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Signature :

Autorisation de publication et de mise en ligne sur un site de diffusion
de documents actuariels

Signature du responsable entreprise Signature du candidat
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Abstract

Keywords:

Solvency II, Variable Annuities, Best Estimate, quantile, Solvency Capital Requirement,
partial internal model, nested simulations, asset modeling, interest rate modeling, asset
and liability management.

The Solvency II Directive will bring about very significant changes to the solvency
assessment process in the insurance industry. This new directive requires the calculation
of a capital, the Solvency Capital Requirement (SCR), in order to reinforce companies’
solvency and to protect policyholders. Insurers have the possibility to use a standard
approach to calculate this capital but this formula seems inappropriate for certain
products like Variable Annuities. Variable Annuities are unit-linked insurance products
that give the beneficiary an opportunity to benefit from financial investment. They also
guarantee a minimum amount on death or survival during the contract period. Sellers
of Variable Annuities have to be ready to estimate their capital requirement with an
internal model approach, and this is the reason why in this thesis we present a method
that calculates the aggregated required capital for interest rates and equity risks with
an internal model. The method used for this calculation is called “Nested Simulations”.
It is often used to better estimate certain aggregated risk-modules or submodules of the
standard formula (in our case the aggregated interest rates and equity risk-submodules).
Thus in this thesis we will exemplify not only the calculation of the aggregated capital
for interest rates and equity risk-submodules but also the calculation of the capitals for
the life risk-submodules by using the shocks given by the standard formula.
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Résumé

Mots-clés:
Solvency II, Variable Annuities, Best Estimate, quantile, Solvency Capital Require-
ment, modèle interne partiel, simulations dans les simulations, modélisation de l’actif,
modèles de taux, asset and liability management.

L’arrivée de la Directive Solvabilité II entraine des changements conséquents dans
le système d’évaluation de la solvabilité des entreprises d’assurances. Cette nouvelle
règlementation requiert le calcul d’un capital économique, le Solvency Capital Require-
ment (SCR), visant à renforcer la solvabilité des assureurs afin de protéger au mieux les
assurés. Pour calculer ce capital, les assureurs ont la possibilité d’utiliser une formule
standard. Cependant cette méthode s’avère peu adaptée et est peu recommandée pour
certains types de produits tels que les Variable Annuities. Les variable annuities sont
des produits d’assurance vie qui permettent de bénéficier des mouvements favorables
des marchés financiers en investissant sur un fond, tout en offrant des garanties en cas
de vie ou de décès. Les assureurs commercialisant ce type de produits ne pourront plus
utiliser la formule standard pour déterminer leur besoin en capital, c’est pourquoi dans
ce mémoire nous présentons l’estimation du capital requis aggrégé pour les risques de
taux d’intérêts et actions. La methode utilisée pour cette estimation est appelée “Simu-
lations dans les simulations”. Cette méthode est souvent utilisée pour estimer le capital
requis représentant l’aggrégation de plusieurs modules ou sous-modules de risques (dans
notre cas, l’aggrégation entre le capital pour le risque de taux d’intérêts et le capital
pour le risque actions). Ainsi dans ce mémoire nous présenterons l’estimation du capital
aggrégé pour les risques actions et taux d’intérêts à l’aide d’un modéle interne utilisant
la méthode des simulations dans les simulations, mais nous présenterons également dans
notre application le calcul des capitaux requis pour les sous-modules du risque vie en
utilisant les chocs donnés par la formule standard.
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Executive summary

Keywords:

Solvency II, Variable Annuities, Best Estimate, quantile, Solvency Capital Requirement,
partial internal model, nested simulations, asset modeling, interest rate modeling, asset
and liability management.

