynamic data. working paper. 14

Dreyer, V. (2000), Study the profitability of a customer, Master’s thesis, ULP - magistère
d’actuariat. Confidential memoir - AXA Insurance U.K. 21

Efron, B. (1977), ‘The efficiency of cox’s likelihood function for censored data’, Journal of the
American Statistical Association 72(359), 557–565. 75, 79

Fahrmeir, L. (1994), ‘Dynamic modelling and penalized likelihood estimation for discrete time
survival data’, Biometrika 81(2), 317–330. 88, 90

91



92 BIBLIOGRAPHY

Fahrmeir, L. & Tutz, G. (1994), Multivariate Statistical Modelling Based on Generalized Linear
Models, Springer. 45

Fox, J. (2010), Logit and probit models, Technical report, York SPIDA. 25

Frees, E. W. (2004), Longitudinal and Panel data, Cambridge University Press. 90

Grambsch, P. & Therneau, T. (1994), ‘Proportional hazard tests and diagnostics based on weighted
residuals’, Biometrika 81, 515–526. 81

Guillen, M., Parner, J., Densgsoe, C. & Perez-Marin, A. M. (2003), Using Logistic Regression
Models to Predict and Understand Why Customers Leave an Insurance Company, Vol. 6 of
Innovative Intelligence Shapiro & Jain (2003), chapter 13. 9

Hamel, S. (2007), Prédiction de l’acte de résiliation de l’assuré et optimisation de la performance en
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Appendix A

Statistics

A.1 Exponential family

A.1.1 Characterization

Clark & Thayer (2004) defines the exponential family by the following density or mass proba-
bility function

f(x) = ed(θ)e(x)+g(θ)+h(x),

where d, e, g and h are known functions and θ the vector of paremeters. Let us note that the
support of the distribution can be R or R+ or N. This form for the exponential family is called the
natural form.

When we deal with generalized linear models, we use the natural form of the exponential family,
which is

f(x, θ, φ) = e
θx−b(θ)
a(φ)

+c(x,φ)
,

where a, b, c are known functions and θ, φ ∗ denote the parameters. This form is derived from the
previous by setting d(θ) = θ, e(x) = x and adding a dispersion parameter φ.

Let µ be the mean of the variable of an exponential family distribution. We have µ = τ(θ) since
φ is only a dispersion parameter. The mean value form of the exponential family is

f(x) = e
τ−1(µ)x−b(τ−1(µ))

a(φ)
+c(x,φ)

.

A.1.2 Properties

For the exponential family, we have

E(X) = µ = b′(θ) and V ar(X) = a(φ)V (µ) = a(φ)b′′(θ),

∗. the canonic and the dispersion parameters.
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where V is the unit variance function. The skewness is given by

γ3(X) =
dV

dµ
(µ)

√
a(φ)
V (µ)

=
b(3)(θ)a(φ)2

V ar(Y )3/2
,

while the kurtosis is

γ4(X) = 3 +

[
d2V

dµ2
(µ)V (µ) +

(
dV

dµ
(µ)
)2
]
a(φ)
V (µ)

= 3 +
b(4)(θ)a(φ)3

V ar(Y )2
.

The property of uniqueness is the fact that the variance function V uniquely identifies the
distribution.

A.1.3 Special cases

The exponential family of distributions in fact contains the most frequently used distributions.
Here are the corresponding parameters, listed in a table:

Law Distribution θ φ Expectation Variance

Normal N (µ, σ2) 1√
2πσ

e−
(x−µ)2

2σ2 µ σ2 µ = θ 1

Gamma G(α, β) βαxα−1

Γ(α) e−βx −β
α = 1

µ
1
α µ = −1

θ µ2

Inverse Normal I(µ, λ)
√

λ
2πx3 e

−λ(x−µ)2

2µ2x − 1
2µ2

1
λ µ = (−2θ)−

1
2 µ3

Bernoulli B(µ) µx(1− µ)1−x log( µ
1−µ) 1 µ = eθ

1+eθ
µ(1− µ)

Poisson P(µ) µx

x! e
−µ log(µ) 1 µ = eθ µ

Overdispersed Poisson P(φ, µ) µ
x
φ
x
φ

! e
−µ log(µ) φ φeθ φµ
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Additional tables and graphics

B.1 Data presentation

B.1.1 Descriptive analysis for Portugal data

(0,100] (100,200] (200,300] (300,400] (400,500]

Lapse rate (%) 14 14 20 25 22.0
Prop. of total (%) 14 26 43 11 5.1

Table B.1: Proposed premium - premium after

Pearson’s Chi-squared test for Proposed premium

data: mytable X-squared = 4895.49, df = 4, p-value < 2.2e-16

(0,100] (100,200] (200,300] (300,400] (400,500]

Lapse rate (%) 14 14 20 25 22.1
Prop. of total (%) 14 27 44 11 4.8

Table B.2: Last paid premium - premium before

Pearson’s Chi-squared test for Last paid premium

data: mytable X-squared = 4775.193, df = 4, p-value < 2.2e-16

FEMALE MALE

Lapse rate (%) 18 19
Prop. of total (%) 20 80

Table B.3: Gender

Pearson’s Chi-squared test with Yates’ continuity correction for Gender
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Figure B.1: Proposed premium

Figure B.2: Last paid premium

data: mytable X-squared = 23.7255, df = 1, p-value = 1.111e-06

(32.5,47.5] (47.5,62.5] (62.5,77.5] (77.5,92.5]

Lapse rate (%) 20 17 14 14.6
Prop. of total (%) 38 42 17 2.8

Table B.4: Driver age - age

Pearson’s Chi-squared test for Driver age

data: mytable X-squared = 1500.512, df = 3, p-value < 2.2e-16
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Figure B.3: Driver age

(2.5,5.5] (5.5,8.5] (8.5,11.5] (11.5,14.5] (14.5,17.5]

Lapse rate (%) 21 17 18 16.6 17.5
Prop. of total (%) 38 33 22 3.6 2.3

Table B.5: Policy age - age policy

Pearson’s Chi-squared test for Policy age

data: mytable X-squared = 896.5751, df = 4, p-value < 2.2e-16

Figure B.4: Policy age

Pearson’s Chi-squared test for Vehicle age
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(2.5,5.5] (5.5,8.5] (8.5,11.5] (11.5,14.5] (14.5,17.5] (17.5,20.5] (20.5,26.5]

Lapse rate (%) 17 18 19 20 21 21.1 39.3
Prop. of total (%) 15 21 21 16 14 8.4 4.4

Table B.6: Vehicle age - age vehicle

data: mytable X-squared = 632.7147, df = 7, p-value < 2.2e-16

Figure B.5: Vehicle age

(0.925,0.955] (0.955,0.985] (0.985,1.02] (1.02,1.04] (1.04,1.08]

Lapse rate (%) 18.8 20 18 18 21.9
Prop. of total (%) 8.5 20 40 29 2.5

Table B.7: Price ratio

Pearson’s Chi-squared test for Price ratio

data: mytable X-squared = 484.1171, df = 4, p-value < 2.2e-16

B.1.2 Descriptive analysis for QuÈbec data

(0,1] (1,2] (2,27] N Y

prop. size (%) 59.317196 20.524838 20.157966 prop. size (%) 59.165306 40.834694
lapse rate (%) 6.700996 5.398152 4.708123 lapse rate (%) 7.121054 4.453746

Table B.8: Vehicle number group - veh num group / Multi-vehicle discount - multi veh dsc
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Figure B.6: Price ratio

F M other transfer

prop. size (%) 43.370755 56.629245 prop. size (%) 32.241395 67.758605
lapse rate (%) 5.958236 6.088259 lapse rate (%) 7.298461 5.429187

Table B.9: Gender / Billing mode - bill mode

(-1,5] (5,10] (10,15] (15,91]

prop. size (%) 39.477699 28.809350 20.437710 11.059257
lapse rate (%) 5.927667 6.235154 6.190484 5.641583

Table B.10: Vehicle age group - veh age group

N Y 0 1

prop. size (%) 56.460330 43.539670 prop. size (%) 97.998725 2.001275
lapse rate (%) 8.242083 3.165756 lapse rate (%) 6.121663 1.634696

Table B.11: Have house policy at AXA - house pol / Drop cover - drop cover

(0,2] (2,6] (6,11]

prop. size (%) 24.30206 29.241986 46.437930
lapse rate (%) 8.10588 6.927178 4.376424

Table B.12: Policy age group - pol age group

allrisk TPL TPL+opt

prop. size (%) 61.713052 16.749288 21.537660
lapse rate (%) 5.856643 6.702675 6.012276

Table B.13: Cover
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N Y

prop. size (%) 57.035175 42.964825
lapse rate (%) 7.086167 4.632299

Table B.14: Have multi-vehicle - multi veh

(15,25] (25,35] (35,45] (45,55] (55,65] (65,75] (75,99]

prop. size (%) 9.325041 10.662340 18.585654 22.501744 19.268658 12.568142 7.085416
lapse rate (%) 9.826734 8.168441 6.270319 5.548467 4.996448 4.382587 4.466431

Table B.15: Driver age group - drivage group

0 1 2+ 0 1 2+

prop. size (%) 90.575813 8.717815 0.7063717 prop. size 90.789127 8.510510 0.7003629
lapse rate (%) 6.013755 6.176527 6.5689981 lapse rate 5.980873 6.558406 6.2440419

Table B.16: Last year claim group - claim 1 group / 2-year-ago claim group - claim 2 group

0 1 2+ 0 1 2+

prop. size (%) 97.435897 2.499341 0.06476187 prop. size 97.332078 2.604161 0.0637604
lapse rate (%) 5.992572 7.426205 11.34020619 lapse rate 5.990047 7.601590 5.7591623

Table B.17: Last year responsible claim group - respclaim 1 group / 2-year-ago responsible claim
group - respclaim 2 group

(0,250] (250,500] (500,750] (750,1e+03] (1e+03,2e+03] (2e+03,Inf]

prop. size (%) 26.859150 32.468395 25.25780 9.332719 5.705387 0.3758859
lapse rate (%) 5.266036 4.997841 6.23827 8.251958 10.303669 0.3758859

Table B.18: Proposed premium group - next prem group

(0,250] (250,500] (500,750] (750,1e+03] (1e+03,2e+03] (2e+03,Inf]

prop. size (%) 24.30840 30.424724 26.933926 10.819571 6.981262 0.5321155
lapse rate (%) 5.42311 5.143735 5.992588 7.657894 9.209583 11.8569636

Table B.19: Last year premium group - prev prem group

(0,15] (15,25] (25,99]

prop. size (%) 12.625226 45.41376 41.961016
lapse rate (%) 5.830249 6.08052 6.039873

Table B.20: Pricing group - price group2
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(0,0.75] (0.75,1] (1,1.25] (1.25,Inf]

prop. size (%) 6.615057 73.908312 18.127981 1.347982
lapse rate (%) 3.936213 5.983315 6.586992 11.515602

Table B.21: Price ratio - pricechange
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B.1.3 Descriptive analysis for Germany data

The tables below are computed for the 2008 direct business only. Similar conclusions can be
drawn for other distribution channels.

polage (0,1] (1,2] (2,7] (7,34]

prop. size 24.97228 16.78816 34.38068 23.85888
lapse rate 17.43146 15.27215 11.25925 8.781606

cover fully compr. partial compr. TPL

prop. size 36.16025 37.60943 26.23033
lapse rate 14.2557 12.64208 12.79180

product altern. garag eco VIP

prop. size 22.25926 75.67923 2.061505
lapse rate 14.41161 12.88283 14.90649

Table B.22: Policy information

bonusevol down stable up

prop. size 33.31746 62.91899 3.763551
lapse rate 16.68709 11.52702 12.02169

typeclassTPL 9 10 11 12 13 14 15 16 17

prop. size 0.1161 0.090 0.07230 0.3735 2.790 10.38 10.95 15.06 18.70
lapse rate 12.26 10.84 7.575 8.797 10.87 12.06 12.43 13.18 13.26

typeclassTPL 18 19 20 21 22 23 24 25

prop. size 17.95 13.14 4.990 2.904 1.580 0.7230 0.1500 0.007668
lapse rate 12.31 13.35 13.43 12.82 14.62 15.75 8.029 14.28

typeclassFC 9 10 11 12 13 14 15 16 17

prop. size 0.1161 7.853 7.441 8.935 6.038 7.639 7.127 10.1 10.82
lapse rate 12.26 9.737 10.61 11.59 12.20 12.16 12.71 13.18 13.27

typeclassFC 18 19 20 21 22 23 24 25

prop. size 9.524 8.682 4.554 3.816 2.0 1.647 1.385 0.8271
lapse rate 13.94 14.67 14.55 14.75 13.62 14.42 14.22 14.03

Table B.23: Bonus information



104 APPENDIX B. ADDITIONAL TABLES AND GRAPHICS

polholderage (-1,37] (37,44] (44,54] (54,85]

prop. size 26.82628 26.34495 22.08789 24.74089
lapse rate 16.32178 13.39251 12.24752 10.74608

maritalstatus 0 1 2 3

prop. size 94.79958 0.8025974 1.854942 2.542883
lapse rate 13.34483 12.30552 9.241126 13.70536

diffdriverPH all drivers > 24 commercial learner 17 only partner same-young drivers

prop. size 0.077108 7.885427 0.3707987 0.2812174 45.06622 46.31923
lapse rate 8.82353 13.07161 10.70336 14.11290 13.91943 12.68361

jobgroup medical normal public

prop. size 49.47725 50.50687 0.01587518
lapse rate 12.79994 13.72219 7.142857

Table B.24: Policyholder information

mileage (1,9] (9,12] (12,15] (15,35]

prop. size 33.85136 26.16386 20.03272 19.95206
lapse rate 13.17202 13.29512 13.34354 13.35193

finance lease none

prop. size 0.9150905 99.0849
lapse rate 15.24164 13.24659

caruse commercial private unknown

prop. size 0.04195582 76.89935 23.05869
lapse rate 13.51351 14.46266 9.269732

carclass (0,2] (2,3] (3,5]

prop. size 59.24966 30.20909 10.54125
lapse rate 12.84 13.55510 12.51374

vehiclage (0,6] (6,10] (10,13] (13,18]

prop. size 26.05579 31.01423 21.84650 21.08348
lapse rate 15.49827 13.55724 12.71630 10.67061

Table B.25: Car information
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housepol flat owner house with axa no property not with axa

prop. size 0.443371 19.36204 1.054565 51.01715 28.12287
lapse rate 10.48593 10.69400 14.40860 13.61606 14.39861

householdnbAXA (0,2] (2,3] (3,15]

prop. size 93.31812 4.045908 2.635970
lapse rate 13.37177 12.14927 11.36951

isinsuredinhealth 0 1

prop. size 98.95787 1.042128
lapse rate 13.28194 12.09150

isinsuredinlife 0 1

prop. size 97.52296 2.477040
lapse rate 13.27831 12.92392

isinsuredinaccident 0 1

prop. size 99.48007 0.5199287
lapse rate 13.27612 12.00873

Table B.26: Car information

claimamount (-1,435] (435,1570] (1570,48600]

prop. size 60.00149 19.99926 19.99926
lapse rate 13.46154 14.25647 14.07035

nbclaim08percust 0 1 2 3 4 [5 - 13]

prop. size 70.59108 25.28847 3.599345 0.43549 0.07444 0.017444
lapse rate 13.75165 13.36473 16.02896 12.82051 20 100

nbclaim0708percust 0 1 2 3 4 [5, 14]

prop. size 38.32353 47.5322 11.28936 2.1365 0.55832 0.15191
lapse rate 12.45144 14.27565 15.13353 16.89895 15.33333 21.3583

nbclaim0608percust (-1,1] (1,2] (2,27]

prop. size 77.20539 17.00663 5.787985
lapse rate 13.30151 15.01423 15.88424

Table B.27: Claim information
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lastprem (0,500] (500,1e+03] (1e+03,5e+03]

prop. size 72.4981 24.44247 3.059425
lapse rate 10.47965 13.00631 14.85349

finalprem (0,500] (500,1e+03] (1e+03,5e+03]

prop. size 72.3931 24.58395 3.022953
lapse rate 10.42744 13.12656 15.06524

priceratio (0,0.75] (0.75,0.95] (0.95,1] (1,1.05] (1.05,1.25] (1.25,5]

prop. size 0.2369838 2.148523 88.97731 1.460095 4.935531 2.241554
lapse rate 12.80992 12.09359 10.83894 14.01744 16.07143 13.99447

top10vip (53.9,227] (227,282] (282,349] (349,472] (472,2460]

prop. size 20 20 20 20 20
lapse rate 10.15625 11.76215 13.02083 14.14931 14.90885

top10eco (39.7,185] (185,229] (229,282] (282,382] (382,1930]

prop. size 20 20 20 20 20
lapse rate 10.63922 11.61430 12.71939 13.7565 15.30126

top10direct (39.7,185] (185,229] (229,282] (282,382] (382,1933]

prop. size 20 20 20 20 20
lapse rate 10.63922 11.61430 12.71939 13.7565 15.30126

paymentfreq 1 2 4 12

prop. size 55.14356 16.12464 19.55255 9.179253
lapse rate 13.67469 13.25598 12.61961 12.19271

directdebit 0 1

prop. size 12.63806 87.36194
lapse rate 13.0821 13.29162

Table B.28: Premium information

cumulrebate (-1,4] (4,9] (9,14] (14,90]

prop. size 70.40656 20.76536 5.695849 3.132224
lapse rate 12.82658 13.49583 12.13695 9.303952

techrebate (-1,4] (4,9] (9,14] (14,90]

prop. size 98.99646 0.5905102 0.2202088 0.1928197
lapse rate 12.80641 15.21336 12.43781 10.79545

Table B.29: Agent information
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B.2 GLM analyses

B.2.1 GLM analysis for Portugal data

Continuous variables

Here follows the backward selection when all variables are continuous.

