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Mots clés: Structures par terme des probabilités de défaut, transitions entre
classes de notes, Chaîne de Markov continue non-homogène, matrice génératrice,
régularisation de la matrice génératrice.

Résumé

Afin de mieux gérer son risque, il serait utile pour un assureur crédit comme
Euler Hermes d’étudier l’évolution intra-annuelle des probablités de défaut dans
son portefeuille. Avoir une structure par terme des probabilités de défaut lui
permettrait d’examiner le lien qui existe entre les probabilités de défaut de
deux périodes consécutives, pour ensuite essayer d’expliquer ce lien. Le cycle
économique a une influence sur cette dépendance; c’est pour cela qu’il paraît
oppurtun de conditionner les termes structures par l’état de l’économie. Dans
ce mémoire, nous présentons une manière de calibrer des structures par terme
des probabilités de défaut, ceci en utilisant les chaînes de Markov continues et
non-homogènes. Ensuite nous présentons la mise-en-oeuvre et les résultats du
calibrage avec des données de Standard & Poors. A la fin du mémoire nous
proposons une manière de calibrer les structures par terme des probabilités de
défaut en tenant compte de la phase du cycle économique. Nous concluons
ce mémoire en donnant quelques pistes de recherches sur des problématiques
connexes et qui permettraient de faire évoluer le modèle interne d’Euler Hermes
pour mieux intégrer les termes structures.
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Keywords: Term structures of default probabilities, rating transitions, non-
homogeneous continuous time Markov chain, generator matrix, regularization
of the generator.

Abstract

In order to better manage its risk, it would be helpful for a credit insurer like
Euler Hermes to see how the probabilities of default in its portfolio vary during
a one-year period. Having a term structure of default probabilities would make
it possible to study the link between default probabilities of two subsequent
periods in a year and then try to explain this link. Economic cycles influence
this dependence, and this is the reason why conditioning term structures on the
business cycle phase would be useful. In this paper, we present a possible way of
calibrating term structures of default probabilities by using non-homogeneous
Continuous time Markov Chains. Then we calibrate term structures of default
probabilities using S & P data. Afterwards we propose a way of conditioning
the term structures on the state of the economy. Finally, some further research
directions on some closely related topics are given. They would allow to bet-
ter take into consideration the term structures in the internal model of Euler
Hermes.
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Introduction

Euler Hermes (EH) insures its clients against losses arising from buyers’ in-
solvencies in their domestic or export markets. Therefore modelling default
probabilities is an important feature of its business; a better knowledge of those
probabilities helps manage the contracts more appropriately.

There exist many credit risk models. EH has its own internal model. One of
the advantages of this model is that it accounts for correlations between defaults.
A buyer defaults if its ability-to-pay a debt falls below a certain threshold. The
ability-to-pay of a buyer is given by a factor model, i.e. it depends on systematic
risk factors and an idiosyncratic risk factor proper to the firm. The correlation
between defaults is the result of the fact that a part of the ability-to-pay of each
buyer is given by systematic risks, even though the systematic risk factors do
not influence the ability-to-pay of each buyer at the same degree. Moreover sys-
tematic risks are correlated and every year a matrix with the factor correlations
is published. Contracts are subscribed for a lapse of one year so the default
probabilities for a horizon of one year are studied and default thresholds are
calculated.

However it would be interesting to know how the probability of default varies
within a year. This probability will not be independent during two sub-periods
in a year. On the one hand, most probably the economic features will not change
radically from one sub-period to the other and on the other hand if we consider
the same company, its specific risk will stay almost the same. Thus we should
model the fact that probabilities of default for the same company during two
sub-periods of a year are not independent.

There are at least two possible ways to deal with this. The first way would
be conditioning the probability of default for the next period on the current
economic state. This conditioning is done indirectly by actually conditioning
the future economic state on the present one. Since the current economic state
reflects on the default probability for the current sub-period, conditioning on the
current probability of default and conditioning on the current economic state
are alike.

The second possible solution would be differentiating between companies of
different rating classes and looking at the default probability of a rating class
for different time horizons. By definition, a homogeneous Markov chain would
not allow to model the dependence between two subsequent periods meanwhile
a non-homogeneous Markov chain would, because it depends on time. Indeed,
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it has been observed that the best fit of the model to historical data corresponds
to the assumption that the credit migration process, which includes defaults, is
a non-homogeneous Markov chain.

From EH point of view, it would be interesting to see the effect of risk mit-
igation on the probabilities of default. Risk mitigation will not be the same
in periods of expansion or recession. At the beginning of a recession period
the average default rate in the portfolio of EH will be larger than the average
default rate in the whole economy. The EH portfolio is a subset of the portfolio
composed of all the firms in the economy. One characteristic of this portfolio
is that the risk of default of the firms in it is higher than the risk of default
of the global economy portfolio. This is why the suppliers of those firms need
to buy a cover to protect themselves in case of default of their clients. This
phenomenon is called adverse selection (demand for insurance increases with
the risk of default or loss). So when the economic situation starts to worsen,
the rate of defaulting companies in the EH portfolio is larger than the rate of
defaults in the economy. However EH has the power to react and lower granted
limits or cancel contracts. So if the recession goes on, the default rates in EH
will be lower than those in the economy because the "bad risks" have been evac-
uated from the portfolio.

Risk mitigation impact on probabilities of default during a recession period

We want to see the impact of risk mitigation and a way of doing this is to
compare the PD term structure of the EH portfolio and the PD term structure
of the economy portfolio in expansion and recession periods. We will present
a way of computing a term structure of PDs by mixing the two approaches above.

The aim of this thesis is to present how a term structure of default probabil-
ities can be introduced in the current EH model. The first chapter will present
the credit insurance business and the current framework of the internal model.
The second chapter will consist in a reminder of Markov chains, transition and
generator matrices. In the literature the credit migration process is modelled
with Markov chains and here we will make the same assumption, so we need
to remind some results we will use afterwards. In the third part of the thesis
we present the possible solutions to the problem in more detail. We calibrate
a term structure of probabilities of default with the non-homogeneous Markov
chain method using data from S & P. Some further research directions are given
in the last chapter.
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Chapter 1

Framework

1.1 What is the Credit Insurance business about?
In the credit insurance business the contractual relation involves two parties,
namely a credit insurer and a policyholder. However a third party intervenes in
this relation and plays an important role, the policyholder’s client, named the
buyer. The reason why credit insurance contracts exist is because companies
(policyholders) buy such contracts to protect themselves in case of default1 of
one of their clients (the buyer).

Thus a credit insurance policy can be considered as a triangle relation. It
can be represented as in the figure below:

Fig. 1.1: Triangle relation in credit insurance
We should note that a certain buyer may be party in many policies, since

it can be client of many policyholders which have bought a credit insurance
contract concerning this buyer.

If a buyer defaults during a year and the policyholder declares the corre-
sponding claim, the credit insurer must indemnify the policyholder, after taking

1We will define the default event later in this section
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into account the different policy parameters. Those parameters make it possible
for the credit insurer to mitigate the effects of a default.

An effective measurement of credit risk in a portfolio involves three quanti-
ties: the amount of financial loss in the event of default of a buyer, the individual
probability of default for each buyer, and the correlation between probabilities
of default for different buyers. In what follows we present how the credit insurer
measures these quantities.

1.2 Effective loss of the insurer in case of default
If a buyer defaults then the credit insurer will probably not reimburse all the
amount of the outstandings to the policyholder. He takes measures in order to
pay less than the actual amount the buyer owes the policyholder.

Here we present some of the preventive measures that the insurer can take
when stipulating the contract and some other measures it takes after the con-
tract is signed.

1. One of the most important parameters of the policy is its limit. The
limit is defined as the amount of the credit limit granted to the policy-
holder with regard to the defaulting buyer, so it is the maximum coverage.
Credit limits can be reduced or cancelled at any time depending on the
creditworthiness of the buyer.

2. The contract might involve clauses of uninsured percentage, deductibles,
maximum liability or annual aggregate. While the first two terms might
be familiar, the notions of maximum liability and annual aggregate need
to be defined. The maximum liability corresponds to the maximum total
amount of indemnification that a credit insurer will pay within a given time
horizon. The annual aggregate is a deductible that applies to the sum of
claims or indemnifications of a policyholder over a certain time period.
If the sum is smaller than the deductible nothing is paid; otherwise the
amount exceeding the franchise is paid.

3. The credit insurer may choose to share the risk with another insurer, i.e.
to be reinsured, which is a rather classical move.

4. Recoveries from recollection before or after the indemnification.

The last three loss mitigation measures are aggregated into one parameter
called Loss Given Default. Meanwhile, the limit of a policy intervenes in the
definition of the exposure at default.

Exposure at default (EAD) is defined as the effective outstandings at the
time of default, which represent the used limit at default. In general the effective
outstandings during the maturity period of one year are lower than the granted
limit itself. Moreover we can observe that in general the granted limit can be
decreased several times a year due to the deterioration of the creditworthiness
of the buyer whose financial performance worsens. EAD can be estimated by
making assumptions on the usage degree of the limit in case of default with
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respect to the granted limit. This degree is called Usage given default (UGD)
and is given by the formula:

UGD = limit used at time of default
granted limit one year before

(1.1)

Thus, formally we have:

EAD = granted limit × UGD.

We should add that the degree of limit reduction shows the efficiency of the
management of the contracts. In the best possible case, the granted limit is
cancelled, i.e. the contract is cancelled, before the default of the buyer. In this
case the credit insurer is free of any legal obligation and the default of the buyer
will be of no consequence on it. In addition to this, when the credit insurer
decreases the granted limit, the policyholder will rationally lower the trading
activity with that particular buyer. There are two reasons which lead to that.
The first reason is that if the insurer decreases the limit, the policyholder will
look at this measure as a warning saying that the buyer is less capable of paying
off the debt, so the chances it never reimburses the invoice amounts increase.
The second reason is that since the granted limit decreases, the amount the
policyholder loses in case of default of its buyer is greater.

The figure below sums up how a policy is typically managed and some of
the notions defined above.

Fig. 1.2:Lowering granted limits within a year.

In what precedes we presented how insurance policies are managed and by do-
ing this we also gave an idea of the amount of loss the insurer faces in case
of default of a specific buyer. However an important feature of the credit risk
business is the prediction of the mathematical chance that a default event will
occur. In the following section we will deal with what is relative to the default
probabilities.
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1.3 Default probabilities
First let us define what we will call default event. There are three different types
of default events:

1. Insolvency - The default event is the legal insolvency of the buyer;

2. Opening of a claim file - The default event is the opening of a claim file
for the buyer, either because the policyholder declares a claim, or because
an internal process begins, e.g. when a file is transferred from the credit
department to the claims department;

3. Indemnification - The default event is the declaration of a claim which
was already indemnified by the credit insurer.

The probability of default (PD) over one year is then estimated by the empirical
frequency of defaults during the last 12 months. So the estimated PD will be:

PD = number of buyers having defaulted within the 12-month period
number of buyers at the beginning of the 12-month period

(1.2)

Since there are 3 types of default events, a probability of default corresponding
to each one of the definitions can be computed. Of course those probabilities are
not necessarily the same. A type of probability of default will be picked depend-
ing on what we want to study. According to the general accounting principle
of prudence, after having calculated the capital requirements with each type of
PD, the greatest one should be chosen.

