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Résumé

L’avènement du nouveau régime prudentiel des assureurs européens a considérablement renforcé

l’intérêt pour ceux-ci de disposer d’hypothèses de mortalité les plus pertinentes et proches de

l’expérience possible. En e↵et, l’utilisation de tables de mortalité trop prudentes (par exemple

celles imposées par la réglementation locale dans la tarification des produits d’assurance vie, en

France) pour l’évaluation des provisions techniques Solvabilité II conduit à un double e↵et, à la

fois sur les provisions techniques best estimate mais aussi sur la charge de capital du risque de

mortalité.

Néanmoins un certain nombre d’acteurs se heurtent à des problématiques techniques liées à la

taille de leurs portefeuilles et leur hétérogénéité en termes de garanties (pour un même risque). Par

exemple, en termes de risque en cas de décès, un assureur peut disposer de quelques dizaines de

milliers d’assurés bénéficiant de contrats de prévoyance décès, de garanties plancher sur des contrats

en unités de comptes et de contrats d’assurance de prêt. Dans de tels contextes, il est délicat de

construire des tables de mortalité au moyen de la seule expérience de chaque type de produit.

D’autant plus que la révision dans le temps de celles-ci risque d’induire des impacts significatifs

dans l’évolution des provisions techniques

Dans ce contexte ce mémoire propose une approche de crédibilité consistant à réviser, au fur

et à mesure que de nouvelles observations arrivent, les paramètres d’un ajustement Makeham ou

encore d’un modèle de lissage non-paramétrique basé sur la vraisemblance locale. Dans le premier

cas, un tel ajustement permet en e↵et de rajouter de la structure ce qui s’avère utile lorsque les

portefeuilles sont de taille limitée et le processus de révision proposé intègre la bonne représentation

aux di↵érents âges, ce qui est un point crucial compte tenu de la fréquente hétérogénéité du coût

des prestations décès en fonction de l’âge. Dans le second cas, la méthode du lissage appliquée à

des portefeuilles de petite taille ne parvient généralement pas à proposer une table d’expérience

su�samment lisse ni pertinente compte tenu du peu de décès observés. La méthode de crédibilité

développée dans ce mémoire permet dans ce cas également de proposer une table d’expérience qui

pondère l’information provenant des di↵érents portefeuilles ou contrats en fonction de la pertinence

des di↵érentes informations sous-jacentes.

Crédibilité ; mortalité ; assurance vie ; construction de table ; Makeham ; lissage ; vraissemblance

locale ; prediction
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Abstract

Recently, there has been an increasing interest of life insurers to assess their portfolios own mor-

tality risk. The new European prudential regulation, namely Solvency II, emphasized the need

to use mortality and life tables that best capture and reflect the experienced mortality, and thus

policyholders’ proper risk profile, in order to adequately quantify the underlying risk. Therefore,

building a mortality table based on the experience from the portfolio is highly recommended and,

for this purpose, various approaches have been introduced in the literature. Although, such ap-

proaches succeed in capturing the main feature, it remains di�cult to assess the mortality when

the underlying portfolio lacks of su�cient exposure.

In this report, we propose to graduate the mortality curve using an adaptive procedure based

on the local likelihood. The latter has the ability to model the mortality patterns even in presence

of complex structures and avoid to rely on experts opinion. However, such a technique fails at pro-

posing a consistent yet regular structure for portfolios with limited deaths. Although the technique

borrows the information from the adjacent ages, it is sometimes not su�cient to produce a robust

life tables. In the presence of such a bias, we propose to adjust the corresponding curve, at the age

level, based on a credibility approach. This consists on reviewing, as new observations arrive, the

assumption on the mortality curve.

We derive the updating procedure and investigate its benefits of using the latter instead of

a sole graduation based on real datasets. Moreover, we look at the divergences in the mortality

forecasts generated by the classical credibility approaches including Hardy-Panjer, the Poisson-

Gamma model and Makeham framework on portfolios originating from various French insurance

companies.

Credibility ; Mortality ; Life Insurance ; Graduation ; Makeham ; Smoothing ; Local Likelihood ;

Prediction
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Introduction

Motivation

L’avènement du nouveau régime prudentiel des assureurs européens a considérablement ren-

forcé l’intérêt pour ceux-ci de disposer d’hypothèses de mortalité les plus pertinentes et proches de

l’expérience possible. En e↵et, le référentiel Solvabilité 2 (2009) repose sur une approche économique

de valorisation. Ainsi, un engagement dit best estimate “correspond à la moyenne pondérée par

leur probabilité des flux de trésorerie futurs compte tenu de la valeur temporelle de l’argent es-

timée sur la base de la courbe des taux sans risque pertinente, soit la valeur actuelle attendue des

flux de trésorerie futurs” (cf. l’article 77 de la directive Solvabilité 2 (2009) mais aussi l’article

R351-2 du Code des assurances (2017)). Les hypothèses biométriques doivent donc représenter le

plus fidèlement possible l’expérience propre à chaque contrat ou portefeuille. Celles-ci doivent bien

évidemment être prudente selon la directive. Néanmoins, l’utilisation de tables de mortalité trop

prudentes ; par exemple celles imposées par la réglementation locale dans la tarification des pro-

duits d’assurance vie, en France ; ou pour l’évaluation des provisions techniques Solvabilité 2 (2009)

conduit à un double e↵et :

— Augmentation des provisions techniques best estimate (et donc diminution des fonds propres

- basic own-funds - permettant de couvrir les exigences de capitaux),

— Augmentation de l’assiette servant au calcul de la charge de capital du risque de mortalité

(scénario d’augmentation de 15% des taux conditionnels de décès dans la formule standard)

Par conséquent, la question de savoir quelle table de mortalité peut être considérée à des fins

de tarification ou de provisionnement est d’une importance capitale. Une première tentative pour

répondre à cette question consiste en l’utilisation des données disponibles au niveau du portefeuille

et donc construire une table de mortalité spécifique. Pour cela, deux méthodologies de construction

sont disponibles :

Approche paramétrique : Il s’agit de construire un indicateur de survie (ou de décès) sans au-

cune hypothèse sur la distribution des temps de survie (ou de décès). En pratique, cette

6
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approche est indispensable lorsque les connaissances sur le comportement ou la forme des

lois d’intérêt ne sont pas précises. Il s’agit donc de l’estimation la plus naturelle des lois

inhérentes du phénomène de décès. En assurance vie, entre autres, deux estimateurs sont

souvent utilisés : l’estimateur de Kaplan-Meier introduit par Kaplan and Meier (1958), et

celui de Nelson-Aalen considéré par Nelson (1972) et Aalen (1978). Ces deux estimateurs

s’intéressent aux données incomplètes. Autrement dit, lorsque les survies (ou les décès) ne

sont pas complètement accessibles dus au phénomène de censure car un individu peut être

en vie à la fin de la date d’observation. Plus tard, nous caractérisons les données incomplète

d’un point de vue plus formel.

Approche non-paramétrique : Il s’agit d’imposer une forme, avec des paramètres inconnus, à

l’indicateur biométrique qui nous intéresse. Cela implique une connaissance parfaite de la

lois sous-jacente au phénomène de survie (ou de décès). Depuis le début du 19ème siècle, la

mortalité a fait l’objet de multiple études empiriques en démographie (humaine). Celles-ci

tentaient, entre autres, de décrire l’évolution d’indicateur biométrique en fonction de l’âge

(se référer par exemple aux travaux de Gompertz (1825), Makeham (1867, 1890), Weibull

(1951) et Breslow et al. (1986)). Ces di↵érents travaux académiques se sont donc attelés à

expliquer le phénomène du vieillissement (sénescence) au travers une fonctionnel de l’âge at-

teint. Cette dernière s’avère avoir une forme en “S” caractérisant la mortalité adulte au delà

d’un certain âge. Cette forme impose donc une croissance de la mortalité avec l’âge avec un

changement de convexité. Pour les très grands âges plusieurs travaux académiques indiquent

que la mortalité tend à avoir un plateau. En d’autres termes, l’augmentation de la mortalité

décélère pour ces âges. Par conséquent, plusieurs formes paramétriques ont été introduites

dans littérature démographique. Elles ont toutes un point commun qui est celui de reproduire

cette évolution en “S” de la mortalité. On peut citer par exemple la loi de Gompertz (1825)

et celle de Makeham (1867).

Approche semi-paramétrique : Il s’agit principalement du modèle de Cox (1972) dit à “ha-

sard proportionnel” faisant intervenir des variables explicatives. Ce modèle ne requiert pas

la formulation d’une hypothèse sur la forme de la mortalité, hypothèse qui est au coeur de

l’approche paramétrique. Cependant, l’estimation des paramètres du modèle et tout parti-

culièrement des coe�cients des variables explicatives passe par la maximisation d’une fonction

de vraisemblance dite partielle considérée par exemple dans le livre de Tibshirani and Hastie

(1987). Le principe du modèle repose sur la décomposition de la mortalité comme le produit

de deux éléments. Le premier dit fonction ou risque de base identique pour tous les assurés

alors que le second dépend des caractéristiques des individus. Dans le cas où les individus sont

seulement identifiés par leur âge et leurs sexe, la second composante est une fonctionnelle de

l’âge permettant d’ajuster la mortalité localement en fonction de l’information disponible à cet

même mais aussi celles des tranches d’âges adjacentes. Cette approche est dite de régression

locale. L’aspect semi-paramétrique réside la conjugaison d’une estimation non-paramétrique
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avec une technique de maximisation de la vraisemblance partielle. Ce mécanisme a été retenu

par exemple par le groupe de travail “mortalité” de l’institut des actuaires ⇤ ayant pour vo-

cation de fournir un ensemble de références et d’outils destinés à permettre aux organismes

assureurs de calibrer leur risque de mortalité en respectant la logique best estimate des textes.

La taille a de l’importance

Pour la mise en place d’une des approches citées supra, un certain nombre d’acteurs se heurtent

à des problématiques techniques liées à la taille de leurs portefeuilles et leur hétérogénéité en termes

de garanties (pour un même risque). Par exemple, en termes de risque en cas de décès, un assu-

reur peut disposer de quelques dizaines de milliers d’assurés bénéficiant de contrats de prévoyance

décès, de garanties plancher sur des contrats en unités de comptes et de contrats d’assurance de

prêt. Dans de tels contextes, il est délicat de construire des tables de mortalité au moyen de la

seule expérience de chaque type de produit. D’autant plus que la révision dans le temps de celles-ci

risque d’induire des impacts significatifs dans l’évolution des provisions techniques. En e↵et, si l’on

construit des tables d’expérience pour des groupes de contrat ou de portefeuilles de taille modeste

on se heurte à un risque d’estimation fort important. A titre d’exemple, nous représentons dans

la Figure 1 l’estimation des probabilités conditionnelles de décès en se basant sur une méthode

simple d’ajustement paramétrique. Nous avons, en e↵et, considéré un portefeuille de 10000 assurés

de sexe masculin d’âge entre 60 et 100 ans distribués selon la Figure 1 (graphique gauche). Nous

avons supposé que la mortalité de ces assurés et proportionnelle à la mortalité d’une table de

référence (réglementaire), en l’occurrence la table TH00-02. Le coe�cient d’abattement étant le

même pour tous les âges. Dans un second, nous avons estimés ce même coe�cient et nous avons

représenté l’incertitude sur l’estimation des probabilités de décès, cf. le graphique à gauche de la

Figure 1. L’intérêt de cet exercice est de montrer que l’incertitude est inversement proportionnelle

à l’exposition et donc que la di�culté d’apprécier la mortalité est d’autant plus importante que

le portefeuille est petit ou l’exposition est relativement petite. Ce cas de figure pose un problème,

car quand on s’intéresse à la mortalité par portefeuille le nombre d’assurés est peu élevé. D’un

autre côté, l’exposition est aussi hétérogène en fonction de l’âge. Par exemple, pour le portefeuille

considéré dans la Figure 1 les âges supérieurs à 80 ans sou↵rent d’une sous-représentation ce qui

induit une forte incertitude des estimations. Il faut donc palier à ce problème en essayant d’emprun-

ter une information supplémentaire des autres tranches d’âges mais aussi des autres portefeuilles

avec une qualité mais aussi une quantité de données su�samment importante.

Dans ce contexte ce mémoire propose une approche de crédibilité consistant à réviser, au fur et

à mesure que de nouvelles observations arrivent, les paramètres d’un ajustement non-paramétrique

de type Makeham ou encore d’un modèle de lissage semi-paramétrique basé sur la vraisemblance

⇤. Les conclusions et recommandation du groupe de travail sont disponibles sur ce lien http://www.

ressources-actuarielles.net/gtmortalite

http://www.ressources-actuarielles.net/gtmortalite
http://www.ressources-actuarielles.net/gtmortalite
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Figure 1 – Estimation des probabilités de décès (conditionnelles) par une méthode d’ajustement

paramétrique

locale.

Approche paramétrique Dans ce cas, un tel ajustement permet en e↵et de rajouter de la struc-

ture ce qui s’avère utile lorsque les portefeuilles sont de taille limitée. En e↵et, un estimateur

non-paramétrique de type Kaplan-Meier produit des estimations de mortalité ne respectant

pas une cohérence dite biologique. Cela consiste en l’augmentation de la mortalité avec l’âge

due au vieillissement. Il est d’usage dans ce cas de lisser ces mêmes taux de mortalité a

posteriori pour leur donner la structure souhaitée. Par contre, la démultiplication des traite-

ment que subissent les taux estimés augmente de facto l’incertitude des tables d’expérience

et par conséquent l’adéquation aux observations. Pour cela, l’utilisation du modèle de Ma-

keham permet de contourner cette seconde étape en proposant directement des taux lissés.

Néanmoins, pour les portefeuilles de petite taille les estimateurs des di↵érents paramètres

modèle présentent une forte variance. Le processus de révision proposé intègre la bonne donc

représentation aux di↵érents âges, ce qui est un point crucial compte tenu de la fréquente

hétérogénéité du coût des prestations décès en fonction de l’âge. Cette procédure de révision

des paramètres intégrant la crédibilité des données provenant de la seule observation du

portefeuille en question. En l’absence d’une information fiable et su�samment abondante

la procédure de révision emprunte alors de l’information aux autres portefeuilles permet-

tant ainsi d’améliorer l’estimation des paramètres du modèle. Il est alors naturel d’accorder

une importante crédibilité (proche de 1 sur une échelle de 0 à 1) à un portefeuille su�-

samment grand et baser l’estimation des paramètres sur la seule information provenant de

ce portefeuille. D’un autre côté, l’estimation des paramètres pour les petits portefeuilles re-

quiert l’inclusion des estimations de ces même paramètres sur d’autres portefeuilles avec une

pondération qui dépendant, bien évidemment, de la taille de ceux-ci.

Approche semi-paramétrique Dans le cas semi-paramétrique, nous considérons la méthode

préconisée par le groupe de travail de l’institut des actuaires. Celle-ci propose sur un lis-

sage local de la fonction de survie où la mortalité d’un portefeuille étant dépendante d’une

mortalité de référence. L’aspect local repose sur l’adaptation de l’ajustement à chaque âge
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tout en empruntant l’information disponible aux âges adjacents. Plus précisément, la mor-

talité à un certain âge donnée la méthode du lissage appliquée à des portefeuilles de petite

taille ne parvient généralement pas à proposer une table d’expérience su�samment lisse ni

pertinente compte tenu du peu de décès observés. La méthode de crédibilité développée dans

ce mémoire permet dans ce cas également de proposer une table d’expérience qui pondère

l’information provenant des di↵érents portefeuilles ou contrats en fonction de la pertinence

des di↵érentes informations sous-jacentes.

Source de Données

Nous disposons de données de portefeuilles transmis par 14 assureurs Français pour la construc-

tion des tables best estimate dans le cadre du groupe de travail “mortalité” de l’institut des ac-

tuaires ⇤. Cette base de donnée d’environ 8 millions de lignes a été utilisée dans plusieurs articles

académiques (voir les travaux de Tomas and Planchet (2013, 2014)) et récemment dans le cadre

d’un mémoire d’actuariat par Musset (2016). Se sont des données par assuré ayant un contrat

individuel, collectif à adhésion obligatoire ou collectif à adhésion facultative. Pour chaque individu,

nous avons plusieurs informations relatives à : sa date de naissance, son sexe, sa date d’entrée dans

le portefeuille, sa date de sortie et son statut de sortie. Ce dernier représente une indicatrice de

la survenance du décès ou non de l’individu durant sa présence dans la base. Il est alors possible

de construire les di↵érents indicateurs dont nous avons besoin pour mener à bien la construction

d’une table d’expérience pour chaque portefeuille. En l’occurrence, nous serons en mesure de retra-

cer la vie d’un assuré dans le portefeuille. Notamment, la duration d’un séjour dans le portefeuille,

élément clé de la construction d’une table, sera quantifiée. La préparation de ces données pour la

construction sera développée dans la section 1.2 du chapitre 1 mais aussi la section 2.2 du chapitre 2.