> summary(resglm25)

Call:
glm(formula = did_lapse ˜ priceratio * (gender + age + age_policy + age_vehicle + premium_before),

family = binomial(), data = workdata)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.4472 -0.6757 -0.6045 -0.5145 2.5865

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.7666660 0.1917413 -3.998 6.38e-05 ***
priceratio -0.4531173 0.1914016 -2.367 0.017915 *
genderMALE 0.7566560 0.1161393 6.515 7.27e-11 ***
age -0.0350644 0.0031744 -11.046 < 2e-16 ***
age_policy -0.0107819 0.0094287 -1.144 0.252820
age_vehicle -0.0246413 0.0064303 -3.832 0.000127 ***
premium_before -0.0017808 0.0001781 -9.999 < 2e-16 ***
priceratio:genderMALE -0.6760655 0.1159748 -5.829 5.56e-09 ***
priceratio:age 0.0179810 0.0031567 5.696 1.23e-08 ***
priceratio:age_policy 0.0031629 0.0093887 0.337 0.736204
priceratio:age_vehicle 0.0538058 0.0064112 8.392 < 2e-16 ***
priceratio:premium_before 0.0025069 0.0001794 13.973 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 539837 on 560343 degrees of freedom
Residual deviance: 531382 on 560332 degrees of freedom
AIC: 531406

Number of Fisher Scoring iterations: 4

> summary(resglm26)

Call:
glm(formula = did_lapse ˜ age_policy + priceratio * (gender + age + age_vehicle + premium_before),

family = binomial(), data = workdata)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.3538 -0.6757 -0.6045 -0.5145 2.5791

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.7737301 0.1907634 -4.056 4.99e-05 ***
age_policy -0.0076121 0.0006013 -12.659 < 2e-16 ***
priceratio -0.4459493 0.1903878 -2.342 0.019164 *
genderMALE 0.7540763 0.1159249 6.505 7.78e-11 ***
age -0.0352652 0.0031278 -11.275 < 2e-16 ***
age_vehicle -0.0246664 0.0064425 -3.829 0.000129 ***
premium_before -0.0017755 0.0001777 -9.989 < 2e-16 ***
priceratio:genderMALE -0.6734653 0.1157564 -5.818 5.96e-09 ***
priceratio:age 0.0181797 0.0031110 5.844 5.11e-09 ***
priceratio:age_vehicle 0.0538313 0.0064235 8.380 < 2e-16 ***
priceratio:premium_before 0.0025015 0.0001790 13.973 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 539837 on 560343 degrees of freedom
Residual deviance: 531382 on 560333 degrees of freedom
AIC: 531404

Number of Fisher Scoring iterations: 4

Analysis of link functions:
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> summary(resglm27)

Call:
glm(formula = did_lapse ˜ age_policy + priceratio * (gender + age + age_vehicle + premium_before),

family = binomial("probit"), data = workdata)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.5676 -0.6765 -0.6055 -0.5121 2.6552

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.5683747 0.1090992 -5.210 1.89e-07 ***
age_policy -0.0041449 0.0003329 -12.453 < 2e-16 ***
priceratio -0.1909652 0.1089723 -1.752 0.07970 .
genderMALE 0.4313946 0.0669263 6.446 1.15e-10 ***
age -0.0187913 0.0017734 -10.596 < 2e-16 ***
age_vehicle -0.0108735 0.0036373 -2.989 0.00279 **
premium_before -0.0010077 0.0001022 -9.859 < 2e-16 ***
priceratio:genderMALE -0.3855923 0.0669052 -5.763 8.25e-09 ***
priceratio:age 0.0092317 0.0017656 5.229 1.71e-07 ***
priceratio:age_vehicle 0.0276823 0.0036275 7.631 2.33e-14 ***
priceratio:premium_before 0.0014363 0.0001031 13.934 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 539837 on 560343 degrees of freedom
Residual deviance: 531339 on 560333 degrees of freedom
AIC: 531361

Number of Fisher Scoring iterations: 5

> summary(resglm28)

Call:
glm(formula = did_lapse ˜ age_policy + priceratio * (gender + age + age_vehicle + premium_before),

family = binomial("cloglog"), data = workdata)

Deviance Residuals:
Min 1Q Median 3Q Max

-8.490e+00 -8.490e+00 -2.107e-08 -2.107e-08 8.490e+00

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.965e+14 4.785e+06 -41071229 <2e-16 ***
age_policy -1.395e+13 1.475e+04 -946234735 <2e-16 ***
priceratio 7.060e+14 4.784e+06 147577169 <2e-16 ***
genderMALE 1.076e+15 3.104e+06 346751583 <2e-16 ***
age -6.826e+12 7.938e+04 -86001767 <2e-16 ***
age_vehicle -5.303e+13 1.595e+05 -332499024 <2e-16 ***
premium_before -1.827e+12 4.419e+03 -413476726 <2e-16 ***
priceratio:genderMALE -1.002e+15 3.108e+06 -322572510 <2e-16 ***
priceratio:age -2.081e+13 7.913e+04 -263027784 <2e-16 ***
priceratio:age_vehicle 9.127e+13 1.591e+05 573841804 <2e-16 ***
priceratio:premium_before 2.556e+12 4.465e+03 572450712 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 539837 on 560343 degrees of freedom
Residual deviance: 14549742 on 560333 degrees of freedom
AIC: 14549764

Number of Fisher Scoring iterations: 25

> summary(resglm26)

Call:
glm(formula = did_lapse ˜ age_policy + priceratio * (gender + age + age_vehicle + premium_before),

family = binomial("logit"), data = workdata)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.3538 -0.6757 -0.6045 -0.5145 2.5791

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.7737301 0.1907634 -4.056 4.99e-05 ***
age_policy -0.0076121 0.0006013 -12.659 < 2e-16 ***
priceratio -0.4459493 0.1903878 -2.342 0.019164 *
genderMALE 0.7540763 0.1159249 6.505 7.78e-11 ***
age -0.0352652 0.0031278 -11.275 < 2e-16 ***
age_vehicle -0.0246664 0.0064425 -3.829 0.000129 ***
premium_before -0.0017755 0.0001777 -9.989 < 2e-16 ***
priceratio:genderMALE -0.6734653 0.1157564 -5.818 5.96e-09 ***
priceratio:age 0.0181797 0.0031110 5.844 5.11e-09 ***
priceratio:age_vehicle 0.0538313 0.0064235 8.380 < 2e-16 ***
priceratio:premium_before 0.0025015 0.0001790 13.973 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Figure B.7: One-variable effect on lapse for continuous variables

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 539837 on 560343 degrees of freedom
Residual deviance: 531382 on 560333 degrees of freedom
AIC: 531404

Number of Fisher Scoring iterations: 4

>
> anova(resglm26, resglm27, test="Chisq")
Analysis of Deviance Table

Model 1: did_lapse ˜ age_policy + priceratio * (gender + age + age_vehicle + premium_before) - logit
Model 2: did_lapse ˜ age_policy + priceratio * (gender + age + age_vehicle + premium_before) - probit

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 560333 531382
2 560333 531339 0 43.354
>
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Categorical variables

Here follows the backward selection when variables are categorical.

> summary(resglm38)

Call:
glm(formula = did_lapse ˜ priceratio * (gender + agegroup + agepolgroup +

agevehgroup + prembeforegroup), family = binomial(), data = workdata)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.3082 -0.6770 -0.6028 -0.5189 2.5276

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.289692 0.723096 -3.167 0.001543 **
priceratio 0.904127 0.742198 1.218 0.223157
genderMALE 0.709440 0.116143 6.108 1.01e-09 ***
agegroup(20,35] 0.151167 0.716661 0.211 0.832940
agegroup(35,60] -0.464333 0.716779 -0.648 0.517111
agegroup(60,99] -1.187186 0.727779 -1.631 0.102839
agepolgroup(4,8] 0.046926 0.098402 0.477 0.633449
agepolgroup(8,12] -0.227676 0.113902 -1.999 0.045623 *
agepolgroup(12,49] -0.237745 0.211287 -1.125 0.260496
agevehgroup(5,10] -0.706848 0.106784 -6.619 3.61e-11 ***
agevehgroup(10,15] -0.184412 0.121030 -1.524 0.127587
agevehgroup(15,99] -0.231443 0.130382 -1.775 0.075880 .
prembeforegroup(500,1e+03] -0.370542 0.138315 -2.679 0.007385 **
prembeforegroup(1e+03,1.5e+03] -1.093366 0.314019 -3.482 0.000498 ***
prembeforegroup(1.5e+03,1e+04] -0.667078 0.639235 -1.044 0.296690
priceratio:genderMALE -0.638175 0.115970 -5.503 3.74e-08 ***
priceratio:agegroup(20,35] -0.263852 0.735989 -0.359 0.719969
priceratio:agegroup(35,60] -0.006562 0.736058 -0.009 0.992886
priceratio:agegroup(60,99] 0.378138 0.746560 0.507 0.612500
priceratio:agepolgroup(4,8] -0.183033 0.097695 -1.874 0.060996 .
priceratio:agepolgroup(8,12] 0.076816 0.113106 0.679 0.497041
priceratio:agepolgroup(12,49] 0.021355 0.210124 0.102 0.919048
priceratio:agevehgroup(5,10] 0.978501 0.106478 9.190 < 2e-16 ***
priceratio:agevehgroup(10,15] 0.638095 0.120390 5.300 1.16e-07 ***
priceratio:agevehgroup(15,99] 0.803768 0.129724 6.196 5.79e-10 ***
priceratio:prembeforegroup(500,1e+03] 0.644801 0.139476 4.623 3.78e-06 ***
priceratio:prembeforegroup(1e+03,1.5e+03] 1.502788 0.315483 4.763 1.90e-06 ***
priceratio:prembeforegroup(1.5e+03,1e+04] 1.112602 0.644471 1.726 0.084279 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 539782 on 560267 degrees of freedom
Residual deviance: 532308 on 560240 degrees of freedom
(76 observations deleted due to missingness)

AIC: 532364

Number of Fisher Scoring iterations: 4

> summary(resglm46)

Call:
glm(formula = did_lapse ˜ agepolgroup2 + priceratio:agegroup4 +

priceratio * (gender + agevehgroup2 + prembeforegroup2),
family = binomial(), data = workdata)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.1587 -0.6633 -0.6060 -0.5193 2.8747

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.522477 0.120852 -20.873 < 2e-16 ***
agepolgroup2(4,49] -0.153793 0.007270 -21.154 < 2e-16 ***
priceratio 1.018771 0.120903 8.426 < 2e-16 ***
genderMALE 0.681454 0.117045 5.822 5.81e-09 ***
agevehgroup2(5,10] -0.684290 0.106741 -6.411 1.45e-10 ***
agevehgroup2(10,99] -0.262674 0.101038 -2.600 0.00933 **
prembeforegroup2(500,1e+03] -0.295837 0.137011 -2.159 0.03083 *
prembeforegroup2(1e+03,1e+04] -0.923435 0.283603 -3.256 0.00113 **
priceratio:agegroup4(35,60] -0.352247 0.008083 -43.579 < 2e-16 ***
priceratio:agegroup4(60,99] -0.674209 0.011248 -59.938 < 2e-16 ***
priceratio:genderMALE -0.607070 0.116885 -5.194 2.06e-07 ***
priceratio:agevehgroup2(5,10] 0.956935 0.106426 8.992 < 2e-16 ***
priceratio:agevehgroup2(10,99] 0.766736 0.100552 7.625 2.44e-14 ***
priceratio:prembeforegroup2(500,1e+03] 0.569856 0.138151 4.125 3.71e-05 ***
priceratio:prembeforegroup2(1e+03,1e+04] 1.340304 0.285123 4.701 2.59e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 539782 on 560267 degrees of freedom
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Residual deviance: 532580 on 560253 degrees of freedom
(76 observations deleted due to missingness)

AIC: 532610

Number of Fisher Scoring iterations: 4

>

Below, we put the GLM fit summaries respectively for the price-increase population and the
price-decrease population.

> summary(resglm50up)

Call:
glm(formula = did_lapse ˜ agepolgroup2 + priceratio:(agegroup4 +

prembeforegroup2) + priceratio * (gender + agevehgroup2),
family = binomial(), data = workdata[idxup, ])

Deviance Residuals:
Min 1Q Median 3Q Max

-3.9921 -0.6652 -0.6045 -0.5266 3.0007

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.604269 0.138423 -18.814 < 2e-16 ***
agepolgroup2(4,49] -0.127231 0.007764 -16.388 < 2e-16 ***
priceratio 1.077198 0.136502 7.891 2.99e-15 ***
genderMALE 0.822231 0.138906 5.919 3.23e-09 ***
agevehgroup2(5,10] -0.945460 0.128975 -7.331 2.29e-13 ***
agevehgroup2(10,99] -0.753005 0.124929 -6.027 1.67e-09 ***
priceratio:agegroup4(35,60] -0.330512 0.008643 -38.241 < 2e-16 ***
priceratio:agegroup4(60,99] -0.646742 0.011841 -54.618 < 2e-16 ***
priceratio:prembeforegroup2(500,1e+03] 0.295764 0.013132 22.523 < 2e-16 ***
priceratio:prembeforegroup2(1e+03,1e+04] 0.442775 0.027677 15.998 < 2e-16 ***
priceratio:genderMALE -0.743046 0.136960 -5.425 5.79e-08 ***
priceratio:agevehgroup2(5,10] 1.195475 0.126936 9.418 < 2e-16 ***
priceratio:agevehgroup2(10,99] 1.221063 0.122737 9.949 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 472406 on 490261 degrees of freedom
Residual deviance: 466542 on 490249 degrees of freedom
AIC: 466568

Number of Fisher Scoring iterations: 4

> summary(resglm50down)

Call:
glm(formula = did_lapse ˜ agepolgroup2 + gender + priceratio:(agegroup4 +

prembeforegroup2) + priceratio * (agevehgroup2), family = binomial(),
data = workdata[idxdown, ])

Deviance Residuals:
Min 1Q Median 3Q Max

-0.9758 -0.6617 -0.5996 -0.5145 2.3583

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.964607 0.206029 -14.389 < 2e-16 ***
agepolgroup2(4,49] -0.161592 0.008509 -18.991 < 2e-16 ***
genderMALE 0.099735 0.009984 9.990 < 2e-16 ***
priceratio 1.463632 0.212330 6.893 5.45e-12 ***
agevehgroup2(5,10] 0.785047 0.260462 3.014 0.00258 **
agevehgroup2(10,99] 1.901443 0.245635 7.741 9.87e-15 ***
priceratio:agegroup4(35,60] -0.392557 0.009551 -41.100 < 2e-16 ***
priceratio:agegroup4(60,99] -0.713592 0.013853 -51.511 < 2e-16 ***
priceratio:prembeforegroup2(500,1e+03] 0.289150 0.013990 20.669 < 2e-16 ***
priceratio:prembeforegroup2(1e+03,1e+04] 0.413289 0.028901 14.300 < 2e-16 ***
priceratio:agevehgroup2(5,10] -0.529244 0.267397 -1.979 0.04779 *
priceratio:agevehgroup2(10,99] -1.413007 0.252110 -5.605 2.09e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 406081 on 425550 degrees of freedom
Residual deviance: 400537 on 425539 degrees of freedom
AIC: 400561

Number of Fisher Scoring iterations: 4
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Figure B.8: One-variable effect on lapse for categorical variables
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B.2.2 GLM analysis for Québec data

Year 2007

Here follows the backward selection when all variables are continuous.