Since 2002, Solvency I is the solvency regime applied by insurance companies. Al-
though the Solvency I regime was tested during the recent crisis, it is being criticized:
Solvency I is said to be too simple and does not take into account all the risks borne by
the companies. In January 2014, the current system will be replaced by a new regime:
Solvency II. The Solvency II Directive represents major changes in the solvency sys-
tem of insurance companies, and this is the reason why the effective date of this new
directive has been postponed several times. To protect policyholders, the Solvency II
Directive requires the calculation of a capital ensuring the solvency of the company over
a one-year period subject to a confidence level of 99.5%: the Solvency Capital Require-
ment (SCR). This calculation is complicated and can be performed using a standard
formula or a full or partial internal model. However, the use of the standard formula
is not recommended for certain types of products since the structure of the standard
formula does not specifically fit the risk profile of the company. This is the case for
Variable Annuity products. In November 2010, the CEIOPS published the consultation
paper no 83 that alarms the insurers: sellers of variable annuities must prepare to esti-
mate their solvency capital requirement by using an internal model since the standard
formula can no more be used for these products. This is the reason why, in this thesis
we will estimate the aggregated required capital for the interest risk and the equity
risk with an internal model using the nested simulation method for variable annuity
products, and more precisely for the in-case-of death guarantee called Guaranteed Min-
imum Death Benefit (GMDB), and the in-case-of survival guarantee called Guaranteed
Minimum Accumulation Benefit (GMAB). We will also present the calculation of the
life risk capital by using the shocks given by the standard formula.

Our study is close to the study of a partial internal model. Indeed, a partial internal
model is used to calculate one or more risk modules, or sub-modules of the basic SCR,
and the standard formula is used for the calculation of the remaining modules. In our
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study, we have estimated the required capital for market risk 1(noted SCRMkt) with an
internal model and we have estimated the required capital for life risk module by using
the standard formula. Indeed, market risk is a significant risk for GMAB and GMDB
products and this is highlighted in the consultation paper no 83.

The SCRMkt calculation requires the calculation of a quantile 99.5%. To do it, several
methods exist but we have chosen the method of nested simulations. This method is
based on an economic view of the balance sheet and requires two levels of simulations:
a first simulation under real world probability for the first year, and then it is necessary
to evaluate the liability of the company at the end of the first year with a second level
of simulations under risk-neutral world.

Since variable annuity products are generally invested in the monetary market, bonds,
and equities, we have used an interest rate model, and an equity model.

We have presented two equity models: the Black and Scholes model and the Merton
model. The Black and Scholes model is very used in finance and has the advantage
of providing a closed-form solution for the price of equities. However, the Black and
Scholes model under-estimates the tails of distribution and in the context of a quan-
tile calculation, this could lead to significant under-estimation of the SCR. This is the
reason why we have used the Merton model. This model introduces a Poisson jump
used to model discontinuities in stock prices due to the brutal arrival of good or bad
information. The Merton model also provides fatter tails of distribution than the Black
and Scholes model.

We have presented two one-factor interest rate models: the Vasicek model and the
Cox-Ingersoll-Ross (CIR) model. These models have the advantage to provide closed-
form solutions for zero-coupon prices. Nevertheless, the Vasicek model can produce
negative interest rates and this is the reason why we have used the CIR model that
only produces positive interest rates model only produces positive interest rates in its
continuous form, when simulating using the explicit Euler scheme we observe that the
CIR process can produce negative interest rates. To solve this problem we have used
the implicit Euler scheme that produces only positive interest rates.

Calibration is an important part of the model. Indeed, although a model is theoretically
relevant, a bad calibration will lead to a bad prediction quality of the model. We have
presented two methods to calibrate the Merton model: the method of moments and the
maximum likelihood method. Results show that the second method leads to a larger
part of the variance explained by the Poisson jump (about 60%). By comparing the
adjustment of the Black and Scholes model and the Merton model to the empirical dis-