⇤. Les conclusions et recommandation du groupe de travail sont disponibles sur ce lien http://www.

ressources-actuarielles.net/gtmortalite

http://www.ressources-actuarielles.net/gtmortalite
http://www.ressources-actuarielles.net/gtmortalite


Chapitre 1

Approche paramétrique : Modèle de

Makeham

1.1 Introduction

Therefore, the question of which mortality table can be considered for pricing and reserving

purposes is of substantial importance. A first attempt, to handle this issue, is to use the available

data at the portfolio level and build a specific mortality table. However, practitioners may face

technical di�culties related to the size of the portfolio and the heterogeneity of the guarantees

(for the same underlying risk). For instance, an insurer may detain a fairly big portfolio but with

insured holding di↵erent policies : pure endowment contracts, unit-linked contracts with minimum

death guarantees, loan insurance and so on. In such a case, it is di�cult to build mortality tables

only based on the sole experience of each policy. Especially since it may induce significant impacts

on the technical reserves if the table has to be updated more frequently over time. In this chapter,

we consider an insurer with exposures to di↵erent policies and aiming at establishing an experience-

based mortality table for each policy.

In the academic literature, various methodologies have been proposed to built and graduate

mortality rates at the insured portfolio level. They are usually divided into non-parametric and

parametric techniques. The latter are very useful in practice especially when there is su�cient

data, see Forfar et al. (1988a) for a comprehensive introduction to the use of parametric models for

graduation. These approaches fit the parametric structure to the mortality of interest over a given

period. The graduated mortality is then used to project future liabilities related to the underlying

population. By doing so, the evolution of the flow of data related to latest available information

is not taken into account. This should be, for example, used to update the graduated mortality.

However, if one decides to re-calibrate the parametric model each year, the forecasts are likely to be

unstable. This is mainly due to the instability of parameters estimation due to the lack of su�cient

11
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data.

In this context and following the work of Bühlmann and Gisler Bühlmann and Gisler (2005) and

Hardy and Panjer Hardy and Panjer (1998), we propose a credibility approach which consists on

reviewing, as new observations arrive, the parameters of a Makeham fit. The framework considered

in Hardy and Panjer (1998) focuses on the update of the aggregate deaths recorded over the whole

portfolio. However, such an approach may be not e↵ective in situations where the insurer liability is

highly dependent on the age structure of the underlying portfolio. Thus, using an adjustment makes

possible to add a structure in the mortality pattern which is useful when portfolios are of limited

size so as to ensure a good representation over the entire age-band considered. Note that, adding

an age structure is also beneficial given the heterogeneity observed in the cost of the guarantees

according to the age. To recap, as we can see in Section 1.5, the proposed adjustment approach is

intended to enhance the predictive ability of the credibility-based revisions at the age-level and not

on the aggregate portfolio level.

The remainder of the chapter is organized as follows. Section 1.2 has still an introductory

purpose. It specifies the notation, assumptions and the Makeham settings used in the following.

Section 1.3 introduces the Makeham credibility approach and assess the estimation of the credibility

model. Section 1.4 describes the classical credibility approaches of mortality including Hardy and

Panjer Hardy and Panjer (1998) and the Poisson-Gamma model. Section 1.5 presents an application

with experience data originating from French insurance companies. Finally, some remarks in Section

1.6 conclude the chapter.

1.2 A Credibility Model for Makeham’s Law

1.2.1 Data Structure and Notation

We suppose that we have at our disposal age-specific mortality statistics originating from n

portfolios. For each portfolio i 2 {1, · · · , n}, we observe the deaths of exposures over a period Ti.

Denote the number of individuals at attained age x during calendar year t = 1, · · · , Ti by Li
x,t and

Di
x,t represents the number of deaths recorded. We also introduce the following notation,

Di
x,• =

TiX

t=1

Di
x,t, Li

x,• =
TiX

t=1

Li
x,t, and Di

•,t =
xX

x=x

Di
x,t, Li

•,t =
xX

x=x

Li
x,t,

which refer respectively to the aggregate deaths and individuals over the age-band {x, x+1, . . . , x}

and calendar years 1 to Ti for each portfolio i. Henceforth, the “•” indexation refers to the sum-

mation over the index of interest. For example, D•
x,• refers to the aggregate deaths over the period

[1, Ti] and over the n portfolios, i.e. D•
x,• =

Pn
i=1

PTi
t=1D

i
x,t.
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1.2.2 Mortality Law

We consider the (first) Makeham law of mortality, which generalizes the Gompertz law. Omitting

the time dependency, Makeham Makeham (1867) assumes that the force of mortality 'i
x at attained

age x during calendar year t has the following form :

'i
x = Ai +Bi

⇥ (Ci)x, (1.1)

with Ai, Bi and Ci are some constants. These parameters capture the essential properties of the

progression of mortality. For instance, the dominant e↵ect, i.e. the aging e↵ect, over the age is

captured by the multiplicative component factor Bi
⇥ (Ci)x. The non-age dependent parameter Ai

can be interpreted as the non-senescent mortality, for instance, due to accidents. Both of these cap-

ture the exponential increase in the forces of mortality observed for adult mortality, see Bongaarts

(2005) for more details.

Various modification of the above law have been proposed, especially, to encounter for the time

dependency of the mortality, see e.g. Keyfitz (1981) among others. Indeed, as soon as age-specific

mortality patterns over time are concerned, the time series records of the latter show a discernible

downward trend with minor fluctuations around. In order to correct this deficiency in the model

(1.1), we suppose that the time trend is incorporated in the parameter Bi denoted henceforth Bi
t.

Therefore, the force of mortality 'i
x,t for portfolio i writes now as the following expression

'i
x,t = Ai +Bi

t(C
i)x. (1.2)

This model should capture the behavior of the probability of death over years through the time-

dependent parameter Bi
t. This also make possible the prediction of future mortality, i.e. for t =

T + 1, T + 2, . . ., through the study of the time series Bi
t for t = 1, . . . , T . When it comes to small

portfolios, the model in (1.2) is not easy to implement. Indeed, as discussed later in this chapter,

the temporal behavior the factor Bi cannot be accurately extracted. Nevertheless, one can use the

estimated values of Bi
t even over the few periods to predict the future behavior of Bi.

Note that in order to estimate the parameters of the model 1.2, given the growth of the forces of

mortality with the age, we must have a constant C greater than 1 and a positive B. Then,

qix,t = 1� exp

✓
�

Z x+1

x
'i
y,t dy

◆
= 1� exp

✓
�

Z x+1

x
Ai +Bi

t ⇥ (Ci)y dy

◆

= 1� exp(�Ai) exp

✓
�

Bi
t

lnCi
(Ci)x(Ci

� 1)

◆
, (1.3)

where qix,t denotes the one-year probability of death at attained age x during calendar year t for

portfolio i. Consistent estimates cAi,cBi
t and cCi of the parameters are obtained by minimizing the

following weighted distance :
xX

x=x

Li
x,t

qix,t(1� qix,t)
(qix,t � bqix,t)2,

with bqix,t = Di
x,t/L

i
x,t is the crude mortality rates.
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1.2.3 Di↵erential Mortality Law

It is common in modeling specific portfolio’s mortality to consider an adjustment with regard

to a baseline mortality. Generally, this implicitly assumes that both populations share common

features up to a random e↵ect. Relational models stipulate a deterministic relationship in the

form qix = f(qbx) links the two mortalities, where qbx refers to the baseline mortality. The function

f : [0, 1] ! [0, 1] is a known and deterministic function, see Delwarde et al. (2004) for more details.

A simple example would suggest that the death rate is common for all companies. Specifically,

qix = qbx for any i 2 {1, · · · , n}. However, such an assumption does not appreciate the specific

characteristic of each portfolio’s mortality profile. In other words, portfolios having lives in poorer

or better conditions than the baseline mortality do not behave in a similar fashion than the base-

line mortality. This implies that one should encounter for di↵erential mortality that arises due to

portfolio specific features, e.g. particular socioeconomic groups involved, average income level, etc.

However, when it comes to the study of the mortality at a single portfolio level, some specific issues

arise :

(i) Size of populations : Insured population are generally of small size, so none or very few deaths

are observable at some ages. This may not only bias the estimation of the force of mortality but

also lead to a mis-estimation of the parameters in (1.3). This may cause high fluctuations for qix,t
and consequently for Ai, Bi

t and Ci.

(ii) Length of historical data : Available age-specific mortality statistics lacks of deepness. This

makes di�cult to isolate a possible time trend as it may be captured by Bi
t. The latter may be

fluctuating due to the small size of the dataset as noted before.

(iii) Scale of available data : Insured portfolios show a typical behavior compared to a national

mortality. The mortality of insured population is significantly lower than the national population

from which it is drawn. This could make the use of a baseline mortality based on national demo-

graphic statistics as a substitute useless as it may not have the same characteristics of the initial

population.

All these characteristics make forecasting of future mortality evolution problematic. In or-

der to overcome these issues when implementing and fitting the model (1.3) for each portfolio

i 2 {1, . . . , n} we will make the following assumptions :

(i) The baseline mortality qbx,t is described by the Makeham model in (1.3).

(ii) The age e↵ect is similar on the n portfolios and companies specific model is assumed to share

the same parameters Ai and Ci. Those are set equal to the baseline ones, i.e. Ai = Ab and Ci = Cb

for any i 2 {1, · · · , n}.

(iii) The time-dependent parameter Bi
t is fitted at each period. This is given by the following

formula :

Bi
t =

Di
•,t �AbLi

•,tPx
x=x(C

b)xLi
x,t

.
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The assumptions (i) and (ii) allows to overcome potential estimation bias of the parameters Ai and

Ci. Indeed, basing the estimation on a large population allows to avoid erroneous inferences of the

parameters. Also, if the portfolio i is a subset of the baseline population composed of the aggregated

portfolios, we may think that both the non-senescent factor Ai and the slope Ci are equivalent and

thus normalized with the baseline mortality. Empirical evidence of a normalized slope can be found

in Thatcher (1999). It is shown that relative rate of increase is the same at all ages and is a shared

feature with over subset populations, see also the empirical study of Zhu and Li (2013). As for

the non-senescent parameter, the assumption is relevant to the extent that this e↵ect is generally

of small impact and sometimes ignored (especially for industrialized countries), see Gavrilova and

Gavrilov (2011). The unique parameter that captures the specific mortality at the portfolio level is

Bi
t, which would a priori not be the same over companies due to the heterogeneity of the underlying

populations as explained above. This can be regarded as an unobservable random factor and similar

to the so-called frailty factor. Such a methodology is widely understood in the literature as well as

in life insurance practice. Assumption (iii) gives an estimate of the time-dependent parameter. By

time-dependent we only track the fluctuation of Bi
t over time that might be caused by the small

size and length of data. Thus our main aim is to sequentially adjust the estimation of Bi
t over time

in view of the flow of information at our disposal.

1.3 Credibility of the Makeham Mortality

1.3.1 Next Period Prediction

In the following, we are interested in the behavior, over time, of the random variable

Xi
t =

Bi
t

Bb
t

, (1.4)

and specifically on its next period prediction Xi
T+1 merging information from other portfolios

j = 1, · · · , n with j 6= i. Specifically, suppose that we are at the end of the year T , i.e. at time

T + 1, and we want to predict the next period deaths Di
x,T+1 in the portfolio (equivalently the

probability of death qix,T+1). Naturally, we can assume that this ratio is constant over time and

thus invoke a widespread practice that applies a single factor of reduction/increase to the baseline

mortality. On the other hand, one could propose a dynamic model on the same line as Plat (2009).

The latter proposes a modeling framework of the relative ratio of an experienced mortality (death

rates) to a baseline and consider that this can be di↵used using either an autoregressive model or

a decomposition similar to the one introduced by Lee and Carter Lee and Carter (1992). Other

methodologies have been also proposed, see Ngai and Sherris (2011) and Hyndman et al. (2013)

among others. However, random e↵ects that constitute the decomposition of the experienced mor-

tality have to be projected using their temporal and statistical features. In our case, we are not only

interested in handling populations of small size but also with potentially limited historic period
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of observation. Therefore, such a methodology would typically not be useful in our setting as it

requires a long experience.

Note that the behavior of Xi
t is broadly related to the so-called basis risk. This refers to the fact that

the evolution of the policyholders mortality is usually di↵erent from that of the national population

(baseline), due to some selection e↵ects. This selection e↵ect has di↵erent impacts on di↵erent in-

surance companies portfolios, as mortality improvements and accelerations are very heterogeneous

in the insurance industry, see Barrieu et al. (2012).

1.3.2 Heterogeneity and Makeham’s Law Adjustment

As noted above, we are interested in the accurate adjustment of the portfolio-dependent para-

meter in (1.3), i.e. Bi
t. Given the specific parameterization of the problem, one may think of the n

portfolios as a subset of the reference population and thus each population is characterized by a

risk profile ⇥i. In addition, it is beneficial to borrowing information across the di↵erent portfolios to

enhance the knowledge and estimation of the mortality at the single portfolio level. Furthermore,

these subpopulations may, for example, share a common mortality feature, while showing some

specificity in their mortality profile. This can be seen as a random variable e↵ect or heterogeneity

characterizing the specific profile of each portfolio, for i = 1, · · · , n. Therefore, we implicitly assume

that each portfolio is endowed by a risk profile ✓i which is a realization of a random variable ⇥.

In view of the various stylized facts presented above and in order to predict Di
x,T+1, for each

age x, we focus on the projection of Xi
T+1. Therefore, we suppose that this relative trend level of

portfolio i with respect to the baseline mortality (trend) is characterized by the risk profile ✓i which

is a realization of ⇥i. In other words, Xi
t is viewed as a function of a random element ⇥i representing

the unobserved characteristics of the portfolio mortality trend (with respect to the baseline). By

doing so, we implicitly take into account the heterogeneity of the portfolio i’s portfolio mortality

profile. It thus remains to predict Xi
T+1 taking into account this random heterogeneity. By doing

so, we naturally invoke the use of a credibility approach to estimate Xi
T+1.

1.3.3 Credibility Based Adjustment

As noted above, the objective is to estimate the next period projection of the relative ratio for

each portfolio i. More precisely, in view the available data up to time Ti, i.e. Xi
t , for t = 1, · · · , Ti,

one aims to find the best estimate of E[Xi
Ti+1|⇥i] = µ(⇥i), which is unknown. Let bµ(⇥i) be this

estimation. For this purpose and using the usual credibility setting, we shall make the following

hypotheses :

(H1) Conditionally on ⇥i, the random variables Xi
t , for t 2 {1, . . . , Ti}, are independent with mean
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and variance given as follows

E
⇥
Xi

t |⇥i
⇤
= µ

�
⇥i
�

and Var
⇥
Xi

t |⇥i
⇤
=

�2
�
⇥i
�

!i
t

,

for some functions µ
�
⇥i
�
and �2

�
⇥i
�
and where

!i
t =

Px
x=x(C

b)x Li
x,tPn

i=1

Px
x=x(C

b)x Li
x,t

,

measures the weight given to the period t experience from the portfolio i.

(H2) The pairs
�
⇥i, Xi

t

�
,
�
⇥k, Xk

l

�
, k 6= i are independent and identically distributed.

The first assumption (H1) implies that for each risk profile i (portfolio), the true relative ratio µ
�
⇥i
�

(conditionally on the knowledge of the risk profile ⇥i) does not change over time and its variance

given ⇥i, Var
⇥
Xi

t |⇥i
⇤
changes in proportion to the relative size of the portfolio !i

t. The latter

expresses di↵erent concerns outlined earlier. Specifically, it links the variability of the estimation

of the parameter Bi
t to the size of the underlying population : very small portfolios are subject to

larger variability on the estimation of Bi
t and vice versa.

The second assumption (H2) means that the risk profiles are independent. The successive reali-

zations of the relative ratio Xi
t for any portfolio are independent of each other except through the

risk parameter ⇥i. Moreover, using the random variable Xi
t instead of Bi

t permits to avoid data

adjustment.

Intuitively, assumption (H2) implicitly suggests that portfolios are comparable as they are

random sub-groups of a reference (national) population, but not entirely similar which induces the

conditional independence.

In view of these assumptions, the following results are straightforward :

(i) The expected prediction of Xi
T+1 unconditionally on the risk profile ⇥i is given by E

⇥
Xi

T+1

⇤
=

E
⇥ bXT+1(⇥i)

⇤
= 1. In other words, in the absence of any information on the heterogeneity level on

the parameter Bi
t, the best next-period prediction of the latter is the reference one, i.e. E

⇥
Bi

t

⇤
= Bb

t .