> summary(resglm01)

Call:
glm(formula = did_cancel ˜ pricefactor * (pol_age_group + multi_veh_dsc +

house_pol + veh_age_group + price_group2 + cover2 + gender +
drivage_group + prev_prem_group + respclaim_1_group + respclaim_2_group),
family = binomial(), data = workdata)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.8740 -0.4268 -0.3318 -0.2488 3.0148

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.73354 0.40746 -6.709 1.96e-11 ***
pricefactor 0.45475 0.42096 1.080 0.280016
pol_age_group(2,6] 0.04676 0.15541 0.301 0.763519
pol_age_group(6,11] -0.44718 0.16686 -2.680 0.007362 **
multi_veh_dscY -0.19659 0.15624 -1.258 0.208302
house_polY -1.16914 0.15312 -7.635 2.25e-14 ***
veh_age_group(5,10] -0.15624 0.17714 -0.882 0.377759
veh_age_group(10,15] 0.03098 0.26806 0.116 0.907980
veh_age_group(15,91] 0.16869 0.35498 0.475 0.634629
price_group2(15,25] -0.28099 0.28616 -0.982 0.326141
price_group2(25,99] -0.31968 0.32556 -0.982 0.326129
cover2TPL+opt 0.59909 0.17247 3.474 0.000513 ***
genderM 0.05151 0.13145 0.392 0.695144
drivage_group(25,35] -0.10856 0.20932 -0.519 0.604034
drivage_group(35,45] 0.09019 0.21660 0.416 0.677113
drivage_group(45,55] -0.30168 0.21703 -1.390 0.164516
drivage_group(55,65] -0.06805 0.24201 -0.281 0.778583
drivage_group(65,75] -0.22715 0.27263 -0.833 0.404744
drivage_group(75,99] -0.81497 0.30644 -2.659 0.007826 **
prev_prem_group(1e+03,2e+03] -0.36103 0.29977 -1.204 0.228457
prev_prem_group(250,500] -0.69695 0.23202 -3.004 0.002665 **
prev_prem_group(2e+03,Inf] 0.10988 0.51690 0.213 0.831655
prev_prem_group(500,750] -0.75412 0.26599 -2.835 0.004580 **
prev_prem_group(750,1e+03] -0.51114 0.29284 -1.745 0.080903 .
respclaim_1_group1 0.34025 0.21743 1.565 0.117608
respclaim_1_group2+ 1.57437 0.67674 2.326 0.019997 *
respclaim_2_group1 0.51399 0.22532 2.281 0.022541 *
respclaim_2_group2+ 1.35116 1.67507 0.807 0.419880
pricefactor:pol_age_group(2,6] -0.13094 0.15926 -0.822 0.410971
pricefactor:pol_age_group(6,11] 0.08384 0.16895 0.496 0.619727
pricefactor:multi_veh_dscY -0.04643 0.15887 -0.292 0.770082
pricefactor:house_polY 0.28769 0.15461 1.861 0.062776 .
pricefactor:veh_age_group(5,10] 0.34609 0.18001 1.923 0.054532 .
pricefactor:veh_age_group(10,15] 0.23223 0.27462 0.846 0.397761
pricefactor:veh_age_group(15,91] 0.12160 0.36585 0.332 0.739599
pricefactor:price_group2(15,25] 0.23024 0.29613 0.777 0.436866
pricefactor:price_group2(25,99] 0.19926 0.33556 0.594 0.552638
pricefactor:cover2TPL+opt -0.67688 0.17614 -3.843 0.000122 ***
pricefactor:genderM -0.08546 0.13377 -0.639 0.522913
pricefactor:drivage_group(25,35] 0.11203 0.21757 0.515 0.606623
pricefactor:drivage_group(35,45] -0.24265 0.22262 -1.090 0.275709
pricefactor:drivage_group(45,55] 0.13568 0.22301 0.608 0.542909
pricefactor:drivage_group(55,65] -0.12258 0.24797 -0.494 0.621074
pricefactor:drivage_group(65,75] -0.06388 0.27604 -0.231 0.816994
pricefactor:drivage_group(75,99] 0.51930 0.30831 1.684 0.092117 .
pricefactor:prev_prem_group(1e+03,2e+03] 1.17909 0.30795 3.829 0.000129 ***
pricefactor:prev_prem_group(250,500] 0.93871 0.23971 3.916 9.00e-05 ***
pricefactor:prev_prem_group(2e+03,Inf] 0.88518 0.54871 1.613 0.106699
pricefactor:prev_prem_group(500,750] 1.27567 0.27307 4.672 2.99e-06 ***
pricefactor:prev_prem_group(750,1e+03] 1.24924 0.29997 4.165 3.12e-05 ***
pricefactor:respclaim_1_group1 -0.40788 0.20242 -2.015 0.043907 *
pricefactor:respclaim_1_group2+ -1.28800 0.53702 -2.398 0.016467 *
pricefactor:respclaim_2_group1 -0.44224 0.22503 -1.965 0.049380 *
pricefactor:respclaim_2_group2+ -1.83594 1.82804 -1.004 0.315225
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 118078 on 239927 degrees of freedom
Residual deviance: 112618 on 239874 degrees of freedom
(394 observations deleted due to missingness)

AIC: 112726

Number of Fisher Scoring iterations: 6
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Figure B.9: One-variable effect on lapse (2007 data)
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Figure B.10: One-variable effect on lapse (2007 data) (continued)
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Year 2006

Please find below the final variable selection of the regression.

Call: glm(formula = did_cancel ˜ drivage_group2 + house_pol + pol_age_group2 + pricefactor * (cover2 + resp_claim_1 + resp_claim_2) + pricefactor:(multi_veh_dsc +
veh_age_group2 + prev_prem_group3), family = binomial(), data = workdata)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.3965 -0.4565 -0.3635 -0.2677 2.8822

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.66656 0.09274 -39.536 < 2e-16 ***
drivage_group2(30,55] -0.17948 0.02270 -7.908 2.62e-15 ***
drivage_group2(55,Inf] -0.27242 0.02510 -10.855 < 2e-16 ***
house_polY -0.89993 0.01923 -46.787 < 2e-16 ***
pol_age_group2(4,Inf] -0.36730 0.01679 -21.872 < 2e-16 ***
pricefactor 1.74083 0.09530 18.267 < 2e-16 ***
cover2TPL+opt 0.94588 0.12981 7.287 3.18e-13 ***
resp_claim_1Y 0.41288 0.20864 1.979 0.04783 *
resp_claim_2Y 0.63793 0.21949 2.906 0.00366 **
pricefactor:cover2TPL+opt -1.05538 0.13364 -7.897 2.86e-15 ***
pricefactor:resp_claim_1Y -0.45033 0.20191 -2.230 0.02572 *
pricefactor:resp_claim_2Y -0.64133 0.22308 -2.875 0.00404 **
pricefactor:multi_veh_dscY -0.18801 0.01811 -10.380 < 2e-16 ***
pricefactor:veh_age_group2(5,10] 0.17581 0.02175 8.082 6.37e-16 ***
pricefactor:veh_age_group2(10,Inf] 0.12624 0.02796 4.515 6.35e-06 ***
pricefactor:prev_prem_group3(500,1e+03] 0.35641 0.02256 15.795 < 2e-16 ***
pricefactor:prev_prem_group3(1e+03,Inf] 0.64826 0.03262 19.875 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 126871 on 232510 degrees of freedom
Residual deviance: 120983 on 232494 degrees of freedom
AIC: 121017

Number of Fisher Scoring iterations: 6

Year 2005

Please find below the final variable selection of the regression.

Call: glm(formula = did_cancel ˜ drivage_group2 + pol_age_group2 + pricefactor * (house_pol + price_group2 + cover2 + resp_claim_2) +
pricefactor:(multi_veh_dsc + veh_age_group3 + resp_claim_1 + prev_prem_group3), family = binomial(), data = workdata)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.6252 -0.4856 -0.3922 -0.2998 2.8428

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.03286 0.17184 -17.649 < 2e-16 ***
drivage_group2(30,55] -0.20989 0.01897 -11.064 < 2e-16 ***
drivage_group2(55,Inf] -0.39234 0.02159 -18.171 < 2e-16 ***
pol_age_group2(4,Inf] -0.31619 0.01431 -22.095 < 2e-16 ***
pricefactor 1.25063 0.18089 6.914 4.73e-12 ***
house_polY -1.10539 0.12250 -9.024 < 2e-16 ***
price_group2(15,25] -0.49213 0.16477 -2.987 0.002819 **
price_group2(25,99] -0.44995 0.17391 -2.587 0.009676 **
cover2TPL+opt 0.80632 0.11695 6.895 5.39e-12 ***
resp_claim_2Y 0.59906 0.19666 3.046 0.002317 **
pricefactor:house_polY 0.36616 0.12482 2.934 0.003352 **
pricefactor:price_group2(15,25] 0.52303 0.17316 3.020 0.002524 **
pricefactor:price_group2(25,99] 0.51810 0.18197 2.847 0.004411 **
pricefactor:cover2TPL+opt -0.95515 0.12061 -7.919 2.39e-15 ***
pricefactor:resp_claim_2Y -0.66833 0.20085 -3.328 0.000876 ***
pricefactor:multi_veh_dscY -0.14885 0.01548 -9.614 < 2e-16 ***
pricefactor:veh_age_group3(5,Inf] 0.08699 0.01933 4.501 6.78e-06 ***
pricefactor:resp_claim_1Y -0.21944 0.03996 -5.491 4.00e-08 ***
pricefactor:prev_prem_group3(500,1e+03] 0.36928 0.01983 18.619 < 2e-16 ***
pricefactor:prev_prem_group3(1e+03,Inf] 0.61236 0.02857 21.437 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)
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Null deviance: 169763 on 278590 degrees of freedom
Residual deviance: 162503 on 278571 degrees of freedom
(1 observation deleted due to missingness)

AIC: 162543

Number of Fisher Scoring iterations: 5

Year 2004

Please find below the final variable selection of the regression.

glm(formula = did_cancel ˜ drivage_group2 + pricefactor * (pol_age_group2 + house_pol + cover2 + resp_claim_1 + resp_claim_2) + pricefactor:(price_group2 +
prev_prem_group3 + multi_veh_dsc + gender + veh_age_group3), family = binomial(), data = workdata)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.5240 -0.4795 -0.3890 -0.2928 3.0141

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.58257 0.09460 -37.869 < 2e-16 ***
drivage_group2(30,55] -0.22323 0.01912 -11.677 < 2e-16 ***
drivage_group2(55,Inf] -0.39959 0.02207 -18.109 < 2e-16 ***
pricefactor 1.62437 0.09703 16.740 < 2e-16 ***
pol_age_group2(4,Inf] -0.47006 0.11160 -4.212 2.53e-05 ***
house_polY -1.03525 0.12285 -8.427 < 2e-16 ***
cover2TPL+opt 0.95824 0.11282 8.494 < 2e-16 ***
resp_claim_1Y 0.40308 0.18659 2.160 0.030753 *
resp_claim_2Y 0.75472 0.19971 3.779 0.000157 ***
pricefactor:pol_age_group2(4,Inf] 0.26288 0.11177 2.352 0.018671 *
pricefactor:house_polY 0.24882 0.12250 2.031 0.042231 *
pricefactor:cover2TPL+opt -1.02438 0.11420 -8.970 < 2e-16 ***
pricefactor:resp_claim_1Y -0.51115 0.17705 -2.887 0.003888 **
pricefactor:resp_claim_2Y -0.75389 0.19900 -3.788 0.000152 ***
pricefactor:price_group2(15,25] 0.05876 0.02094 2.806 0.005011 **
pricefactor:price_group2(25,99] 0.13252 0.02757 4.807 1.53e-06 ***
pricefactor:prev_prem_group3(500,1e+03] 0.40126 0.02006 19.999 < 2e-16 ***
pricefactor:prev_prem_group3(1e+03,Inf] 0.60923 0.02933 20.772 < 2e-16 ***
pricefactor:multi_veh_dscY -0.19931 0.01560 -12.779 < 2e-16 ***
pricefactor:genderM -0.05170 0.01436 -3.601 0.000317 ***
pricefactor:veh_age_group3(5,Inf] 0.14495 0.01952 7.427 1.11e-13 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 162900 on 271827 degrees of freedom
Residual deviance: 155657 on 271807 degrees of freedom
(1 observation deleted due to missingness)

AIC: 155699

Number of Fisher Scoring iterations: 5

B.2.3 GLM analysis for Germany data

Lapse regression

Below we list the regression summaries for the Germany data.

TPL direct channel

Call: glm(formula = lapse ˜ diff2tech + product2 + claimamount + cumulrebate2 +
isinsuredinhealth + diff2top10vip + priceratio:(diff2tech +
isinsuredinhealth + polholderage + jobgroup2), family = binomial("logit"),
data = idata)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.3193 -0.5411 -0.4924 -0.4371 2.8131
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Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.329e+00 9.469e-02 -14.038 < 2e-16 ***
diff2tech 1.024e+01 3.087e+00 3.315 0.000915 ***
product2eco -1.529e-01 5.000e-02 -3.059 0.002221 **
claimamount 3.712e-05 1.488e-05 2.495 0.012581 *
cumulrebate2_10+ -4.972e-01 1.358e-01 -3.661 0.000251 ***
isinsuredinhealth -8.712e+00 3.157e+00 -2.759 0.005794 **
diff2top10vip -2.417e-01 8.437e-02 -2.865 0.004169 **
diff2tech:priceratio -1.280e+01 3.145e+00 -4.072 4.67e-05 ***
isinsuredinhealth:priceratio 8.740e+00 3.127e+00 2.795 0.005186 **
priceratio:polholderage -1.238e-02 1.702e-03 -7.275 3.46e-13 ***
priceratio:jobgroup2public -1.080e-01 4.067e-02 -2.656 0.007917 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null deviance: 17943 on 24234 degrees of freedom
Residual deviance: 17730 on 24224 degrees of freedom
(113 observations deleted due to missingness)

AIC: 17752

Number of Fisher Scoring iterations: 5

TPL broker channel

Call: glm(formula = lapse ˜ isinsuredinhealth + gender + polage + bonusevol +
cumulrebate2 + priceratio:(lastprem_group2 + diff2tech +
paymentfreq + directdebit + isinsuredinhealth + vehiclage +
householdnbAXA + polholderage + bonusevol), family = binomial("logit"),
data = idata)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.1980 -0.5436 -0.4768 -0.4004 2.7510

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.760450 0.420864 -8.935 < 2e-16 ***
isinsuredinhealth -2.975226 1.274174 -2.335 0.019542 *
gender -0.079972 0.027322 -2.927 0.003423 **
polage -0.017645 0.005243 -3.365 0.000765 ***
bonusevolstable -3.410175 0.715415 -4.767 1.87e-06 ***
bonusevolup 1.401355 0.585020 2.395 0.016602 *
cumulrebate2_10-20 -0.368879 0.029987 -12.301 < 2e-16 ***
cumulrebate2_25+ -0.789049 0.064987 -12.142 < 2e-16 ***
priceratio:lastprem_group2(0,500] 2.825986 0.433422 6.520 7.02e-11 ***
priceratio:lastprem_group2(500,5e+03] 2.973426 0.444911 6.683 2.34e-11 ***
priceratio:diff2tech -1.763109 0.271805 -6.487 8.78e-11 ***
priceratio:paymentfreq -0.031802 0.003662 -8.685 < 2e-16 ***
priceratio:directdebit 0.081609 0.032096 2.543 0.011001 *
isinsuredinhealth:priceratio 2.690558 1.229736 2.188 0.028676 *
priceratio:vehiclage -0.031511 0.003129 -10.069 < 2e-16 ***
priceratio:householdnbAXA -0.048904 0.011522 -4.244 2.19e-05 ***
priceratio:polholderage -0.005533 0.001041 -5.313 1.08e-07 ***
bonusevolstable:priceratio 3.175966 0.707735 4.488 7.21e-06 ***
bonusevolup:priceratio -1.639430 0.516407 -3.175 0.001500 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null deviance: 43971 on 59780 degrees of freedom
Residual deviance: 42996 on 59762 degrees of freedom
(2451 observations deleted due to missingness)

AIC: 43034

Number of Fisher Scoring iterations: 5

TPL agent channel

Call: glm(formula = lapse ˜ diff2tech + diff2top10vip + product2 +
region2 + cumulrebate3 + nbclaim0608percust + isinsuredinhealth +
isinsuredinlife + vehiclage + householdnbAXA + polholderage +
maritalstatus2 + jobgroup2 + gender + typeclassTPL + bonusevol2 +
priceratio:(diff2tech + diff2top10vip + diff2top10direct +

paymentfreq + nbclaim08percust + nbclaim0608percust +
nbclaim0708percust + isinsuredinaccident + householdnbAXA +
gender + typeclassTPL + bonusevol2), family = binomial("logit"),

data = idata)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.3426 -0.4098 -0.3465 -0.2769 3.0779