1Here we talk about the capital for market risk by abuse of language (noted SCRMkt), but in fact
we should call it : the aggregation of the required capital for interest rate risk (SCRrate) and the
required capital for equity risk (SCRequity)
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tribution, we have observed that the Merton model better fits the empirical distribution
and also presents fatter tails of distribution. For the CIR model, we have distinguished
the risk-neutral calibration and the historical calibration. Under the historical world,
we have used historical data to calibrate with the maximum likelihood method. Under
risk-neutral world, we have used prices of interest rate instruments, thus we have min-
imized the distance between the prices of zero-coupon bonds observed on the market
and the prices of zero-coupon bonds given by the CIR model. We have observed that
even if the CIR model is very convenient to use thanks to the closed-form solutions
it provides, a one-factor model has the disadvantage of explaining the whole interest
rates curve with just the short rate, which assumes a correlation between the rates of
different maturities. Thus the adjustment to the interest rate curve is a limit of our
model, and this problem essentially comes from the choice of a one-factor model.

In order to simulate the evolution of interest rates and stock returns in a consistent
manner, we have introduced a correlation between the Brownian motion of the inter-
est rate model and the Brownian motion of the equity model. The estimation of the
correlation coefficient was made using historical data of the last ten years, between the
Euro Stoxx 50 and the OverNight Index Average (EONIA). We have observed that
the estimation depends on the choice of data and it appears that the correlation has
decreased over time.

On the liability side, the mortality has been taken deterministic (mortality table TH0002)
and the lapse has not been considered. Interactions between the asset and the liability
have been modeled with an asset and liability model (ALM). We note, that in order to
pay the guarantee of the policyholder, the insurer must retrieve from the fund only the
surrender value of the part of the policyholder, and the guarantee is paid with the own
capital of the insurer. Every year, the fund is rebalanced as the initial investment risk
profile.

The nested simulations concept is very time and storage consuming, thus a particular
attention was granted to the optimization of the computer code. We used MATLAB
which is well adapted to matrix calculation. It therefore has been preferred matrix cal-
culation, and we have also tried to minimize loops. Using three dimensional matrices
has permitted us to store the intermediate values.

In order to illustrate the theoretical part of this thesis, we have made a study of
the sensitivity of the SCRMkt which also permitted us to criticize the results produced
by our implementation. First we have checked whether our model satisfies the test
of the martingale, and we found a relative error of 0.30%. In order to determine the
number of inner scenarios for our example, we have tested the convergence of the Best
Estimate at the end of the first year, and we have built a confidence interval for it. We
have taken 6000 inner scenarios. Then we have determined the number of outer simula-
tions. To do so, we have calculated the value of the quantile with 5000 outer scenarios
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(and 6000 inner scenarios), and we have calculated the relative error compared to this
value obtained when decreasing the number of outer scenarios. With a relative error of
0.16%, we have taken 4000 outer scenarios. Given the number of simulations, we have
begun the sensitivity study of the SCRMkt. We have considered that the investment
is allocated as 50% equities, 20% monetary, and 30% bonds and the maturity of the
contract is 10 years.

We have first tested the sensitivity of the SCRMkt to the in-case-of survival guar-
antee(GMAB). To do so, we have compared the SCRMkt obtained depending on the
amount of the guarantee expressed in percentage of the initial investment value. Results
show that the SCRMkt increases of about 90% when the guaranteed amount goes from
100% to 130% of the initial amount invested. Then we have tested the sensitivity of
the SCRMkt to the in-case-of death guarantee(GMDB). When the rolled-up guaranteed
amount (in case of death) goes from 2% to 5% then the SCRMkt increases of about
26%. The following graphs illustrate the results:

Figure 1: Impact of the guarantees on the capital requirement for market risk

Impact of the GMDB guarantee Impact of the GMAB guarantee

We have then tested the sensitivity of the SCRMkt to the allocation of the fund, by
varying the part of equities and bonds (the monetary part remains the same). We
observe that when the part of equities goes from 50% to 80%, the SCRMkt increases
by about 91%. This brutal variation is explained by an increase in the volatility of the
fund when the equity part is increased. In order to illustrate the previous result, we
have tested the sensitivity of SCRMkt to the volatility of the equity part. The SCRMkt

increases by about 70% when the volatility of equities goes from 20 to 35%.
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Figure 2: Impact of the investment in equity on capital requirement for market risk