PDs depend on the creditworthiness of a buyer. Each buyer is given a rate
(grade) reflecting its current financial situation and ability to meet debt obli-
gations. So rating classes (grading classes) gather buyers with the same grade.
Default probabilities are defined for each grading class.

1.4 Correlation between probabilities of default
Certainly the individual PDs are important to know. They are used in the
computation of capital requirement for an individual buyer. However, in the
case of credit portfolios, knowing the risk related to each of the single exposures
in the portfolio is not sufficient to evaluate the entire risk of it. Indeed, by doing
this we would not consider the fact that the default event for one company is
probably correlated to the default of another company in the same country and
of the same sector. Studying and integrating the correlation between default
events in a risk management model proves to be crucial in order to evaluate the
risk faced by the credit insurer correctly. A portfolio composed of low credit
risk companies but whose asset values are very correlated with one another, is
very risky.

1.4.1 Simple illustration
Let 1 and 2 be two companies of the same sector. Let Di be the Bernoulli
variable indicating if the buyer i = 1, 2 defaults. Let ρ be the annual correlation
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coefficient between the two companies.
Let us define pi such that pi = P(Di = 1) for i = 1, 2 and p12 such that
p12 = P(D1 = 1, D2 = 1). The correlation coefficient between the default event
of the two firms is given by the formula:

ρ = Cov(D1, D2)√
V(D1)

√
V(D2)

(1.3)

= E(D1D2)− E(D1)E(D2)√
V(D1)

√
V(D2)

(1.4)

= p12 − p1p2√
p1(1− p1)

√
p2(1− p2)

(1.5)

Let us suppose for example that the default probabilities p1 and p2 for year
N are both equal to 2% and the correlation between defaults is ρ = 0.1. Then
the probability the two companies default is p12 = 0.24%. Let us imagine two
possible scenarios for N + 1:
(a) Individual probabilities of default p1 and p2 increase and become equal to
0.4 and the correlation measured by ρ stays the same.
(b) Individual probabilities of default p1 and p2 increase and become equal to
0.4 and the correlation increases and the correlation coefficient becomes equal
to ρ = 0.2. This scenario is more probable to happen compared to the first one
because in general if credit quality decreases the correlation between defaults
tends to increase.

In scenario (a) the joint probability of default becomes equal to p12 = 0.544%
and in scenario (b) p12 = 0.928%. So not taking into account the correlation
between defaults would have underestimated the joint probability of default
almost by a half, which is quite considerable.

1.4.2 Modelling default correlations
Default correlations are difficult, if not impossible, to be measured directly. A
possible way of inferring default correlations is knowing the individual probabil-
ities of default and asset correlations. This seems quite sensible since a company
is likely to default if the value of its assets falls below a certain threshold, so
two companies will default jointly if the values of their respective assets de-
crease simultaneously down to a certain degree. The simultaneousness of the
two decreases and their degree define the asset correlation of the two companies.

A way to deal with this, is to make the assumption that the joint distribution
of default of two companies is a Gaussian copula whose correlation coefficient
is the correlation between the asset values of those companies. We denote δij
the correlation coefficient between the assets of the firms i and j and ρij the
correlation between the default events of i and j.

Let us denote Si and Sj the corresponding asset values and di and dj
the corresponding default thresholds. We assume that Si ∼ N (µi, σi) and
Sj ∼ N (µj , σj).
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pi and pj are the individual probabilities of default so that: pi = P(Si < di)
and pj = P(Sj < dj). pij = P(Si < di, Sj < dj) is the joint probability of
default. As a result of the Gaussian copula we have:

pij = P(Si < di, Sj < dj) (1.6)
= N2(N−1(pi), N−1(pj), δij) (1.7)

=
∫ dj

−∞

∫ di

−∞

1

2πσiσj
√

1− δ2
ij

exp

(
− z

2(1− δ2
ij)

)
dsidsj (1.8)

where

z = (si − µi)2

σ2
i

− 2δij(si − µi)(sj − µj)
σiσj

+ (sj − µj)2

σ2
j

(1.9)

N2 denotes the Gaussian copula2 or the bivariate normal distribution. So the
asset correlation is an important factor if we want to know the joint probability
of default.

After having calculated the joint default probability we can obtain the de-
fault correlation between the two firms i and j by the formula given in the
previous subsection:

ρij = pij − pipj√
pi(1− pi)

√
pj(1− pj)

(1.10)

= N2(N−1(pi), N−1(pj), δij)− pipj√
pi(1− pi)

√
pj(1− pj)

(1.11)

However, in order to make such a calculation, the asset correlation should be
known. The problem is that it is not directly observable.

We present here three possible ways to deal with this problem: approximat-
ing asset correlations by equity correlations, deriving them from joint default
probabilities and finally the use of factor models.

Using equity correlations as a proxy for asset correlations

It has become common market practice to use equity correlations as a proxy for
asset correlations. The underlying assumption is that equity return should re-
flect the value of the underlying firm, so two firms with highly correlated equity
return should have highly correlated assets. Nevertheless, according to Servigny
and Renault [2004],equity returns incorporate a lot of noise, like bubbles, and
are affected by supply and demand effects (liquidity crunches) that are not re-
lated to the firms’ fundamentals. The relation between those assets and equities
is not linear. This is why the linear correlation coefficient will not be the same
for the two of them and this makes equity correlations poor substitutes of asset
correlations.

2The Gaussian copula does not necessarily represent the true relationship between the
default events of two companies. The copula approach becomes quite complicated to be
implemented and risks to be over-parametrized if we look at the joint default of more than
two companies, so it is not the approach chosen in the internal model.
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Default-implied asset correlation

One needs to calculate the individual default probabilities and the joint default
probabilities. In order to compute the joint default probability we use the
formula:

pij =
∑
t

wijt
Di
tD

j
t

N i
tN

j
t

(1.12)

where wijt is the weight representing the relative importance of the sample in

year t, i.e. wijt = N i
tN

j
t∑

kN
i
kN

j
k

, Di
t and D

j
t are the number of defaults for year t in

the group where the firm i and j belong respectively. N i
t and N

j
t are the number

of buyers at the beginning of year t in the group where the firm i and j belong
respectively. Afterwards, by making the assumption that the asset values follow
Gaussian distributions and their joint distribution is a Gaussian copula, we can
estimate the default-implied asset correlation measured by the coefficient δij so
that we can have pij = N2 (di, dj , δij).

Multi-factor model

In a factor model it is assumed that there is a "latent variable" and the default
event is then defined as being the event of the latent variable falling below a
certain threshold. This "latent variable" is commonly named asset return be-
cause the default event in this case is defined similarly to the case of Merton
models which define default as being the event when the value of the firm falls
below the value of its liabilities.

A factor model explains the asset return value in terms of values of a set of
return drivers or risk factors. We denote Zi the asset return of company (buyer)
i and {Rν |ν = 1, ..., k} the risk factors. Then the model would be:

Zi = ωi1R1 + ωi2R2 + ...+ ωikRk + εi =
k∑
ν=1

ωiνRν + εi (1.13)

where ωiν is the sensitivity of the asset return of buyer i to the systematic factor
ν.

εi is the specific risk factor, also called idiosyncratic risk factor of buyer i. It
is like an error term in a regression model and represents the part of the asset
return which is not explained by the systematic risk factors. We assume that
∀i = 1, ..., n :

1. ∀ν = 1, ..., k ρ(Rν , εi) = 0, i.e. the idiosyncratic risk factor is not corre-
lated to the systematic risk factors;

2. ∀i 6= j ρ(εi, εj) = 0, i.e. the idiosyncratic risk factors of two different
buyers are not correlated between them.
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A factor model is specified for each buyer. This means that each buyer has
its specific risk, and more important, its global risk depends also on systematic
factors, which are common to all buyers. For this reason, the correlations be-
tween the systematic factors Rν (together with the respective weights wiν and
wjν) define the correlations between the buyers i and j, and the latter is defined
only by them because idiosyncratic risks for two different buyers are uncorre-
lated. This model is practical to work with because if we know the covariance
matrix between the systematic factors then we can have the correlations be-
tween asset returns of different buyers and the number of factors is a lot smaller
than the number of buyers.

So factor models define the correlation between buyers. A natural question
one can ask would be: What are those factors exactly? Which are the variables
that define the correlation between buyers? Which can be the best way of
clustering them? An answer to this question is given by the model presented
below.

Example of a multi-factor model

This model is a three-level factor model. The picture below represents graphi-
cally this type of model.

The first level of the structure makes the difference between firm-specific and
systematic risks.

Zi = αiφi + εi (1.14)

In the second level, we define the systematic risk φi as a weighted sum of country
and industry factors to which the firm has exposure. So the asset return can be
written as:

Zi = αi

 kC∑
νC=1

ωiνCRνC +
kI∑
νI=1

ωiνIRνI

+ εi (1.15)
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where RνC and RνI are the systematic country and industry factors respectively
and kC and kI are the total number of those factors. The weights ω depend on
the part of sales or assets of the firm in a particular country or industry.

The systematic risk or undiversifiable risk of firm i is measured by the co-
efficient αi and the specific or diversifiable risk by εi. αi is estimated by linear
regression and is related to the R2 3 of the regression of the time series of the
asset return Zi on the systematic factors φi. We have:

R2 = V (αiφi)
V (Zi)

(1.16)

So, we also have:

α =

√
R2

V (αiφi)
V (Zi) (1.17)

For small firms whose market return data is not available, R2 can be given
approximately by comparing it to similar firm whose R2 is known. A similar
firm is a firm of the same size, located in the same country and working in the
same industry.

In the third level, the country and industry systematic risk factors are ex-
pressed as a sum of systematic and idiosyncratic factors. We have:

RνC =
F∑
f=1

ωfνCRf + ενC (1.18)

RνI =
F∑
f=1

ωfνIRf + ενI (1.19)

where Rf are common factors for country and industry systematic factors.

Those common factors are divided into three groups and are independent
from one another. Their effects are measured by sensibility coefficients, denoted
ωfνI and ωfνC . The common factors are classified as follows:

• Global economic factor which captures the overall effect of the global econ-
omy;

• Regional factors which catch the regional economic effects by big geo-
graphical area;

• Sector factors which capture the industry effects after the global and eco-
nomic effects have been removed. The sectors are defined corresponding to
the type of service or good produced, like technology, medical, extraction,
etc.

3the portion of the variance of the asset return of buyer i, V(Zi), due to the variance
resulting from the impact of systematic factors.