Coefficients:
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Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.4688261 0.1096307 -13.398 < 2e-16 ***
diff2tech 7.8703759 1.4738254 5.340 9.29e-08 ***
diff2top10vip -1.2285174 0.3513642 -3.496 0.000472 ***
product2eco -0.3178553 0.0351763 -9.036 < 2e-16 ***
product2VIP -0.6104159 0.0429973 -14.197 < 2e-16 ***
region2_02-04-11 0.2551451 0.0429930 5.935 2.95e-09 ***
region2_05 0.1901793 0.0278148 6.837 8.07e-12 ***
region2_08-09 0.0556719 0.0260395 2.138 0.032518 *
region2_10 0.4514134 0.0907537 4.974 6.56e-07 ***
region2_12-13 0.3451752 0.0407160 8.478 < 2e-16 ***
region2_14-15-16 0.4415889 0.0374315 11.797 < 2e-16 ***
cumulrebate3 0.1292981 0.0237389 5.447 5.13e-08 ***
nbclaim0608percust 0.2430882 0.0863587 2.815 0.004880 **
isinsuredinhealth -0.2055506 0.0738987 -2.782 0.005411 **
isinsuredinlife -0.0921472 0.0404841 -2.276 0.022838 *
vehiclage -0.0377862 0.0025184 -15.004 < 2e-16 ***
householdnbAXA -0.1597084 0.0348957 -4.577 4.72e-06 ***
polholderage -0.0142757 0.0008121 -17.578 < 2e-16 ***
maritalstatus2b -0.2667296 0.0760361 -3.508 0.000452 ***
maritalstatus2d -0.1017938 0.0340552 -2.989 0.002798 **
jobgroup2public -0.1189075 0.0215773 -5.511 3.57e-08 ***
gender -0.8174742 0.1755621 -4.656 3.22e-06 ***
typeclassTPL -0.0940907 0.0324866 -2.896 0.003776 **
bonusevol2up-down 3.5677414 0.6106271 5.843 5.13e-09 ***
diff2tech:priceratio -8.3070757 1.4777530 -5.621 1.89e-08 ***
diff2top10vip:priceratio 1.2629656 0.3803163 3.321 0.000898 ***
priceratio:diff2top10direct -0.8715317 0.1895395 -4.598 4.26e-06 ***
priceratio:paymentfreq -0.0344649 0.0026126 -13.192 < 2e-16 ***
priceratio:nbclaim08percust -0.1013398 0.0384519 -2.635 0.008401 **
nbclaim0608percust:priceratio -0.2291441 0.0915974 -2.502 0.012362 *
priceratio:nbclaim0708percust 0.1556257 0.0367502 4.235 2.29e-05 ***
priceratio:isinsuredinaccident -0.1484186 0.0506585 -2.930 0.003392 **
householdnbAXA:priceratio 0.0817327 0.0348671 2.344 0.019072 *
gender:priceratio 0.7452469 0.1764711 4.223 2.41e-05 ***
typeclassTPL:priceratio 0.1238598 0.0324918 3.812 0.000138 ***
bonusevol2up-down:priceratio -3.3975682 0.6090299 -5.579 2.42e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null deviance: 91145 on 188123 degrees of freedom
Residual deviance: 88147 on 188088 degrees of freedom
(8175 observations deleted due to missingness)

AIC: 88219

Number of Fisher Scoring iterations: 6

PC direct channel

Call: glm(formula = lapse ˜ region2 + nbclaim08percust + nbclaim0708percust +
vehiclage + cumulrebate2 + polholderage + jobgroup2 + polage +
typeclassPC + priceratio:(diff2tech + paymentfreq + directdebit +
nbclaim08percust + nbclaim0608percust + nbclaim0708percust +
gender), family = binomial("logit"), data = idata)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.6072 -0.5554 -0.4753 -0.3818 2.6485

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.256199 0.160158 -7.844 4.38e-15 ***
region2_02-06 -0.226159 0.054341 -4.162 3.16e-05 ***
region2_07-08-09-10-11 0.122042 0.040287 3.029 0.002451 **
region2_12-13-15 0.256615 0.070120 3.660 0.000253 ***
region2_14-16 0.492771 0.065816 7.487 7.04e-14 ***
nbclaim08percust -1.987397 0.524222 -3.791 0.000150 ***
nbclaim0708percust 1.447482 0.450107 3.216 0.001301 **
vehiclage -0.022334 0.004833 -4.622 3.81e-06 ***
cumulrebate2_10+ -0.125790 0.060858 -2.067 0.038739 *
polholderage -0.007928 0.001498 -5.291 1.22e-07 ***
jobgroup2public -0.132496 0.035014 -3.784 0.000154 ***
polage -0.067280 0.005880 -11.442 < 2e-16 ***
typeclassPC 0.020726 0.005134 4.037 5.42e-05 ***
priceratio:diff2tech -2.424138 0.352605 -6.875 6.20e-12 ***
priceratio:paymentfreq -0.027927 0.005840 -4.782 1.74e-06 ***
priceratio:directdebit -0.154461 0.051364 -3.007 0.002637 **
nbclaim08percust:priceratio 1.966404 0.517571 3.799 0.000145 ***
priceratio:nbclaim0608percust 0.138503 0.046313 2.991 0.002784 **
nbclaim0708percust:priceratio -1.454186 0.453706 -3.205 0.001350 **
priceratio:gender -0.108971 0.035543 -3.066 0.002170 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 24733 on 33355 degrees of freedom
Residual deviance: 24045 on 33336 degrees of freedom
(851 observations deleted due to missingness)
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AIC: 24085

Number of Fisher Scoring iterations: 5

PC broker channel

Call: glm(formula = lapse ˜ lastprem_group2 + diff2tech + paymentfreq +
region2 + cumulrebate2 + vehiclage + householdnbAXA + polholderage +
diffdriverPH + jobgroup2 + polage + bonusevol2 + priceratio:(diff2tech +
paymentfreq + directdebit + region2 + nbclaim0608percust +
typeclassPC + bonusevol2), family = binomial("logit"), data = idata)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.7358 -0.5273 -0.4469 -0.3613 2.9528

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.326e+00 1.016e-01 -22.900 < 2e-16 ***
lastprem_group2(500,5e+03] 1.333e-01 2.975e-02 4.480 7.47e-06 ***
diff2tech 8.930e+00 2.130e+00 4.193 2.76e-05 ***
paymentfreq 7.122e-02 3.073e-02 2.318 0.02046 *
region2_03-04-06-07-10 -2.363e+00 5.185e-01 -4.557 5.20e-06 ***
region2_05-09 -2.504e+00 4.583e-01 -5.464 4.64e-08 ***
region2_08 -2.728e+00 5.482e-01 -4.977 6.46e-07 ***
region2_11-12-13-16 -2.644e+00 5.531e-01 -4.781 1.75e-06 ***
region2_14-15 -3.040e+00 6.034e-01 -5.039 4.69e-07 ***
cumulrebate2_10-20 -3.320e-01 2.421e-02 -13.717 < 2e-16 ***
cumulrebate2_25+ -5.431e-01 5.135e-02 -10.576 < 2e-16 ***
vehiclage -1.949e-02 2.905e-03 -6.711 1.93e-11 ***
householdnbAXA -6.688e-02 8.602e-03 -7.775 7.57e-15 ***
polholderage -7.051e-03 8.457e-04 -8.338 < 2e-16 ***
diffdriverPHall drivers > 24 4.492e-01 5.680e-02 7.908 2.61e-15 ***
diffdriverPHcommercial 4.694e-01 1.432e-01 3.278 0.00105 **
diffdriverPHlearner 17 7.936e-01 1.806e-01 4.395 1.11e-05 ***
diffdriverPHonly partner 5.178e-01 5.040e-02 10.274 < 2e-16 ***
diffdriverPHsame 4.713e-01 5.185e-02 9.090 < 2e-16 ***
diffdriverPHyoung drivers 6.743e-01 6.079e-02 11.091 < 2e-16 ***
jobgroup2public -1.646e-01 2.642e-02 -6.229 4.68e-10 ***
polage -2.124e-02 3.718e-03 -5.714 1.11e-08 ***
bonusevol2up-down 2.854e+00 4.495e-01 6.350 2.15e-10 ***
diff2tech:priceratio -1.061e+01 2.051e+00 -5.170 2.34e-07 ***
paymentfreq:priceratio -8.886e-02 3.047e-02 -2.916 0.00355 **
priceratio:directdebit 6.062e-02 2.806e-02 2.161 0.03072 *
region2_03-04-06-07-10:priceratio 2.538e+00 5.164e-01 4.915 8.86e-07 ***
region2_05-09:priceratio 2.861e+00 4.563e-01 6.271 3.59e-10 ***
region2_08:priceratio 2.892e+00 5.468e-01 5.289 1.23e-07 ***
region2_11-12-13-16:priceratio 3.208e+00 5.504e-01 5.829 5.57e-09 ***
region2_14-15:priceratio 3.777e+00 6.013e-01 6.282 3.34e-10 ***
priceratio:nbclaim0608percust 7.081e-02 1.306e-02 5.424 5.83e-08 ***
priceratio:typeclassPC 9.804e-03 3.172e-03 3.090 0.00200 **
bonusevol2up-down:priceratio -2.709e+00 4.398e-01 -6.160 7.27e-10 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null deviance: 61944 on 88899 degrees of freedom
Residual deviance: 59864 on 88866 degrees of freedom
(9532 observations deleted due to missingness)

AIC: 59932

Number of Fisher Scoring iterations: 5

PC agent channel

Call: glm(formula = lapse ˜ lastprem_group + region2 + cumulrebate2 +
nbclaim0608percust + isinsuredinaccident + housepol + vehiclage +
householdnbAXA + polholderage + maritalstatus2 + diffdriverPH7 +
jobgroup2 + gender + polage + typeclassPC + priceratio:(diff2tech +
paymentfreq + isinsuredinlife + housepol + bonusevol), family = binomial("logit"),
data = idata)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.2313 -0.4054 -0.3307 -0.2402 3.2781

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.4834163 0.0808352 -18.351 < 2e-16 ***
lastprem_group(1e+03,5e+03] 0.2756085 0.0573667 4.804 1.55e-06 ***
lastprem_group(500,1e+03] 0.1230814 0.0199186 6.179 6.44e-10 ***
region2_02-04-11 0.3028182 0.0308358 9.820 < 2e-16 ***
region2_05 0.1759933 0.0173652 10.135 < 2e-16 ***
region2_10 0.2878711 0.0677199 4.251 2.13e-05 ***
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region2_12-13 0.4521249 0.0307907 14.684 < 2e-16 ***
region2_14-15-16 0.4607204 0.0271870 16.946 < 2e-16 ***
cumulrebate2_25+ -0.2349028 0.0440478 -5.333 9.67e-08 ***
cumulrebate2_5-20 -0.0636038 0.0147217 -4.320 1.56e-05 ***
nbclaim0608percust 0.0738475 0.0073792 10.007 < 2e-16 ***
isinsuredinaccident -0.0675953 0.0292559 -2.310 0.020861 *
housepolflat owner -2.1528313 0.3698894 -5.820 5.88e-09 ***
housepolhouse with axa -2.2298853 0.3314990 -6.727 1.74e-11 ***
housepolno property -1.7573732 0.2219465 -7.918 2.41e-15 ***
housepolnot with axa -2.0179795 0.2676815 -7.539 4.75e-14 ***
vehiclage -0.0267052 0.0019401 -13.765 < 2e-16 ***
householdnbAXA -0.0788257 0.0032649 -24.143 < 2e-16 ***
polholderage -0.0108440 0.0005959 -18.199 < 2e-16 ***
maritalstatus2b -0.2156059 0.0513198 -4.201 2.65e-05 ***
maritalstatus2d -0.1452715 0.0219042 -6.632 3.31e-11 ***
diffdriverPH7learner 17 0.4722532 0.1273644 3.708 0.000209 ***
diffdriverPH7only partner 0.1028589 0.0155482 6.616 3.70e-11 ***
diffdriverPH7young drivers 0.1571513 0.0260498 6.033 1.61e-09 ***
jobgroup2public -0.1800172 0.0153234 -11.748 < 2e-16 ***
gender -0.0770005 0.0150856 -5.104 3.32e-07 ***
polage -0.0247578 0.0011942 -20.732 < 2e-16 ***
typeclassPC 0.0135060 0.0021534 6.272 3.57e-10 ***
priceratio:diff2tech -0.9813502 0.1699192 -5.775 7.68e-09 ***
priceratio:paymentfreq -0.0150664 0.0019221 -7.839 4.56e-15 ***
priceratio:isinsuredinlife -0.0562095 0.0250614 -2.243 0.024905 *
housepolflat owner:priceratio 2.0545687 0.3673471 5.593 2.23e-08 ***
housepolhouse with axa:priceratio 1.9719108 0.3287744 5.998 2.00e-09 ***
housepolno property:priceratio 1.6871427 0.2178579 7.744 9.62e-15 ***
housepolnot with axa:priceratio 1.9774989 0.2642932 7.482 7.31e-14 ***
priceratio:bonusevolstable -0.1690751 0.0200085 -8.450 < 2e-16 ***
priceratio:bonusevolup -0.5876312 0.0690713 -8.508 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null deviance: 167680 on 365672 degrees of freedom
Residual deviance: 160477 on 365636 degrees of freedom
(13700 observations deleted due to missingness)

AIC: 160551

Number of Fisher Scoring iterations: 6

FC direct channel

Call: glm(formula = lapse ˜ region2 + householdnbAXA + gender + polage +
priceratio:(paymentfreq + directdebit + diff2tech + nbclaim0608percust +

polholderage + jobgroup2 + typeclassFC), family = binomial("logit"),
data = idata)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.9999 -0.5914 -0.5087 -0.4097 2.5622

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.117554 0.145889 -7.660 1.86e-14 ***
region2_03-05-09 0.281153 0.046924 5.992 2.08e-09 ***
region2_07-08 0.171349 0.055933 3.063 0.002188 **
region2_10-11-12 0.528628 0.066725 7.922 2.33e-15 ***
region2_13-14-15-16 0.615216 0.062533 9.838 < 2e-16 ***
householdnbAXA -0.046267 0.018119 -2.553 0.010665 *
gender -0.152176 0.035834 -4.247 2.17e-05 ***
polage -0.067047 0.005869 -11.425 < 2e-16 ***
priceratio:paymentfreq -0.021333 0.005695 -3.746 0.000180 ***
priceratio:directdebit -0.155778 0.051573 -3.021 0.002523 **
priceratio:diff2tech -2.909523 0.341014 -8.532 < 2e-16 ***
priceratio:nbclaim0608percust 0.059747 0.019089 3.130 0.001749 **
priceratio:polholderage -0.013141 0.001412 -9.306 < 2e-16 ***
priceratio:jobgroup2public -0.084517 0.034102 -2.478 0.013198 *
priceratio:typeclassFC 0.016423 0.005011 3.277 0.001048 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null deviance: 25559 on 31726 degrees of freedom
Residual deviance: 24892 on 31712 degrees of freedom
(841 observations deleted due to missingness)

AIC: 24922

Number of Fisher Scoring iterations: 5

FC broker channel

Call: glm(formula = lapse ˜ lastprem_group + diff2tech + directdebit +
region2 + cumulrebate2 + housepol + vehiclage + householdnbAXA +
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polholderage + typeclassFC + bonusevol2 + priceratio:(directdebit +
diff2tech + nbclaim08percust + nbclaim0608percust + jobgroup2 +
gender + typeclassFC + bonusevol2), family = binomial("logit"),
data = idata)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.7490 -0.5337 -0.4521 -0.3701 2.9438

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.109e+00 8.517e-02 -24.756 < 2e-16 ***
lastprem_group(1e+03,5e+03] 2.667e-01 5.171e-02 5.157 2.51e-07 ***
lastprem_group(500,1e+03] 1.785e-01 2.277e-02 7.839 4.54e-15 ***
diff2tech 9.930e+00 2.220e+00 4.472 7.74e-06 ***
directdebit -1.215e+00 3.377e-01 -3.597 0.000322 ***
region2_02-04-05-11 3.434e-01 6.114e-02 5.616 1.95e-08 ***
region2_03-09-10 3.288e-01 2.736e-02 12.017 < 2e-16 ***
region2_04-05-06-07 1.202e-01 2.678e-02 4.489 7.17e-06 ***
region2_12-13 4.811e-01 4.310e-02 11.163 < 2e-16 ***
region2_14-15-16 6.013e-01 3.415e-02 17.610 < 2e-16 ***
cumulrebate2_10-20 -3.653e-01 2.017e-02 -18.110 < 2e-16 ***
cumulrebate2_25-50 -5.021e-01 3.666e-02 -13.697 < 2e-16 ***
cumulrebate2_50+ -1.375e+00 1.956e-01 -7.030 2.06e-12 ***
housepolflat owner 5.525e-01 5.190e-02 10.646 < 2e-16 ***
housepolhouse with axa 4.016e-01 5.888e-02 6.820 9.11e-12 ***
housepolno property 5.024e-01 4.035e-02 12.451 < 2e-16 ***
housepolnot with axa 5.435e-01 4.030e-02 13.487 < 2e-16 ***
vehiclage 9.570e-03 2.817e-03 3.397 0.000681 ***
householdnbAXA -5.244e-02 6.344e-03 -8.266 < 2e-16 ***
polholderage -9.749e-03 6.915e-04 -14.099 < 2e-16 ***
typeclassFC -6.511e-02 1.962e-02 -3.319 0.000904 ***
bonusevol2up-down 2.000e+00 3.145e-01 6.358 2.04e-10 ***
directdebit:priceratio 1.197e+00 3.351e-01 3.572 0.000354 ***
diff2tech:priceratio -1.281e+01 2.171e+00 -5.899 3.65e-09 ***
priceratio:nbclaim08percust -5.405e-02 2.472e-02 -2.187 0.028745 *
priceratio:nbclaim0608percust 6.115e-02 1.208e-02 5.062 4.14e-07 ***
priceratio:jobgroup2public -9.569e-02 2.051e-02 -4.664 3.10e-06 ***
priceratio:gender -4.744e-02 1.955e-02 -2.427 0.015241 *
typeclassFC:priceratio 6.733e-02 1.915e-02 3.516 0.000438 ***
bonusevol2up-down:priceratio -1.979e+00 3.116e-01 -6.352 2.13e-10 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null deviance: 84866 on 119129 degrees of freedom
Residual deviance: 82034 on 119100 degrees of freedom
(26555 observations deleted due to missingness)