(ii) Using the law of total variance, the dependence structure of portfolio i associated risk factor

over time, is, for l, t 2 {1, . . . , T},

Cov
�
Xi

l , X
i
t

�
= Cov

�
E
⇥
Xi

l |⇥i
⇤
,E
⇥
Xi

t |⇥i
⇤�

+ E
⇥
Cov

�
Xi

l , X
i
t |⇥i

�⇤

= Var
⇥
µ
�
⇥i
�⇤

+ E
⇥
Cov

�
Xi

l , X
i
t |⇥i

�⇤

=

8
><

>:

⌧2 if l 6= t

⌧2 +
�2

!i
t

if l = t,
(1.5)

where Var
⇥
µ
�
⇥i
�⇤

= Var
⇥
⇥i
⇤
:= ⌧2, while E

⇥
�2
�
⇥i
�⇤

= E
⇥
⇥i
⇤
:= �2.
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1.3.4 Credibility Estimator

Following the Bühlmann-Straub credibility approach, the aim is to find the best estimate of the

actual to expected mortality ratio E
⇥
Xi

Ti+1 |⇥i
⇤
= µ

�
⇥i
�
which is linear in the observations. For

each portfolio, due to the assumption (H2), bµ(⇥i) depends only on the observations and the linear

credibility estimator is of the form

bµ
�
⇥i
�
= bai0 +

TiX

t=1

baitXi
t , (1.6)

where the coe�cients bait, for t = 0, · · · , Ti, are those minimizing the mean squared errors criterion

�
bait
�
t=0,··· ,Ti

= argmin
(ait)(t=0,··· ,Ti)

n
E
h�
bµ
�
⇥i
�
� ai0 �

TiX

t=1

aitX
i
t

�2 io
.

In view of (1.5), taking the derivatives of the above criterion with respect to the ai,t’s and equating

to zero gives,

bai0 = 1�
⌧2 !i

•
�2 + ⌧2 !i

•
and bait =

⌧2 !i
t

�2 + ⌧2 !i
•
, with !i

• =
TiX

t=1

!i
t . (1.7)

Then, substituting (1.7) into (2.18), leads to the following the Bühlmann-Straub credibility esti-

mator of Xi
Ti+1

bXi
Ti+1(⇥i) = ↵iXi

• + (1� ↵i), with ↵i = !i
•⌧

2/(!i
•⌧

2 + �2), (1.8)

where Xi
• = (

PTi
t=1 !

i
tX

i
t)/!

i
•. Note that the ratio �2/⌧2 represents the credibility coe�cient. The

parameter ↵i is called the credibility factor or credibility weight for portfolio i and takes values in

[0, 1]. For each portfolio i, note that the larger the volume of historical data, the larger ↵i will be,

see Equation (1.8).

1.3.5 Estimators of the Structure Parameters

As the risk parameters, ⇥i, for i 2 {1, . . . , n}, are assumed to be identically distributed, their

moments are identical. Therefore ⌧2 and �2 are the same for all portfolios and measure the residual

heterogeneity of the risk profiles and the pure randomness respectively. These parameters are the

key determinants of the credibility estimator, i.e. Equation (1.8). In the following, special attention

is addressed to the estimation of these quantities. Recall the definition of the structure parameters,

�2 = E
⇥
�2
�
⇥i
�⇤

= !i
t E

⇥
Var

⇥
Xi

t |⇥i
⇤⇤
, and ⌧2 = Var

⇥
E[Xi

t |⇥i
⇤⇤
.
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Then, it is reasonable to propose the estimators b�2 and bb⌧
2
in the same vein as Bühlmann and Gisler

(2005) based on the observations Xi
t :

b�2 =
1

n

nX

i=1

s2i , with s2i =
1

Ti � 1

TiX

t=1

!i
t

�
Xi

t �Xi
•
�2
, (1.9)

and bb⌧
2
=

!•
•

(!•
•)

2 �
Pn

i=1(!
i
•)

2

(
nX

i=1

!i
•
�
Xi

• �X•
•
�2

� (n� 1)b�2

)
,

with X•
• =

1

!•
•

nX

i=1

!i
•X

i
• and !•

• =
nX

i=1

!i
•.

These estimators are unbiased and consistent, see Bühlmann and Gisler (2005) for more details.

Note that bb⌧
2
can be negative. This would mean that there would be no di↵erence between the risks.

In this case, b⌧2 is set to 0. Hence we use as estimator b⌧2 = max
�bb⌧

2
, 0
�
.

1.3.6 Empirical Credibility Estimator

The empirical credibility estimator is obtained from the credibility formula (2.18) by replacing

the structural parameters �2 and ⌧2 by their estimators derived in Subsection 1.3.5. Hence, we have

8
><

>:

bbXi
Ti+1 = b↵iXi

• + (1� b↵i),

b↵i =
b⌧2!i

•
b�2 + b⌧2!i

•
.

(1.10)

It follows from Equation (1.8), that the mortality time varying coe�cient is successively updated

as follows

bBi
Ti+1 = bBb

T+1

�
1 + b↵i (Xi

• � 1)
�
, (1.11)

and similarly, the forces of mortality and the probabilities of death are given respectively by

b'i
x,Ti+1 =

n
b↵i
�
1�Xi

•
�o bAb +

n
b↵i
�
Xi

• � 1
�
+ 1

o
b'b
x,T+1,

and bqix,Ti+1 = bqbx,T+1

 
1� bqbx,T+1

exp(� bAb)

! 1

b↵i(Xi
• � 1)

. (1.12)

1.4 Classical Credibility Approaches to Mortality

Next, we wish to compare our model to the Hardy and Panjer Hardy and Panjer (1998) and

Poisson-Gamma credibility analysis to mortality. The actual to expected mortality ratio is the key
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observation that is the focus of the two following approaches. Specifically, the a priori expected

number of deaths for portfolio i in calendar year t in the age-band
⇥
x , x

⇤
is denoted by

!i
t = E

⇥
Di

•,t
⇤
=

xX

x=x

q b
x,t L

i
x,t .

The actual to expected mortality ratios denoted by Xi
t are computed for each calendar year t in

aggregate for each portfolio i,

Xi
t =

Di
•,t

E
⇥
Di

•,t
⇤ =

Di
•,t
!i
t

.

Both the Hardy and Panjer Hardy and Panjer (1998) and the Poisson-Gamma credibility ap-

proaches are using the Bühlmann-Straub set-up, see Section 1.3.3. Again, the key determinants of

the credibility estimator (1.8) are the structure parameters, i.e. the variance part of the credibility

premium E
⇥
�2
�
⇥i
�⇤

denoted by �2 and the fluctuation part Var
⇥
µ
�
⇥i
�⇤

denoted by ⌧2.

1.4.1 The Hardy-Panjer Approach

As in general we have no knowledge or, at least, no exact knowledge of the parametric distri-

butions for the number of deaths or of the structure distribution, we need estimators for the two

components of the credibility estimator (1.8), i.e. estimators for ⌧2 and �2. The Hardy and Panjer

Hardy and Panjer (1998) credibility approach to mortality estimates the structure parameters from

the aggregated data using the estimators derived in Lourdes (1989). They estimate E
⇥
�2
�
⇥i
�⇤

using

the following estimator, denoted by b�2
0 :

b�2
0 =

1Pn
i=1Ci

nX

i=1

Ci s
2
i , where Ci =

1

1 + 2
Ti�1 �

with � =
E
⇥
�4
�
⇥i
�⇤

Var
⇥
�2
�
⇥i
�⇤ .

Again, as the risk parameters,
�
⇥i
 n
i=1

, are assumed to be identically distributed, the factors

E
⇥
�4
�
⇥i
�⇤

and Var
⇥
�2
�
⇥i
�⇤

are independent of the portfolio. Hence, the only portfolio dependent

variable in Ci is Ti, the number of years data available for the portfolio.

Both methods give the same result. In addition, the latter approach, derived from Lourdes (1989),

allows to obtain a credibility estimator for the variance part of the credibility premium which has

the form : e�i2 = Ci s2i + (1� Ci) b�2
0.

The estimate of Var
⇥
µ
�
⇥i
�⇤

denoted by b⌧2 is

b⌧2 = !•
• W � b�2

!•
• ⌦

, where ⌦ =
1�Pn

i=1 Ti
�
� 1

nX

i=1

!i
•

!•
•

✓
1�

!i
•

!•
•

◆
,

and W =
1�Pn

i=1 Ti
�
� 1

nX

i=1

TiX

t=1

!i
t

!•
•

�
Xi

t �X•
•
�2

,

with !•
• =

nX

i=1

!i
• , and X•

• =
1

!•
•

nX

i=1

!i
•X

i
• .
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Then, the estimate of E
⇥
�4
�
⇥i
�⇤

denoted by b�4 is

b�4 =
1Pn

i=1

�
Ti + 1

�
nX

i=1

�
Ti � 1

��
s2i
�2

,

and the estimate of Var
⇥
�2
�
⇥i
�⇤

denoted by b��2 is

b��2 =
1

R

 
nX

i=1

�
Ti � 1

��
s2i � �2

�2
� 2 b�4(n� 1)

!
,

where R =
nX

i=1

(Ti � 1)�

Pn
i=1(Ti � 1)2Pn
i=1(Ti � 1)

, and �2 =
1

n

nX

i=1

s2i .

1.4.2 The Poisson-Gamma Approach

A priori, we could assume that E
⇥
⇥i
⇤
= 1 so that the baseline mortality produces the a priori

expected number of deaths,

E
⇥
Di

•,t
⇤
= E

⇥
!i
t ⇥i

⇤
= !i

t .

We suppose here that the parametric distribution for the number of deaths Di
•,t is Poisson condi-

tional to the relative risk level ⇥i, so that

E
⇥
Di

•,t |⇥i
⇤
= V

⇥
Di

•,t |⇥i
⇤
= !i

t ⇥i .

Then, under assumption (H1) in Section 1.3.3, the conditional mean and variance of the actual to

expected mortality ratios become :

E
⇥
Xi

t |⇥i
⇤
= µ

�
⇥i
�
= ⇥i and Var

⇥
Xi

t |⇥i
⇤
=

�2
�
⇥i
�

!i
t

=
⇥i

!i
t

,

and the p.d.e with respect to ai,0 and ai,t, (see Equation (1.7)) are :

ai,0 = 1�
⌧2 !i

•
1 + ⌧2 !i

•
and ai,t =

⌧2 !i
t

1 + ⌧2 !i
•
, since �2 = E

⇥
⇥i
⇤
= 1.

Then the linear credibility estimator is given by

bµ
�
⇥i
�
= bXi

Ti+1 =
1

1 + ⌧2 !i
•
+

⌧2 !i
•

1 + ⌧2 !i
•

1

!i
•

TiX

t=1

!i,tXi,t . (1.13)

And, the expected number of deaths for portfolio i for next year Ti + 1 is

!i
Ti+1

bXi
Ti+1 = !i

Ti+1

1 + ⌧2Di
•,•

1 + ⌧2 !i
•

.

Then, we need to obtain the structure parameter ⌧2 = Var
⇥
⇥i
⇤
. As the distribution of the total

number of deaths in portfolio i is Di
•,• ⇠ MP

�
!i
•⇥i

�
(mixed Poisson distribution) and using the

variance decomposition principle,

Var
⇥
Di

•,•
⇤
= Var

⇥
E
⇥
Di

•,• |⇥i
⇤⇤

+ E
⇥
Var

⇥
Di

•,• |⇥i
⇤⇤

= Var
⇥
!i
•⇥i

⇤
+ E

⇥
!i
•⇥i

⇤

= ⌧2 (!i
•)

2 + !i
• .
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Noticing that
Pn

i=1Var
⇥
Di

•,•
⇤
= !2 Pn

i=1(!
i
•)

2+
Pn

i=1 !
i
• , leads to ⌧

2 =
Pn

i=1

�
Var

⇥
Di

•
⇤
�!i

•
�
/
Pn

i=1(�
i
•)

2 .

Thus, the estimator of ⌧2 writes

b⌧2 =
Pn

i=1

��
Di

•,• � !i
•
�2

�Di
•,•
�

Pn
i=1(!

i
•)

2
.

1.5 Numerical Analysis

1.5.1 Data Quantitative Analysis

The data come from studies conducted by Institut des Actuaires. These studies include in total

14 portfolio covering the period 2007-2011 with each companies contributing data for at least 4 of

a possible 5 years. Table 1.1 presents the observed characteristics of the male population of the

portfolios. For this dataset, we are considering respectively Ti = 3 and Ti = 4 for all companies. The

Table 1.1 – Observed characteristics of portfolios population.

Period of observation Mean age Average

exposure

Mean age

at death
Beginning End In Out

1 1/1/07 12/31/11 36.96 39.74 2.77 68.78

2 1/1/07 12/31/11 69.3 73.35 4.05 80.34

3 1/1/07 12/31/10 40.16 43.1 2.94 71.77

4 1/1/07 12/31/11 37.5 41.13 3.63 54.08

5 1/1/07 12/31/11 36.9 39.1 2.2 59.31

6 1/1/07 12/31/10 48.5 52.11 3.62 82.34

7 1/1/07 12/31/11 66.65 71.29 4.64 73.68

8 1/1/07 4/13/11 67.51 71.38 3.86 80.72

9 1/1/07 6/30/11 45.97 49.6 3.62 73.17

10 1/1/07 12/31/11 62.97 67.64 4.67 79.77

11 1/1/07 12/31/11 38.89 42 3.11 56.44

12 1/1/07 12/31/11 37.05 39.2 2.15 57.41

13 1/1/07 12/31/11 43.01 46.89 3.88 71.03

14 1/1/07 12/31/11 50.12 54.16 4.04 72.37

remaining years serve to test the predictive feature of the model through an in-sample analysis. The

age band for all companies ranges from 30 to 95 years old. Figure 1.1 shows the age distribution of

two portfolios. It graphically depicts the heterogeneity observed between the portfolios with insured
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holding di↵erent policies.

Figure 1.1 – Distribution of age groups in portfolios 3 (left panel) and 8 (right panel), male

population.

1.5.2 The Baselines Mortality

We consider two prospective tables as baselines for our credibility models. One is the national

demographic projections for the French population over the period 2007-2060, provided by the

French National O�ce for Statistics, INSEE, see Blanpain and Chardon (2010). These projections

are based on assumptions concerning fertility, mortality and migrations. We choose the baseline

scenario among a total of 27 scenarios. The baseline scenario is based on the assumption that until

2060, the total fertility rate is remaining at a very high level (1.95). The decrease in sex and age-

specific mortality rates is greater for men over 85 years old. The baseline assumption on migration

consists in projecting a constant annual net-migration balance of 100, 000 inhabitants. The second

external reference table, denoted IA2013, is a market table constructed for the French insurance

market provided by Institute des Actuaires, see Tomas and Planchet (2013). It is worth to mention

that this table is derived on mortality trends originating from the INSEE table and covers the

period 2007-2060.
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Following, assumption (i) in Section 1.2.3, the baseline mortality qbx,t is described by the Make-

ham model in (1.3). Table 1.2 presents the estimated parameters for each of the baselines considered.

Table 1.2 – Estimated parameters of the Makeham model (1.3) for the baselines of mortality

considered, male population.

INSEE IA2013

2007–2009 2007–2010 2007–2009 2007–2010

bAb
T 4.2835e� 03 4.2787e� 03 2.1577e� 04 2.4355e� 04
bBb
T 7.9564e� 07 7.7199e� 07 4.0863e� 06 3.9935e� 06
bCb
T 1.1484 1.1487 1.1211 1.1213

1.5.3 Adjustment of the Makeham model

Following assumptions (ii) in Section 1.2.3, we fit the Makeham model (1.3) for the baselines

of mortality considered so as to estimate Bb
t for each calendar year while the parameters bAb

t = bAb
T

and bCb
t = bCb

T remain fixed. Table 1.3 presents the estimated parameters for each year and baselines

considered.

Table 1.3 – Estimated parameters of the Makeham model (1.3) for each year and baselines of

mortality considered, male population.

INSEE IA2013

2007–2009 2007–2010 2007–2009 2007–2010

bAb
T 4.2835e� 03 4.2787e� 03 2.1577e� 04 2.4355e� 04
bBb
2007 8.0826e� 07 7.9035e� 07 4.1740e� 06 4.1204e� 04
bBb
2008 7.9554e� 07 7.7790e� 07 4.0843e� 06 4.0319e� 06
bBb
2009 7.8318e� 07 7.658e� 07 4.0009e� 06 3.9496e� 06
bBb
2010 � 7.5406e� 07 � 3.8729e� 06
bCb
T 1.1484 1.1487 1.1211 1.1213
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1.5.4 Proximity Between the Observations and the Model

We assess the overall deviation with the observed mortality by comparing criteria measuring

the distance between the observations and the models with the �2 Forfar et al. (1988a), the mean

average percentage error (MAPE) Felipe et al. (2002) as well as the standardized mortality ratio

(SMR) and the number of standardized residuals larger then 2 and 3, see Tomas and Planchet

(2014). In addition, we find useful to use the SMR test proposed in Liddell (1984) and the likelihood

ratio test. The tests and quantities summarizing the proximity between the observations and the

model are described in the following. The �2 allows to measure the quality of the fit of the model.