15



Each country and industry is more or less influenced by those factors. The
overall economy of a country is part of the global economy so if it is doing more
or less well depending on how the global economy is developing and the degree
to which its economy is interacting with the rest of the world. Concerning an
industry, the effect of the global economy on a specific industry depends on the
object of the industry since people do not have the same behaviour towards all
goods and services in times of economic downturn. The region where the coun-
try is located plays an important role since it can determine if this country has
been subject to any particular natural phenomenon for example. The return of
an industry depends also on the region where it is primarily located. Industries
which are specific to a certain region (like tobacco to Latin America or oil re-
fining to the Middle East countries) where there has been a natural catastrophe
for example will strongly suffer the consequences of that. The returns of the
sectors which are the most developed in a country will influence its economy.
On the other hand, the returns of an industry depend naturally on the industry
sectors it is connected to.

Nevertheless, each country and industry have their specificities, which should
be taken into consideration in the model.

Let’s remind that our aim is to model default correlations and in order to
do that we had to model asset returns. Modelling them by factor models allows
us to compute correlations in a rather simple way. The only thing we need in
order to model correlations in this framework is the covariance matrix of the
systematic factors. Indeed the correlation between two assets i and j is given
by:

ρ(Zi, Zj) = Cov((Zi, Zj)√
V(Zi)

√
V(Zj)

(1.20)

= αiαjCov(φi, φj)√
V(Zi)

√
V(Zj)

(1.21)

where

V(Zi) = αi
2

 kC∑
νC=1

ω2
iνCV(RνC ) +

kI∑
νI=1

ω2
iνIV(RνI )

+ 2
kC∑
νp=1

kI∑
νq=1

ωiνpωiνqCov(Rνp , Rνq )

+ V(εi) (1.22)

and
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Cov(Zi, Zj) =

αiαj

 kC∑
νC=1

kC∑
νC=1

ωiνCωjνCV(RνC ) +
kI∑
νI=1

kI∑
νI=1

ωiνIωjνIV(RνI )

+
kC∑
νC=1

kI∑
νI=1

ωiνCωjνICov(RνC , RνI ) +
kC∑
νC=1

kI∑
νI=1

ωiνIωjνCCov(RνC , RνI )


(1.23)

The specification of a correlation structure between systematic risk factors
implies that in return we can deal with a correlation structure between asset
returns. In order to relate this to default events correlations, we need to make
an assumption regarding the dynamics of the asset returns, and subsequently
and equivalently an assumption on systematic risk factors and idiosyncratic risk
factors. The most common assumption is that asset returns follow a Gaussian
distribution, so hereafter we will work under the assumption that asset returns
are normally distributed 4.

1.5 Integration of the term structures of PDs in
the current framework

1.5.1 Current framework
In the current framework, generally PDs are given for each buyers’ group where
buyers with similar characteristics are gathered. However there are buyers
which, because of their importance in the portfolio, have their own given prob-
ability of default. Here, we will start by considering grading classes as groups of
buyers and afterwards we will give a possible way of modelling the heterogeneity
within a grading class.

In the current model, the probability of default for the rating class j, here-
after denoted pj , is given by the formula:

P(Zj < dj) = pj (1.24)

where Zj is the ability-to-pay of the rating class j and dj is a certain threshold
such that if the ability-to-pay of a rating class Zj falls beneath the threshold
dj , the rating class is considered as defaulted on its financial obligations. The
ability-to-pay is a "latent variable", just like the asset return variable we de-
fined before. Actually just the name differs here. This "latent variable" is called
ability-to-pay in the case of credit insurance because the event of default occurs
if a buyer is not able to pay its debt to its supplier (the policyholder). Thus
the default event is defined in function of the ability of the buyer to pay the debt.

4The internal model deals with non-gaussian asset returns, see Decroocq, Planchet, Magnin
(2009).
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In the EH Internal Model, the ability-to-pay is given by a factor model,
i.e. as a weighted sum of systematic risk factors, denoted Rν , ν = 1, ..., k (the
state of the economy) and an idiosyncratic risk denoted εj (proper to the rating
class). The PD of the class j is then given by:

P(Zj < dj) = P(
k∑
ν=1

wjνRν + εj < dj) = pj (1.25)

The following assumptions are made about these two types of factors:

• The systematic risk factors vector t(R1...Rk) follow a multinomial Gaus-
sian distribution with parameters N (0,Σ).

• ∀i ∈ J , εi ∼ N (0, 1) and ∀i 6= j, εi ⊥ εj .

This definition of the ability-to-pay Z implies that it is a random variable
and follows a Gaussian distribution.

For now, for each rating class, default probabilities are given for a horizon of
one year. Afterwards they are used to calculate the thresholds d which will
then intervene in simulation of default events. ∀ j, dj is given as a quantile of
a Gaussian distribution with mean E(Zj) and variance V(Zj).

E(Z) = E(
k∑
ν=1

wjνRν + εj) (1.26)

=
k∑
ν=1

wjνE(Rν) + E(εj) (1.27)

= 0 (1.28)

And the variance is equal to:

V(Zj) =
k∑
ν=1

ω2
jνV(Rν) + 2

k−1∑
νp=1

k∑
νq=νp+1

ωjνpωjνqCov(Rνp , Rνq ) (1.29)

=
k∑
ν=1

ω2
jνσνpνp + 2

k−1∑
νp=1

k∑
νq=νp+1

ωjνpωjνqσνpνq (1.30)

The default threshold for the grading class j is then computed by the formula:

dj = E(Zj) +
√

V(Zj)×N−1(pj) (1.31)

where N−1(pj) is the pj-quantile of the standard normal distribution.

By simulation, the threshold dj , together with other parameters such as
granted limit, UGD, etc. will give the loss distribution. This makes possible
the calculation of capital requirements as empirical quantiles of this distribution.
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1.5.2 Integration of term structures of PDs
First method

Here we assume that we have the PD term structures.
Let us denote t0 the current time. We are looking for the probabilities of default
for time horizons {t1, ..., tN}.
For a rating class j, we denote the term structure of probabilities of default for
this class {pjt1 , ..., pjtN }.

In the current framework, only the ability-to-pay for a year is specified like
in the formula 1.25. Indeed, up to now, only the probabilities of default for one
year needed to be computed, so it was not necessary to make an hypothesis on
the way the ability to pay changes over time.

The ability-to-pay, by definition, contains information on the correlation
structure between the systematic risk factors, which then determines the corre-
lation between abilities-to-pay of different buyers and consequently defaults of
those buyers. As a beginning we assume that we do not have a dynamic of the
correlations between systematic risk factors. For now, the variance-covariance
matrix of the systematic risk factors is only given once a year. A way to cir-
cumvent the problem should be found.

We can use the definition of the ability-to-pay of one year and define similarly
the ability-to-pay of the time period [ti, ti+1] in this year. This is equivalent to
assuming that the correlations between systematic risk factors are the same for
periods of same length ti+1 − ti, and thus that the abilities-to-pay during these
periods of the same year follows the same distribution. Let’s underline the fact
that afterwards the definition of the default in one year will change and will not
be the same as in the current framework.

So we will make the following assumption:
The correlation structure between systematic risk factors will be the same for
periods of same length l during a year.

We consider the ability-to-pay for each time period. We will denote Zj[ti,ti+1]
the ability-to-pay of the buyer j for the time period [ti, ti+1].
We denote R[ti,ti+1]ν the systematic risk factor ν for the time period [ti, ti+1]
and we assume that the systematic risk factors vector t(R[ti,ti+1]1...R[ti,ti+1]k)
follows a multinomial Gaussian distribution with parameters N (0,Σ[ti,ti+1]).
The assumption we made can formally be written as:

∀i = 2, ..., N − 1 Σ[ti−1,ti] = Σ[ti,ti+1] = Σ (1.32)

We will also assume that the systematic factors weights do not change with
time.

∀i = 2, ..., N − 1 ω[ti−1,ti] = ω[ti,ti+1] = ω (1.33)

This means that:

∀i = 1, ..., N Zj[ti,ti+1] ∼ N (0,V(Zj)) (1.34)
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where the variance V(Zj) is given by the formula 4.6.
We denote

{
dj[t1,t2], ..., dj[tN−1,tN ]

}
the thresholds for the rating class j such

that there is default at time period [ti, ti+1] for i = 1, ...N − 1 if the ability-to-
pay of the rating class j falls below the threshold dj[ti,ti+1].
We denote pj[ti,ti+1] the probability a buyer belonging to the rating class j in
t0 has to default during the period of time [ti, ti+1] for i = 1, ...N−1. So pj[ti,ti+1]
is a forward default probability. The definition of the default probability at
period [ti, ti+1] is:

∀ i = 1, ..., N − 1 P
(
Zj[ti,ti+1] < dj[ti,ti+1]

)
= pj[ti,ti+1] (1.35)

Since we claim that the abilities-to-pay for every period follow the same distri-
bution (see formula 1.34), then the definition of the default probability during
a period [ti, ti+1] for i = 1, ..., N − 1 becomes:

P
(
Zj < dj[ti,ti+1]

)
= pj[ti,ti+1] (1.36)

Thus the probability of default until ti for i = 1, ..., N − 1 is:

∀ i = 1, ..., N − 1
P
(
∃k ∈ {1, ..., i} such that Zj[tk,tk+1] < dj[tk,tk+1]

)
= pjti (1.37)

The term structure of PDs gives us the probabilities of default until a certain
point in time, which we have denoted {pjt1 , ..., pjtN }.
This term structure helps us define the probabilities of default for a buyer in
the rating class j in t0 during a certain time period:

pj[ti,ti+1] = pjti+1 − pjti (1.38)

Since the abilities-to-pay of each time period follow the same normal distri-
bution N (0,V(Zj)) , the thresholds

{
dj[t1,t2], ..., dj[tN−1,tN ]

}
can be computed

by the formula:

∀ i = 1, ..., N − 1 dj[tk,tk+1] = E(Zj) +
√

V(Zj)×N−1(pj[ti,ti+1]) (1.39)

If the economical situation does not change from one sub-period to another
then there is no reason why the probability of default within a grade should
change. So if the distribution of ability-to-pay for the rating class Zj stays the
same during all periods [ti, ti+1] then the probability of default should stay the
same. Anyway when it comes to practice, when we use default data, we ob-
serve that the probability of default is not the same during sub-periods of same
length. This is due to the fact that the economical conditions do change.

How can we capture the way they change if we assume that the ability-to-
pay has the same distribution? Default thresholds are the ones which get this
variation of the economic conditions. However the economic variation effect
may be blended with other effects, like for example the changing of the recov-
ery rate of a firm when it defaults. When speaking about defaults in the case
of financial products then the default threshold is considered to be a random
variable because of the changing recovery rates.
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The final aim is to get the most precise as possible loss distribution. Policy
features change within a year, so they will be different for different time periods,
e.g. renewal contracts. After computing default thresholds

{
dj[t1,t2], ..., dj[tN−1,tN ]

}
with the formula 1.39, loss simulations for each sub-period follow.

We simulate the loss at each time step, basing ourselves on the data we
have at t0 concerning each sub-period (how contract parameters change). So
we will have the loss for each simulation of systematic risk factors and this
for every time period [ti, ti+1]. Let us emphasize that at each time period we
apply contract parameters like UGD, LGD5, proper to the time period. For
each simulation, the losses obtained at each period are summed and we have a
annual loss simulation. Hence, by considering all the simulations, we have the
distribution of the annual loss.