AIC: 82094

Number of Fisher Scoring iterations: 5

FC agent channel

Call: glm(formula = lapse ˜ lastprem_group + glasscover + region2 +
cumulrebate3 + nbclaim08percust + nbclaim0608percust + householdnbAXA +
polholderage + maritalstatus2 + jobgroup2 + gender + polage +
priceratio:(diff2tech + directdebit + product2 + isinsuredinhealth +

isinsuredinlife + isinsuredinaccident + householdnbAXA +
diffdriverPH7 + bonusevol2), family = binomial("logit"),

data = idata)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.8899 -0.3725 -0.2859 -0.2099 3.2505

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.2444367 0.0609177 -20.428 < 2e-16 ***
lastprem_group(1e+03,5e+03] 0.3142438 0.0419218 7.496 6.58e-14 ***
lastprem_group(500,1e+03] 0.2030701 0.0165221 12.291 < 2e-16 ***
glasscover -0.1239641 0.0203622 -6.088 1.14e-09 ***
region2_06-07-08-09 -0.1455102 0.0154264 -9.433 < 2e-16 ***
region2_10-11 0.2345939 0.0367294 6.387 1.69e-10 ***
region2_12-13 0.2600399 0.0295366 8.804 < 2e-16 ***
region2_14-15-16 0.2843734 0.0260932 10.898 < 2e-16 ***
cumulrebate3 -0.0330928 0.0161422 -2.050 0.040356 *
nbclaim08percust -0.0465684 0.0158363 -2.941 0.003276 **
nbclaim0608percust 0.0661664 0.0072763 9.093 < 2e-16 ***
householdnbAXA -0.1798880 0.0228308 -7.879 3.30e-15 ***
polholderage -0.0132590 0.0005775 -22.959 < 2e-16 ***
maritalstatus2b -0.1961024 0.0510359 -3.842 0.000122 ***
maritalstatus2d -0.1116925 0.0194238 -5.750 8.91e-09 ***
jobgroup2public -0.1639196 0.0143147 -11.451 < 2e-16 ***
gender -0.0525636 0.0147925 -3.553 0.000380 ***
polage -0.0231433 0.0009947 -23.268 < 2e-16 ***
priceratio:diff2tech -1.4944324 0.1437874 -10.393 < 2e-16 ***
priceratio:directdebit -0.0599526 0.0176559 -3.396 0.000685 ***
priceratio:product2eco -0.0955695 0.0449387 -2.127 0.033448 *
priceratio:product2VIP -0.4084230 0.0460922 -8.861 < 2e-16 ***
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priceratio:isinsuredinhealth -0.0746706 0.0320412 -2.330 0.019782 *
priceratio:isinsuredinlife -0.0852991 0.0223092 -3.823 0.000132 ***
priceratio:isinsuredinaccident -0.0836531 0.0247572 -3.379 0.000728 ***
householdnbAXA:priceratio 0.1004204 0.0228780 4.389 1.14e-05 ***
priceratio:diffdriverPH7learner 17 0.2381382 0.1133038 2.102 0.035574 *
priceratio:diffdriverPH7only partner 0.1015512 0.0147733 6.874 6.24e-12 ***
priceratio:diffdriverPH7young drivers 0.0873415 0.0314806 2.774 0.005529 **
priceratio:bonusevol2up-down 0.0500753 0.0165456 3.027 0.002474 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null deviance: 180209 on 445742 degrees of freedom
Residual deviance: 170558 on 445713 degrees of freedom
(78983 observations deleted due to missingness)

AIC: 170618

Number of Fisher Scoring iterations: 6

Backfit

Num. Region Observed Fitted Observed Fitted Observed Fitted

1 Schleswig-H. 5.01 5.18 8.15 8.36 11.02 10.5
2 Hamburg 5.63 6.56 8.07 9.49 11.56 10.2
3 Niedersachsen 5.23 4.99 11.43 12.9 13.61 14.19
4 Bremen 5.21 5.06 9.68 10.68 11.52 10.4
5 Nordrhein-W. 5.36 5.11 10.25 10.51 14.12 13.86
6 Hessen 4.49 4.83 9.80 10.77 10.00 10.51
7 Rheinland-P. 4.58 4.14 10.74 10.22 13.39 12.96
8 Baden-W. 4.24 4.23 8.89 8.68 13.03 13.24

9 Bayern 4.90 4.45 12.32 12.4 14.7 14.78
10 Saarland 7.78 6.99 12.91 12.65 17.41 17.89
11 Berlin 7.59 7.53 13.03 13.12 15.27 15.36
12 Brandenburg 8.16 7.64 14.70 14.92 16.90 16.76
13 Mecklenburg-V. 8.02 7.88 15.30 15.44 19.22 19.37
14 Sachsen-A. 8.14 8.13 18.15 17.49 19.85 19.79
15 Sachsen 8.26 8.34 16.05 17.91 20.65 19.92
16 Thüringen 9.97 8.09 15.27 17.12 19.6 19.95

Agent channel Broker channel Direct channel

Table B.30: Lapse rates by region for FC cover

Information asymmetry

Claim number for FC agent channel

Call: glm(formula = nbclaim08FC ˜ vehiclage + polholderage + diffdriverPH +
jobgroup + gender + polage + typeclassFC + bonusevol, family = poisson("log"),
data = idata)

Deviance Residuals:
Min 1Q Median 3Q Max

-5.1291 -0.5794 -0.4979 -0.4077 16.5866

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.3220232 0.0272575 -48.501 < 2e-16 ***
vehiclage -0.0359920 0.0011359 -31.685 < 2e-16 ***
polholderage -0.0157506 0.0002576 -61.149 < 2e-16 ***
diffdriverPHall drivers > 24 -0.5343152 0.0154902 -34.494 < 2e-16 ***



124 APPENDIX B. ADDITIONAL TABLES AND GRAPHICS

diffdriverPHcommercial -1.3454677 0.0178036 -75.573 < 2e-16 ***
diffdriverPHlearner 17 -0.3986107 0.0601646 -6.625 3.46e-11 ***
diffdriverPHonly partner -0.7549764 0.0139778 -54.013 < 2e-16 ***
diffdriverPHsame -0.9286748 0.0156502 -59.339 < 2e-16 ***
diffdriverPHyoung drivers -0.3830581 0.0183989 -20.820 < 2e-16 ***
jobgroupnormal 0.1212390 0.0075581 16.041 < 2e-16 ***
jobgrouppublic 0.5913743 0.0198723 29.759 < 2e-16 ***
gender 0.2166531 0.0026268 82.478 < 2e-16 ***
polage -0.0085524 0.0004025 -21.246 < 2e-16 ***
typeclassFC 0.0350851 0.0009224 38.035 < 2e-16 ***
bonusevolstable 0.0407246 0.0084191 4.837 1.32e-06 ***
bonusevolup 1.0170884 0.0138727 73.316 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 396684 on 524725 degrees of freedom
Residual deviance: 355448 on 524710 degrees of freedom
AIC: 500798

Number of Fisher Scoring iterations: 6

Deductible choice for FC agent channel

Logistic Regression Model

lrm(formula = deductibleFC3 ˜ nbclaim08FC + ClaimNBhat + vehiclage +
polholderage + polage + typeclassFC, data = idata, method = "lrm.fit",
se.fit = TRUE)

Frequencies of Responses
0 150 300 500

6147 33000 408532 77047

Obs Max Deriv Model L.R. d.f. P C
524726 5e-09 30423.6 6 0 0.65

Dxy Gamma Tau-a R2 Brier
0.299 0.305 0.11 0.075 0.011

Coef S.E. Wald Z P
y>=150 3.41899 0.0252019 135.66 0
y>=300 1.46877 0.0222785 65.93 0
y>=500 -3.07040 0.0226560 -135.52 0
nbclaim08FC 0.07929 0.0044965 17.63 0
ClaimNBhat -0.26989 0.0239767 -11.26 0
vehiclage 0.03794 0.0009884 38.38 0
polholderage -0.01183 0.0002231 -53.03 0
polage -0.03250 0.0003362 -96.68 0
typeclassFC 0.10546 0.0009525 110.72 0

Claim number for FC broker channel

Call: glm(formula = nbclaim08FC ˜ isinsuredinaccident + housepol2 +
vehiclage + polholderage + gender + typeclassFC + bonusevol,
family = poisson("log"), data = idata)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.9287 -0.5187 -0.4582 -0.4022 16.8296

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.8498687 0.0447814 -41.309 < 2e-16 ***
isinsuredinaccident 0.2066575 0.0435667 4.743 2.10e-06 ***
housepol2flat owner -0.2798096 0.0357390 -7.829 4.91e-15 ***
housepol2no property -0.4191739 0.0210313 -19.931 < 2e-16 ***
housepol2not with axa -0.2670818 0.0198762 -13.437 < 2e-16 ***
vehiclage -0.0394027 0.0022163 -17.779 < 2e-16 ***
polholderage -0.0093380 0.0004227 -22.090 < 2e-16 ***
gender 0.0691520 0.0053671 12.884 < 2e-16 ***
typeclassFC 0.0297784 0.0018224 16.340 < 2e-16 ***
bonusevolstable -0.1680848 0.0160898 -10.447 < 2e-16 ***
bonusevolup 0.9357764 0.0258422 36.211 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 94040 on 145684 degrees of freedom
Residual deviance: 87067 on 145674 degrees of freedom
AIC: 122626

Number of Fisher Scoring iterations: 6
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Deductible choice for FC broker channel

Logistic Regression Model

lrm(formula = deductibleFC3 ˜ nbclaim08FC + ClaimNBhat + vehiclage +
polholderage + maritalstatus + gender + polage + typeclassFC +
bonusevol, data = idata, method = "lrm.fit", se.fit = TRUE)

Frequencies of Responses
0 150 300 500

1060 5318 101164 23302

Frequencies of Missing Values Due to Each Variable
deductibleFC3 nbclaim08FC ClaimNBhat vehiclage polholderage

2467 0 0 0 0
maritalstatus gender polage typeclassFC bonusevol

12899 0 0 0 0

Obs Max Deriv Model L.R. d.f. P C
130844 1e-10 4016.1 10 0 0.611

Dxy Gamma Tau-a R2 Brier
0.222 0.23 0.082 0.041 0.008

Coef S.E. Wald Z P
y>=150 4.547938 0.0663771 68.52 0.0000
y>=300 2.699288 0.0600989 44.91 0.0000
y>=500 -1.939587 0.0592427 -32.74 0.0000
nbclaim08FC -0.034567 0.0184862 -1.87 0.0615
ClaimNBhat -5.541685 0.2479716 -22.35 0.0000
vehiclage 0.008217 0.0022353 3.68 0.0002
polholderage -0.012881 0.0005667 -22.73 0.0000
maritalstatus -0.074755 0.0078458 -9.53 0.0000
gender -0.055136 0.0140376 -3.93 0.0001
polage -0.025597 0.0013145 -19.47 0.0000
typeclassFC 0.110312 0.0021592 51.09 0.0000
bonusevol=stable -0.344774 0.0160222 -21.52 0.0000
bonusevol=up 1.086692 0.0637438 17.05 0.0000

Lapse regression for FC agent channel

Call: glm(formula = lapse ˜ lastprem_group + glasscover + region2 +
cumulrebate3 + nbclaim08percust + nbclaim0608percust + householdnbAXA +
polholderage + maritalstatus2 + jobgroup2 + gender + polage +
deductibleFC3.0 + deductibleFC3.150 + deductibleFC3.500. +
priceratio:(diff2tech + directdebit + product2 + isinsuredinhealth +

isinsuredinlife + isinsuredinaccident + householdnbAXA +
diffdriverPH7 + bonusevol2), family = binomial("logit"),

data = idata)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.8387 -0.3729 -0.2861 -0.2095 3.2668

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -7.842e-01 1.338e-01 -5.862 4.57e-09 ***
lastprem_group(1e+03,5e+03] 3.306e-01 4.336e-02 7.625 2.45e-14 ***
lastprem_group(500,1e+03] 2.029e-01 1.725e-02 11.763 < 2e-16 ***
glasscover -1.238e-01 2.036e-02 -6.080 1.20e-09 ***
region2_06-07-08-09 -1.457e-01 1.543e-02 -9.444 < 2e-16 ***
region2_10-11 2.340e-01 3.673e-02 6.369 1.90e-10 ***
region2_12-13 2.580e-01 2.955e-02 8.733 < 2e-16 ***
region2_14-15-16 2.826e-01 2.612e-02 10.820 < 2e-16 ***
cumulrebate3 -3.098e-02 1.619e-02 -1.914 0.055671 .
nbclaim08percust -4.511e-02 1.589e-02 -2.838 0.004538 **
nbclaim0608percust 6.547e-02 7.290e-03 8.981 < 2e-16 ***
householdnbAXA -1.797e-01 2.285e-02 -7.865 3.68e-15 ***
polholderage -1.286e-02 6.118e-04 -21.015 < 2e-16 ***
maritalstatus2b -1.942e-01 5.105e-02 -3.804 0.000143 ***
maritalstatus2d -1.110e-01 1.943e-02 -5.713 1.11e-08 ***
jobgroup2public -1.648e-01 1.432e-02 -11.507 < 2e-16 ***
gender -5.086e-02 1.504e-02 -3.382 0.000719 ***
polage -2.043e-02 1.480e-03 -13.803 < 2e-16 ***
deductibleFC3.0 5.662e+01 1.812e+01 3.125 0.001778 **
deductibleFC3.150 -1.528e+01 4.415e+00 -3.462 0.000537 ***
deductibleFC3.500. -1.407e+00 3.722e-01 -3.780 0.000157 ***
priceratio:diff2tech -1.491e+00 1.444e-01 -10.324 < 2e-16 ***
priceratio:directdebit -6.006e-02 1.767e-02 -3.398 0.000678 ***
priceratio:product2eco -9.930e-02 4.496e-02 -2.209 0.027192 *
priceratio:product2VIP -4.090e-01 4.613e-02 -8.867 < 2e-16 ***
priceratio:isinsuredinhealth -7.388e-02 3.206e-02 -2.305 0.021191 *
priceratio:isinsuredinlife -8.624e-02 2.232e-02 -3.864 0.000111 ***
priceratio:isinsuredinaccident -8.427e-02 2.477e-02 -3.402 0.000669 ***
householdnbAXA:priceratio 1.000e-01 2.290e-02 4.368 1.25e-05 ***
priceratio:diffdriverPH7learner 17 2.364e-01 1.133e-01 2.086 0.036981 *
priceratio:diffdriverPH7only partner 9.961e-02 1.482e-02 6.722 1.79e-11 ***
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priceratio:diffdriverPH7young drivers 8.670e-02 3.173e-02 2.732 0.006291 **
priceratio:bonusevol2up-down 5.064e-02 1.677e-02 3.019 0.002532 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null deviance: 180209 on 445742 degrees of freedom
Residual deviance: 170541 on 445710 degrees of freedom
(78983 observations deleted due to missingness)

AIC: 170607

Number of Fisher Scoring iterations: 6

Lapse regression for FC broker channel

Call: glm(formula = lapse ˜ lastprem_group + diff2tech + directdebit +
region2 + cumulrebate2 + housepol + householdnbAXA + polholderage +
typeclassFC + bonusevol2 + deductibleFC3.0 + deductibleFC3.150 +
priceratio:(directdebit + diff2tech + nbclaim08percust +

nbclaim0608percust + jobgroup2 + typeclassFC + bonusevol2),
family = binomial("logit"), data = idata)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.7735 -0.5354 -0.4528 -0.3666 2.9938