Impact of the proportion of equity Impact of the volatility of equity

In order to show that our tool is sensitive to the characteristics of policyholders, we
have tested the sensitivity of the SCRMkt to the age of the policyholders. The test
of sensitivity was made in the case that all the policyholders own the same contract
that includes a GMAB and a GMDB. We have observed that SCRMkt increases when
the age of policyholders increases. This shows that depending on the characteristics of
the guarantees, and when the contract includes a GMAB and a GMDB, insurers are
exposed to the risk of longevity or to the risk of mortality. In our case, the insurer
is more exposed to the risk of mortality as the GMAB guarantee is smaller than the
GMDB guarantee which is also paid later.

After performing this sensitivity study, we presented the calculation of the SCR on
a simplified case using our model. The capital requirement for market risk, SCRMkt,
was estimated at 8 046 202 e. The required capitals for the life risk module have been
calculated using the shocks given by the standard formula. As we have considered that
policyholders all own the same kind of contract that includes a GMDB and a GMAB, the
capital for the longevity risk sub-module was estimated to be equal to zero. This result
is consistent with the study of sensitivity to the age of the policyholder. By applying
the mortality shock given by the standard formula, the capital for the mortality risk
sub-module was estimated at 162 623e. Similarly, by applying the catastrophe shock
we found the catastrophe risk sub-module, estimated at 1 055 921e. After aggregating
the life risk sub-modules, we find a capital requirement for the life risk module of 1
107 939e. The EIOPA recommends for partial internal model, to use the correlation
matrix of the standard formula to aggregate the risk modules. This is what we did
for the life risk module and the market risk module. With the assumptions made on
our hypothetical example, the adjustment and the operational risk were equal to zero.
Thus we find a SCR estimated at 8 392 034e. We note that in our case where contracts
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include a GMDB and a GMAB, the market risk represents a major part of the SCR
which also justifies the use of a partial internal model to better capture the market risk
for these products. After estimating the SCR, we have calculated the risk margin with
the simplification using the duration in the technical specifications. This calculation
done, we have been able to build the balance sheet within the meaning of the Solvability
II Directive, and calculate its solvency ratio.

In this thesis we have presented the calculation of the required capital for interest
rates and equity risks by using the method of nested simulations and the calculation of
the required capital for the life risk module using the standard formula for GMDB and
GMAB products. The results give us a first view of the evolution of the required capital
depending on the characteristics of the products. The results show that insurers can
reduce their exposure to market risk by decreasing the proportion of the fund invested
in equities or by investing in less volatile equities. The importance of market risk for
GMAB and GMDB products was highlighted in the application, and this justifies the
use of a partial internal model to better assess this risk. We have presented a partial
internal model but one possible perspective of this project is to extend our model to
a full internal model. However, in order to implement a full internal model, we have
presented a method that could reduce the run time and the storage used by the nested
simulations: the Least Squares Monte Carlo approach that limits the number of inner
scenarios to a single one. Thus as shown in this thesis, means to comply with the
Solvency II regulatory framework are heavy and the effective date of the directive is
still being discussed. Solvency II is a long run project and it marks the arrival of a new
culture of risk.



Synthèse

Mots-clés:

Solvency II, Variable Annuities, Best Estimate, quantile, Solvency Capital Require-
ment, modèle interne partiel, simulations dans les simulations, modélisation de l’actif,
modèles de taux, asset and liability management.