It writes,

�2 =
X

(x,t)

�
Dx,t � Lx,t bqx(t)

�2

Lx,t bqx(t)
�
1� bqx(t)

� .

The MAPE is the average of the absolute values of the deviations from the observations,

MAPE =

P
(x,t)

���Dx,t/Lx,t � bqx(t)
�
/
�
Dx,t/Lx,t

���
P

(x,t)Dx,t
⇥ 100.

We can also determine if the fit corresponds to the underlying mortality law (null hypothesis

H0) with the likelihood ratio test. The statistic, ⇠LR, writes

⇠LR =
X

(x,t)

✓
Dx,t ln

✓
Dx,t

Lx,t bqx(t)

◆
+
�
Lx,t �Dx,t

�
ln

✓
Lx,t �Dx,t

Lx,t � Lx,t bqx(t)

◆
.

◆
.

If H0 is true, this statistic follows a �2 law with a number of degrees of freedom equal to the number

of observations n : ⇠LR ⇠ �2(n). Hence, the null hypothesis H0 is rejected if ⇠LR > �2
1�↵(n), where

�2
1�↵(n) is the (1�↵) quantile of the �2 distribution with n degrees of freedom. The p-value is the

lowest value of the type I error (↵) for which we reject the test. We will privilege the model having

the p-value = P
⇥
�2
1�↵(n) > ⇠LR

⇤
= 1� F�2(n)(⇠

LR) closest to 1.

The SMR is computed as the ratio between the observed and fitted number of deaths :

SMR =

P
(x,t)Dx,tP

(x,t) Lx,t bqx(t)
.

Hence, if SMR > 1, the fitted deaths are under-estimated and vice-versa if SMR < 1. Note that

we can consider the SMR as a global criterion which does not take the age structure into account,

compared to the chi2 and MAPE for instance. We can also apply a test to determine if the SMR

is significantly di↵erent from 1. Liddell Liddell (1984) proposes to compute the statistic,

⇠SMR =

8
<

:
3⇥D

1
2
�
1� (9D)�1

� (D/E)
1
3
�

If SMR > 1,

3⇥D⇤ 1
2
�
(D⇤/E)

1
3 + (9D⇤)�1

� 1
�

If SMR < 1,

whereD =
P

(x,t)Dx,t,D⇤ =
P

(x,t)Dx,t+1 and E =
P

(x,t) Lx,t bqx(t). If the SMR is not significantly

di↵erent from 1 (null hypothesis H0), this statistic follows a standard Normal law, ⇠SMR
⇠ N(0, 1).
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Thus, the null hypothesis H0 is rejected if ⇠SMR > N1�↵(0, 1), where N1�↵(0, 1) is the (1 � ↵)

quantile of the standard Normal distribution. The p-value is given by p-value = 1�FN(0,1)(⇠
SMR).

1.5.5 In-Sample Numerical Analysis

We fitted the approaches over a history covering 3 and 4 years (2007-2009 and 2007-2010 respec-

tively) and compared the overall deviation between the observations and the models (for the year

2010 and 2011 respectively). Table 1.4 displays the estimates of the structure parameters for the

three approaches.

Table 1.4 – Estimates of the structure parameters, male population.

Hardy-Panjer Poisson-Gamma Makeham-Credibility

INSEE IA2013 INSEE IA2013 INSEE IA2103

2
0
0
7
-0
9

bµ0 3.5521 16.3290 1 1 1 1

b�2 44.4032 92.1668 1 1 4.0552e-04 2.3198e-03

b⌧2 6.8368 44.0092 10.7485 367.5029 0.1935 3.5960e-02

2
0
0
7
-1
0

bµ0 3.6495 15.7865 1 1 1 1

b�2 65.9649 116.0159 1 1 5.1034e-04 2.6285e-03

b⌧2 7.0772 43.4966 10.9684 338.4440 0.2217 5.0281e-02

Table 1.5 presents the tests and quantities summarizing the overall deviation between the ob-

servations and the credibility analysis for the male population of portfolio 1 obtained by the Hardy-

Panjer, Poisson-Gamma and the Makeham credibility approaches with the two baselines mortality

considered for the year 2010. Tables A.1, A.2 and A.3, A.4 in Appendix A.1 and A.2 display the

results for all the portfolios and for the years 2010 and 2011 respectively.

The Hardy-Panjer and Poisson-Gamma approaches produce relatively similar graduations. Ho-

wever, we notice some di↵erences with the Makeham credibility model which displays more favorable

results whatever the baseline mortality considered for the two periods fitted.

It is also apparent that using the market baseline mortality IA2013 produces better results than

the national demographic projections originating from INSEE, see Section 1.5.2. It illustrates the
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Table 1.5 – Tests and quantities summarizing the deviation between the observations and the

models for portfolio 1, calendar year 2010, male population.

INSEE IA2103

Hardy-Panjer Poisson-Gamma Makeham-Credibility Hardy-Panjer Poisson-Gamma Makeham-Credibility

Standardized > 2 60 60 35 46 46 15

residuals > 3 48 48 28 32 32 5

�2 5481.86 5542.82 3569.97 1705.25 1747.25 208.81

MAPE (%) 233.22 230.94 373.89 117.01 115.42 42.35

Likelihood ⇠LR 946.98 947.72 443.16 463.48 468.46 88.03

ratio test p-value 0 0 0 0 0 0.0364

SMR 1.1792 1.1919 0.5265 1.7629 1.7957 1.0532

SMR test ⇠SMR 4.0379 4.2939 12.1893 13.0352 13.4202 1.2845

p-value 0 0 0 0 0 0.0995

importance of using an adequate baseline mortality when adjusting the models.

When looking at criteria and quantities which take the age structure of the error into account, the

Makeham credibility approach is a benefit. The quality of the fit increases, sometimes drastically,

compared to the Hardy-Panjer and Poisson-Gamma model in terms of having the minimum �2

and MAPE values. The Makeham credibility model leads to the lowest number of standardized

residuals lower than 2 and 3. It exhibits as well the highest p-value for the likelihood ratio test.

Even when we consider a global indicator of the quality of the fit such as the SMR which does

not take the age structure into account, the Makeham credibility model seems to perform better

than the Hardy-Panjer and Poisson-Gamma approaches. The statistic ⇠SMR of the SMR test is the

smaller 8 times over 14 for the year 2010, see Tables A.1 and A.2 in Appendix A.1, and 6 times

over 12 for the year 2011, see Tables A.3 and A.4 in Appendix A.2.

We also notice that the the Makeham credibility model has tendency to over-estimate the total

number of deaths, having a SMR lower than 1 for 9 portfolios over 14 in 2010 and for 8 portfolios

over 12 in 2011.

In the following, these quantitative diagnostics are supplemented by a range of visual compa-

risons. Besides the tests and quantities, the comparison involves graphical analysis. It consists of

representing graphically the fitted values against the observations for the years 2010 and 2011. For

clarity, the graphical comparisons only consider the market baseline mortality IA2013 as it leads

to better results than using the national demographic projections.

Figure 1.2 (top panel) displays the the fitted probabilities of death in the log scale for portfolio

1 for the year 2010. Figures A.1 and A.2 in Appendices A.3 and A.4 display the comparisons for all

the portfolios and for the years 2010 and 2011 respectively. It gives us the opportunity to visualize

the similarities and di↵erences between the fits obtained by the approaches. It is again apparent

that the Hardy-Panjer and Poisson-Gamma models lead to similar results. In addition, we observe
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Figure 1.2 – Fitted values against the observations for portfolio 1 for the year 2010, male popula-

tion. Top figure : Fitted probabilities of death in the log scale. Middle : Fitted number of deaths.

Bottom : Standardized residuals.

that these approaches have a tendency to strongly overestimate the probabilities of death for the

age band
⇥
30, 60

⇤
and reciprocally underestimate them for the age band

⇥
60, 95

⇤
. This is explained

by the fact that the age structure is not taken in account by the Hardy-Panjer and Poisson-Gamma

approaches, contrary to the Makeham credibility model. We can visualize this lack of fit in the

plots of the fitted number of deaths, Figure 1.2 (middle) for portfolio 1 and Figures A.3 and A.4

for all portfolios in Appendices A.5 and A.6.
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In conjunction with looking to the plots of the fits, we should study the residuals plots. Such

residual plots provide a powerful diagnostic that nicely complements the analysis. The diagnostic

plots can show lack of fit locally and we have the opportunity to judge the lack of fit based on our

knowledge on the data and of the performance of the models. We superimposed a smooth curve on

the standardized residuals. This smoothness helps search for clusters of residuals that may indicate

a lack of fit. The plots of the standardized residuals, for the male population, are display in Figure

1.2 (bottom panel) for portfolio 1 and Figure A.5 and A.6 in Appendix A.7 and A.8 for all the

portfolios and for the years 2010 and 2011 respectively.

The standardized residuals, obtained by the Hardy-Panjer and Poisson-Gamma models, present a

high curvature for most of the portfolios in Figures A.5 and A.6. It indicates a clear lack of fit.

These models overestimate the number of deaths for the age band
⇥
30, 60

⇤
et underestimate them

for the age band
⇥
60, 95

⇤
, as observed in the plots of the fits previously. Conversely, no strong

patterns appear in the standardized residuals retrieved for the Makeham credibility model. The

smooth curves over the standardized residuals is meanly flat, meaning that no systematic repro-

ducible lack of fit has been detected and that the Makeham credibility model captures adequately

the variability of the data.

1.6 Concluding Remarks

We considered the periodic adjustment of a mortality graduated curve using a Makeham para-

metric model. This relies on the revision of a single parameter the two remaining been fixed. The

framework considered here is closely related to the one introduced in Hardy and Panjer (1998). The

main di↵erence is the age-structure included through the parametric Makeham model. By doing so,

we showed that adding an age structure enhances the predictive ability of the death forecast when

we consider age-sensitive proxies. If one is only interested in predicting deaths at the aggregate

portfolio level our methodology yields to the same forecast as in the Hardy and Panjer Hardy and

Panjer (1998) framework. Moreover, we should note that in our methodology especially using the

ratio of the considered Makeham parameters allows to overcome the de-trending step recommended

in Hardy and Panjer (1998).

In order to assess the predictive power of our methodology, various other measures of risk

and goodness-of-fit should be taken into account. Especially, we should consider the age-structure’s

impact on the prices and reserves and potential benefit of our model compared to the current market

practice. There are also several piratical we do not address here which we openly acknowledge and

leave for future research.



Chapitre 2

Approche semi-paramétrique

2.1 Introduction

A natural and straightforward approach to handle the issue introduced in chapitre is to use

the available data at the portfolio level and build an entity-specific mortality table. However, prac-

titioners may face technical di�culties related to the size of the portfolios and the heterogeneity of

the guarantees (for the same underlying risk, say mortality risk). For instance, an insurer may have

a fairly big portfolio but with policyholders holding di↵erent insurance contracts : pure endow-

ment contracts, unit-linked contracts with minimum death guarantees, loan insurance and so on.

In such a case, it is di�cult to build a mortality table based on the sole experience of each product

or guarantee. More precisely, the constructed table would not be able to represent the mortality

profile of the policyholders thus failing in capturing the underlying risk. This should also be the

case even if the mortality table is periodically updated with the incoming new data. If one draws

a mortality table only based on the experience stemming from one product or guarantee, she shall

have to face a problem of sample size. The latter arises not only at the portfolio level but also for

individual ages. In fact, the mortality profile is highly dependent on the age of the individuals and

some age groups being poorly represented may alter the quantification of the mortality risk at each

individual age.

In this chapter, we consider an insurer with exposures to di↵erent coverages and aiming at

establishing an experience-based mortality table for each policy and age level, as individuals may

have di↵erent risk profiles (as showed by some empirical mortality studies, e.g. see Vaupel et al.

(1979) and Hougaard (1984) among others). As a first step, we consider a graduation principle to

build mortality rates at the insured portfolio level. There are usually two sorts of methods : non-

parametric and parametric, see Forfar et al. (1988a) and Debón et al. (2006) for a comprehensive

introduction to the use of both graduation techniques. The nonparametric framework is very useful

in practice especially when there is su�cient data. This method relies on the use of kernel estimation

30
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techniques which were first used for graduation by Copas and Haberman (1983) and Ramlau-

Hansen (1983). The literature on this subject has a long history and we may observe two schools.

First, there is a continuous approach that defines data sampling via stochastic counting processes,

which considers the lifetimes of individuals to be continuous random variables subject to random

censorships, i.e. left truncation and right censoring. In our case, the mortality data that we use are

divided into discrete yearly numbers of death occurrences and exposures. Therefore, these data only

allow to use an approach based on an approximation of the continuous filtered model. Both the

continuous and the discrete formulations have been intensively explored in the literature, see e.g.

Fan and Gijbels (1995); Jiang and Doksum (2003); Nielsen et al. (2009) and more recently Gámiz

et al. (2016). In these models the hazard rate is estimated using a nonparametric kernel method.

A number of commonly used smoothing methods such as smoothing splines, kernel estimates and

local polynomial fitting can be used to implement the basic step of the graduation of a mortality

table. More recently, estimators based on local polynomial fitting, discussed in earlier works of

Cleveland (1979) and Lejeune (1985), among others, have become more popular. This keen interest

turned out, in particular for their good performance and analytical tractability, see for example the

monograph by Fan and Gijbels (1996).

In the approach proposed here, local polynomial fitting methods are used as implementation

of smoothing methods. This allows to model the mortality patterns even in presence of complex

structures and avoid to rely on experts opinion. In Tomas (2011), the author used the same adaptive

smoothing procedure applied to the dataset used throughout the chapter.

The graduated mortality can be then used as such to project future insurance liabilities related

to the underlying population. However, the evolution of the flow of data related to latest available

information is not taken into account. This should be, for example, used to update the graduated

mortality. However, if one decides to redo a graduation procedure including the new data, the

forecasts are likely to be unstable ; adding potential volatility to the underlying reserves and capital

charges. Therefore, the primary contribution of this chapter is the incorporation of sample bias into

the graduated mortality table model by introducing an unobserved variate for individual di↵erences

in each attained age. Such an approach has been considered in Salhi et al. (2016) but with di↵erent

graduated curve. The latter used a parametric model, i.e. Makeham law, to first build the mortality

curve and then applies a credibility procedure to a portfolio-sensitive parameter. Other approach

have been also introduced in the literature but work directly on the aggregate death counts, e.g.

Hardy and Panjer (1998). Unlike the classical approaches that focus on the update of the aggregate

deaths recorded over the whole portfolio, the proposed adjustment approach is intended to enhance

the predictive ability of the graduated mortality using a credibility-based revision at the age-level

and not on the aggregate portfolio level, while borrowing information from other portfolios with

su�cient information. More formally, our methodology is based on a discretization of the Nielsen

and Sandqvist (2000) credibility approach, which was applied to the operational risk. The latter,

however, did not consider a multidimensional credibility as the underlying risk does not exhibit an

extra dimension rather than the observation date, see section 2.3.
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The rest of the chapter is organized as follows. section 2.2 specifies the notation and assumptions

used throughout the chapter. It also introduces the smoothing model in its general and continuous

form. A discretization of the latter is considered as mentioned earlier and we also recall some

statistical inference results used in the sequel. section 2.3 introduces the credibility approach to

the graduated mortality. We specify the model and make connection with the recent literature.

Furthermore, we derive the main tools needed to fully characterize the next period prediction of

mortality rates when a (multiplicative) credibility factor is taken into account. section 2.4 presents

an application with experience data originating from some French insurance companies. Finally,

some remarks in section 2.5 conclude the chapter.

2.2 Notation, Assumptions and Preliminaries

2.2.1 Notation, Assumptions and Continuous Time Local Smoothing

Assume that we have at our disposal mortality statistics originating from K portfolios (or com-

panies) over the time interval [0, Ti], i 2 {1, · · · ,K}. We suppose that the portfolios are composed

of Ii individuals for which we associate a triplet (Y i
e , Z

k
e ,�

i
e), for e = 1, · · · , Ii, where Y i

e is the

age that an individual enters the portfolio during the considered period, Zi
e the age she leaves the

portfolio and �i
e an indicator of the censoring status. In other terms, �i

e is equal to 1 when the

individual deceases during the period [0, Ti] and 0 when she leaves for other reasons, e.g. surrende-

ring her policy. Based on this triplet, which can be observed in most life insurance portfolios, we

let N i
e(x) = �i

e1{Zi
ex} be the counting process indicating the death of the individual e before age

x. Similarly, we define the process Li
e(x) = 1{Y i

ex<Zi
e} that indicates if the insured is at risk at age

x. For all the portfolios, we are considered with mortality behavior over an age interval [x1, xni ].