Second method

In the current model, the ability-to-pay in one year follows a normal distribu-
tion N (0,V(Zj)). Let us divide a one-year period in N sub-periods [ti, ti+1]
with i = 1, ..., N − 1, where tN is the time denoting the end of the year. In
order to give a dynamic of the ability-to-pay and to be coherent with the first
assumption, i.e. N (0,V(Zj)), we can assume that the ability-to-pay (Zjt)t∈R+

is a Brownian motion with starting point Zj0 = 0 and ZjtN ∼ N (0,V(Zj)).

1. Merton approach
We can follow a Merton approach and define a default event until ti only
at maturity time ti. So we only consider the value of the ability-to-pay at
the end of the period [t0, ti], Zti , and see if this value is above or below
the default threshold at this time, denoted dti . The probability of default
until ti for i = 1, ..., N of a firm in the grading class j is:

P (Zjti < djti) = pjti (1.40)

We state that tN = 1. So Zti ∼ N (0, ti × V(Zj)) and then we will have:

P(Zjti < djti) = P

(
Zjti√

ti × V(Zj)
<

djti√
ti × V(Zj)

)
(1.41)

= N

(
djti√

ti × V(Zj)

)
(1.42)

= pjti (1.43)

So the thresholds can be computed as quantiles of a Gaussian distribution:

∀ i = 1, ...N , djti =
√
ti × V(Zj)×N−1(pjti) (1.44)

The default events will then be simulated by using these thresholds as
they are simulated in the current framework.

5A new modelling of UGD should follow in order to keep up with the changes of the internal
model due to the integration of term structures of PDs.
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2. First passage time approach
The Merton approach does not give correct default probabilities, because
the default event might occur at any time between t0 and ti and not
only at maturity. Therefore, the default probability until ti should be the
probability that the ability-to-pay process falls below a certain threshold
djti , or equivalently the probability that the minimum of the ability-to-pay
process is lower than a certain threshold djti . Formally we have:

P (∃t, 0 6 t 6 ti such that Zjt < djti) = P
(

min
06t6ti

Zt < djti

)
(1.45)

= pjti (1.46)

By using a well-known result on the minimum of a Brownian motion, we
have:

P
(

min
06t6ti

Zt < djti

)
= 2N

(
djti√

ti × V(Zj)

)
(1.47)

= pjti (1.48)

Hence we have the following formula for the computation of the thresholds:

∀ i = 1, ...N , djti =
√
ti × V(Zj)×N−1(1

2
pjti) (1.49)

After computing the thresholds we should simulate the default events. In
this case there is default in period [t0, ti], i = 1, ..., N − 1 if the ability-
to-pay process falls below the threshold at any time between t0 and ti.
This means that Brownian paths must be simulated and see for every
time period [t0, ti], i = 1, ..., N − 1 if the Brownian path falls below the
threshold djti . This is why the simulation of the default events
changes compared to the current framework, which does not require
the simulation of Brownian paths, but simulates values of the systematic
risk factors.

In all cases, here we assume that the correlation structure will not change.
We have to since we only have the covariance matrix Σ for the current year. A
possible improvement is presented in the last chapter.
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Chapter 2

Markov chains, transition
and generator matrices

Credit risk models assume that a counterparty’s rating migrates over a set of
possible states. The credit migration process can be modelled as a finite Markov
chain where ratings are the states of the chain and the rating of a company
changes from one state to another with a certain probability. Those transition
probabilities can be globally represented in a matrix, called the transition ma-
trix. This chapter is aimed to give some basic definitions on Markov chains and
present some theorems on the generators of such chains. Those concepts will
be useful to the following chapter for the calibration of probabilities of default
term structures.

2.1 Markov process and Markov chains
Definition 1 (Discrete Markov chain) Let (Xn)n∈N be a sequence of ran-
dom variables. The values taken by the random variables form a countable or
finite set of values denoted S. (Xn)n∈N is a Markov chain if for all n ∈ N they
satisfy the Markov property, namely:

P(Xn+1 = xn+1 Xn = xn, Xn−1 = xn−1,..., X0 = x0)
= P(Xn+1 = xn+1 Xn = xn) (2.1)

This means that given the present state of the Markov chain, the future state
does not depend on the past states of the chain.

Definition 2 (Markov process or continuous Markov chain) A stochas-
tic process (Xt)t∈R+ is called a Markov process if for every t > 0 and h > 0:

P(Xt+h = y Xs = xs for all s 6 t) = P(Xt+h = y Xt = xt) (2.2)

xs for ∀s < t is the history of states of the Markov process.

This means that the probability for the Markov chain to be in the state y at
time t+h, conditioned on the history of states until t, is equal to the probability
of having that state but this time conditioned on the state of the process in t.
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Conditional on the present, future states are independent from past states.

In credit risk the rating migration process is supposed to be a Markov pro-
cess. We will denote this process (Rt)t∈R+ . The states of this Markov chain are
the rating classes.
In the credit migration process S will be the set of ratings so it will be a finite set
of states. In what follows we suppose the companies can be classified in 8 rating
classes, namely AAA, AA, A, BBB, BB, B, CCC, CC, C and D = default.

The question might rise: Is it appropriate to model the rating process as
a Markov chain? Does the present rating of a company give all the necessary
information to predict the future state or the rating path has a explanatory
value which is not entirely contained in the present state? The assumption that
the rating process is a Markov chain might be restrictive because most likely the
rating history influences the future rating of a company. However in practice we
observe that the goodness of fit of the Markov chain assumption to the rating
process depends on the assumed type of Markov chain (homogeneous vs. non-
homogeneous, discrete vs. continuous) and to which process this assumption
is applied (differentiating the rating process in expansion and recession periods
for example).

Definition 3 (Homogeneous Markov chain) A Markov chain is homoge-
neous if the transition probabilities from one state to another do not depend on
the time. Formally this means that:

∀n P(Xn+1 = i Xn = j) = P(X1 = i X0 = j) (2.3)

On the contrary, a non-homogeneous Markov chain is a Markov chain which
is not homogeneous, which means that the transition probabilities from one
state to another depend on time.

2.2 Transition matrix
Definition 4 (Transition matrix) A transition matrix from t to t + 1, also
called rating migration matrix, is the matrix which gives for each rating class
and conditional to the rating in time t, the probability of staying in the same
rating class and the probabilities of moving to each of the other rating classes
until t+11. If we denote M(t, t+1) = (mij(t, t+1))16i68, 16j68 the transition
matrix then we have:

∀i,j mij(t, t+ 1) = P(Rt+1 = j Rt = i) (2.4)

The transition probabilities satisfy:

8∑
j=1

mij(t, t+ 1) = 1 for i = {1, ..., 8}

1In general the transition matrices considered in the literature are yearly, mainly because
they use the transition matrices provided by rating agencies, which are given once a year for
a period of one year.
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mij(t, t+ 1) > 0 for i, j = {1, ..., 8}

A matrix whose coefficients satisfy these two conditions is also called a
stochastic matrix.
We denote TM(n) the set of all transition matrices of type n × n. Let M be
the transition matrix for one period: M = M(0, 1).

Remark 5 The transition matrix of a homogeneous Markov chain does not
depend on time and we have:

∀n M(0, n) = Mn

2.2.1 Features of a transition matrix
Here is an example of a transition matrix:

Tab 2.1: Average annual transition matrix from SP, average calculated on
1981-2008

We notice that the last row displays a different characteristic compared to
the other rows. According to the definition of the transition matrix the last
row is made of the probabilities that a company which has defaulted in t moves
to the other rating classes until t + 1. We can see that the probability for a
defaulted company to move to a non-default class is 0 and the probability of
staying in the default class is 1. The last row of the great majority, not to say
all, the transition matrices met in the literature is the same, m8j(t, t + 1) = 0
for j = 1, ..., 7 and m88(t, t + 1) = 1. The reason is that default is considered
to be an absorbing state; if a company defaults then its rating will not improve
during any of the following periods.

As expected default probabilities are higher for lower grades. We can even
say that default probabilities increase exponentially with lower ratings, as we
can see in the figure below. The likelihood of staying in the same rating class is
very high compared to probabilities of rating migrations. If a company does not
stay in the same class, it will more probably move to a neighbour rating class
rather than jump to a further one. In general the further the rating class is from
the actual rating, the lower the probability of migration to this class is, i.e. the
further the coefficients of the transition matrix are from the diagonal, the lower
they are. This property is known as the "monotonicity" property. However it is
not always true. For example for the matrix above the probability of default for
a company rated A, BBB, BB or B is higher than the probability of migrating
to the immediate lower class. Similarly it is more probable for a company rated
AAA to fall to rating BB than to BBB.
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Fig 2.1: Default probabilities of the transition matrix above

2.2.2 How to take account of rating withdrawals?
Transition matrices are obtained by counting the number of transitions among
a set of credit states for a given pool of companies over a one-year period. We
should note that the published data are not complete because information is
lost about companies that were withdrawn from the rating pool due to mergers,
repayment of their debt, calling of the debt, etc. This is the reason why in
general the row-sums of published transition matrices might be different from
1. Hence, certain assumptions need to be made about the companies that have
been removed from the sample and adjust the matrix accordingly. The class
of rating withdrawals is also called the "Not Rated" (NR) class. Transitions to
this class might be "benign" or "bad". Bad transitions may be due for example
to a credit quality deterioration known by the debtor only and this leads the
company to bypass a rating agency.

There are at least four methods for removing NRs from the dataset.

• The first method is conservative and proceeds by treating transitions to
NR as negative information regarding the change in credit quality of
the borrower. Here the probability of transiting to NR is distributed
amongst downgraded and defaulted states in proportion to their values
by allocating NR values to all cells to the right of diagonal. If we de-
note M ′ = (m′ij)16i6n,16j6n then this methods correspond to doing the
following adjustment for each row i = 1, ..., n:

– ∀j 6 i m
′

ij = mij

– ∀j > i m
′

ij = mij +mij

1−
∑n
j=1 mij∑

j>imij

• The second method is liberal and treats transitions to NR status as benign.
The transition probabilities to NR are distributed among all states, except
default, in proportion to their values. This is achieved by allocating the
probability of transiting to NR to all but the default column. ∀i = 1, ..., n

– ∀j < n m
′

ij = mij +mij

1−
∑n
j=1 mij∑n−1

j=1 mij
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– for j = n m
′

ij = mij +mij

1−
∑n
j=1 mij∑

j>imij

• The third method, which has emerged as an industry standard, treats
transitions to NR status as non-information. The probability of transitions
to NR is distributed among all states in proportion to their values. This is
achieved by gradually eliminating companies whose ratings are withdrawn.
This method modifies the default probabilities which will then comprise a
part of uncertain information. ∀i = 1, ..., n

– ∀1 6 j 6 n m
′

ij = mij +mij

1−
∑n
j=1 mij∑n

j=1 mij

• A fourth method would consist in considering that the future state of all
"not rated" companies would in fact be the same as the current state.