Depuis 2002, Solvabilité I est le régime appliqué par les entreprises d’assurances.
Bien que ce système ait pu être testé durant la récente crise, il est aujourd’hui remis en
question. Probablement à cause de sa simplicité, Solvabilité I ne permet pas de prendre
en compte tous les risques encourus. Ainsi en janvier 2014, le système actuel sera rem-
placé par un nouveau régime : Solvabilité II. La Directive Solvabilité II représente un
changement considérable dans le système de solvabilité des compagnies d’assurances,
c’est d’ailleurs pour cette raison que sa date d’entrée en vigueur a été reportée à plusieurs
reprises. Afin de protéger les assurés, la Directive Solvabilité II requiert le calcul d’un
capital requis destiné à assurer la solvabilité des compagnies à horizon 1 an avec une
probabilité de 99.5%: le Solvency Capital Requirement (SCR). Ce calcul est complexe
et peut être effectué à l’aide d’une formule standard ou encore à l’aide d’une approche
par modèle interne. Cependant la formule standard n’est pas recommandée pour cer-
tains types de produits à cause de sa structure rigide et de son manque de souplesse
au profil de risque. C’est le cas pour les produits de type Variable Annuities. En
novembre 2010, le CEIOPS publie le consultation paper no 83 qui alarme les assureurs
: les vendeurs de variable annuities doivent se préparer à estimer leur capital requis à
l’aide d’un modèle interne car l’utilisation de la formule standard ne sera plus autorisée
pour ces produits. C’est pourquoi dans ce mémoire nous allons estimer le capital req-
uis aggrégé pour les risques de taux d’intérêts et actions à l’aide d’un modèle interne
utilisant la méthode des simulations dans les simulations pour des produits de type
variable annuity, et plus particulièrement pour une garantie en cas de décès appelée
Guaranteed Minimum Death Benefit (GMDB), et une garantie de capital en cas de
vie appelée Guaranteed Minimum Accumulation Benefit (GMAB). Nous présenterons
également le calcul des capitaux requis pour les risques du module vie en utilisant les
chocs donnés par la formule standard.
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Notre étude se rapproche de celle d’un modèle interne partiel. En effet, un modèle
interne partiel permet de modéliser le capital requis d’un ou plusieurs modules ou sous
modules de risques, puis les autres modules de risques sont calculés à l’aide de la for-
mule standard. Dans notre étude, nous avons estimé le capital requis pour le risque de
marché2 (noté SCRMkt) à l’aide d’un modèle interne puis nous avons calculé le capital
requis pour le module des risques vie à l’aide de la formule standard. En effet le risque
de marché associé aux produits de type GMAB et GMDB est un risque très significatif
ce qui est d’ailleurs souligné dans le consultation paper no 83.

Le calcul du capital requis pour le risque de marché requiert le calcul d’un quantile à
99.5%. Pour ce faire, différentes méthodes existent mais nous avons décidé de retenir
la méthode naturelle des simulations dans les simulations. Cette méthode est basée
sur une vision économique du bilan, et requiert deux niveaux de simulations: des sim-
ulations monde réel la première année, puis il est nécessaire de valoriser le passif de la
compagnie à un an avec un deuxième niveau de simulations effectuées en risque neutre.

Les produits variable annuities étant généralement alloués dans les marchés monétaires,
obligataires et actions, nous avons utilisé un modèle de taux ainsi qu’un modèle action.

Nous avons présenté deux modèles actions: le modèle de Black and Scholes et le modèle
de Merton. Le modèle de Black and Scholes est très utilisé en finance et a l’avantage
d’être facilement implémentable grâce à la formule fermée qu’il fournit. En revanche,
le modèle de Black and Scholes a tendance à sous-estimer les queues de distributions
ce qui dans le cadre du calcul d’un quantile pourrait conduire à sous-estimer con-
sidérablement le SCR. C’est pourquoi nous avons utilisé le modèle de Merton, qui
introduit un saut de poisson afin de modéliser les discontinuités de cours boursiers dues
à l’arrivée d’information bonne ou mauvaise sur le titre. Le modèle de Merton présente
des queues de distribution plus épaisses que le modèle de Black and Scholes, et reste
simple à mettre en pratique puisqu’il fournit une formule fermée pour les cours des
actions.
Nous avons présenté deux modèles de taux à un facteur: le modèle de Vasicek et le
modèle de Cox-Ingersoll-Ross(CIR). Ces modèles présentent l’avantage de fournir des
formules fermées pour le prix des obligations zero-coupon. Néanmoins, le modèle de
Vasicek produit des taux négatifs, c’est pourquoi nous avons retenu le modèle de Cox-
Ingersoll-Ross qui palie à cette incohérence. Toutefois, bien que le modèle CIR ne pro-
duise que des taux positifs sous certaines contraintes en temps continu, la discrétisation
de ce processus selon le schéma explicite d’Euler n’assure plus la positivité des taux
produits. Ainsi nous avons utilisé le schéma d’Euler implicite qui permet de ne produire
que des taux positifs.