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.860e-01 1.698e-01 -4.041 5.33e-05 ***
lastprem_group(1e+03,5e+03] 3.246e-01 5.236e-02 6.199 5.67e-10 ***
lastprem_group(500,1e+03] 1.865e-01 2.294e-02 8.132 4.22e-16 ***
diff2tech 9.418e+00 2.226e+00 4.230 2.33e-05 ***
directdebit -1.183e+00 3.391e-01 -3.488 0.000486 ***
region2_02-04-05-11 3.256e-01 6.145e-02 5.298 1.17e-07 ***
region2_03-09-10 3.025e-01 2.761e-02 10.954 < 2e-16 ***
region2_04-05-06-07 1.002e-01 2.701e-02 3.711 0.000207 ***
region2_12-13 4.593e-01 4.339e-02 10.585 < 2e-16 ***
region2_14-15-16 5.717e-01 3.437e-02 16.633 < 2e-16 ***
cumulrebate2_10-20 -3.727e-01 2.027e-02 -18.384 < 2e-16 ***
cumulrebate2_25-50 -5.010e-01 3.703e-02 -13.531 < 2e-16 ***
cumulrebate2_50+ -1.397e+00 1.961e-01 -7.123 1.05e-12 ***
housepolflat owner 5.240e-01 5.238e-02 10.005 < 2e-16 ***
housepolhouse with axa 4.104e-01 5.941e-02 6.907 4.96e-12 ***
housepolno property 4.541e-01 4.094e-02 11.094 < 2e-16 ***
housepolnot with axa 4.995e-01 4.088e-02 12.217 < 2e-16 ***
householdnbAXA -3.277e-02 6.515e-03 -5.030 4.91e-07 ***
polholderage -5.265e-03 7.808e-04 -6.743 1.55e-11 ***
typeclassFC -1.143e-01 2.041e-02 -5.602 2.12e-08 ***
bonusevol2up-down 1.709e+00 3.169e-01 5.392 6.97e-08 ***
deductibleFC3.0 1.702e+02 5.687e+01 2.994 0.002758 **
deductibleFC3.150 -5.224e+01 1.297e+01 -4.027 5.65e-05 ***
directdebit:priceratio 1.154e+00 3.364e-01 3.431 0.000602 ***
diff2tech:priceratio -1.222e+01 2.178e+00 -5.613 1.99e-08 ***
priceratio:nbclaim08percust -5.638e-02 2.488e-02 -2.266 0.023472 *
priceratio:nbclaim0608percust 6.327e-02 1.217e-02 5.200 2.00e-07 ***
priceratio:jobgroup2public -9.732e-02 2.049e-02 -4.749 2.04e-06 ***
typeclassFC:priceratio 6.677e-02 1.934e-02 3.453 0.000554 ***
bonusevol2up-down:priceratio -1.674e+00 3.142e-01 -5.329 9.90e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null deviance: 83782 on 117481 degrees of freedom
Residual deviance: 80832 on 117452 degrees of freedom
(28203 observations deleted due to missingness)

AIC: 80892

Number of Fisher Scoring iterations: 6
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B.3 GAM analyses

B.3.1 GAM analysis for Portugal data

Here follows the summaries of the full GAM regression when no terms are crossed with the
price ratio.

Family: binomial - Link function: logit

Formula:
did_lapse ˜ s(premium_before) + s(priceratio) + s(age) + s(age_policy) + s(age_vehicle)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.520535 0.003586 -424 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(premium_before) 8.939 8.999 4718.4 <2e-16 ***
s(priceratio) 8.324 8.873 1030.4 <2e-16 ***
s(age) 8.230 8.806 3013.9 <2e-16 ***
s(age_policy) 8.288 8.800 409.4 <2e-16 ***
s(age_vehicle) 7.528 8.212 4384.8 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.0251 Deviance explained = 2.5%
REML score = 2.6205e+05 Scale est. = 1 n = 557693

Here follows the summaries of the full GAM regression when all terms are crossed with the
price ratio.

Family: binomial - Link function: logit

Formula:
did_lapse ˜ s(priceratio, premium_before) + s(priceratio, age)
+ s(priceratio, age_policy) + s(priceratio, age_vehicle)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.528645 0.003612 -423.2 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(priceratio,premium_before) 28.31 28.96 7334 <2e-16 ***
s(priceratio,age) 25.08 27.36 3092 <2e-16 ***
s(priceratio,age_policy) 18.82 22.61 653 <2e-16 ***
s(priceratio,age_vehicle) 17.09 21.45 4370 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.0279 Deviance explained = 2.85%
REML score = 2.6121e+05 Scale est. = 1 n = 557693

B.3.2 GAM analysis for QuÈbec data

2007 dataset

Here follows the summaries of the full GAM regression when no terms are crossed with the
price ratio.

Family: binomial - Link function: logit
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Figure B.11: One-variable effect on lapse
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Formula:
did_cancel ˜ house_pol + multi_veh_dsc + cover + gender + claim_1 +

s(pricefactor) + s(pol_age) + s(veh_age) + s(price_group) + s(driv_age) + s(prev_prem)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.36015 0.01917 -123.105 < 2e-16 ***
house_polY -0.87995 0.02049 -42.940 < 2e-16 ***
multi_veh_dscY -0.19401 0.01966 -9.869 < 2e-16 ***
coverTPL 0.28178 0.03954 7.127 1.02e-12 ***
coverTPL+opt -0.01491 0.02429 -0.614 0.539288
genderM -0.06270 0.01775 -3.533 0.000411 ***
claim_1 -0.13724 0.02628 -5.221 1.78e-07 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(pricefactor) 7.134 8.189 533.37 < 2e-16 ***
s(pol_age) 7.635 8.492 375.90 < 2e-16 ***
s(veh_age) 7.180 7.794 326.20 < 2e-16 ***
s(price_group) 2.948 3.777 34.20 5.11e-07 ***
s(driv_age) 8.132 8.678 191.03 < 2e-16 ***
s(prev_prem) 6.427 7.416 609.76 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.0259 Deviance explained = 5.08%
REML score = 55607 Scale est. = 1 n = 238673

Here follows the summaries of the full GAM regression when all terms are crossed with the
price ratio.

Family: binomial - Link function: logit

Formula:
did_cancel ˜ claim_1 + house_pol + pricefactor:(multi_veh_dsc +

cover) + s(pricefactor, prev_prem) + s(pricefactor, veh_age) +
s(pricefactor, pol_age) + s(pricefactor, driv_age)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.49732 0.02088 -119.625 < 2e-16 ***
claim_1 -0.11614 0.02737 -4.243 2.20e-05 ***
house_polY -0.88009 0.02201 -39.990 < 2e-16 ***
pricefactor:multi_veh_dscN 0.21060 0.02096 10.045 < 2e-16 ***
pricefactor:multi_veh_dscY 0.00000 0.00000 NA NA
pricefactor:coverTPL 0.13864 0.04164 3.330 0.00087 ***
pricefactor:coverTPL+opt -0.10306 0.02564 -4.020 5.83e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(pricefactor,prev_prem) 14.60 18.48 714.2 <2e-16 ***
s(pricefactor,veh_age) 21.68 25.31 455.1 <2e-16 ***
s(pricefactor,pol_age) 10.40 12.88 299.4 <2e-16 ***
s(pricefactor,driv_age) 17.09 21.31 219.3 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.0257 Deviance explained = 4.91%
REML score = 49486 Scale est. = 1 n = 202919

2006 dataset

Here follows the summaries of the full GAM regression when no terms are crossed with the
price ratio.

Family: binomial - Link function: logit

Formula:
did_cancel ˜ house_pol + multi_veh_dsc + cover + gender + claim_1 +

claim_2 + s(pricefactor) + s(pol_age) + s(veh_age) + s(price_group) +
s(driv_age) + s(prev_prem)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.2129297 0.0195052 -113.453 < 2e-16 ***
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Figure B.12: One-variable effect on lapse
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house_polY -0.8817779 0.0206811 -42.637 < 2e-16 ***
multi_veh_dscY -0.1139312 0.0196460 -5.799 6.66e-09 ***
coverTPL 0.3410253 0.0396561 8.600 < 2e-16 ***
coverTPL+opt 0.0362405 0.0235205 1.541 0.123365
genderM -0.0743876 0.0177287 -4.196 2.72e-05 ***
claim_1 -0.0838275 0.0252417 -3.321 0.000897 ***
claim_2 -0.0006465 0.0245648 -0.026 0.979005
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(pricefactor) 6.705 7.838 606.05 < 2e-16 ***
s(pol_age) 7.980 8.730 419.12 < 2e-16 ***
s(veh_age) 6.860 7.657 275.06 < 2e-16 ***
s(price_group) 1.009 1.018 30.95 2.77e-08 ***
s(driv_age) 8.455 8.903 160.17 < 2e-16 ***
s(prev_prem) 6.716 7.644 657.99 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.0289 Deviance explained = 5.02%
REML score = 53847 Scale est. = 1 n = 200662

Here follows the summaries of the full GAM regression when all terms are crossed with the
price ratio.

Family: binomial - Link function: logit

Formula:
did_cancel ˜ pricefactor * (gender + claim_1 + house_pol + claim_2 +

multi_veh_dsc + cover) + s(pricefactor, prev_prem) + s(pricefactor, veh_age) +
s(pricefactor, pol_age) + s(pricefactor, driv_age)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.18845 0.01908 -114.716 < 2e-16 ***
pricefactor 0.00000 0.00000 NA NA
genderM -0.29946 0.18942 -1.581 0.113883
claim_1 0.77562 0.24741 3.135 0.001719 **
house_polY -1.26136 0.23984 -5.259 1.45e-07 ***
claim_2 0.07491 0.23737 0.316 0.752308
multi_veh_dscY 0.53759 0.20822 2.582 0.009827 **
coverTPL 2.62170 0.24699 10.614 < 2e-16 ***
coverTPL+opt 0.79179 0.23055 3.434 0.000594 ***
pricefactor:genderM 0.22830 0.19582 1.166 0.243649
pricefactor:claim_1 -0.88217 0.25363 -3.478 0.000505 ***
pricefactor:house_polY 0.39052 0.24660 1.584 0.113278
pricefactor:claim_2 -0.08125 0.24707 -0.329 0.742272
pricefactor:multi_veh_dscY -0.68485 0.21473 -3.189 0.001426 **
pricefactor:coverTPL -2.47206 0.25893 -9.547 < 2e-16 ***
pricefactor:coverTPL+opt -0.83183 0.23833 -3.490 0.000483 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(pricefactor,prev_prem) 15.73 19.73 883.4 <2e-16 ***
s(pricefactor,veh_age) 12.86 16.70 374.2 <2e-16 ***
s(pricefactor,pol_age) 15.30 18.83 428.1 <2e-16 ***
s(pricefactor,driv_age) 18.23 22.45 162.6 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.0298 Deviance explained = 5.18%
REML score = 53792 Scale est. = 1 n = 200662

Here follows the final GAM regression when all terms are crossed with the price ratio.

Family: binomial - Link function: logit

Formula:
did_cancel ˜ house_pol + prev_prem_group2 + pricefactor * (claim_1 + cover) +
pricefactor:multi_veh_dsc + veh_age_group3 + s(pol_age, pricefactor) + s(driv_age)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.12457 0.01826 -116.323 < 2e-16 ***
house_polY -0.88011 0.02063 -42.656 < 2e-16 ***
prev_prem_group2(1e+03,2e+03] 0.37826 0.02873 13.167 < 2e-16 ***
prev_prem_group2(2e+03,Inf] 0.41728 0.08778 4.753 2e-06 ***
pricefactor 0.00000 0.00000 NA NA
claim_1 0.81699 0.24764 3.299 0.000970 ***
coverTPL 2.44312 0.23343 10.466 < 2e-16 ***
coverTPL+opt 0.60688 0.22839 2.657 0.007878 **
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veh_age_group3(5,Inf] 0.05281 0.02015 2.620 0.008783 **
pricefactor:claim_1 -0.87599 0.25387 -3.451 0.000559 ***
pricefactor:coverTPL -2.81112 0.24341 -11.549 < 2e-16 ***
pricefactor:coverTPL+opt -0.77036 0.23606 -3.263 0.001101 **
pricefactor:multi_veh_dscY -0.21726 0.01950 -11.140 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(pol_age,pricefactor) 14.712 17.919 961.2 <2e-16 ***
s(driv_age) 8.493 8.915 284.3 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.0255 Deviance explained = 4.46%
REML score = 54129 Scale est. = 1 n = 200662

Figure B.13: Smooth function for the policy age



B.3. GAM ANALYSES 133

Figure B.14: Smooth function for the driver age

(a) 2007 (b) 2006

Figure B.15: 2007 vs. 2006 dataset
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(a) GAM (b) GLM

Figure B.16: GAM vs. GLM
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B.3.3 GAM analysis for Germany data

Below we list the regression summaries for the Germany data.

TPL direct channel

Family: binomial - Link function: logit

Formula: lapse ˜ product2 + claimamount + cumulrebate2 + priceratio:(polholderage +
diff2tech) + s(priceratio, k = 3) + s(diff2top10direct)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.489e+00 8.348e-02 -17.839 < 2e-16 ***
product2eco -1.612e-01 5.045e-02 -3.196 0.001394 **
claimamount 4.061e-05 1.517e-05 2.677 0.007437 **
cumulrebate2_10+ -5.103e-01 1.358e-01 -3.758 0.000171 ***
priceratio:polholderage -1.148e-02 1.771e-03 -6.482 9.03e-11 ***
priceratio:diff2tech -2.506e+00 3.626e-01 -6.912 4.76e-12 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(priceratio) 1.771 1.948 4.331 0.10966
s(diff2top10direct) 2.593 3.325 12.863 0.00673 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.00784 Deviance explained = 1.09%
REML score = 8893.1 Scale est. = 1 n = 24194

TPL broker channel

Family: binomial - Link function: logit

Formula: lapse ˜ isinsuredinhealth + gender + polage + cumulrebate2 +
priceratio:(lastprem_group2 + paymentfreq + directdebit +

isinsuredinhealth + householdnbAXA + polholderage) +
s(vehiclage) + s(priceratio, diff2tech)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.000000 0.000000 NA NA
isinsuredinhealth -2.950964 1.274851 -2.315 0.02063 *
gender -0.087811 0.027580 -3.184 0.00145 **
polage -0.014217 0.005451 -2.608 0.00910 **
cumulrebate2_10-20 -0.347806 0.030150 -11.536 < 2e-16 ***
cumulrebate2_25+ -0.686823 0.070555 -9.735 < 2e-16 ***
priceratio:lastprem_group2(0,500] -1.230270 0.074370 -16.543 < 2e-16 ***
priceratio:lastprem_group2(500,5e+03] -1.063100 0.078223 -13.591 < 2e-16 ***
priceratio:paymentfreq -0.031337 0.003701 -8.468 < 2e-16 ***
priceratio:directdebit 0.064782 0.032448 1.996 0.04588 *
isinsuredinhealth:priceratio 2.656010 1.230556 2.158 0.03090 *
priceratio:householdnbAXA -0.045711 0.011535 -3.963 7.40e-05 ***
priceratio:polholderage -0.008972 0.001192 -7.525 5.28e-14 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(vehiclage) 5.619 6.682 148.2 <2e-16 ***
s(priceratio,diff2tech) 19.134 23.879 612.5 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.0187 Deviance explained = 2.46%
REML score = 21227 Scale est. = 1 n = 58645

TPL agent channel

Family: binomial - Link function: logit

Formula: lapse ˜ product2 + region2 + cumulrebate3 + nbclaim0608percust +



136 APPENDIX B. ADDITIONAL TABLES AND GRAPHICS

isinsuredinhealth + isinsuredinlife + vehiclage + householdnbAXA +
polholderage + maritalstatus2 + jobgroup2 + gender + bonusevol2 +
priceratio:(paymentfreq + nbclaim08percust + nbclaim0608percust +

nbclaim0708percust + isinsuredinaccident + bonusevol2) +
s(priceratio, diff2tech) + s(priceratio, diff2top10vip) +
s(priceratio, diff2top10direct) + s(priceratio, typeclassTPL)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.9881832 0.0744176 -13.279 < 2e-16 ***
product2eco -0.2957239 0.0365839 -8.083 6.30e-16 ***
product2VIP -0.5888125 0.0439784 -13.389 < 2e-16 ***
region2_02-04-11 0.2474500 0.0432128 5.726 1.03e-08 ***
region2_05 0.1820856 0.0279436 6.516 7.21e-11 ***
region2_08-09 0.0627676 0.0260959 2.405 0.016161 *
region2_10 0.4597820 0.0908178 5.063 4.13e-07 ***
region2_12-13 0.3600178 0.0408722 8.808 < 2e-16 ***
region2_14-15-16 0.4440049 0.0377465 11.763 < 2e-16 ***
cumulrebate3 0.1287561 0.0241245 5.337 9.44e-08 ***
nbclaim0608percust 0.2144964 0.0968126 2.216 0.026720 *
isinsuredinhealth -0.2018414 0.0739308 -2.730 0.006331 **
isinsuredinlife -0.0978298 0.0405763 -2.411 0.015908 *
vehiclage -0.0367641 0.0025963 -14.160 < 2e-16 ***
householdnbAXA -0.0783881 0.0048668 -16.107 < 2e-16 ***
polholderage -0.0150938 0.0008334 -18.111 < 2e-16 ***
maritalstatus2b -0.2629597 0.0760885 -3.456 0.000548 ***
maritalstatus2d -0.1017553 0.0341228 -2.982 0.002863 **
jobgroup2public -0.1161175 0.0217312 -5.343 9.12e-08 ***
gender -0.0790535 0.0209269 -3.778 0.000158 ***
bonusevol2up-down 7.4827223 1.0625789 7.042 1.89e-12 ***
priceratio:paymentfreq -0.0343715 0.0026481 -12.980 < 2e-16 ***
priceratio:nbclaim08percust -0.0893319 0.0393116 -2.272 0.023062 *
nbclaim0608percust:priceratio -0.2010502 0.1016136 -1.979 0.047864 *
priceratio:nbclaim0708percust 0.1538349 0.0369590 4.162 3.15e-05 ***
priceratio:isinsuredinaccident -0.1409923 0.0508941 -2.770 0.005600 **
bonusevol2up-down:priceratio -7.2677291 1.0573222 -6.874 6.26e-12 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(priceratio,diff2tech) 12.440 16.687 113.56 < 2e-16 ***
s(priceratio,diff2top10vip) 8.901 12.069 29.36 0.00361 **
s(priceratio,diff2top10direct) 8.177 11.277 18.63 0.07569 .
s(priceratio,typeclassTPL) 4.160 5.687 43.91 5.43e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.0176 Deviance explained = 3.46%
REML score = 44028 Scale est. = 1 n = 187733