Moreover, under usual conditions, we assume Cox (1972)’s multiplicative model where the random

intensity of death 'i
x, at age x of the portfolio i is related to a reference 'ref

x as follows :

'i
x = exp[f i(x)]'ref

x , (2.1)

where f i is an unspecified, smooth and deterministic function of the age x. The latter allows to

link the mortality of the company i to the baseline at the attained age level x. Here, we adopt a

parametric form for the functional f i and denote �i this vector of parameters which will be specified

later on this section.

Remark. (i) In this assumption, the baseline mortality is shared over portfolios. However, the

functional f i is not common as it is supposed to adjust to the particular feature of each portfolio.

That is the form as well as the parameters may depend on the sample size and particularly over

ages. The form of the latter will be common and will defined to be of polynomial form. However,

the degree will be adapted to each portfolio. (ii) As we can see later on this chapter, the reference

mortality 'ref
x is constructed using the aggregate data stemming from the portfolios, which will
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underpin the use of the common baseline. However, it may be of interest to consider a full Cox

model taking into account the specific features of each portfolio. This is, for instance, investigated

in Nielsen and Sandqvist (2005), where it is taken into account that mortality rates should not be

around a common mean, but around a Cox regression instead. By doing so, it allows the approach

to be used even when the lines of mortality are di↵erent, as long as they fit into a proportional

hazard framework, see Gustafsson et al. (2006, 2009).

The specification in Équation 2.1 is a simple variation of the Cox’s proportional hazards regres-

sion model. This was considered, for example, in Anderson and Senthilselvan (1980); Gray (1990)

using a known link function but with covariates that adjust the mortality given the observed he-

terogeneity. The general Cox’s model, in the presence of covariates, with unknown link function is

considered in Wang (2001, 2004) who proposed a local likelihood approach to estimate the function

f i. Formally, under the above assumptions, the likelihood functional L('i;�i) in the presence of

the left-truncation and right-censoring is given as follows :

L('i;�i) =
Y

e|Y i
eZi

e

"
�
'i
Zi
e

��i
e exp

 Z Zi
e

Y i
e

'i
sds

!#
.

Therefore,

logL('i;�i) =
X

e|Y k
i Zk

i


�k

i log
�
'k
Zk
i

�
�

Z
1{Y k

i s<Zk
i }
'k
sds

�

=

Z
log('k

s)dN
k(s)� Lk(s)'k

sds,

where N i(x) =
PIi

e=1N
i
e(x) and Li(x) =

PIi
e=1 L

i
e(x). In the light of the foregoing, we consider the

local likelihood model which fits a polynomial model locally within a smoothing window. To this

end, the localized log-likelihood at an age x can be written as follows :

logLloc('i
x;�

i) =

Z
!h(s� x) log('i

s)dD
i(s)� !h(s� x)Li(s)'i

sds, (2.2)

where !h(u) is a weight function with a bandwidth parameter h > 0 that assigns largest weights

to observations close to x. These considerations will yield the local kernel weighted log-likelihood

estimation of the polynomial function f i. Such a formulation complies with the literature on local

polynomial hazard estimation, see Fan and Gijbels (1995); Jiang and Doksum (2003) and Gámiz

et al. (2016). We assume that f i(xj) is a pth degree polynomial in xl’s, where xl is an element in the

neighborhood of xj . Formally, denoting xl =
�
1, xl � xj , · · · , (xl � xj)p

�>
and �i =

�
�i
0, · · · ,�

i
p

�>

we can write f i(xj) in the following form f i(xj) = x>
l �

i.

Remark. Various forms of the function f have been considered in empirical actuarial science. For

example, in Currie (2013), the function f has the parametric form f i(x) = �i
0 + �i

1x for some

unknown parameters �i
0 and �i

1. Other examples were considered in Renshaw et al. (1996).
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2.2.2 Local Likelihood Smoothing of Mortality in Discrete Time

Up to now, we considered the lifetimes of individuals to be continuous random variables subject

to random censorships. In our case, the mortality data at our disposal are divided into discrete yearly

numbers of death occurrences and exposures. Therefore, these data only allow to use an approach

based on an approximation of the continuous filtered model in Équation 2.2. As noted before, both

the continuous and the discrete formulations have been intensively explored in the literature, see

e.g. Fan and Gijbels (1995); Jiang and Doksum (2003) and more recently Gámiz et al. (2016). The

latter provides a theoretical treatment of local linear mortalities and it is also describing in detail

the relationship between discrete and continuous sampling. In actuarial literature, early works based

on discrete data date a long way back to Gram (1879, 1883) who develops local polynomial hazard

estimators that are not far in spirit from our work.

The discretization of Équation 2.2 relies on an aggregation of the lifetimes into intervals. In this

subsection, we describe a modification of the local linear estimator for discrete data in Équation 2.2.

We suppose that the following yearly aggregated values of occurrences and exposures are available :

Di
xj

=
IiX

e=1

Z xj+1

xj

dN i
e(s), Ei

xj
=

IiX

e=1

Z xj+1

xj

Li
e(s)ds. (2.3)

These refer, respectively, to the number of deaths and the number of individuals who are at risk in

the age interval [xj , xj+1[. Moreover, we assume a piecewise constant hazard rate 'i
x in the sense

that 'i
x = 'i

xj
for any x 2 [xj , xj+1[. Then, a natural approximation of the localized likelihood

function in a neighborhood of xj , i.e. Équation 2.2, would be

logL('i
xj
;�i) =

mX

l=1

!h(xl � xj) log('
i
xl
)Di

xl
� !h(xl � xj)'

k
xl
Ei

xl

=
mX

l=1

!ljx
>
l �

iDi
xl
� !lj'

refex
>
j �i

Ei
xl
+ Ci, (2.4)

where Ci is a constant o↵set, which does not depend on the parameter vector �i.

Remark. The true likelihood given in Équation 2.4 can be recovered, up to a constant o↵set, using

the hypothesis of Poisson distributed death occurrences. In fact, if the parameter of the Poisson

distribution is assumed to be Ei
x'

i
x where the intensity 'i

x is as in Équation 2.1 then, one can write

the problem as a generalized linear model (GLM) such that the first moment of Di
t can be written

as follows :

logE[Di
x] = logEi

x + log'i
x = logEi

x + log'ref
x + f i(x),

where the term logEi
x is an o↵set. Then, in the presence of unknown link function f i, we can

rely on a localized likelihood version which add a weight to the observations at each age. Such an

approach was used to graduate life tables with attained age context in Delwarde et al. (2004), Debón

et al. (2006) and Tomas (2011).
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In Équation 2.4, the non-negative weights, i.e. !lj , depend on the distance between the obser-

vations and the fitting point xj and can be characterized using the kernel !h as follows

!lj =

8
<

:
!(|xl � xj |/h), if |xl � xj |  h,

0, otherwise,
(2.5)

with ! is Gaussian kernel, and h is a smoothing parameter determining the radius of the neighbo-

rhood of xj used in the smoothing. It gives the bandwidth of the neighbor used in the kernel. For

instance, the smallest h the thiner is the neighborhood that contributes to the likelihood at each

attained age.

In order to estimate the parameters vector �i we maximize the log-likelihood in (2.4). To this end,

we let Di = (Di
x1
, · · · , Di

xm
) and 'i = ('i

x1
, · · · ,'i

xm
). Then, taking the derivative with respect to

�i, yields the following system of equations,

(Xj)>Wj(Di
� 'i) = 0, (2.6)

where Xj is the m⇥ (p+ 1) matrix

Xj =

0

BBBB@

1 x1 � xj (x1 � xj)2 · · · (x1 � xj)p

1 x2 � xj (x2 � xj)2 · · · (x2 � xj)p

...
...

...
. . .

...

1 xm � xj (xm � xj)2 · · · (xm � xj)p

1

CCCCA
, (2.7)

and Wj is the m⇥m diagonal weight matrix with diagonal elements wlj , for l = 1, · · · ,m. Since 'i

is non-linear on �i. The solution of the above equation, i.e. estimations, must be obtained numeri-

cally using, for example, an iterative algorithm as Nelder-Wedderburn, Newton-Raphson algorithms

or the fisher scoring methodology, see Loader (2006, Chapter 12) for further development. From

these, we can get the estimation of �i and 'i denoted, henceforth, by b�i and b'i.

2.2.3 Inference of the Graduated Mortality

The aim of this subsection is to characterize the statistical feature of the estimators considered

above. We recall some well known results in the literature on nonparametric smoothing, see e.g.

Tibshirani and Hastie (1987) and Wand and Jones (1994), regarding particularly the variance of

the graduated mortality and the expected behavior of these estimations. In fact, using theoretical

results concerning bias and variance, the estimator b'i is shown to be asymptotically robust and

consistent. It is, for instance, shown in Fan and Gijbels (1996) that the smoothed mortality rates

b'i are unbiased estimators of 'i in the sense that :

E[b'i] ⇡ 'i. (2.8)
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This approximation is based on the inspection of the mean squared errors, which are commonly used

to assess the bias of the estimation in such a framework. Expressions of the latter are available in

classical textbooks and the readers is referred to (a modifier la ref et mettre un livre)(Tomas, 2011,

Sec. 3.2.) who provides an approximation to the bias of the estimator b'i. Unlike the linear model

fitting, there is no exact expression for moments of b'i
x due to the non-linearity in Équation 2.6.

Using a multivariate version of Taylor series expansion around �i allows to use classical results

on the inference of the estimated parameter b�
i
. Note that this approximation depends on the

bandwidth of the neighborhood h used in the kernel. More precisely, the bias is decreasing with

the bandwidth. This is, particularly, reasonable in practice, because a large bandwidth induces a

miss-fitting of the local polynomials and hence also the sum of squared residuals. In other hand,

to derive the second order moment of b'i, a variance approximation based on Taylor linearization

is also generally suggested and shown to be consistent, see Loader (2006). More precisely, we have

the following expression for the variance :

Var(b'i) = (SiSi>)b'i, (2.9)

where the matrix Si is given as follows :

Si =

0

BBBB@

si1(x1) si2(x1) si3(x1) · · · sin(x1)

si1(x2) si2(x2) si3(x2) · · · sin(x2)
...

...
...

. . .
...

si1(xn) si2(xn) si3(xn) · · · sin(xn)

1

CCCCA
, (2.10)

with rows si(xj)> = (si1(xj), s
i
2(xj), · · · , s

i
n(xj)) = (Xj>WjXj)�1Xj>Wj , where Wj is the weight

matrix and Xj is given in Équation 2.7.

2.2.4 Small Sized Porfolios and Sampling Bias

It is worth mentioning that the relational (proportional) model considered in Équation 2.1

implicitly accounts for di↵erential mortality that may arise due to portfolio specific features, e.g.

particular socioeconomic groups involved, income level, etc. This is all the more true if we consider

the national mortality as a baseline as insured portfolios show a typical behavior compared to a

national mortality. Specifically, the mortality of insured population is significantly lower than the

national population from which it is drawn. On the other hand, when it comes to the study of the

mortality at a single portfolio level, some stylized facts arise, which might compromise the e�ciency

of the graduation procedure. For instance, insured population are generally of small size, so none

or very few deaths are observable at some ages. Therefore, the use of the model (2.1) and the local-

likelihood based estimation procedure advocates using the information stemming from the adjacent

ages to construct the mortality curve. This learning procedure will enhance the determination of the

mortality at a given age. However, when successive ages lack of information, the approach exposed
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above will need a large bandwidth h for the estimator to access distant ages with su�cient and

reliable information. By doing so, we increase the bias surrounding the smoothed curve. Indeed, as

noted before, the mean of squared errors measuring the bias due to the local regression increases

with the bandwidth h.

Due to these di↵erent sources of uncertainty we suppose that the true mortality curve 'i
x, for

x = x1 · · · , xn, is known up to an unobservable multiplicative factor ⇥i
x. In other words, the port-

folios examined should be regarded as a sample of the reference. Estimates based on the data will

be subject to sampling errors and the smaller the group is, the bigger will be the relative random

errors in the number of deaths and the less reliable will be the resulting estimates. This argument

is extended to include the bias stemming at the attained age level due the consideration exposed

above. Thus, if one has estimated the curve using the non-parametric approach, the true curve is

an adjustment of the latter as multiplied by the random and non-observable parameter ⇥i
x. Such a

setting is inspired by the credibility approach to hazard estimation of Nielsen and Sandqvist (2000).

2.3 Company-Specific Relative Risk Level

Recall that we have at our disposal K portfolios with individuals ages ranging from x1 to xni .

Here, the ni’s could be all di↵erent to be in line with the insurance practices. This kind of infor-

mation structure is similar to the so-called unbalanced framework used in actuarial science. For

the sake of readability, without loss of generality, we will henceforth assume similar observed age

groups for all companies, i.e. n = n1 = · · · = nK . With a slight variation to the model, however, it

can be easily extended to the unbalanced case.

2.3.1 The credibility model

Given the specific parameterization of the problem, one may think of the K portfolios as subsets

of the reference population and each portfolio is characterized by a risk profile. The latter is due

to the heterogeneous sizes of the portfolios as well as the underlying guarantees (for the same

underlying risk). These sources of heterogeneity might also induce an age varying risk profile within

the same portfolio. Therefore, for a company i, we let the vector ⇥i = diag(⇥i
x1
, · · · ,⇥i

xn
) be her

relative risk level. For x 2 {x1, · · · , xn}, each ⇥i
x characterizes the age-specific risk level, which are

unobservable random variables.

The primal objective is to characterize the force of mortality of each company i at a specific
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age x through the proportional relationship introduced in sous-section 2.2.2, i.e.

'i = ⇥i↵, (2.11)

where ↵ = (↵x1 , · · · ,↵xn)
> such that for j = 1, · · · , n, we have ↵xj = exp[f i(xj)]'ref

xj
. This model

suggests that for each company i, the age-specific experienced force of mortality varies around

the baseline ↵x, which can be seen as a reference or best-estimate mortality. This fluctuation

is modeled by a heterogeneity parameter ⇥i
x capturing the individual properties (heterogeneity)

of each company at attained age x. Thus, using new incoming data should allow to update the

next period mortality 'i
x by adjustment following model in Equation (2.11). The approach is to

first find an estimator b'i
x of 'i

x = ⇥i
x↵x for each company i using the likelihood-based approach

introduced in section 2.2. Henceforth, the notation b'i
x|⇥

i
x refers to the estimation of the quantity

↵x = exp[f i(x)]'ref
x , which, by abuse of language, referred to as the estimated mortality conditional

on the risk profile.

Remark. This reasoning is build upon the work of Nielsen and Sandqvist (2000, 2005) and Gus-

tafsson et al. (2006), that investigate the quantification fo the operational risk. Nielsen and Sand-

qvist (2000) considered hazards of di↵erent groups assuming that the hazard of each group fluc-

tuates across a common baseline hazard and used continuous sampling of observations as in sous-

section 2.2.1. In the current work, we are considering a discretization of the model in Nielsen and

Sandqvist (2000) as the mortality data that we will use are divided into discrete yearly numbers

of death occurrences and exposures. Moreover, we slightly extend this framework by considering a

multivariate setting and allow for the age to influence the estimation of future mortality. Using a

multivariate framework will provide a base to catch the sample bias properties at the attained age

level. This is even more significant given that the mortality intensities are correlated not only at

the portfolio level but also between di↵erent portfolios.

The random variables b'i
x1
, · · · , b'i

xn
are assumed to be dependent, namely, the force of mortality

of one age does directly impact those of other ages. This is mainly due to the graduation of mortality

at a given age, which weights up over the adjacent age groups, see section 2.2. This dependency will

be explored later on this section. Finally, in order to characterize the next period mortality level,

we make use of the credibility theory. For this purpose and using the usual credibility setting, we

shall make the following assumptions :

(A1) The random vectors ⇥i are independent across companies and ages. Moreover, for i =

1, · · · ,K, ⇥i
x’s are identically distributed with E[⇥i] = In and Var(⇥i) = �, where � is

a diagonal matrix with elements �x and In is the identity matrix.

(A2) The random vectors ('i,⇥i), i = 1, · · · ,K, are independent across companies

(A3) 'i
x1
, · · · ,'i

xn
are conditionally independent given ⇥i.