2nous parlerons de risque de marché par abus de langage, noté SCRMkt, mais en réalité cette
notation fait référence à l’aggrégation du capital pour le risque de taux SCRrate et du capital pour le
risque actions SCRequity.
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La calibration est une partie importante du modèle interne, car bien qu’un modèle
soit pertinent sur le plan théorique, une mauvaise calibration conduira à une mauvaise
qualité structurelle et prédictive du modèle. Nous avons présenté deux méthodes de
calibration du modèle de Merton: la méthode des moments et la méthode du maximum
de vraisemblance. Les résultats montrent que la seconde méthode accorde une part de
variance plus importante à la composante poissonnienne, et environ 60% de la variance
est expliquée par la composante à saut. En comparant les ajustements du modèle de
Merton et du modèle de Black and Scholes, nous avons pu observer que le modèle de
Merton est mieux ajusté à la distribution et présente des queues de distribution plus
épaisses. Pour le modèle de taux d’intérêt Cox-Ingersoll-Ross, nous avons distingué la
calibration risque neutre de la calibration historique. En risque historique, la calibra-
tion utilise un historique de données: nous avons calibré notre modèle avec la méthode
du maximum de vraisemblance. La calibration risque neutre utilise les prix des instru-
ments de taux observés sur le marché, ainsi nous avons utilisé la méthode des moindres
carrés afin de minimiser l’écart entre les prix observés des obligations zero-coupon et les
prix théoriques des obligations zero-coupon donnés par le modèle CIR. Nous avons ob-
servé que bien que très pratique du fait de la formule fermée qu’il fournit, ce modèle de
taux à un facteur présente toutefois l’inconvénient d’expliquer la courbe des taux avec
uniquement le taux court, ce qui suppose une corrélation entre les taux des différentes
maturités. L’ajustement du modèle à la courbe des taux est une limite de notre étude,
mais ceci provient essentiellement du choix d’un modèle à un facteur.

Afin de simuler de façon cohérente l’évolution des taux d’intérêts et des rendements
actions, nous avons introduit une corrélation entre les browniens du modèle de taux et
du modèle action. L’estimation de ce coefficient de corrélation a été effectuée sur un
historique de données de taille 10 ans, l’indice Euro Stoxx 50 et l’Euro OverNight Index
Average. En faisant varier la taille de l’historique choisi, nous avons pu remarquer que
la corrélation diminue au cours du temps.

Au passif, la mortalité a été prise déterministe (table TH0002) et le rachat n’a pas
été considéré. Les intéractions Actif-Passif ont pu être modélisées à l’aide d’un modèle
d’actif-passif, souvent appelé asset and liability model. Il est important de noter qu’afin
de payer les garanties contractées par les assurés, l’assureur doit retirer la valeur de la
garantie de ses fonds propres, et seule la valeur de rachat de la part du fond des assurés
quittant le fond doit être retirée du fond. Chaque année, le fond d’investissement est
rebalancé selon le profil de risque initial.

La méthode des simulations dans les simulations est très consommatrice de temps et
de stockage, c’est pourquoi une attention particulière a été portée à l’optimisation des
procédures. Nous avons utilisé le logiciel MATLAB qui est particulièrement bien adapté
au calcul matriciel. Nous avons privilégié le calcul matriciel et nous avons cherché à
minimiser les recours aux boucles. L’utilisation de matrices tridimensionnelles a permis



14

de stocker les valeurs intermédiaires.