PC direct channel

Family: binomial - Link function: logit

Formula: lapse ˜ region2 + nbclaim08percust + nbclaim0708percust + cumulrebate2 +
polholderage + jobgroup2 + polage + typeclassPC + priceratio:(paymentfreq +
directdebit + vehiclage + nbclaim08percust + nbclaim0608percust +
nbclaim0708percust + gender) + s(priceratio, diff2tech, k = 5)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.181041 0.161795 -7.300 2.89e-13 ***
region2_02-06 -0.223266 0.054336 -4.109 3.97e-05 ***
region2_07-08-09-10-11 0.122193 0.040309 3.031 0.002434 **
region2_12-13-15 0.258495 0.070136 3.686 0.000228 ***
region2_14-16 0.493010 0.065834 7.489 6.96e-14 ***
nbclaim08percust -2.334435 0.554587 -4.209 2.56e-05 ***
nbclaim0708percust 1.592221 0.467221 3.408 0.000655 ***
cumulrebate2_10+ -0.126755 0.060875 -2.082 0.037324 *
polholderage -0.008126 0.001512 -5.373 7.75e-08 ***
jobgroup2public -0.134604 0.035090 -3.836 0.000125 ***
polage -0.067032 0.005893 -11.375 < 2e-16 ***
typeclassPC 0.021070 0.005159 4.084 4.42e-05 ***
priceratio:paymentfreq -0.028385 0.005844 -4.858 1.19e-06 ***
priceratio:directdebit -0.158882 0.051641 -3.077 0.002093 **
priceratio:vehiclage -0.022113 0.004819 -4.589 4.45e-06 ***
nbclaim08percust:priceratio 2.293884 0.545987 4.201 2.65e-05 ***
priceratio:nbclaim0608percust 0.139346 0.046146 3.020 0.002530 **
nbclaim0708percust:priceratio -1.601264 0.470395 -3.404 0.000664 ***
priceratio:gender -0.107735 0.036464 -2.955 0.003131 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(priceratio,diff2tech) 2.097 2.190 48.23 4.78e-11 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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R-sq.(adj) = 0.0211 Deviance explained = 2.81%
REML score = 12068 Scale est. = 1 n = 33329

PC broker channel

Family: binomial - Link function: logit

Formula: lapse ˜ lastprem_group2 + paymentfreq + cumulrebate2 + householdnbAXA +
polholderage + diffdriverPH + jobgroup2 + bonusevol2 + priceratio:(paymentfreq +
directdebit + region2 + nbclaim0608percust + bonusevol2 +
typeclassPC + polage) + s(priceratio, diff2tech) + s(priceratio,
vehiclage)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.3686039 0.0983407 -24.086 < 2e-16 ***
lastprem_group2(500,5e+03] 0.1604532 0.0308136 5.207 1.92e-07 ***
paymentfreq 0.0817162 0.0322749 2.532 0.01135 *
cumulrebate2_10-20 -0.3331866 0.0242329 -13.749 < 2e-16 ***
cumulrebate2_25+ -0.5479358 0.0514444 -10.651 < 2e-16 ***
householdnbAXA -0.0664575 0.0086113 -7.718 1.19e-14 ***
polholderage -0.0070960 0.0008486 -8.362 < 2e-16 ***
diffdriverPHall drivers > 24 0.3999880 0.0579515 6.902 5.12e-12 ***
diffdriverPHcommercial 0.4229071 0.1437853 2.941 0.00327 **
diffdriverPHlearner 17 0.7418775 0.1810437 4.098 4.17e-05 ***
diffdriverPHonly partner 0.4703600 0.0517579 9.088 < 2e-16 ***
diffdriverPHsame 0.4253787 0.0530989 8.011 1.14e-15 ***
diffdriverPHyoung drivers 0.6337959 0.0620598 10.213 < 2e-16 ***
jobgroup2public -0.1626077 0.0264531 -6.147 7.90e-10 ***
bonusevol2up-down 3.9282621 0.8495474 4.624 3.77e-06 ***
paymentfreq:priceratio -0.0989592 0.0320204 -3.091 0.00200 **
priceratio:directdebit 0.0591160 0.0280854 2.105 0.03530 *
priceratio:region2_03-04-06-07-10 0.1722009 0.0540630 3.185 0.00145 **
priceratio:region2_05-09 0.3507387 0.0510888 6.865 6.64e-12 ***
priceratio:region2_08 0.1719197 0.0557036 3.086 0.00203 **
priceratio:region2_11-12-13-16 0.5598971 0.0573334 9.766 < 2e-16 ***
priceratio:region2_14-15 0.7452055 0.0601616 12.387 < 2e-16 ***
priceratio:nbclaim0608percust 0.0682477 0.0131804 5.178 2.24e-07 ***
bonusevol2up-down:priceratio -3.7270938 0.8380135 -4.448 8.69e-06 ***
priceratio:typeclassPC 0.0062400 0.0032487 1.921 0.05476 .
priceratio:polage -0.0217244 0.0037257 -5.831 5.51e-09 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(priceratio,diff2tech) 14.74 19.374 255.63 < 2e-16 ***
s(priceratio,vehiclage) 4.81 6.482 62.48 2.57e-11 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.025 Deviance explained = 3.48%
REML score = 29987 Scale est. = 1 n = 88874

PC agent channel

Family: binomial - Link function: logit

Formula: lapse ˜ lastprem_group + region2 + cumulrebate2 + nbclaim0608percust +
isinsuredinaccident + housepol2 + vehiclage + householdnbAXA +
polholderage + maritalstatus2 + diffdriverPH7 + jobgroup2 +
gender + polage + typeclassPC + priceratio:(paymentfreq +
isinsuredinlife + bonusevol + diff2tech) + s(priceratio)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.3190466 0.0769756 -17.136 < 2e-16 ***
lastprem_group(1e+03,5e+03] 0.3425350 0.0602800 5.682 1.33e-08 ***
lastprem_group(500,1e+03] 0.1450698 0.0202595 7.161 8.03e-13 ***
region2_02-04-11 0.2975915 0.0308691 9.640 < 2e-16 ***
region2_05 0.1692593 0.0174239 9.714 < 2e-16 ***
region2_10 0.2911690 0.0677203 4.300 1.71e-05 ***
region2_12-13 0.4461087 0.0308384 14.466 < 2e-16 ***
region2_14-15-16 0.4604619 0.0272014 16.928 < 2e-16 ***
cumulrebate2_25+ -0.2349860 0.0439285 -5.349 8.83e-08 ***
cumulrebate2_5-20 -0.0653231 0.0147267 -4.436 9.18e-06 ***
nbclaim0608percust 0.0718586 0.0074045 9.705 < 2e-16 ***
isinsuredinaccident -0.0681740 0.0292625 -2.330 0.019820 *
housepol2flat owner -0.0628338 0.0292950 -2.145 0.031963 *
housepol2house with axa -0.2178244 0.0258309 -8.433 < 2e-16 ***
housepol2no property -0.0331257 0.0170782 -1.940 0.052423 .
vehiclage -0.0265574 0.0019453 -13.652 < 2e-16 ***
householdnbAXA -0.0787359 0.0032673 -24.098 < 2e-16 ***
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polholderage -0.0111607 0.0006061 -18.413 < 2e-16 ***
maritalstatus2b -0.2184142 0.0513733 -4.252 2.12e-05 ***
maritalstatus2d -0.1466518 0.0219140 -6.692 2.20e-11 ***
diffdriverPH7learner 17 0.4642937 0.1273389 3.646 0.000266 ***
diffdriverPH7only partner 0.0994980 0.0154306 6.448 1.13e-10 ***
diffdriverPH7young drivers 0.1579198 0.0259588 6.083 1.18e-09 ***
jobgroup2public -0.1799238 0.0153295 -11.737 < 2e-16 ***
gender -0.0762593 0.0151031 -5.049 4.44e-07 ***
polage -0.0241535 0.0011833 -20.411 < 2e-16 ***
typeclassPC 0.0110029 0.0022055 4.989 6.07e-07 ***
priceratio:paymentfreq -0.0151536 0.0019261 -7.867 3.62e-15 ***
priceratio:isinsuredinlife -0.0596722 0.0250983 -2.378 0.017429 *
priceratio:bonusevolstable -0.3537506 0.0511614 -6.914 4.70e-12 ***
priceratio:bonusevolup -1.4742191 0.1420716 -10.377 < 2e-16 ***
priceratio:diff2tech -0.8063376 0.1718221 -4.693 2.69e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(priceratio) 6.352 7.436 151.7 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.021 Deviance explained = 4.34%
REML score = 80233 Scale est. = 1 n = 365213

FC direct channel

Family: binomial - Link function: logit

Formula: lapse ˜ region2 + polage + cumulrebate2 + householdnbAXA + typeclassFC +
priceratio:(paymentfreq + diffdriverPH7 + jobgroup2 + gender) +
s(priceratio, diff2tech) + s(priceratio, polholderage)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.925779 0.129231 -14.902 < 2e-16 ***
region2_03-05-09 0.284929 0.046978 6.065 1.32e-09 ***
region2_07-08 0.171518 0.055983 3.064 0.00219 **
region2_10-11-12 0.529380 0.066802 7.925 2.29e-15 ***
region2_13-14-15-16 0.614435 0.062596 9.816 < 2e-16 ***
polage -0.055197 0.005924 -9.318 < 2e-16 ***
cumulrebate2_15+ -0.178099 0.102547 -1.737 0.08243 .
householdnbAXA -0.041041 0.018065 -2.272 0.02310 *
typeclassFC 0.022004 0.005246 4.195 2.73e-05 ***
priceratio:paymentfreq -0.024130 0.005683 -4.246 2.18e-05 ***
priceratio:diffdriverPH7young drivers 0.178967 0.073348 2.440 0.01469 *
priceratio:jobgroup2public -0.078890 0.034651 -2.277 0.02280 *
priceratio:gender -0.171572 0.036450 -4.707 2.51e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(priceratio,diff2tech) 5.062 7.122 77.5 5.22e-14 ***
s(priceratio,polholderage) 7.351 9.834 111.4 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.0219 Deviance explained = 2.77%
REML score = 12483 Scale est. = 1 n = 31728

FC broker channel

Family: binomial - Link function: logit

Formula: lapse ˜ lastprem_group + cumulrebate2 + paymentfreq + directdebit +
region2 + nbclaim08percust + claimamount + isinsuredinlife +
crossell + jobgroup2 + polage + typeclassFC + priceratio:(paymentfreq +
directdebit + glasscover + nbclaim08percust + diffdriverPH) +
s(priceratio, diff2tech) + s(priceratio, vehiclage) + s(priceratio,
polholderage) + s(priceratio, typeclassFC)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.000e+00 0.000e+00 NA NA
lastprem_group(1e+03,5e+03] 2.597e-01 6.025e-02 4.310 1.64e-05 ***
lastprem_group(500,1e+03] 1.669e-01 2.506e-02 6.662 2.70e-11 ***
cumulrebate2_10-20 -3.551e-01 2.199e-02 -16.146 < 2e-16 ***
cumulrebate2_25-50 -4.734e-01 4.227e-02 -11.201 < 2e-16 ***
cumulrebate2_50+ -1.579e+00 2.273e-01 -6.946 3.75e-12 ***
paymentfreq 8.955e-02 4.533e-02 1.975 0.048216 *
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directdebit -8.721e-01 4.066e-01 -2.145 0.031942 *
region2_02-04-05-11 2.944e-01 6.533e-02 4.507 6.58e-06 ***
region2_03-09-10 2.715e-01 2.937e-02 9.244 < 2e-16 ***
region2_04-05-06-07 7.973e-02 2.879e-02 2.770 0.005613 **
region2_12-13 4.319e-01 4.619e-02 9.351 < 2e-16 ***
region2_14-15-16 5.175e-01 3.695e-02 14.004 < 2e-16 ***
nbclaim08percust 7.657e-01 2.256e-01 3.395 0.000686 ***
claimamount 8.147e-06 4.592e-06 1.774 0.076029 .
isinsuredinlife -8.023e-02 4.456e-02 -1.801 0.071760 .
crossell -1.785e-01 2.201e-02 -8.114 4.91e-16 ***
jobgroup2public -1.199e-01 2.230e-02 -5.379 7.50e-08 ***
polage -2.386e-02 3.060e-03 -7.797 6.34e-15 ***
typeclassFC -1.168e-01 3.200e-03 -36.511 < 2e-16 ***
paymentfreq:priceratio -9.519e-02 4.506e-02 -2.112 0.034651 *
directdebit:priceratio 8.670e-01 4.033e-01 2.150 0.031552 *
priceratio:glasscover -2.337e-01 5.172e-02 -4.519 6.21e-06 ***
nbclaim08percust:priceratio -7.346e-01 2.192e-01 -3.351 0.000806 ***
priceratio:diffdriverPHall drivers > 24 1.643e-01 5.100e-02 3.222 0.001273 **
priceratio:diffdriverPHcommercial 1.966e-01 9.851e-02 1.995 0.045997 *
priceratio:diffdriverPHlearner 17 5.373e-01 1.427e-01 3.766 0.000166 ***
priceratio:diffdriverPHonly partner 3.090e-01 4.619e-02 6.691 2.22e-11 ***
priceratio:diffdriverPHsame 2.143e-01 4.907e-02 4.368 1.26e-05 ***
priceratio:diffdriverPHyoung drivers 4.692e-01 6.267e-02 7.487 7.04e-14 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(priceratio,diff2tech) 18.043 22.891 362.36 <2e-16 ***
s(priceratio,vehiclage) 6.965 9.263 99.98 <2e-16 ***
s(priceratio,polholderage) 10.754 13.949 166.35 <2e-16 ***
s(priceratio,typeclassFC) 7.824 10.431 787.37 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.0269 Deviance explained = 3.75%
REML score = 35465 Scale est. = 1 n = 102955

FC agent channel

Family: binomial - Link function: logit

Formula: lapse ˜ lastprem_group + region2 + nbclaim0608percust + claimamount +
isinsuredinhealth + isinsuredinlife + isinsuredinaccident +
householdnbAXA + polholderage + jobgroup2 + gender + polage +
typeclassFC + cumulrebate3 + priceratio:(glasscover + diffdriverPH7 +
nbclaim08percust + nbclaim0608percust + householdnbAXA +
claimamount + vehiclage) + s(priceratio, diff2tech) + s(priceratio,
polholderage) + s(priceratio, typeclassFC)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.000e+00 0.000e+00 NA NA
lastprem_group(1e+03,5e+03] 2.806e-01 4.488e-02 6.253 4.03e-10 ***
lastprem_group(500,1e+03] 1.481e-01 1.743e-02 8.494 < 2e-16 ***
region2_06-07-08-09 -1.461e-01 1.538e-02 -9.499 < 2e-16 ***
region2_10-11 2.604e-01 3.672e-02 7.090 1.34e-12 ***
region2_12-13 2.700e-01 2.946e-02 9.163 < 2e-16 ***
region2_14-15-16 2.941e-01 2.610e-02 11.266 < 2e-16 ***
nbclaim0608percust -2.187e-01 8.444e-02 -2.590 0.009597 **
claimamount 8.512e-05 2.719e-05 3.130 0.001747 **
isinsuredinhealth -7.372e-02 3.176e-02 -2.321 0.020290 *
isinsuredinlife -1.071e-01 2.205e-02 -4.859 1.18e-06 ***
isinsuredinaccident -1.352e-01 2.380e-02 -5.679 1.36e-08 ***
householdnbAXA -1.782e-01 3.192e-02 -5.584 2.36e-08 ***
polholderage -2.129e-02 3.352e-03 -6.352 2.12e-10 ***
jobgroup2public -1.765e-01 1.427e-02 -12.365 < 2e-16 ***
gender -6.032e-02 1.497e-02 -4.029 5.61e-05 ***
polage -2.667e-02 9.904e-04 -26.932 < 2e-16 ***
typeclassFC -5.383e-02 1.003e-02 -5.368 7.98e-08 ***
cumulrebate3 -1.607e-01 1.435e-02 -11.196 < 2e-16 ***
priceratio:glasscover -1.416e-01 2.023e-02 -7.002 2.52e-12 ***
priceratio:diffdriverPH7all drivers > 24 -1.029e-01 2.001e-02 -5.144 2.69e-07 ***
priceratio:nbclaim08percust -4.524e-02 1.647e-02 -2.746 0.006030 **
nbclaim0608percust:priceratio 2.822e-01 8.415e-02 3.354 0.000797 ***
householdnbAXA:priceratio 8.816e-02 3.195e-02 2.760 0.005789 **
claimamount:priceratio -8.360e-05 2.661e-05 -3.142 0.001678 **
priceratio:vehiclage 7.158e-03 2.233e-03 3.205 0.001351 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(priceratio,diff2tech) 19.957 24.673 229.29 < 2e-16 ***
s(priceratio,polholderage) 8.392 11.411 105.73 < 2e-16 ***
s(priceratio,typeclassFC) 6.490 8.737 76.42 6.11e-13 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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R-sq.(adj) = 0.0231 Deviance explained = 5.33%
REML score = 85970 Scale est. = 1 n = 450799
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B.4 SRM analysis

B.4.1 AML example

Weibull

Figure B.17: Model assumptions check for Weibull distribution - intercept only

Figure B.18: Model assumptions check for Weibull distribution - with cov.