The first assumption (A1) ensures that the baseline mortality produces the a priori expected num-

ber of deaths under the model assumption (2.1), in the sense that E[Di
x] = E[⇥i

x↵x] = ↵x. The

assumptions (A2) means that the risk profiles are independent over portfolios. In other words,



2.3. COMPANY-SPECIFIC RELATIVE RISK LEVEL 39

the successive realizations of the mortality intensity (so as the death counts) for any portfolio are

independent of each other except through the risk parameter. This assumption is commonly used

in actuarial literature when dealing with mortality risk. The latter is in line practical uses and em-

pirical results on mortality risk. However, note that this only makes sense for mortality-contingent

contracts. Thus, we should exclude annuities and pension policies where a dependence over obser-

vations is present due, for instance, to the cohort e↵ect. Finally, assumption (A3) translates the

dependency of the mortality over ages. It is only captured by the vector ⇥i. Conditionally on the

latter the forces of mortality at the age level are independent.

As noted before, b'i
|⇥i is the conditional local-likelihood estimator of the intensity in Equation

(2.1) based on the data from the ith portfolio as developed in section 2.2. In view of the the

assumptions (A1)-(A3), it is important to recall that conditional on the knowledge of the risk

profile ⇥i the theoretical properties of b'i are identical to those the of local-likelihood estimator

considered in sous-section 2.2.3. This will be used, among others, in the following lemma, in order

to state some fundamental features of the dependence structure.

Lemma 1. Under assumptions (A1), (A2) and (A3) and the notation above, we have

(i) The first order moment of 'i is given by

E['i] = ↵. (2.12)

(ii) The variance matrix of b'i
|⇥i, denoted ⌃i(⇥i) = Var(b'i

|⇥i), is given by

⌃i(⇥i) = (SiSi>)'i. (2.13)

Hence, the variance ⌃i = Var(b'i) can be written as

⌃i =
�
SiSi> + �

�
↵ (2.14)

(iii) The covariance of 'i
x with b'i

x is given by

Cov
�
'i
x, b'i

�
=
�
�x↵x)

2e�x , (2.15)

with �x = j if x = xj and ej is the vector with all 0’s except for a 1 in the jth coordinate.

Démonstration. To show these results, we make an intensive use of the law of total variance.

(i) Équation 2.12 is a direct consequence of assumption (A1) which gives E['i
|⇥i] = ⇥i↵.

(ii) The conditional variance ⌃i(⇥i) is directly derived from the calculus in sous-section 2.2.3.

Hence, to check (2.14), the law of total variance gives

⌃i = E
⇥
Var(b'i

|⇥i)
⇤
+ Var

�
E[b'i

|⇥i]
�
,

= (SiSi>)E[b'i] + Var(⇥i)↵ =
�
SiSi> + �

�
↵.

(iii) Finally, to prove (2.15), notice that Cov('i
x, b'i

|⇥i) = 0. Thus,

Cov
�
'i
x, b'i

�
= Cov

�
E['i(x)|⇥i],E[b'i

|⇥i]
�
+ E

⇥
Cov('i

x, b'i
|⇥i)

⇤
,

= Cov(⇥i
x↵x,⇥

i↵) =
�
�x↵x)

2e�x ,

where the last equality follows from the independence assumption in (A1).
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2.3.2 The next-period linear per-age mortality estimator

The goal is to predict the future force of mortality for each company i at the age level. Therefore,

we will be looking for the inhomogeneous credibility predictor corresponding to the linear estimators

of 'i
x. We thus solve the following optimization problems :

min
ci0,x,c

i
x

E
⇣

'i
x � ci0,x � cix

> b'i
⌘2�

, (2.16)

where ci0,x 2 R and cix 2 Rn. This formulation suggests adjusting the next period force of mortality

at a given age using the information stemming from the other age groups. This should enhance the

prediction for ages with low or sparse information using the credibility in ages of high information.

Based on Proposition 1, we can easily derive the inhomogeneous credibility estimators of 'i. Indeed,

we can state the following proposition.

Proposition 1. The point estimate of the linear factors in (2.16) can be written as follows

ci0,x =
�
1n � cix

�>
↵ and cix =

�
�x↵

i
x

�2
(⌃i)�1e�x . (2.17)

The next period predicted mortality (estimator) e'i of 'i is given by

e'i = (In �
�
↵(⌃i)�1�↵

�>�
↵+

�
↵(⌃i)�1�↵

�> b'i. (2.18)

Démonstration. Let us first derive the intercept ci0,x. To do this, we develop the expectation in

Équation 2.16 and take the derivative with respect to ci0,x. This yields to the following equality :

ci,0 + (cix)
>E[b'i] = 1.

On the other hand, di↵erentiating the expectation in Équation 2.16 with respect to the vector cix
gives rise to the following variance

Var
⇣
'i
x � (cix)

> b'i
⌘
,

needed to fully characterize the solution. This can be computed using results in Lemma 1. Indeed,

we can write :

Var
⇣
'i
x � (cix)

> b'i
⌘
= Var('i

x)� 2(cix)
>Cov('i

x, b'i) + (cix)⌃
i(cix)

>.

Taking the derivative with respect to the vector cix yields

2Cov('i
x, b'i)� 2⌃icix = 0.

The terms ⌃i and Cov('i
x, b'i) are given in Lemma 1, which concludes the proof.
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Note that we are able to estimate all the components needed to characterize the next-period

intensity e'i, except for the variance �. Remarking that b'i is an estimator of 'i = ⇥i↵, we can write
b⇥i = diag(b'i

↵ ↵), with ”↵ ” being the Hadamard division (element-wise) operator. Therefore, a

natural choice of the estimator of � is

b� =
� b⇥i

� In
�>� b⇥i

� In
�
. (2.19)

We can now derive the following estimation of the adjustment factor ⇥i.

Lemma 2. The optimal credibility estimator of ⇥i is given by

ff⇥i = (In �
�
↵(⌃i)�1b�↵

�>�
1n +

�
↵(⌃i)�1b�↵

�> b⇥i,

and the next period prediction of 'i can be approximated by
ff⇥i↵.

Remark. The adjustment procedure described in Proposition 1 and Lemma 2 can be written for

each individual age x in the classical form e'i
x = (1� zix)↵x+ zix b'i

x, where zix is the credibility factor

given as follows

zix = (↵x)
2b�2

i

⇥
(↵x)

2b�2
i + b'i

xks
i(x)k2

⇤�1
.

Here, recall that ksi(x)k2 =
Pn

j=1

�
sij(x)

�2
and measures the reduction in variance of the smoothed

mortality curve b'i
x.

Remark. All the ingredients required to implement the credibility approach in Lemma 2, in order

to predict the next-period estimator, are already determined. However, we still need to characterize

an estimation for ↵. To do this, we borrow the same procedure considered in Nielsen and Sandqvist

(2000), which amend to estimate ↵ as a linear weighted average over the portfolios.

2.4 Numerical Analysis

2.4.1 Source of Data

The data come from studies conducted by Institut des Actuaires. These include in total 14

portfolios covering the period 2007 � 2011 with each company’s contributing data for at least 4

of a possible 5 years. Tableau 2.1 presents the observed characteristics of the male population of

these portfolios. For this dataset, we are considering a period of T = 4 years for all companies.

The remaining year serves to test the predictive feature of the model using an in-sample analysis.

The considered analysis follows similar lines as in Salhi et al. (2016), which also exploit the same

dataset. Therefore, the age band for all companies ranges from x = 30 to 95 years old. The Figure 2.1

shows the age distribution of the portfolios (in percentage), i.e. the aggregate number of individuals

exposed to risk at each attained age. It graphically depicts the size heterogeneity observed between

the portfolios with insured holding di↵erent coverages. These portfolios are not only of di↵erent
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sizes but also of di↵erent age pyramids. For example, the portfolio P1 corresponds to a typical

death contingent coverage. In fact, the latter has a concentration on middle aged populations with

few exposure at high ages. When portfolios, such as P2, are concerned, we should note that those

are not contingent to life annuities but rather correspond to death insurance coverage and saving

contracts. These allow for a tax-advantaged investment component for those anticipating their

succession and or suitable for estate planning, which typically attract more elderly.

In the sequel, the baseline mortality 'ref
x is a market table, denoted IA2013. The latter is deri-

ved from mortality trends originating from the INSEE table, French national bureau of statistics,

constructed for the French insurance market provided by Institute des Actuaires, see Tomas (2011).

Before proceeding to the implementation of the methodology developed in the previous sections,

Table 2.1 – Observed characteristics of portfolios population.

Period of observation Mean age Average

exposure

Mean age

at death
Size

Beginning End In Out

P1 01/01/07 12/31/11 36.96 39.74 2.77 68.78 616390

P2 01/01/07 12/31/11 69.3 73.35 4.05 80.34 7589

P3 01/01/07 12/31/10 40.16 43.1 2.94 71.77 80086

P4 01/01/07 12/31/11 37.5 41.13 3.63 54.08 93165

P5 01/01/07 12/31/11 36.9 39.1 2.2 59.31 21540

P6 01/01/07 12/31/10 48.5 52.11 3.62 82.34 847469

P7 01/01/07 12/31/11 66.65 71.29 4.64 73.68 89507

P8 01/01/07 04/13/11 67.51 71.38 3.86 80.72 78650

P9 01/01/07 06/30/11 45.97 49.6 3.62 73.17 1556150

P10 01/01/07 12/31/11 62.97 67.64 4.67 79.77 132990

P11 01/01/07 12/31/11 38.89 42 3.11 56.44 420405

P12 01/01/07 12/31/11 37.05 39.2 2.15 57.41 904020

P13 01/01/07 12/31/11 43.01 46.89 3.88 71.03 848757

P14 01/01/07 12/31/11 50.12 54.16 4.04 72.37 233488

we must look deeper into the particular feature of our dataset. Specifically, we must focus on those

that may arise specific concerns when it comes to the graduation of a mortality table using the

smoothing procedure considered in section 2.2. As previously reported, the experienced mortality

does not only su↵er from a small sample size but also the under-representation of those within

some age groups. This is typically the case of portfolio P2, see Tableau 2.1 and Figure 2.1. In fact,

we have a small sample of 7589 individuals with only 2% aged under 60. This is also the case for

portfolios P7, P8 and to some extent P10, but with a larger exposure. For these portfolios, the use
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of the smoothing procedure in sous-section 2.2.2 has the advantage of borrowing the information in

age bands where the exposure is substantially larger. This may allow for mortality curve to fulfill

some required local properties such as, e.g., smoothness. In fact, enlarging the smoothing window h,

giving access to far distant ages, may ensure the increasing of mortality intensity over ages, which

is not only a very much sought behavior but also a biologically reasonable quality.

Age
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re
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Figure 2.1 – Distribution of age groups in the portfolios.

2.4.2 Entity-Specific Graduated Mortality

In order to implement the local likelihood based graduation approach in section 2.2, we need to

identify the fitting variables. There are several components of the local fit that must be specified :

the bandwidth h, the degree of local polynomial p and the weight function. (i) The latter is assumed

be Gaussian kernel as stipulated earlier in this chapter. Other types of kernels can be investigated

but this has much less e↵ect on the bias and the variance tradeo↵. As noted by Loader (2006),

the kernel choice only influences the visual quality of the fitted regression curve. (ii) On the other

hand, the bandwidth has a critical e↵ect on the local regression fit. The simplest specification is

a constant bandwidth for all ages x. This is, however, not satisfactory in our case. In fact, as
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mentioned throughout the chapter, for ages where data is available in a su�cient amount small

bandwidth will produce a convenient fit with the desired features. In turn, when the population is

poorly represented at some ages, large values of h should be needed. Accordingly, one might choose

a di↵erent bandwidth for each fitting age x 2 {x1, · · · , xm}, taking into account local features such

as the local intensity and the amount of data. The problem of choosing the bandwidth h received

a lot of attention in the literature. See for example, Fan and Gijbels (1995); Jones et al. (1996);

Bagkavos and Patil (2009); Nielsen et al. (2009) and Gámiz et al. (2016) and the references therein.

First of all, when the bandwidth h does not depend on the age level, we can use a scoring

procedure based on a generalization of Aı̈kake Information Criterion (AIC) that uses the deviance

function, i.e. the likelihood together with the degrees of freedom of the fitted model, to rank the

models. In our case, as we adopt a local rather than a global bandwidth, we advocate using some

popular and yet e�cient data-driven approaches. Here, we use the selection rule proposed by Jiang

and Doksum (2003). The latter can be summarized in the following steps :

Step 1 We choose an initial global bandwidth h. The latter can be based on a modified AIC as

described above and advocated by Loader (2006). This is, for instance, the approach used in

the empirical work of Tomas (2011). Then, pilot estimators c'x of 'x are obtained by using

the same bandwidth h for ages x and the local likelihood estimator in Équation 2.4.

Step 2 For each age level x, we optimize the likelihood functional in Équation 2.4 being function

of the bandwidth. We obtain its minimizer h.

Step 3 We run a local smoother of the bandwidths h over ages using the global bandwidth in

Step 1 and the same kernel !.

The above rule is the analogue of least-squares cross-validation or the leave-one-out principle, see

Mammen et al. (2011), Pérez et al. (2013) and Gámiz et al. (2016). In Gámiz et al. (2016) a precise

connection of the cross-validation procedure with our discrete framework is investigated.

Once an estimate of the local bandwidths are obtained, one can estimate the optimal polyno-

mial degree p through the global partial likelihood. In Tableau 2.2 we reported the degree of the

polynomial used for smoothing as well as the corresponding degree of freedom and the AIC score.

This is intended to represent the global sparsity of the data and the goodness of fit quality. We can

see that for some portfolios the optimal choice of the degree controls induce a high level of degrees

of freedom, i.e. portfolios P5 and P6. This is to say that the corresponding ”smoothed” curves

b'i, i = 5, 6, will be noisy showing many feature. Indeed, the degree of freedom is a qualitative

proxy for the regularity of graduated mortality curve as the smoothness evolves inversely to the

degree of freedom. This feature can already be deduced from the limited amount of information

(exposures) that are at our disposable for these portfolios. However, the sparsity of the data is not

only represented by the exposure. In fact, the deaths are of paramount importance in characterizing

the survival rate. Indeed, looking at the exposure reported in Tableau 2.1, one could expect a high
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degree of freedom for the portfolio P2 having only 7589 individuals exposed to risk. However, the

death records are concentrated on a small band making the smoothing less noisy as the informa-

tion needed to estimate the mortality at each individual age is accessible at the immediate adjacent

ages. This is, for instance, not the case for the portfolio P5 having a greater exposed individuals

but with high sparsity and small number of deaths over few ages. For the remaining portfolios, the

degrees of freedom are relatively small. In the following, we will implement the credibility approach

described in the last section to assess the impact of the latter on the graduated mortality curves.

Table 2.2 – Local-likelihood smoothing parameters’ optimal choice

P1 P2 P3 P4 P5 P6 P7

AIC 57.12 49.34 79.68 78.91 61.10 106.73 68.37

Degree 2 2 1 1 3 3 1

DF 5 3 4 6 16 10 8

P8 P9 P10 P11 P12 P13 P14

AIC 74.11 63.96 53.44 70.86 74.82 82.70 78.37

Degree 2 1 2 1 1 3 2

DF 4 5 4 6 6 7 5

2.4.3 Next-Period Mortality Rate

Here, we consider the mortality experience over the period 2007 � 2010 upon which we cali-

brate the smoothing procedure considered in the above subsection. For each portfolio, we build a

graduated mortality table b'i and aim at adjusting the latter for the next period projection. For

each age x, the graduated mortality gives a candidate rate for the next period, i.e. b'i
x. The insurer

has the possibility of whether to rely on this rate or adjust it given the experience stemming from

the other rates at other ages. In other words, the mortality used for the next period forecasts can

be adjusted using the credibility formula in Équation 2.18. To do this, we estimate the di↵erent

quantities needed to implement (2.18) as follows :

(i) Following Lemma 2.3.2, the expected mortality rate ↵ can be estimated as follows :

b↵ =
⇣ xnX

x=x1

KX

i=1

Ei
x b'i

x

⌘
/

KX

i=1

Ei
•.

(ii) The weight loading matrix Si is given as an output of the graduation step and can be estimated

using Équation 2.10.

(iii) The diagonal matrix � relies on the variance of ⇥i
x’s which might be estimated given that
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b⇥i
x = b'i

x/b↵, and thus we can write

�x =
KX

i=1

⇣
b'i
x/b↵

⌘2
/K �

⇣⇣ KX

i=1

b'i
x/b↵

⌘
/K

⌘2
.

Figure 2.2 depicts, respectively, the graduated mortality over the period 2007�2010 as described

above and the next-period (2011) mortality rates using the credibility formula in Équation 2.18.