∀i, j = 1, ..., n m
′

ii = mii + (1−
n∑
j=1

mij) (2.5)

2.3 Generator matrices
Definition 6 (Generator matrix) A Generator matrix Q = (qij)16i68, 16j68
is a matrix whose elements satisfy:

8∑
j=1

qij = 0 for i = {1, ..., 8}

qij > 0 for i, j = {1, ..., 8} and i 6= j

Let G ∈M8,8(R) be the set of generator matrices.

Proposition 7 Generators together with the binary operator "+" form a semi-
group in the set of matrices.

This means that the sum of two or more generators is still a generator. The
proof is trivial.
The simplest generator associated to a transition matrix M would be M − I
where I is the identity matrix of type 8× 8.

Proposition 8 A matrix Q is a generator if and only if M(t) = exp (tQ) is a
transition matrix.

Proof
As t −→ 0+ then we have:

M(t) = I + tQ+O(t2) (2.6)

qij > 0 for all i 6= j if and only if mij > 0 for all i, j and for t > 0 suf-
ficiently small. If M is the transition matrix of a homogeneous Markov chain
then M(t) = M( t

n
)n for all n ∈ N. So qij > 0 for all i 6= j if and only if mij > 0
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for all i, j and for all t 6 0.
If Q has row sums equal to 0 then so does Qn for all n ∈ N.

n∑
j=1

qnij =
n∑
j=1

n∑
k=1

qn−1
ik qkj =

n∑
k=1

qn−1
ik

n∑
j=1

qkj = 0 (2.7)

Using the Taylor series for the matrix exponential we have:

M(t) = exp (tQ) =
+∞∑
k=0

(tQ)k

k
= I + tQ+ (tQ)2

2!
+ (tQ)3

3!
+ ... (2.8)

By 2.7 we have that the sum of the row coefficients for theQ polynomials is equal
to 0. So the row sum of M(t) is equal to the row sum of I and

∑n
j=1 mij = 1.

On the other hand if M(t) is a transition matrix then the row sums of tQ +
(tQ)2

2!
+ (tQ)3

3!
+ ... must be equal to 0 for all t > 0. For this to be possible the

row sum of Q must be equal to 0.

2

Definition 9 (Generator of a Markov process) Let M(t) be the transition
matrix of the Markov process (Rt)t∈R. The matrix Q is called the generator of
(Rt)t∈R if M(t) satisfies:

d

dt
M = MQ (2.9)

In this case we obtain

M(t) = exp (tQ), t > 0 (2.10)

2.4 Embedding and identification problems
Given a finite Markov chain, (Rn)n∈N, the embedding problem is posed as fol-
lows:

Is it possible to construct a Markov process (Rt)t∈R in continuous time such
that the probability distribution of (Rt)t∈Rat time t = 1, 2, ... is identical to the
distribution of (Rn)n∈N?

This is equivalent to determining if a transition matrix is compatible with a
true generator Q such that:

M = exp (Q)
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If the matrix Q exists and is unique, then a continuous-time extention of the
transition matrix M̃(t) can be defined as follows:

M̃(t) = exp (tQ) (2.11)

The identification problem consists in looking for the true generator once its
existence is established. A transition matrix can have many generators and one
must choose between those generators the one that best applies to the problem.
Here follow two theorems which give a partial answer to the uniqueness problem
of a generator.
Let’s define

S = max {(a− 1)2 + b2; a+ ib is a complex eigenvalue of M , a, b ∈ R}.

Theorem 10 Let M be a transition matrix and suppose that S < 1. Then the
Taylor series for the matrix logarithm

Q =
+∞∑
k=0

(−1)k (M − I)k

k!
= (M − I)− (M − I)2

2!
+ (M − I)3

3!
− ... (2.12)

converges geometrically quickly (absolute convergence), and gives rise to a ma-
trix Q of same type as M having row-sums equal to 0 such that exp (Q) = P
exactly.

Proof

The numerical radius of a matrix A is given by:

ρ(A) = max{| λ |: λ ∈ σ(A)}

where σ(A) is the spectrum (set of eigenvalues) of A. Let’s note that if a + ib
is the eigenvalue for a matrix M associated to the vector x then (a− 1) + ib is
an eigenvalue for M − I associated to the same vector x . Indeed (M − I)x =
Mx − Ix = (a + ib)x − x = [(a − 1) + ib]x. Thus S = ρ(M − I)2 since
| (a− 1) + ib |2= (a− 1)2 + b2.

By the spectral radius formula

lim
k−→+∞

‖ (M − I)k ‖= ρ(M − I)k = S
k
2 (2.13)

If S < 1 the series in 2.12 converges geometrically quickly, and converges abso-
lutely. The Taylor log expansion for matrices is:

log(M) =
+∞∑
k=0

(−1)k (M − I)k

k!
= (M − I)− (M − I)2

2!
+ (M − I)3

3!
− ...

where ‖ . ‖ is the operator norm2. Since this series in 2.12 converges and this
series is equal to Q, we conclude that Q = log (M − I). We should now prove
that the row-sums of Q are equal to 0.

2The operator norm ‖ A ‖ of a linear operator A : V −→ W where V and W are two
vector spaces is defined as ‖ A ‖= min {c :‖ Av ‖6 c ‖ v ‖ ∀v ∈ V }
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Lemma 1 Let A and B be n×n matrices. Suppose that A has row-sums α and
B has row-sums β. Then C = AB has row-sums αβ.

Proof Lemma

n∑
j=1

cij =
n∑
j=1

n∑
k=1

aikbkj =
n∑
k=1

aik

n∑
j=1

bkj =
n∑
k=1

aikβ = β

n∑
k=1

aik = βα (2.14)

2

SinceM−I has row-sums equal to 0, the lemma proves that ∀k > 0 (M−I)k
has row-sums equal to 0. Since the series 2.12 is a polynomial of (M − I), Q
which is defined as this series has row-sums 0.

2

Definition 11 (Strictly diagonally dominant matrix) A matrixM is strictly
diagonally dominant if its diagonal entries are greater than 1

2
, i.e., mii >

1
2

∀i.

Theorem 12 If a transition matrixM is strictly diagonally dominant then S <
1, which implies that the convergence of the series in theorem 10 is guaranteed.
If the generator exists then it is unique3.

Proof

Let m = min{mii}. Since according to the assumption M is strictly diago-
nally dominant then m >

1
2
. Let’s write

M = mI + (1−m)R,

where R = 1
1−m

(M − mI). Then R is also a transition matrix (row-sums
equal to 1 and positive coefficients). We also have:

M − I = (1−m)(R− I).

Since R is a transition matrix, ‖ R ‖6 1, so that ‖ R − I ‖6 2 by the triangle
inequality, i.e. ‖ R − I ‖6‖ R ‖ + ‖ I ‖= 1 + 1 = 2 and ‖ (R − I)k ‖6 2k.
Hence ‖ (M − I)k ‖6 (2− 2m)k. By the spectral radius formula we have:

ρ(M − I) = S
1
2 = lim

k−→+∞
‖ (M − I)k ‖ 1

2 6 lim
k−→+∞

{(2− 2m)k} 1
2 = 2− 2m.

Since, m >
1
2
, 2− 2m < 1, and so

√
S < 1, and S < 1.

2

3The proof of the second part of the theorem is not presented here
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The theorem 10 does not claim that if the series of ln converges than a valid
generator exists. It just announces that if this series converges then matrix
obtained has row-sums equal to 0. The non-diagonal coefficients of this matrix
must be non negative for it to be a valid generator.
Even though the series does not converge the existence of a valid generator is
not excluded.

The following theorem gives 3 conditions under which an exact generator
does not exist.

Definition 13 (A state accessible from another state) A state j is acces-
sible from a state i if there is a sequence of states k0 = i, k1, k2, ..., km = j such
that

m−1∏
l=0

mklkl+1 > 0

which is equivalent to :
mklkl+1 > 0 for each l

Theorem 14 If the transition matrix M satisfies one of the following condi-
tions:

1. detM < 0,

2. detM >
∏n
i=1 mii,

3. there are states i and j such that j is accessible from i, but mij = 0,

then there does not exist an exact generator for M .

Proof

1. We know that for a real matrix Q:

det (exp (Q)) = exp ((Q)) (2.15)

Indeed, there exists a basis of eigenvectors of Q where Q is upper-diagonal.
Let P be the eigenvectors matrix and T the triangular matrix similar to Q such
that:

Q = PTP−1

Since for two similar matrices have the same determinant detQ = detT . We
also have:

exp (Q) =
+∞∑
k=0

(Q)k

k!
=

+∞∑
k=0

(PTP−1)k

k!
=

+∞∑
k=0

P
(T )k

k!
P−1 = P exp (T )P−1(2.16)

exp (Q) and P exp (T )P−1 are similar too, so det (exp (Q)) = det (exp (T )).
Since T is a triangular matrix, det (exp (Q)) = det (exp (T )) = exp ((Q)).

If M = exp (Q) for some matrix Q, wee must have

det (M) = det (exp (Q)) = exp ((Q)) > 0.
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2. We suppose that M has a generator Q. Let R(t) = exp (tQ). Then Rii >
QiiRii and Rii(0) = 1, so Rii(t) > exp (tQii). Hence mii = Rii(i) > exp (Qii).
Using 2.15 we have:

n∏
i=1

mii >
n∏
i=1

exp(Qii) = exp(
k∑
i=1

Qii) = exp(trace(Q)) = det(M), (2.17)

contradicting condition 2. Hence assuming condition 2 there is no such gener-
ator.
3. It follows from the Lévy Dichotomy.
The Lévy dichotomy states that if a transition matrixM has a proper generator
Q then for each pair (i, j) of states we must have either mij > 0 for all t > 0 or
mij = 0 for all t > 0 (where pij(t) is the ĳ entry of M(0, t) ).
Proof of the Levy dichotomy

Suppose that M has a generator. For each state k = 1, ..., n we would
have mkk(s) −→ 1 as s −→ 0, so that for sufficiently small s we would have
mkk(s) > 0 for all states k. If mij(t) = 0 for some t > 0, then we must have
mij(

t

n
) = 0 for all sufficiently large integers because otherwise we would have

mij(t) > mij(
t

n
)(mjj(

t

n
))n−1 > 0. That is the set of zeros of the function

mij(s) has a limit point 0. mij(s) is an analytic function of s, hence it must be
that mij(s) = 0 for all s > 0, contradicting our assumption that mij(t) = 0 for
some t > 0.
Suppose that j is accessible from i. Then we have mij(s) > 0 for some integer
s. Hence we must have mij(t) > 0 for all t and in particular mij(1) = mij > 0
as claimed.

2

The third condition is satisfied for the majority of transition matrices. Actually
in the most of cases an exact generator does not exist and thus the need for
regularization algorithms emerges.

2.5 Regularization of the generator problem
We would want to find transition matrices for periods shorter than one year
so that when raised to a power n we obtain the best approximate the annual
transition matrix. Formally this means that we look for X̃ ∈ TM(n) such that:

‖ X̃n −M ‖= min
X∈TM(n)

‖ Xn −M ‖ (2.18)

where ‖ . ‖ is a suitable norm in the space of n× n matrices.