Lognormal

Loglogistic
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Figure B.19: Model assumptions check for lognormal distribution - intercept only

Figure B.20: Model assumptions check for lognormal distribution - with cov.

Figure B.21: Model assumptions check for loglogistic distribution - intercept only
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Figure B.22: Model assumptions check for loglogistic distribution - with cov.
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B.4.2 Québec

Kaplan-Meier curves

(a) Multi-vehicle (b) Cover type

Figure B.23: Heterogeneity of customer behaviors

Parametric regression summaries

Here follows the regression summaries for the parametric regression methods.

Weibull Intercept-only model:

Call: survreg(formula = Surv(t_end, did_cancel) ˜ 1, data = untruncfulldata,
dist = "weibull")

Value Std. Error z p
(Intercept) 1.871 0.00822 228 0
Log(scale) -0.441 0.00802 -55 0

Scale= 0.643

Weibull distribution
Loglik(model)= -37111.4 Loglik(intercept only)= -37111.4
Number of Newton-Raphson Iterations: 6
n= 44380

With-covariate model:

Call: survreg(formula = Surv(t_end, did_cancel) ˜ gender + driv_age +
house_pol + claim_1 + cover + priceratio:(gender + veh_age +
price_group + house_pol + claim_2 + cover), data = untruncfulldata,
dist = "weibull")

Value Std. Error z p
(Intercept) 1.89686 0.031410 60.39 0.00e+00
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genderM -0.09789 0.032852 -2.98 2.88e-03
driv_age 0.00678 0.000381 17.77 1.14e-70
house_polY 1.05559 0.062982 16.76 4.77e-63
claim_1 0.10082 0.016926 5.96 2.58e-09
coverTPL -0.54095 0.041557 -13.02 9.81e-39
coverTPL+opt -0.16210 0.047751 -3.39 6.87e-04
genderF:priceratio -1.73664 0.055860 -31.09 3.34e-212
genderM:priceratio -1.69501 0.050405 -33.63 6.58e-248
priceratio:veh_age 0.04816 0.001946 24.75 3.36e-135
priceratio:price_group 0.03806 0.001494 25.47 4.19e-143
house_polY:priceratio -0.55051 0.061499 -8.95 3.51e-19
priceratio:claim_2 0.06386 0.015919 4.01 6.03e-05
coverTPL:priceratio 0.57218 0.037608 15.21 2.84e-52
coverTPL+opt:priceratio 0.21524 0.046393 4.64 3.49e-06
Log(scale) -0.50577 0.007850 -64.43 0.00e+00

Scale= 0.603

Weibull distribution
Loglik(model)= -35360.3 Loglik(intercept only)= -37111.4
Chisq= 3502.19 on 14 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 7
n= 44380

Loglogistic Intercept-only model:

Call: survreg(formula = Surv(t_end, did_cancel) ˜ 1, data = untruncfulldata,
dist = "loglogistic")

Value Std. Error z p
(Intercept) 1.676 0.00807 207.6 0
Log(scale) -0.546 0.00779 -70.1 0

Scale= 0.579

Log logistic distribution
Loglik(model)= -36890.8 Loglik(intercept only)= -36890.8
Number of Newton-Raphson Iterations: 4
n= 44380

With-covariate model:

Call: survreg(formula = Surv(t_end, did_cancel) ˜ veh_age + price_group +
driv_age + house_pol + claim_1 + claim_2 + cover + priceratio:(gender +
house_pol + claim_1 + claim_2 + cover), data = untruncfulldata,
dist = "loglogistic")

Value Std. Error z p
(Intercept) 1.16878 0.076224 15.33 4.57e-53
veh_age 0.05060 0.002078 24.35 5.27e-131
price_group 0.03778 0.001493 25.30 3.31e-141
driv_age 0.00742 0.000398 18.67 8.27e-78
house_polY 0.81941 0.090439 9.06 1.30e-19
claim_1 -0.33168 0.097110 -3.42 6.37e-04
claim_2 -0.32316 0.083706 -3.86 1.13e-04
coverTPL -1.27783 0.068513 -18.65 1.25e-77
coverTPL+opt -0.68064 0.083302 -8.17 3.07e-16
priceratio:genderF -1.28908 0.062108 -20.76 1.09e-95
priceratio:genderM -1.36069 0.062299 -21.84 9.40e-106
house_polY:priceratio -0.29148 0.091892 -3.17 1.51e-03
claim_1:priceratio 0.47060 0.097554 4.82 1.41e-06
claim_2:priceratio 0.40361 0.086032 4.69 2.71e-06
coverTPL:priceratio 1.32434 0.069077 19.17 6.34e-82
coverTPL+opt:priceratio 0.75068 0.085648 8.76 1.87e-18
Log(scale) -0.64412 0.007702 -83.63 0.00e+00

Scale= 0.525

Log logistic distribution
Loglik(model)= -34956.6 Loglik(intercept only)= -36890.8
Chisq= 3868.39 on 15 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 4
n= 44380

Lognormal Intercept-only model:

Call: survreg(formula = Surv(t_end, did_cancel) ˜ 1, data = untruncfulldata,
dist = "lognormal")

Value Std. Error z p
(Intercept) 1.7091 0.00893 191.48 0.0000
Log(scale) 0.0177 0.00723 2.45 0.0144
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Scale= 1.02

Log Normal distribution
Loglik(model)= -36295.3 Loglik(intercept only)= -36295.3
Number of Newton-Raphson Iterations: 4
n= 44380

With-covariate model:

Call: survreg(formula = Surv(t_end, did_cancel) ˜ veh_age + price_group +
driv_age + house_pol + claim_1 + claim_2 + cover + priceratio:(gender +
price_group + house_pol + claim_1 + claim_2 + cover), data = untruncfulldata,
dist = "lognormal")

Value Std. Error z p
(Intercept) 1.44829 0.116451 12.44 1.65e-35
veh_age 0.04224 0.001853 22.79 5.62e-115
price_group 0.01663 0.004120 4.04 5.43e-05
driv_age 0.00709 0.000395 17.96 3.97e-72
house_polY 0.97778 0.086137 11.35 7.30e-30
claim_1 -0.14789 0.095152 -1.55 1.20e-01
claim_2 -0.20813 0.081780 -2.55 1.09e-02
coverTPL -0.93899 0.059124 -15.88 8.51e-57
coverTPL+opt -0.41100 0.075242 -5.46 4.70e-08
priceratio:genderF -1.28076 0.114515 -11.18 4.87e-29
priceratio:genderM -1.34887 0.114917 -11.74 8.16e-32
price_group:priceratio 0.01410 0.004097 3.44 5.81e-04
house_polY:priceratio -0.47775 0.087663 -5.45 5.04e-08
claim_1:priceratio 0.27876 0.095373 2.92 3.47e-03
claim_2:priceratio 0.27196 0.083794 3.25 1.17e-03
coverTPL:priceratio 0.96251 0.058611 16.42 1.33e-60
coverTPL+opt:priceratio 0.46814 0.076783 6.10 1.08e-09
Log(scale) -0.07178 0.007165 -10.02 1.27e-23

Scale= 0.93

Log Normal distribution
Loglik(model)= -34553.9 Loglik(intercept only)= -36295.3
Chisq= 3482.88 on 16 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 4
n= 44380

Adequacy graphs (1 generation data)

(a) Intercept only (b) With covariates

Figure B.24: Heterogeneity of customer behaviors (1 generation data)

Adequacy graphs (4 generation data)



B.4. SRM ANALYSIS 147

Figure B.25: Intercept-only models (1 generation data)

Figure B.26: Model with covariates (1 generation data)

(a) Whole population (b) Cross-selling (c) Multi-vehicle

Figure B.27: Heterogeneity of customer behaviors (4 generation data)
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(a) Cover type (b) Intercept only (c) With covariate

Figure B.28: Heterogeneity / Survival functions (4 generation data)

Figure B.29: Intercept-only (4 generation data)

Figure B.30: Model with covariates (4 generation data)
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Cox summaries

Call: coxph(formula = Surv(t_beg, t_end, did_cancel) ˜ veh_age + price_group + driv_age + house_pol +
claim_1 + claim_2 + cover + prev_prem_group + priceratio:(gender + house_pol + claim_1 + claim_2 +
cover + prev_prem_group), data = lasttimedata, method = "efron")

n= 176158

coef exp(coef) se(coef) z Pr(>|z|)
veh_age -0.0660426 0.9360910 0.0017890 -36.917 < 2e-16 ***
price_group -0.0731033 0.9295048 0.0013595 -53.771 < 2e-16 ***
driv_age -0.0077500 0.9922799 0.0003497 -22.162 < 2e-16 ***
house_polY -1.0398235 0.3535171 0.0816893 -12.729 < 2e-16 ***
claim_1 0.3079118 1.3605810 0.0761343 4.044 5.25e-05 ***
claim_2 0.2409094 1.2724057 0.0791048 3.045 0.002323 **
coverTPL 1.8407229 6.3010916 0.1251767 14.705 < 2e-16 ***
coverTPL+opt 0.6215845 1.8618759 0.0844531 7.360 1.84e-13 ***
prev_prem_group(500,1e+03] 0.3428904 1.4090143 0.0892352 3.843 0.000122 ***
prev_prem_group(1e+03,Inf] 1.3141232 3.7214865 0.0994147 13.219 < 2e-16 ***
priceratio:genderF 2.1384384 8.4861750 0.0869452 24.595 < 2e-16 ***
priceratio:genderM 2.1473092 8.5617896 0.0869610 24.693 < 2e-16 ***
house_polY:priceratio 0.2605641 1.2976620 0.0830592 3.137 0.001706 **
claim_1:priceratio -0.4627637 0.6295414 0.0751736 -6.156 7.46e-10 ***
claim_2:priceratio -0.3507617 0.7041515 0.0804754 -4.359 1.31e-05 ***
coverTPL:priceratio -1.8585603 0.1558969 0.1300347 -14.293 < 2e-16 ***
coverTPL+opt:priceratio -0.5942489 0.5519770 0.0868030 -6.846 7.60e-12 ***
prev_prem_group(500,1e+03]:priceratio 0.1855884 1.2039266 0.0906994 2.046 0.040737 *
prev_prem_group(1e+03,Inf]:priceratio -0.3864228 0.6794832 0.1010785 -3.823 0.000132 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

exp(coef) exp(-coef) lower .95 upper .95
veh_age 0.9361 1.0683 0.9328 0.9394
price_group 0.9295 1.0758 0.9270 0.9320
driv_age 0.9923 1.0078 0.9916 0.9930
house_polY 0.3535 2.8287 0.3012 0.4149
claim_1 1.3606 0.7350 1.1720 1.5795
claim_2 1.2724 0.7859 1.0897 1.4858
coverTPL 6.3011 0.1587 4.9302 8.0532
coverTPL+opt 1.8619 0.5371 1.5778 2.1970
prev_prem_group(500,1e+03] 1.4090 0.7097 1.1829 1.6783
prev_prem_group(1e+03,Inf] 3.7215 0.2687 3.0626 4.5221
priceratio:genderF 8.4862 0.1178 7.1566 10.0628
priceratio:genderM 8.5618 0.1168 7.2201 10.1528
house_polY:priceratio 1.2977 0.7706 1.1027 1.5271
claim_1:priceratio 0.6295 1.5885 0.5433 0.7295
claim_2:priceratio 0.7042 1.4201 0.6014 0.8245
coverTPL:priceratio 0.1559 6.4145 0.1208 0.2012
coverTPL+opt:priceratio 0.5520 1.8117 0.4656 0.6543
prev_prem_group(500,1e+03]:priceratio 1.2039 0.8306 1.0079 1.4381
prev_prem_group(1e+03,Inf]:priceratio 0.6795 1.4717 0.5574 0.8284

Rsquare= 0.081 (max possible= 0.994 )
Likelihood ratio test= 14861 on 19 df, p=0
Wald test = 14468 on 19 df, p=0
Score (logrank) test = 14576 on 19 df, p=0

One variable-effect on hazard rate

Figure B.31: Hazard rates



150 APPENDIX B. ADDITIONAL TABLES AND GRAPHICS

PH assumption test

(a) Vehicle age coefficient (b) Cover TPL coefficient

Figure B.32: Grambsch and Therneau’s test

Extended Cox summaries

Call: coxph(formula = Surv(t_beg, t_end, did_cancel) ˜ strata(house_pol) + strata(cover) + price_group +
driv_age + claim_2 + prev_prem_group + priceratio:(gender + veh_age + driv_age + claim_1 + claim_2 + cover),
data = allyeardata, method = "efron")

n= 429038

coef exp(coef) se(coef) z Pr(>|z|)
price_group -0.005611 0.994404 0.001088 -5.158 2.50e-07 ***
driv_age -0.014517 0.985588 0.002102 -6.907 4.95e-12 ***
claim_2 0.168547 1.183584 0.081378 2.071 0.038343 *
prev_prem_group(500,1e+03] 0.372831 1.451840 0.015171 24.575 < 2e-16 ***
prev_prem_group(1e+03,Inf] 0.623761 1.865933 0.021016 29.680 < 2e-16 ***
priceratio:genderF 1.569859 4.805969 0.099857 15.721 < 2e-16 ***
priceratio:genderM 1.527194 4.605236 0.100217 15.239 < 2e-16 ***
priceratio:veh_age 0.008310 1.008344 0.001507 5.515 3.50e-08 ***
driv_age:priceratio 0.007515 1.007543 0.002144 3.504 0.000458 ***
priceratio:claim_1 -0.082710 0.920618 0.014417 -5.737 9.64e-09 ***
claim_2:priceratio -0.175893 0.838708 0.082739 -2.126 0.033514 *
priceratio:coverTPL -1.591663 0.203587 0.114096 -13.950 < 2e-16 ***
priceratio:coverTPL+opt -0.531740 0.587581 0.087128 -6.103 1.04e-09 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

exp(coef) exp(-coef) lower .95 upper .95
price_group 0.9944 1.0056 0.9923 0.9965
driv_age 0.9856 1.0146 0.9815 0.9897
claim_2 1.1836 0.8449 1.0091 1.3883
prev_prem_group(500,1e+03] 1.4518 0.6888 1.4093 1.4957
prev_prem_group(1e+03,Inf] 1.8659 0.5359 1.7906 1.9444
priceratio:genderF 4.8060 0.2081 3.9517 5.8449
priceratio:genderM 4.6052 0.2171 3.7840 5.6048
priceratio:veh_age 1.0083 0.9917 1.0054 1.0113
driv_age:priceratio 1.0075 0.9925 1.0033 1.0118
priceratio:claim_1 0.9206 1.0862 0.8950 0.9470
claim_2:priceratio 0.8387 1.1923 0.7132 0.9864
priceratio:coverTPL 0.2036 4.9119 0.1628 0.2546
priceratio:coverTPL+opt 0.5876 1.7019 0.4953 0.6970

Rsquare= 0.008 (max possible= 0.828 )
Likelihood ratio test= 3641 on 13 df, p=0
Wald test = 3847 on 13 df, p=0
Score (logrank) test = 3638 on 13 df, p=0
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Figure B.33: Average stratified survival curves

One variable-effect on hazard rate

PH assumption test

(a) Vehicle age coefficient (b) Cover TPL coefficient

Figure B.34: Grambsch and Therneau’s test

“Insurance never covers you against
damages sustained by Chuck Norris,

as it’s classed as an Act of God!”
from http://www.chucknorrisfacts.com/.

http://www.chucknorrisfacts.com/
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