Similarly, Figure 2.3 represents the next-period predicted deaths using the two mortality rates. In

these figures we grayed areas (ages) where the relative di↵erence between the smoothed mortality

and its adjusted counterpart exceeds a 10% level. More precisely, this corresponds to the ages x

where |e'i
x� b'i

x|/b'i
x > 0.1. At a first glance, we remark that the credibility adjustment does change

the mortality rate and overall propose a smoother curve compared to the initial one, and this is even

evident when dealing with portfolios with small sizes and high degrees of freedom. In fact, when

we deal with portfolios such as P5, where the exposure-to-risk as well as the underlying deaths are

very limited, the smoothing approach fails to capture the mortality structure and the output of

the procedure proposed in section 2.2 are very irregular and noisy. Indeed, as noted above such a

procedure need information stemming from adjacent ages when a particular age lacks of su�cient

exposure. The case of P5 is very appealing of the limit of the semi-parametric smoothing techniques

as the limitation on the information is shared over the ages. This is why the corresponding degree

of freedom is high and the AIC is low, see Tableau 2.2, and explains the irregular curve (dashed

line) for the smoothed mortality.

On the other hand, the degrees of freedom given as tr(SiSi>) provide information on the

credibility of the smoothed curve b'i. In fact, as we can see in Équation 2.18 or in a more tractable

way as in Lemma 2.3.2, the higher the degrees of freedom, i.e. tr(SiSi>) =
Pxn

x=x1
ksi(x)k2 ; the

smallest is the weight attached to the smoothed curve 'i (in aggregate). At an age level x 2

{x1, · · · , xm}, one should look at the individual variance ksi(x)k2. That being said, we can conclude

that the parameter driving the adjustment at the age levels is vanishing meaning that the adjusted

mortality rate e'i
x is close to the reference ↵x. It comes as no surprise, then, to find that the adjusted

curve tends to o↵set this undesired e↵ect thanks also to the information coming from other ages

but from di↵erent portfolios.

The visual inspection of the credibility based mortality curve shows that the regularity is pre-

served avoiding the limitation of the sole smoothing procedure discussed above. For some portfolios,

such as portfolio P12, the regularization based on the credibility attached to each age level enhance

the prediction of the future mortality. Indeed, the smoothed mortality based on past observations

suggest a local distortion of the curve for ages ranging from 60 to 80. This particular feature is

however not observed in the mortality curve for the year 2011 and thus the credibility based curve

has a better fitting. This can also be observed in Figure 2.3, where the predicted deaths using e'i,

for i = 12, are (visually) more in line with the observations. The same conclusions, in the grayed

area, can be drawn for the other portfolios.
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2.4.4 Proximity Between the Observations and the Model

Besides the visual inspection of the proposed adjustments and in order to understand the impact

of the latter, we will use some known statistics to quantify the proximity between the observations

and the outputs of the two curves considered in Figure 2.2 and Figure 2.3. We assess the overall

deviation with the observed mortality by comparing criteria measuring the distance between the

observations and the models with the �2, i.e. Forfar et al. (1988b), the mean average percentage error

(MAPE), see for instance Felipe et al. (2002) ; as well as the standardized mortality ratio (SMR), i.e.

the ratio of deaths observed to those predicted. The quantities summarizing the proximity between

the observations and the model, for each portfolio i at calendar year t = 2011, are described as

follows :

(i) The �2
i allows to measure the quality of the fit of the model. It writes,

�2
i =

xnX

x=x1

�
Di

x � Ei
x bqix

�2

Ei
x bqix

�
1� bqix

� .

(ii) The MAPE is the average of the absolute values of the deviations from the observations,

MAPEi =

Pxn
x=x1

���Di
x/E

i
x � bqix

�
/
�
Di

x/E
i
x

���
Pxn

x=x1
Di

x
⇥ 100.

(iii) The SMR is computed as the ratio between the observed and fitted number of deaths in each

portfolio

SMRi =

Pxn
x=x1

Di
xPxn

x=x1
Ei

x bqix
.

Hence, if SMRi > 1, the fitted deaths are under-estimated and vice-versa if SMR < 1. Note that

we can consider the SMRi as a global criterion which does not take the age structure into account,

compared to the �2
i and the MAPEi for instance.

Tableau 2.3 and Tableau 2.4 summarize the above mentioned quantities giving the overall

deviation between the observations and the adjustment analysis for the portfolios P1 to P14 (except

3 and 6 which do not contain observations of year 2011) obtained by the smoothing approach

together with the credibility adjustment procedure. When looking at criteria and quantities which

take the age structure of the error into account, the credibility approach has an important benefit

compared to the sole graduated curve. The quality of the fit increases, sometimes drastically,

i.e. portfolio P1, in terms of having the minimum �2
i and MAPEi values, i.e. the last panels of

Tableau 2.3. Also, the credibility adjustment exhibits the highest p-value for the likelihood ratio

test. Even when we consider a global indicator of the quality of the fit such as the SMRi which

does not take the age structure into account, the proposed procedure seems to perform better than
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Table 2.3 – Tests and quantities summarizing the deviation between the observations and the

model

Hardy-Panjer Poisson-Gamma Makeham-Credibility Smoothed Smoothed+Adj.

�2

P
o
r
t
fo
li
o
1

1901.240 1928.680 259.400 357.870 193.967

MAPE (%) 102.660 102.000 32.870 3.018 2.349

SMR 1.737 1.756 1.126 1.487 1.385

�2

P
o
r
t
fo
li
o
2

34.890 33.640 30.940 37.612 31.166

MAPE (%) 48.030 49.120 53.990 20.119 20.842

SMR 1.037 1.002 0.905 1.102 0.948

�2

P
o
r
t
fo
li
o
4

130.120 132.890 79.321 58.615 51.515

MAPE (%) 95.390 92.490 44.880 14.006 13.078

SMR 0.826 0.853 1.405 0.984 1.168

�2

P
o
r
t
fo
li
o
5

473.680 573.940 348.180 NA 370.401

MAPE (%) 85.660 88.040 90.420 59.296 56.038

SMR 2.857 3.424 5.021 3.513 5.534

�2

P
o
r
t
fo
li
o
7

221.640 223.560 195.000 77.997 72.795

MAPE (%) 135.390 135.710 37.250 0.534 0.509

SMR 0.846 0.844 0.823 0.922 0.922

�2

P
o
r
t
fo
li
o
8

2575.630 2583.900 2414.250 66.033 61.174

MAPE (%) 323.780 324.610 263.210 1.100 1.122

SMR 0.232 0.231 0.243 0.928 0.930
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Table 2.4 – Tests and quantities summarizing the deviation between the observations and the

model - continued

Hardy-Panjer Poisson-Gamma Makeham-Credibility Smoothed Smoothed+Adj.

�2

P
o
r
t
fo
li
o
9

1572.530 1573.970 1502.870 57.461 53.735

MAPE (%) 368.080 368.290 125.640 0.764 0.755

SMR 0.423 0.423 0.419 0.932 0.940

�2

P
o
r
t
fo
li
o
1
0

115.820 116.470 97.880 83.790 72.448

MAPE (%) 89.680 91.030 46.140 3.356 3.530

SMR 0.871 0.862 0.960 0.948 0.950

�2

P
o
r
t
fo
li
o
1
1 415.320 417.530 76.480 55.888 55.127

MAPE (%) 152.870 151.690 46.970 5.934 5.548

SMR 0.829 0.837 1.018 0.918 0.964

�2

P
o
r
t
fo
li
o
1
2 130.050 129.230 90.740 88.836 76.459

MAPE (%) 110.540 107.220 95.270 36.577 33.344

SMR 0.598 0.619 0.543 0.669 0.539

�2

P
o
r
t
fo
li
o
1
3 351.560 351.360 263.550 94.570 89.428

MAPE (%) 180.910 180.610 54.620 1.765 1.608

SMR 0.839 0.840 0.832 0.914 0.930

�2

P
o
r
t
fo
li
o
1
4

227.860 227.950 85.920 59.317 50.885

MAPE (%) 159.740 160.600 53.530 5.659 4.852

SMR 0.792 0.788 0.939 0.827 0.860
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the graduated curve. However, notice that the impact of adjustment in smaller when the portfolios

are quiet big. This is already remarkable when one operated visual checks as mentioned earlier.

2.4.5 Comparaison with Classical Approaches

We first note that the Hardy-Panjer and Poisson-Gamma approaches produce relatively similar

graduations as the tests suggest sensibly similar outputs. However, we notice some di↵erences with

the Makeham credibility model which displays more favorable results. This is already outlined in

Salhi et al. (2016) and this may be explained by the age-specific adjustment but also thanks to the

structural feature added by the Makeham parametric model. Taking into account the age and thus

the structure of the portfolio increases the goodness of fit of as well as the predictive performance

of the constructed mortality. Regarding the local likelihood approach we notice that the force of

mortality adjust to more complex mortality structures and thus o↵er a better fit for portfolio

with sparse information. However, for very small portfolios the smoothed mortality rates fail to

properly predict the next-year deaths compared to the aforementioned approaches. The credibility-

based revision at the age-level globally enhanced the predictive ability of the graduated mortality.

Specifically, when it comes to the tests that are sensitive to the age structure, we notice that the

credibility-based adjustment o↵ers an outstanding fit as the tests are favorable compared to the

Hardy-Panjer, Poisson-Gamma and the Makeham-based approaches. More importantly, the main

advantage of our method over these approaches is its ability to adjust to more complex mortality

structures and thus o↵er a better fit for portfolio with sparse information. e.g. the next-year MAPE,

for Portfolio 2 (small), goes from 3.10% to 2.34%.

2.5 Concluding Remarks

In this chapter we proposed a methodology to adjust the graduated mortality table that uses

an adaptive smoothing procedure based on the local likelihood. The adjustment is based on the

credibility weighting technique of the smoothed curves and a reference. Out approach takes into

account the age specific heterogeneity that may arise in real world datasets. We thus consider

updating the mortality for each age based on the upcoming past information from the same age

but also the neighboring ages. The inclusion of the neighboring ages is crucial as the particular

smoothing procedure used in this chapter add a dependency between the single ages. Based on

classical results on the inference of the smoothing procedure we derived the closed form formulas

needed to adjust the mortality.

The proposed methodology is shown to outperform compared to the classical credibility ap-

proaches that does not take into account the age structure of the portfolio. This is in line with

the recent work in this field as mentioned by Salhi et al. (2016). Even when the age structure is
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accounted for the methodology developed in this chapter has an important benefit. This is mainly

due to the underlying curve built using an adaptive procedure compared to the parametric model

considered in Salhi et al. (2016).

We should note that the model proposed can be investigated in order to quantify mathematically

the errors induced in the assessment of the next-period mortality curve. This amend to consider the

uncertainty stemming from the estimation of the di↵erent variables used in the updating procedure.

There are also several practical issues we do not address here such as the impact on the pricing of

life insurance contracts. These are open questions that we openly acknowledge and leave for future

research.



Conclusion

Dans ce mémoire nous avons proposé deux méthodologies de construction de table de mortalité

pour des portefeuilles de petite taille. Ces deux méthodologies reposent sur une application de la

théorie de la crédibilité tenant en compte la fiabilité des données mais aussi leur quantité. Etant

de natures di↵érentes, l’une se basant sur une approche paramétrique et l’autre une construction

semi-paramétrique, l’inclusion de la crédibilité réussi à améliorer le pouvoir prédictif des tables

construites par les deux méthodes. En e↵et, la procédure qu’on propose emprunte l’information

nécessaire à la construction des probabilités de décès des autres portefeuilles qui ont une information

plus abondante mais aussi plus fiable.

Comme nous l’avons constaté dans les deux chapitres 1 et 2 la prise en compte de l’informa-

tion provenant des di↵érents portefeuilles permet de pallier au manque d’observation pour d’autres

portefeuilles. Par conséquent, un modèle paramétrique permet alors un ajustement plus fidèle aux

données brutes. Il s’avère, néanmoins, que l’utilisation d’un modèle semi-paramétrique (de type

lissage par maximisation de la vraisemblance locale) o↵re ajustement plus proche des décès ob-

servés et o↵re une meilleure prédiction selon la conclusion du chapitre 2 basée sur une évaluation

quantitative de la pertinence des deux approches. En e↵et, les divergences entre ces deux méthodes

sont appréhendées sur la fiabilité de l’ajustement de la mortalité passée mais aussi sur l’erreur de

prédiction de la mortalité future. La méthode de lissage utilisant la vraisemblance locale complétée

d’un ajustement par crédibilité réussit à produire des estimations futures de décès plus proche de la

réalité. Il est donc clair que cette approche est la mieux adaptée pour répondre à la problématique

initialement posée qui est la construction d’une table best estimate pour le provision du risque de

mortalité à la maille portefeuille ou contrat.

Enfin, la méthodologie proposée dans ce mémoire peut être étendue à d’autres risques comme

liés au maintien en arrêt de travail, à la longévité... etc. Néanmoins, l’application à la longévité

nécessite une réadaptation de la théorie pour prendre en compte l’aspect temporel de ce risque lié

principalement au risque de tendance.
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Annexe A

Annexe du chapitre 1

A.1 Tests and quantities summarizing the deviation between the

observations and the models for the year 2010

Tables A.1 and A.2 present the tests and quantities summarizing the overall deviation between the obser-

vations and the credibility analysis for the male population obtained by the Hardy-Panjer, Poisson-Gamma

and the Makeham credibility approaches with the two baselines mortality considered for the year 2010.

A.2 Tests and quantities summarizing the deviation between the

observations and the models for the year 2011

Tables A.3 and A.4 present the tests and quantities summarizing the overall deviation between the obser-

vations and the credibility analysis for the male population obtained by the Hardy-Panjer, Poisson-Gamma

and the Makeham credibility approaches with the two baselines mortality considered for the year 2011.

A.3 Fitted probabilities of death in the log scale for the year 2010

Figure A.1 displays the fitted probabilities of death in the log scale for the male population for the year

2010.
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A.4 Fitted probabilities of death in the log scale for the year 2011

Figure A.2 displays the fitted probabilities of death in the log scale for the male population for the year

2011.

A.5 Fitted number of deaths for the year 2010

Figure A.3 displays the fitted number of deaths for the male population for the year 2010.

A.6 Fitted number of deaths for the year 2010

Figure A.4 displays the fitted number of deaths for the male population for the year 2010.

A.7 Standardized residuals for the year 2010

Figure A.5 displays the standardized residuals for the male population for the year 2010.

A.8 Standardized residuals for the year 2011

Figure A.6 displays the standardized residuals for the male population for the year 2011.
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Table A.1 – Tests and quantities summarizing the deviation between the observations and the

model, calendar year 2010, male population.