Since X̃ is raised to a power greater than one, this problem is high dimensional,
constrained non-linear optimization problem whose solution is computationally
intensive (Kreinin and Sidelnikova [2001]).
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2.5.1 Quasi-optimization of the generator
For time continuous Markov chains this problem can be solved by an heuristic
approach whose object of regularization is the generator. This method is called
the Quasi-optimization of the generator.
The problem Quasi-optimization of the generator (QOG) is specified as follows:
Find Q∗ such that

‖ Q∗ − ln (M) ‖= min
X∈Q(n)

‖ X − ln (M) ‖ (2.19)

The space of the generator matrices, Q(n), is a Cartesian product of n-
dimensional cones. Each row of a generator has the property that its row-
sums equal to 0 and non-diagonal elements are non-negative. By permuting the
elements of each row, they can be represented as a point in a standard cone,
K(n):

K(n) = {(x1, ..., xn) ∈ Rn,
n∑
i=1

xi = 0, x1 6 0,xi > 0 for ∀i > 2} (2.20)

K(n) is contained in the hyperplane Ĥ(n):

Ĥ(n) = {(x1, ..., xn) ∈ Rn,
n∑
i=1

xi = 0} (2.21)

This problem can be solved on a row-by-row basis by projecting a point m ∈ R,
where m is a row of the matrix ln (M) onto the cone K(n). The problem QOG
can be reduced to n independent instances of the following distance minimiza-
tion problem:
Distance minimization problem for the generator (DMPG):
For a given point m ∈ R,m = (m1, ...,mn), find q* ∈ K(n) such that

dist(m,q*) = min
q∈K(n)

dist(m,q) (2.22)

The optimal solution to problem DMPG can be obtained as follows:

Step 1. Let b be the projection of m on the hyperplane Ĥ(n). For this, set

bi = mi − λ

where

λ = 1
n

n∑
i=1

mi.

Step 2. Let m̂ = π(b), where π is a permutation that orders the coordinates
of b in a descending sequence.

Step 3. Find l∗, the smallest integer 2 6 l 6 n− 1 that satisfies

(n− l − 1)m̂l+1 > m̂l +
n−(l+1)∑
i=0

m̂n−i. (2.23)

33



Step 4. Let = = {i : 2 6 i 6 l∗}. Construct the vector q̂ ∈ K(n) as follows.

q∗i =

0 ∀i ∈ =

m̂i −
1

n− l∗ + 1
∑
j 6∈= m̂j ∀i 6∈ =

(2.24)

Step 5. Apply the inverse permutation π−1 to q̂; π−1(q̂) is the solution to the
problem DMPM .

2.5.2 Other regularization methods
These methods adjust the matrix obtained as the Taylor series expansion of the
logarithm Q = ln (M), in order to construct a valid generator Q̃. For the two
methods presented below, namely the diagonal adjustment and the weighted
adjustment, the negative non-diagonal elements are set to 0 and then an adjust-
ment is made so that the row-sum equals 0. The first step is the same for both
algorithms. The computation of Q∗ is made as follows:

Step 1. For i,j = 1, ..., n, set

q∗ij =

{
0 if i 6= j and qij < 0
qij otherwise

(2.25)

Step 2a. (diagonal adjustment) Set the diagonal elements to the negative
sum of the non-diagonal elements:

q∗ii = −
n∑

j=1,j 6=i
qij for i = 1, 2, ..., n (2.26)

Step 2b. (weighted adjustment) Adjust the non-zero elements according to
their relative magnitudes:

q∗ij = qij− | qij |
∑n
j=1 qij∑n

j=1 | qij |
for i, j = 1, 2, ..., n (2.27)
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Chapter 3

Calibration of PD term
structures

This chapter will present two possible ways of introducing a term structure of
default probabilities in the current internal model of EH. This project is defined
in the continuity of the article Decroocq, Planchet and Magnin [2009].

3.1 The need to introduce term structures of
PDs

For a given rating class, why should default probabilities vary within a year?
Why should for example the PD of a given company in the first semester be
higher or lower than the PD in the second semester of the year? Intuitively we
would think that this may either be the consequence of an internal change in the
management of the firm or the consequence of a shift in the economic environ-
ment - the economy is doing either better or worse than in the first semester and
it has an impact on the financial situation of the firm. We can take account of
the latter by changing the parameters of the systematic risk factors distribution,
i.e. changing the variance and correlation coefficients. This would then imply
a change in the correlation structure between PDs of different rating classes,
since this correlation is the direct consequence of the correlation between the
systematic risk factors which are common to the abilities-to-pay of all rating
classes. We will try to capture this economic cycle effect and predict how PDs
vary when the economy is doing well or during a downturn. This means that
we will introduce a multi-state approach which will be particularly interesting
during dramatic economic changes, like the current crisis for instance, which
cause the PDs change.
There are several articles (e.g. Bangia et al.[2000], Jones[2005]) which give evi-
dence for the relevance of this approach to the aim of having a term structure
for the PDs. In those articles it is assumed that the rating migration process is
a homogeneous Markov chain.
Another possible approach would be calibrating a term structure of PDs on
historical data over several time periods. In this case the assumption of a ho-
mogeneous Markov chain proves restrictive and does not give a good fit to ob-
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served data. On the other hand if we suppose that the credit migration process
is a non-homogeneous continuous time Markov chain the resulting calibration
of the term structure of PDs is highly satisfactory. Thus we do the calibration
of term structures of PDs for each grade under this assumption. However this
is done by using average data over a certain time period. During an economic
downturn the PDs will increase but this will only have a marginal effect on the
average PDs used for the calibration. So we should introduce a way of taking
into consideration cycle phases more explicitly.
First we will introduce non-homogeneous continuous time Markov chains and
how a term structure of PDs can be modelled if we suppose that the credit mi-
gration process follows such a process. We also present the calibration of term
structures of PDs. Concerning this approach we do not take into account the
economic cycle phases yet. Afterwards we will present the approach of Bangia
et al. and remark the existence of two economic cycles which impact the credit
migration process in different ways.

3.2 Credit migration as a non-homogeneous con-
tinuous time Markov chain

In this section we will define PD term structures for each rating class and we will
do this by implementing the approach presented in Bluhm and Overbeck [2007]
(hereafter [2]). This article supposes the rating migration process is a non-
homogeneous Markov chain, so we will start by the definition of this process.

Definition 15 (Non-homogeneous continuous time Markov chain) The
process (Rt)t∈R+ is a non-homogeneous continuous time Markov chain if its gen-
erator is time-dependent and is given by:

Qt = Φ(t)Q (3.1)

where Φ(t) = (ϕij(t))1≤i≤n,1≤j≤n is a diagonal matrix and its diagonal coeffi-
cients are functions of time and depend on some parameter values.

In [2], ϕij(t) depend on some parameters α and β and are defined as follows:

ϕij(t) =


(1− exp (−αit))tβi−1

1− exp (−αi)
if i=j

0 if else
(3.2)

ϕ was chosen of this form because of its properties which are:

1. ϕ(1) = 1 this allows to have M = exp(Q) which should still stay the same
after the modification to a non-homogeneous Markov chain.

2. tϕ(t) is increasing in the time parameter t > 0. This is necessary to have
a non decreasing probability of default when the time horizon becomes
longer.
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3. In the numerator of tϕ(t), the first factor (1−exp (−αt)) is the distribution
function of an exponentially distributed random variable with intensity
α; the second factor tβ can be considered as a convexity or concavity
adjustment term.

This function proves to be sufficiently reasonable to be applied as a modification
of the generator Q and the calibration of the term structure on historical data
is very satisfactory.

3.2.1 How to calibrate PD term structures?
Calibration using SP credit migration data from 1981-2005

First we need a historical migration data which will be the basis of the calibra-
tion. Thanks to this data an average one-year transition matrix is calculated.
We also need historical default data for different time horizons. In order to check
our results we apply the C++ program to the data of Standard and Poors (SP)
which are used in [2]. The default probabilities are given for a horizon of 1 year
up to 15 years.
The one-year transition matrix is the following:

Fig. 3.1 : One-year transition (credit migration) matrix (SP 2005)

Generator matrix and regularization We need to estimate the generator
of the rating migration process i.e. Q such that M = exp (Q), where M is the
average one-year transition matrix. In the second chapter we discussed about
the embedding and identification problems. Does an exact generator of the rat-
ing migration process exist? In this particular case we see that the transition
matrix is strictly diagonally dominant (the diagonal coefficients are greater than
1
2
), therefore we can use theorem 12 and calculate the matrix Q as the Taylor

expansion for the logarithm of a matrix. In the appendix, we present the matrix
logarithm. The theorem 12 does not assure that Q is a valid generator. In fact
we can see that there are negative non-diagonal elements. The matrix Q needs
to be regularized in order to obtain an approximative valid generator Q∗.

We have implemented the QOG algorithm in C++ inspiring our-
selves from the program developed in the framework of the article
"Evolutionary models for insertions and deletions in a probabilistic
modelling framework" from E. Rivas.
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The approximative generator matrix Q∗ of the rating migration process is
given in the appendix. We observe that the approximative generator
we find is quite similar to the one found in the article. However the
probable roundings might cause the observed difference in some coefficients.

Calibration of PD term structures After the computation of the gen-
erator Q∗, the calibration of the parameter vectors of the function ϕ, i.e.
α = {α1, α2, α3, α4, α5, α6, α7, α8} and
β = {β1, β2, β3, β4, β5, β6, β7, β8} follows1. The best possible way to calibrate
would be finding the parameters vectors α and β that minimize the distance:∑

t∈L
‖ M̂t − exp(tΦ(t)Q) ‖2 (3.3)

where M̂t is the transition matrix for the time t calculated using the credit
migration data and L is the set of period lengths available. Here L = {1, ..., 15}.
However, this would be complicated if there are too many time period lengths,
because the number of coefficients in each transition matrix Mt is 64 (8 × 8),
so for 15 periods of time, we would have to calibrate by taking into account
64x15=960 coefficients! For this reason, we will do the calibration of α and
β by taking into consideration the probabilities of default for each horizon.
Probabilities of default are the most valuable information in a transition matrix
and moreover we are looking for a term structure of probabilities of default,
so calibrating only on PDs seems sensible. Let remind us that the PDs for a
horizon t can be found at the 8th columns of the transition matrix Mt. The
minimization problem to be solved in order to find the parameter vectors α and
β would then be:∑

t∈L
‖ (M̂t)column(8) − (exp(tQt))column(8) ‖2 (3.4)

The Levenberg-Marquardt algorithm was chosen to solve the minimization
problem. The description and the algorithm itself are given at the end of this
section. The minimization is done under box constraints since the following
assumption is made for α and β:

∀i ∈ {1, ..., 8}, αi > 0 and βi > 0

We have implemented the calibration of the parameter vectors α and β. The
probabilities of default resulting after the calibration for the rating class j can
be obtained by the formula:

πt,j = exp (tQt)j,column(8) (3.5)

where Q is the generator matrix computed with the parameter vectors which
minimize the distance in 3.4. The fit of modelled PDs to observed PDs and the

1Actually, only the calibration of the first 7 parameters of α and of β is made and the 8th

parameter can be fixed at an arbitrary value because the 8th row coefficients of Q which will
be multiplied by those parameters are equal to zero.
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parameter vectors obtained depend on the starting point of the algorithm, even
though not at a significant degree. On the contrary, we observe that they both
depend more on the upper bound which must be specified before running the
Levenberg-Marquardt algorithm. The best fit is obtained by specifying initial
parameter values = 0.4 for all α and β coefficients and an upper bound of 6. In
this case we have the following parameters:

Tab. 3.1: Parameters resulting from the calibration

In [2] the following parameter vectors are found.