INSEE IA2103

Hardy-Panjer Poisson-Gamma Makeham-Credibility Hardy-Panjer Poisson-Gamma Makeham-Credibility

P
o
rt
fo
li
o
1

Standardized > 2 60 60 35 46 46 15

residuals > 3 48 48 28 32 32 5

�2 5481.86 5542.82 3569.97 1705.25 1747.25 208.81

MAPE (%) 233.22 230.94 373.89 117.01 115.42 42.35

Likelihood ⇠LR 946.98 947.72 443.16 463.48 468.46 88.03

ratio test p-value 0 0 0 0 0 0.0364

SMR 1.1792 1.1919 0.5265 1.7629 1.7957 1.0532

SMR test ⇠SMR 4.0379 4.2939 12.1893 13.0352 13.4202 1.2845

p-value 0 0 0 0 0 0.0995

P
o
rt
fo
li
o
2

Standardized > 2 9 11 0 1 1 0

residuals > 3 2 1 0 0 0 0

�2 102.84 101.50 29.62 41.54 40.41 30.75

MAPE (%) 108.16 116.37 48.80 47.18 48.09 54.70

Likelihood ⇠LR 90.3 94.99 33.8 36.43 36.77 33.35

ratio test p-value 3e-04 1e-04 0.9517 0.908 0.901 0.9573

SMR 0.6421 0.6014 0.8764 1.0149 0.9868 0.8567

SMR test ⇠SMR 3.6844 4.2907 0.9805 0.074 0.0207 1.1681

p-value 1e-04 0 0.1634 0.4705 0.4918 0.1214

P
o
rt
fo
li
o
3

Standardized > 2 34 32 11 7 7 4

residuals > 3 9 9 5 0 0 0

�2 416.19 420.04 161.66 110.28 110.89 64.16

MAPE (%) 156.33 154.14 76.78 64.99 64.67 45.48

Likelihood ⇠LR 239.44 236.76 115.84 91.13 90.85 38.51

ratio test p-value 0 0 1e-04 0.0219 0.023 0.9973

SMR 0.5361 0.5451 0.8955 0.8989 0.9052 1.1212

SMR test ⇠SMR 7.0465 6.8379 1.0892 1.049 0.9746 1.1174

p-value 0 0 0.138 0.1471 0.1649 0.1319

P
o
rt
fo
li
o
4

Standardized > 2 20 19 15 8 5 2

residuals > 3 2 1 3 0 0 0

�2 183.96 181.13 199.86 83.98 83.32 41.51

MAPE (%) 201.49 196.70 189.51 92.75 90.01 44.33

Likelihood ⇠LR 212.87 208 174.37 101.22 98.75 36.28

ratio test p-value 0 0 0 0 1e-04 0.9406

SMR 0.3590 0.3665 0.4332 0.6161 0.6326 1.0677

SMR test ⇠SMR 11.537 11.2597 8.408 4.9251 4.6315 0.5798

p-value 0 0 0 0 0 0.2810

P
o
rt
fo
li
o
5

Standardized > 2 8 9 8 8 10 13

residuals > 3 8 8 7 8 8 6

�2 368.00 470.94 205.33 259.26 366.90 209.05

MAPE (%) 72.14 78.00 67.45 79.85 85.30 82.04

Likelihood ⇠LR 63.85 63.4 59.53 52.94 55.85 43.15

ratio test p-value 0.1069 0.1141 0.1930 0.3992 0.2977 0.7746

SMR 1.4167 1.7941 1.2442 2.1557 2.9553 3.1797

SMR test ⇠SMR 1.6446 2.6956 1.0308 3.4572 4.6617 4.9234

p-value 0.05 0.0035 0.1513 3e-04 0 0

P
o
rt
fo
li
o
6

Standardized > 2 62 62 56 50 50 24

residuals > 3 61 61 50 44 44 7

�2 7615.50 7615.40 1538.42 1364.75 1364.60 256.21

MAPE (%) 2558.24 2558.59 652.41 631.01 631.13 145.45

Likelihood ⇠LR 7417.14 7417.88 1707.66 1575.04 1575.17 272.40

ratio test p-value 0 0 0 0 0 0

SMR 0.5444 0.5443 0.9802 0.9337 0.9335 0.9829

SMR test ⇠SMR 42.5496 42.56 1.2532 4.3697 4.3813 1.0796

p-value 0 0 0.1051 0 0 0.1402

P
o
rt
fo
li
o
7

Standardized > 2 51 51 5 16 16 4

residuals > 3 44 44 0 1 1 1

�2 1501.03 1504.85 114.94 163.58 164.90 77.81

MAPE (%) 515.81 516.42 72.78 96.70 96.99 29.18

Likelihood ⇠LR 1417.16 1420.27 145.97 201.82 202.79 60.31

ratio test p-value 0 0 0 0 0 0.6743

SMR 0.5941 0.5934 0.909 0.8941 0.8923 0.9264

SMR test ⇠SMR 33.38 33.4583 5.6836 6.688 6.8078 4.5385

p-value 0 0 0 0 0 0
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Table A.2 – Tests and quantities summarizing the deviation between the observations and the

model, calendar year 2010, male population.

INSEE IA2103

Hardy-Panjer Poisson-Gamma Makeham-Credibility Hardy-Panjer Poisson-Gamma Makeham-Credibility

P
o
rt
fo
li
o
8

Standardized > 2 62 62 5 26 25 4

residuals > 3 59 59 1 6 6 0

�2 2962.00 2967.84 115.90 274.12 275.25 85.69

MAPE (%) 837.99 839.75 67.40 116.81 117.16 23.93

Likelihood ⇠LR 2455.66 2462.18 130.73 247.92 248.89 55.14

ratio test p-value 0 0 0 0 0 0.8273

SMR 0.5638 0.5627 0.9673 0.8972 0.8953 0.9811

SMR test ⇠SMR 37.8094 37.9526 1.9899 6.6063 6.7345 1.1323

p-value 0 0 0.0233 0 0 0.1287

P
o
rt
fo
li
o
9

Standardized > 2 63 63 40 45 45 12

residuals > 3 59 59 30 38 38 3

�2 5759.31 5759.28 591.79 741.90 742.08 147.99

MAPE (%) 754.36 754.31 192.26 198.83 198.97 22.01

Likelihood ⇠LR 3443.71 3443.52 427.46 502.06 502.38 77.09

ratio test p-value 0 0 0 0 0 0.1653

SMR 0.5262 0.5262 0.9084 0.8627 0.8622 0.9078

SMR test ⇠SMR 41.6671 41.6629 5.6716 8.7994 8.8355 5.7137

p-value 0 0 0 0 0 0

P
o
rt
fo
li
o
1
0

Standardized > 2 48 48 1 6 7 3

residuals > 3 33 33 0 1 1 1

�2 669.50 672.46 80.63 121.74 122.90 86.65

MAPE (%) 504.88 509.44 75.75 110.69 112.55 55.72

Likelihood ⇠LR 631.46 636.74 82.38 114.75 116.28 48.65

ratio test p-value 0 0 0.0839 2e-04 1e-04 0.9461

SMR 0.5336 0.5292 0.8434 0.8352 0.8263 0.91

SMR test ⇠SMR 16.4396 16.6765 4.1025 4.344 4.6133 2.2303

p-value 0 0 0 0 0 0.0129

P
o
rt
fo
li
o
1
1

Standardized > 2 43 43 23 33 33 2

residuals > 3 37 37 20 17 17 1

�2 1387.49 1391.13 695.98 380.60 383.26 74.55

MAPE (%) 257.02 255.43 464.55 125.94 124.91 46.19

Likelihood ⇠LR 429.18 426.67 338.9 161.53 161.07 39.42

ratio test p-value 0 0 0 0 0 0.9949

SMR 0.5373 0.5407 0.4887 0.9009 0.9094 1.092

SMR test ⇠SMR 14.8749 14.7085 14.254 2.2628 2.0519 1.8578

p-value 0 0 0 0.0118 0.0201 0.0316

P
o
rt
fo
li
o
1
2

Standardized > 2 33 33 25 17 18 4

residuals > 3 17 17 20 3 3 0

�2 588.18 592.25 449.62 161.43 164.16 91.65

MAPE (%) 241.27 236.71 514.74 111.99 108.62 89.85

Likelihood ⇠LR 274.67 270.12 329.89 122.89 120.3 96.49

ratio test p-value 0 0 0 0 1e-04 0.0085

SMR 0.4877 0.4971 0.3291 0.7957 0.8243 0.7125

SMR test ⇠SMR 10.8436 10.5217 15.3598 3.1391 2.6305 4.7701

p-value 0 0 0 8e-04 0.0043 0

P
o
rt
fo
li
o
1
3

Standardized > 2 55 55 41 27 27 19

residuals > 3 44 44 30 16 16 11

�2 2162.97 2162.79 761.52 331.68 331.72 252.49

MAPE (%) 478.97 478.32 200.96 136.82 136.60 46.85

Likelihood ⇠LR 1360.75 1359.18 469.14 241.26 241.02 136.5

ratio test p-value 0 0 0 0 0 0

SMR 0.5378 0.5385 0.9215 0.8966 0.8979 0.8966

SMR test ⇠SMR 24.9715 24.9134 2.9868 4.0137 3.9601 4.0113

p-value 0 0 0.0014 0 0 0

P
o
rt
fo
li
o
1
4

Standardized > 2 50 50 23 23 23 12

residuals > 3 38 38 7 5 5 1

�2 970.86 970.89 268.98 239.70 239.35 119.91

MAPE (%) 492.88 492.65 153.55 170.57 171.60 57.14

Likelihood ⇠LR 742.64 742.36 200.35 207.33 208.11 69.04

ratio test p-value 0 0 0 0 0 0.3750

SMR 0.5329 0.5331 0.9491 0.8529 0.848 1.0419

SMR test ⇠SMR 15.6678 15.6546 1.1518 3.6326 3.7699 0.8978

p-value 0 0 0.1247 1e-04 1e-04 0.1847
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Table A.3 – Tests and quantities summarizing the deviation between the observations and the

model, calendar year 2011, male population.

INSEE IA2103

Hardy-Panjer Poisson-Gamma Makeham-Credibility Hardy-Panjer Poisson-Gamma Makeham-Credibility

P
o
rt
fo
li
o
1

Standardized > 2 58 57 56 48 48 13

residuals > 3 52 52 48 35 35 5

�2 5574.22 5621.44 3126.56 1901.24 1928.68 259.40

MAPE (%) 201.74 200.25 178.37 102.66 102.00 32.87

Likelihood ⇠LR 1027.03 1027.4 806.13 524.68 528.16 106.43

ratio test p-value 0 0 0 0 0 0.0012

SMR 1.1124 1.1216 1.2011 1.7371 1.7557 1.1256

SMR test ⇠SMR 2.935 3.1588 4.9944 14.192 14.441 3.2557

p-value 0.0017 8e-04 0 0 0 6e-04

P
o
rt
fo
li
o
2

Standardized > 2 4 4 0 3 2 1

residuals > 3 2 1 0 0 0 0

�2 77.89 78.43 29.07 34.89 33.64 30.94

MAPE (%) 114.12 124.28 52.48 48.03 49.12 53.99

Likelihood ⇠LR 66.67 71.07 29.92 28.72 28.99 28.16

ratio test p-value 0.0385 0.0169 0.9811 0.9877 0.9864 0.9901

SMR 0.6545 0.6097 0.8668 1.0371 1.0016 0.905

SMR test ⇠SMR 3.7113 4.3984 1.1388 0.2609 0.0268 0.7649

p-value 1e-04 0 0.1274 0.3971 0.5107 0.2222

P
o
rt
fo
li
o
4

Standardized > 2 20 20 15 13 12 6

residuals > 3 4 4 3 4 4 1

�2 250.57 250.57 1026.72 130.12 132.89 79.00

MAPE (%) 202.16 196.53 226.84 95.39 92.49 44.88

Likelihood ⇠LR 173.25 168.79 172.37 90.66 89.04 51.08

ratio test p-value 0 0 0 7e-04 0.0011 0.51

SMR 0.4852 0.498 0.5443 0.826 0.8534 1.4047

SMR test ⇠SMR 8.9106 8.5491 6.3742 2.1049 1.7255 3.4889

p-value 0 0 0 0.0177 0.0422 2e-04

P
o
rt
fo
li
o
5

Standardized > 2 8 8 8 10 12 17

residuals > 3 8 8 6 8 8 12

�2 706.87 851.26 262.78 473.68 573.94 348.18

MAPE (%) 77.15 80.93 77.56 85.66 88.04 90.42

Likelihood ⇠LR 64.56 65.02 52.53 56.7 58.91 50.61

ratio test p-value 0.1133 0.1061 0.4534 0.3041 0.2374 0.5288

SMR 1.714 2.0544 1.8163 2.857 3.4243 5.0206

SMR test ⇠SMR 2.4494 3.1986 2.6942 4.4512 5.0828 6.2982

p-value 0.0072 7e-04 0.0035 0 0 0

P
o
rt
fo
li
o
7

Standardized > 2 55 55 15 21 21 11

residuals > 3 45 45 8 3 3 9

�2 1593.26 1597.79 236.83 221.64 223.56 195.00

MAPE (%) 620.28 621.10 95.95 135.39 135.71 37.25

Likelihood ⇠LR 1448.73 1452.33 201.91 227.8 229.08 118.01

ratio test p-value 0 0 0 0 0 1e-04

SMR 0.5775 0.5768 0.811 0.8455 0.844 0.8229

SMR test ⇠SMR 35.3923 35.4792 2.74 10.1297 10.2409 11.8209

p-value 0 0 0 0 0 0

P
o
rt
fo
li
o
8

Standardized > 2 65 65 37 50 50 29

residuals > 3 63 63 29 29 29 29

�2 4987.77 5002.11 2485.39 2575.63 2583.90 2414.25

MAPE (%) 788.87 790.77 292.03 323.78 324.61 263.21

Likelihood ⇠LR 4970.14 4984.29 1891.04 2059.63 2066.49 1765.46

ratio test p-value 0 0 0 0 0 0

SMR 0.1483 0.148 0.2404 0.2315 0.2311 0.2431

SMR test ⇠SMR 82.2167 82.3412 56.2334 58.1115 58.2101 55.6816

p-value 0 0 0 0 0 0

P
o
rt
fo
li
o
9

Standardized > 2 59 59 64 59 59 44

residuals > 3 54 54 62 55 55 36

�2 4718.93 4718.46 1511.79 1572.53 1573.97 1502.87

MAPE (%) 1124.24 1124.13 349.82 368.08 368.29 125.64

Likelihood ⇠LR 4311.65 4311.18 1207.84 1283.35 1284.47 985.20

ratio test p-value 0 0 0 0 0 0

SMR 0.2613 0.2613 0.4243 0.4232 0.423 0.4185

SMR test ⇠SMR 70.5073 70.5015 41.3364 41.481 41.5056 42.0967

p-value 0 0 0 0 0 0
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Table A.4 – Tests and quantities summarizing the deviation between the observations and the

model, calendar year 2011, male population.

INSEE IA2103

Hardy-Panjer Poisson-Gamma Makeham-Credibility Hardy-Panjer Poisson-Gamma Makeham-Credibility

P
o
rt
fo
li
o
1
0

Standardized > 2 50 50 3 5 5 5

residuals > 3 34 33 1 1 1 1

�2 635.65 638.50 74.42 115.82 116.47 97.88

MAPE (%) 408.56 412.51 51.54 89.68 91.03 46.14

Likelihood ⇠LR 613.89 619.28 73.18 112.54 113.73 47.99

ratio test p-value 0 0 0.2542 3e-04 2e-04 0.9535

SMR 0.5666 0.5617 0.9229 0.8708 0.8623 0.9596

SMR test ⇠SMR 15.1709 15.4268 1.9491 3.4132 3.6619 0.9826

p-value 0 0 0.0256 3e-04 1e-04 0.1629

P
o
rt
fo
li
o
1
1

Standardized > 2 43 43 24 35 35 4

residuals > 3 41 41 22 17 19 0

�2 1379.61 1382.88 926.73 415.32 417.53 76.48

MAPE (%) 299.83 297.80 555.88 152.87 151.69 46.97

Likelihood ⇠LR 511.89 508.51 429.79 214.06 213.07 52.92

ratio test p-value 0 0 0 0 0 0.8779

SMR 0.4927 0.4961 0.4443 0.8291 0.8369 1.0183

SMR test ⇠SMR 16.7405 16.5554 15.6387 4.0301 3.8212 0.3648

p-value 0 0 0 0 1e-04 0.3576

P
o
rt
fo
li
o
1
2

Standardized > 2 35 35 21 10 11 4

residuals > 3 16 15 16 1 1 0

�2 470.25 471.58 263.73 130.05 129.23 90.74

MAPE (%) 231.00 226.18 470.92 110.54 107.22 95.27

Likelihood ⇠LR 317.04 310.88 337.99 144.41 140.05 114.53

ratio test p-value 0 0 0 0 0 2e-04

SMR 0.3668 0.3745 0.2039 0.5981 0.6188 0.5426

SMR test ⇠SMR 12.9497 12.6324 17.505 6.0626 5.624 7.3459

p-value 0 1e-04 0 0 0 0

P
o
rt
fo
li
o
1
3

Standardized > 2 56 56 39 28 28 23

residuals > 3 49 50 29 19 19 10

�2 2058.43 2057.75 678.98 351.56 351.36 263.55

MAPE (%) 589.24 588.36 245.40 180.91 180.61 54.62

Likelihood ⇠LR 1316.24 1314.45 414.88 237.69 237.35 141.71

ratio test p-value 0 0 0 0 0 0

SMR 0.5092 0.5099 0.8679 0.8392 0.8404 0.8316

SMR test ⇠SMR 27.2355 27.1712 5.2064 6.4792 6.4261 6.8303

p-value 0 0 0 0 0 0

P
o
rt
fo
li
o
1
4

Standardized > 2 48 48 21 24 24 7

residuals > 3 36 36 5 5 6 0

�2 862.31 862.27 248.72 227.86 227.95 85.92

MAPE (%) 445.95 445.66 135.88 159.74 160.60 53.53

Likelihood ⇠LR 709.24 708.85 186.3 204.38 205.17 57.2

ratio test p-value 0 0 0 0 0 0.7717

SMR .5019 0.5022 0.9239 0.7916 0.7879 0.9385

SMR test ⇠SMR 16.5241 16.5063 1.6821 5.1598 5.2678 1.3381

p-value 0 0 0.0463 0 0 0.0904
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Figure A.1 – Fitted probability of death, log scale, for the year 2010, male population
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Figure A.2 – Fitted probability of death, log scale, for the year 2011, male population
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Figure A.3 – Fitted number of deaths for the year 2010, male population



A.8. STANDARDIZED RESIDUALS FOR THE YEAR 2011 65

Figure A.4 – Fitted number of deaths for the year 2011, male population
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Figure A.5 – Standardized residuals, calendar year 2010, male population
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Figure A.6 – Standardized residuals, calendar year 2011, male population
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maximum de vraisemblance local et méthodes relationelles en assurance sur la vie,” Bulletin Français
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