Tab. 3.2: Parameter calibration in [2]

The parameters in Tab. 3.1 are different from those in Tab. 3.2. This might
be due to the minimization algorithm used by in [2].
It might be interesting noticing that the error made in this case (with starting
points equal to 0.4) is lower than the one made when the starting points are the
minimization results in [2], given in Tab. 2.3. With the parameters of Tab. 3.2.
the error is equal to√√√√ 15∑

t=1
‖ M̂tcolumn(8) − exp(tQt)column(8) ‖2 ' 0, 05527

and with the starting point in Tab. 3.3 the error is equal to 0, 05543. Moreover
in the [2] the error is equal to 0, 12811, higher than the error in our case. Our
calibration method seems to be more efficient than the one used in [2]. In order
to compare the fitted PDs with the historical ones, we present them in the
following graphics. The historical observed PDs are in blue and the modelled
PDs are in purple.
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Fig. 3.2 : PD term structures based on a non-homogeneous continuous-time
Markov Chain (purple) vs. observed PDs (blue)

Those graphics are to be compared with the ones in [2] which can be found
in Fig. A.4 in the Appendix. We can see that except for the AAA and CCC-
ratings the fit is quite good. The characteristics of the PDs term structures for
the other rating classes are captured by the Markov chain. For the AAA rating
class, probably the problem is that the PD does not change during the last years,
while the probabilities given by the non-homogeneous continuous time Markov
chain are increasing. The Markov chain tends to perform well throughout the
15-year time horizon, which results in underestimating PDs for the first 11 years
and then overestimating them. It would be maybe different if the PDs increased
year over year, if the shape of the term structure were more regular. However
the AAA-rated companies are rare in a portfolio, so the fact that the model
does not fit well for this rating class is less problematic as it would be for classes
like BB or B with many companies. Concerning the CCC rating class, the fit
is quite good, even though not as good as for the other credit classes, due to
more irregular PDs, which looks like from concave becomes convex in the 7th

year (see Fig 3.2 CCC-graph).
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Calibration using SP credit migration data from 1981-2008

In order to see how the method works with another data set, we implemented the
same methodology as in the previous paragraph to the SP credit migration data
from 1981 to 2008. So we have data on three more years. The corresponding
average annual transition matrix is given in Fig. A.5 in the Appendix.
The calibration of the parameter vectors α and β in 2008 will allow us to see
how these parameters change with time and if their values are comparable. If
we had data to calibrate those parameters at different points in time, we could
also see if their values follow a certain function of time in the best case.
The parameter vectors obtained seem to be stable and do not really depend on
the initial parameters put in the Levenberg-Marquardt minimization algorithm.
We find the following minimization parameters:

Tab. 3.3: Parameters resulting from the calibration on SP data 2008

The PD term structures by grade calculated with those parameters are presented
in Fig. A.6 in the Appendix. The fit of the modelled PDs to the observed ones
seems to be very good and in some cases the empirical and modelled PD term
structures seem to be exactly the same. The error is equal to :√√√√ 15∑

t=1
‖ M̂tcolumn(8) − exp(tQt)column(8) ‖2 ' 0, 01983,

smaller than the one computed before in the case of the data until 2005. This
is probably explained by the fact that the AAA and CCC PD term structure
seems to be more regular than the ones with data until 2005.
Concerning the parameter vectors, we cannot distinguish a rule that would de-
termine the calibrated parameters variations.
We must underline the fact that the credit information used for the calibration
is average credit migration rates and these averages smooth the economic cycle
effects over the years.

3.2.2 Levenberg-Marquardt algorithm
The Levenberg-Marquardt algorithm (LM) solves non-linear least squares prob-
lems. The LM algorithm interpolates between the Gauss-Newton (GN) algo-
rithm, based on the linear approximation of the function to minimize, and the
method of steepest descent. After local linearisation of the objective function
with respect to the parameters to be estimated, the Levenberg-Marquardt al-
gorithm performs initially small, but robust steps along the steepest descent
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direction, and switches to more efficient quadratic Gauss-Newton steps as the
minimum is closer. The derivatives are calculated numerically using the pertur-
bation method.
The LM algorithm is more robust than the GN algorithm, which means that
even though it starts far away from the final minimum in many cases it finds a
solution. However if the function is well-behaved and the starting parameters
are reasonable than it tends to be slower than the GN algorithm.
Given a function f : Rn −→ Rm with m > n, we want to minimize ‖ f(x) ‖ or
equivalently to find x*=argminx{F (x)} where

F (x) = 1
2

m∑
i=1

(fi(x))2 (3.6)

Let J ∈ RmXn be the Jacobian of f i.e.

(J(x))ij = ∂fi
∂xj

(x) (3.7)

The step h is defined by the following:

(J>J+ µI)h = −g with g = J>f and µ > 0 (3.8)

Here J=J(x) and f=f(x).

The damping parameter µ has several effects:

1. For all µ > 0 h is a descent direction towards the vector x that is the
minimum of F(x).

2. For large values of µ we get a short step in the steepest descent direction,
which is good if the current iterate is far from the solution.

3. If µ is small then the step of LM is close to the step of GN. The algorithm
provides a good step in the final stages of the iteration, when x is close to
x*.

Thus the damping parameter µ influences both the size and direction of the
step. µ is modified at each iteration. If F(x) decreases during an iteration, µ is
lowered and the LM becomes similar to GN. On the contrary if F(x) increases
this means that f is not exactly linear in the current region where the algorithm
is searching. In this case µ is increased and the LM algorithm becomes similar
to the steepest descent algorithm.
An initial damping parameter µ0 should be chosen relatively to the size of the
elements in A0 = J>(x0)J(x0), for example by

µ0 = τ ×max
i

(a0
ii) (3.9)

where τ is chosen by the user. The algorithm is not very sensitive to the choice
of τ but in geeral τ is chosen to have a small value.
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During the iteration the size of µ can be updated2. The update is controlled by
the gain ratio %

% = F (x)− F (xnew)
L(0)− L(h)

(3.10)

where the denominator is the gain predicted:

L(0)− L(h) = 1
2
h(µh− g)

A large value of % indicates that L(h) is a good approximation of F(x+h)
and we can decrease µ so that the next step is closer to the GN step. If % is
small then L(h) is a poor approximation so µ should be increased in order to
get closer to the steepest descent direction and reducing the step length.
The stopping criteria should reflect that at a global minimum we should have
F ′(x∗) = g(x∗) = 0, so we can use:

‖ g ‖∞6 ε1

where ε1 is a small positive number chosen by the user. Another stop criteria
is to stop if the change in x is too small:

‖ xnew − x ‖6 ε2(‖ x ‖ +ε2).

ε2 is chosen by the user.
To prevent a infinite loop the user must specify a maximum number of

iterations.
The vector of parameters in our case is:

x = (α1, ...α8, β1, ..., β8)

In practice the LM algorithm converges in much less iterations. However each
iteration demands more calculations, in particular the computation of the in-
verse of the matrix (J(x)> J(x)+µI). Its use is thus limited to the cases where
the number of parameters is not very high.

The function we want to minimize is f which contains the coefficients:

for i = 1, ..., 8 fit(x) = pit − (exp(φ(t, x)Q)i8

where pit is the probability of default for the rating class i at time t.
2For more details look at update of damping parameter in the descent methods
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Fig 3.3: The steepest descent and Levenberg-Marquardt algorithms steps on
level sets of the function to minimize

Algorithm

begin

k:=0;
ν :=0;
x:=x0;
A:=J(x)> J(x);
g:=J(x)> f(x);
found:=( ‖ g ‖∞6 ε1);
µ := τ ×max (aii)

while (not found) and (k<kmax)
k := k + 1;
Solve(A+µI)h=-g;

if ‖ h ‖6 ε2(‖ x ‖ +ε2)
found:=true

else
xnew:= x+ h
% := (F (x)-F(xnew))/(L(0)-L(h))

if % > 0
x:=xnew
A:=J(x)> J(x);
g:=J(x)> f(x);
found:=( ‖ g ‖∞6 ε1);
µ:=µ×max ( 1

3 , 1− (2%− 1)3);
ν:=2;

else
µ:=µ× ν;
ν:=2 ×ν

end

44



3.3 Economic cycles
In this section we will present how to make the probabilities of default depend
on the economic cycle. As mentioned before the articles that use this approach
assume that the credit migration process follows a homogeneous Markov chain.
The idea of this approach is to calibrate a transition matrix corresponding to
expansion periods and another one for contraction (recession) periods.
First one needs to identify expansion and contraction periods. A macroeconomic
variable or an index must be used for this purpose. The need of assembling data
on a country and perhaps sector criteria rises here, in order to make the choice
of an economic index easier and more reliable.
Let us denote t0 the present instant of time. We consider a first time period
denoted [t0, t1] and a second time period [t1, t2]. The considered time periods
have the same length, denoted l.
We consider only two economic cycle phases: recession (R) and upturn (U).
In the Economic Cycle approach presented before, we condition the probabilities
of default for the period [t1, t2] on the economic cycle phase in [t0, t1]. This is
done by estimating average default probabilities and transition probabilities
between grades for time periods of length l and when the economic situation
was improving or worsening. This implies that we have a transition matrix for
a downturn and another for an upturn.
Let Di be the Bernoulli variable indicating if there is default in the period i.
Let Si be the economic state for the period i. Si = R,U
The probability of default for the period [t1, t2] conditional on the economic
state in the first period [t0, t1] will be:

P(D2 = 1|S1) = P(D1 = 1|S2 = R)× P(S2 = R|S1) + (3.11)
P(D1 = 1|S2 = U)× P(S2 = U |S1) (3.12)

The probabilities P(Si+1|Si) are average probabilities of transition between
states of economy.

Since the hypothesis of a homogeneous Markov chain is made, the k-year
transition matrices are calculated by taking the kth power of the one year tran-
sition matrix.

Mk = Mk (3.13)

The final step is specifying how economic regimes are switched. A 2 × 2
regime switching matrix can be estimated after having identified the expansion
and recession periods. This matrix gives the probability of being in expansion
or recession the next period conditional to the regime during the present period.
Regime paths can then be simulated.

3.4 Mixing the two approaches
The non-homogeneous Markov Chain approach provides modelled PDs term
structures which fit to the term structures observed in the reality. This is a
good approach if one wants to have PDs term structures throughout a cycle.
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However those term structures do not make any difference between phases of
the economic cycle.
So we need to apply the non-homogeneous Markov Chain approach but to de-
fault data which capture the economic cycle effect.

How to proceed in practice
We need to condition the term structure of default probabilities on the eco-
nomic state in the current time period. We need the corresponding data to do
the calibration of the conditioned term structures.

• We divide time in trimesters (intervals of length l) and define if a trimester
is a trimester of recession or upturn (using the GDP variation for example).

• In order to obtain the term structures for an upturn economy, for each
trimester of upturn economy, we denote the beginning of the following
trimester t0 and we calculate the PDs for every time horizon from 3 months
to 3 years with a time step of 3 months, p[t0,ti] for i=1,...,12.

• We also calculate the transition probabilities for a horizon of 3 months.
We do the same thing for the time periods of economic downturn.

• We calibrate the term structures of PDs for expansion and recession pe-
riods using the above data and the approach presented in the section on
non-homogeneous Markov chain.

Justification
By doing this we take into consideration, even though implicitly, the length
and amplitude of the economic cycle phase. The observed term struc-
ture at every time step is a possible scenario of what the term structure of the
"forward" probabilities of default might be. So if we do the average of the term
structures observed at each time step we obtain an average expected evolution
of PDs in the future knowing the state of the economy today.
However we need a long history of PDs so that many possible effects
of the economic cycle over the probabilities of default are considered.
If the history of defaults we have is long enough then it will incorporate many
possible scenarios of economical development (cycles of different amplitudes and
lengths). Each scenario has its own effect on what happens to the default rates
of different time horizons.

This approach can be modified to take into account information about where
we are in the cycle phase: beginning, middle or end for example. If we knew
where we are in the cycle phase, we can then compute a weighted aver-
age and not a simple average and put more weight on term structures
whose beginning is in the same phase as we believe being today.This
can be done either by specifying weights (probabilities) on different scenarios
(beginning, middle or end of an expansion or recession phase), depending on our
belief in where we are in the economical cycle, or by analysing the economical
cycle by time series and predict what will happen in the future. The second
approach demands more time and it will only be statistical and will not take
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into account information proper to the current period or personal beliefs of the
manager based on what he thinks that will happen in the future.
We may also consider the amplitude and length of an expansion and recession
period by specifying a probability distribution on the possible amplitudes and
lengths. The set of possible amplitudes and lengths would be defined on what
has been observed previously. The weighted average PDs will be calculated with
weights equal to the probabilities specified. This requires a long history of
default data.

Fig. 3.4: Economical cycle and PDs for two time horizons for expansion
periods

Data we need for the calibration
In order to apply the Non-homogeneous Markov Chain approach, first of all we
need to determine a time step and the length of the term structure. We will
discuss about the time step and length later on. Let’s assume for now that
the chosen time step is the trimester and the time length is 3 years so that the
following explanation will be simpler. The data needed is the following:

• Data which allows to distinguish recession or upturn economy periods. We
can use the GDP variations for example. If we want to calculate weighted
averages of default, we need to distinguish between beginning, middle and
end of an expansion and recession.

• for trimesters of recession or expansion, compute default probabilities with
beginning of horizon=end of the trimester and for the time lengths: 3
months, 6 months, 9 months,...,3 years.

• an average transition matrix for the time period of 3 months for recession
and expansion.

The choice of the time step is important since it should not be too short
because there won’t be many, if not any, defaults during the period, especially
for the buyers’ group with good creditworthiness. If the observed PD term
structure looks like a simple function then the Markov Chain will not be able to
capture those jumps and will approximate by a continuous function which will
give the very general shape of the observed PD term structure. Neither should
the time step be too big because then we need a greater length of the term
structure and thus more data in order to have enough data for the estimation.
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Chapter 4

Conclusion

In this paper we present a way of calibrating term structures of default prob-
abilities. We implemented the calibration algorithm and calibrate the term
structures with data from S & P. Our results are quite satisfactory when we
compare them to the results of [2].

The data we used are through-the-cycle data, so the term structure we obtain
is not conditioned on the state of the economy. In order to have a term structure
which depends on the economic cycle, we presented a possible way out. Because
of the lack of trimestrial default data specific to different economic cycles we
couldn’t proceed to the calibration of the term structures conditioned on the
economic state. However it would be very interesting to look at the conditioned
term structures and to compare them.

We proposed two ways of integrating the term structures in the internal
model, and this by assuming that the correlation matrix of the systematic risks
is constant throughout the year. This is rather restrictive, so hereby we present
some ways of improving the internal model and allowing it to better take into
condideration the term structures. In particular we propose having a dynamic
correlation matrix.

4.1 Considering heterogeneity by the means of
thresholds

Once the default probabilities for each rating class are calculated, the threshold
dj can be calculated as a quantile of the distribution of the ability-to-pay Zj ,
which is Gaussian distributed by assumption. By doing so, we can have one
threshold for each time t. It would be interesing to get to know the thresholds
for each buyer in the group, since there must be some heterogeneity within the
rating class that we have not taken into account yet. We can try to see whether
the default probability of the rating class k, denoted πkt , can be expressed as a
function of the default probabilities of each buyer in the rating class, denoted
πkt,j .

πkt = f({πkt,j ; j ∈ Jk}) (4.1)
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where Jk is the set of buyers in the rating class k. Conditional to the vector
of systematic risk factors the probabilities of default are not correlated so one
could reasonably make the assumption that the function f is linear:

πkt = f|R({πkt,j ; j ∈ Jk}) =
∑
j∈Jk

λt,jπ
k
t,j (4.2)

where the coefficients λt,j are to be calculated. We could use the probabilities
of default for each time t in order to estimate the coefficients. However the
drawback of this method would be that the set of buyers in a given grade
changes with time.
Nevertheless, if we find a function f , we can then assume that the threshold of
the buyer j in the rating class k, dkt,j is proportional to the threshold dtk of the
class k, and :

dkt,j = αtkd
t
j (4.3)

4.2 Thresholds as random variables
In equation 4.4 we see that default probabilities depend also on a threshold. The
threshold can be considered as depending on the recovery rate at default, which
is generally considered as a random variable. Therefore random thresholds could
be another possible improvement of the model.

4.3 Wishart process and term structure of cor-
relation

The introduction of term structures of PDs in the model makes it necessary
to have a time-dependent ability-to-pay process. Indeed, as we saw in the first
chapter the probabilities of default of a given firm at different maturities rep-
resent the probability that the ability-to-pay of the first falls below a certain
threshold (deterministic or random variable) until the maturity. Formally we
have:

P{∃t, 0 6 t 6 ti such that Zjt < djti} = P{ min
06t6ti

Zt < djti} (4.4)

= pjti (4.5)

Up to now, the information on the correlation between systematic risk factors
is given by a fixed covariance matrix Σ. The covariance between the systematic
risk factors defines the variance of the ability-to-pay random variable since this
last is given by the formula:

V(Zj) =
k∑
ν=1

ω2
jνV(Rν) + 2

k−1∑
νp=1

k∑
νq=νp+1

ωjνpωjνqCov(Rνp , Rνq ) (4.6)

=
k∑
ν=1

ω2
jνσνpνp + 2

k−1∑
νp=1

k∑
νq=νp+1

ωjνpωjνqσνpνq (4.7)
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There is a considerable literature considering that correlation matrices follow
a stochastic process, named Wishart process. In other words, this assumption
implies that correlation matrices contain not only a part of real information on
the correlation structure between systematic risk factors but also a random part
which can be separated from the real information. The latter can be treated by
the Random Matrix Theory if the correlation matrix is large enough, i.e. if the
number of systematic risk factors is big enough 1.

Let us formalize the idea above. First of all we will define a Wishart process.

Definition 16 (Wishart process) The covariance matrix Σt is said to follow
a Wishart process if it satisfies the following dynamics:

dΣt =
(
ΩΩ> +MΣt + ΣtM>

)
dt+

√
ΣtdWtQ+Q> (dWt)>

√
Σt (4.8)

with Ω,M,Q k × k matrices, Ω is invertible, and Wt a n × n matrix Brown-
ian motion. This stochastic differential equation is written under the historical
measure. The Wishart process is a affine diffusion process because both the
drift and volatility are functions of Σ.

For the volatility to be mean-reverting, the matrix M is assumed to ne
negative semi-definite and Ω satisfies:

ΩΩ> = βQQ>, β > n− 1 (4.9)

The term ΩΩ> is related to the expected long-term covariance matrix, Σ∞,
through the solution to the following linear equation:

− ΩΩ> = MΣ∞ + Σ∞M> (4.10)

Q is the volatility of the volatility matrix.

In order to take into account leverage effects, it is assumed that the Brown-
ian motions of the asset returns and those of the covariance matrix are linearly
correlated.

In order to have a correlation matrix which varies with time, we should es-
timate the matrices in the equation 4.8 defining the Wishart process. Let us
remind that in our case we need the correlation between systematic risk factors.
For this reason, first of all, we need to find a sort of representative asset for each
country and industry. Then we state a dynamic of this asset and proceed to
the calibration of the parameters of this asset dynamic and the Wishart process
representing the dynamics of the covariance matrix.

In general, if we denote St the n-dimensional risky asset, the asset dynamic
is supposed to be the following:

dSt = diag[St]
(
µdt+

√
ΣtdZt

)
(4.11)

1In general in finance a correlation matrix between 500 assets is considered as large.
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where µ is the vector of returns and Zt is a vector Brownian motion. In the
case of this asset dynamic specification there exist different methods of estima-
tion for the parameters of the Wishart process.
Let us note that the Wishart Affine Stochastic Correlation (WASC) is a contin-
uous process.

The more accurate time-dependent correlation structure we aim to obtain,
will allow to have more accurate loss distributions. However, in practice, the
accuracy of loss distribution tails depends on the convergence speed of the sim-
ulation tools. The internal model of EH is being improved thanks to the im-
plementation of the importance sampling technique for the Monte Carlo simu-
lations. This technique allows to have more stable fat tails and to think about
a new correlation modelling.
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Appendix

Fig. A.1: Matrix logarithm of the one-year transition matrix M Fig. 2.1.

We can see that this matrix is not a valid generator because there are neg-
ative non-diagonal coefficients. The QOG algorithm is applied to this matrix
and the following approximative generator is obtained. We note it Q∗.

Fig. A.2: Approximative generator obtained by applying QOG algorithm

The sum of the row coefficients is nearly one for each row and there are no
negative non-diagonal elements anymore. This matrix should be compared to
the following one from [2], denoted QBO.
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Fig. A.3: Approximative generator found in [2]

The two matrices are very similar. However in the paper matrix the sum of the
row coefficients is not always 0 due to the probable roundings. The sum of the
absolute value of the differences of the coefficients of Q∗ij and QBOij is equal to:

8∑
i=1

8∑
j=1
|Q∗ij −QBOij | = 0, 00243

which can be considered as not significant.

‖Q∗ −QBO‖2 =
8∑
i=1

8∑
j=1

(Q∗ij −QBOij )2 = 0, 000595
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Fig. A.4: PD term structures based on a non-homogeneous continuous-time
Markov chain (NHCTMC) approach cf. [2]
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Fig. A.5: SP average annual transition matrix, data 1981-2008

Fig. A.6: PD term structures based on a non-homogeneous continuous-time
Markov chain approach for the data until 2008
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