Afin d’illustrer la partie théorique de ce mémoire, nous avons effectué une étude de sen-
sibilité du capital requis pour le risque de marché qui de plus nous a permis de critiquer
la cohérence des résultats fournis par notre implémentation. Au préalable nous avons
vérifié que notre modélisation d’actif satisfait au test de la martingale, et nous avons
obtenu une erreur relative d’environ 0.30%. Afin de déterminer le nombre de simula-
tions secondaires pour notre exemple, nous avons testé la convergence de l’estimateur
du Best Estimate à la fin de la première année et nous avons construit un intervalle de
confiance afin de connaitre la précision de nos estimations. Nous avons retenu 6000 sim-
ulations secondaires. Ensuite nous avons déterminé le nombre de simulations primaires:
pour ce faire nous avons calculé l’erreur relative entre le résultat obtenu en effectuant
5000 simulations primaires, et les résultats obtenus lorsque l’on diminue le nombre de
simulations primaires (pour 6000 simulations secondaires). Avec une erreur relative de
0.16%, nous avons retenu 4000 simulations primaires. Le nombre de simulations étant
déterminé, nous avons pu commencer à tester la sensibilité du capital requis pour le
risque de marché. Nous avons considéré un profil d’investissement correspondant à 50%
d’actions, 20% de monétaire et 30% d’obligataire, pour un contrat de maturité 10 ans.

Nous avons d’abord testé la sensibilité à la garantie en cas de vie contractée. Pour ce
faire, nous comparons le SCRMkt obtenu suivant le montant de la garantie exprimé
sous la forme d’un pourcentage de la valeur initale de l’investissement. Les résultats
montrent que lorsque la garantie en capital au terme du contrat en cas de vie de l’assuré
passe de 100% du montant initialement investi à 130%, alors le capital requis pour le
risque de marché augmente d’environ 90%. Nous avons ensuite testé la sensibilité du
SCRMkt à la garantie en cas de décès. Lorsque le taux de capitalisation garanti par an
en cas de décès (mécanisme roll-up) passe de 2% à 5% alors le capital pour le risque de
marché augmente d’environ 26%.
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Figure 3: Impact des garanties sur le capital pour le risque de marché

Impact de la garantie GMDB Impact de la garantie GMAB

Nous avons ensuite testé la sensibilité du capital à l’allocation de l’investissement, no-
tamment en faisant varier la part investie en actions et la part investie en obligations
(la part investie en monétaire reste fixe). Nous observons que lorsque la part investie en
actions passe de 50% à 80%, le SCRMkt augmente d’environ 91%. Cette forte variation
est due à l’augmentation de volatilité du fond lorsque l’on augmente la part action.
Afin d’illustrer les résultats précédents, nous avons testé la sensibilité du capital à la
volatilité de la part action du fond. Lorsque la volatilité de la part action passe de
20% à 35%, le SCRMkt subit une augmentation d’environ 70%. Les schémas ci-dessous
illustrent les résultats obtenus:

Figure 4: Impact de l’investissement en actions sur le capital pour le risque de marché

Impact de la proportion action Impact de la volatilité Action
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Afin de montrer que notre outil est sensible aux caractéristiques des assurés nous avons
testé la sensibilité du capital à l’âge de l’assuré. Nous avons effectué cette sensibilité
dans le cas où tous les assurés ont souscrit à une garantie GMAB et à une garantie
GMDB. Nous avons remarqué que le besoin en capital augmente quand l’âge de l’assuré
augmente, ceci montre que l’assureur est suivant les caractéristiques des garanties, plus
exposé au risque de mortalité ou au risque de longévité. Dans notre cas, l’assureur est
plus exposé au risque de mortalité car la garantie GMAB est plus petite que la garantie
GMDB et de plus elle est payée plus tard.

Après cette étude de sensibilité, nous avons présenté le calcul du SCR à l’aide de
notre modèle interne partiel. Le SCRMkt a été estimé à 8 046 202e. Les capitaux
pour les risques du module vie ont été calculés à l’aide des chocs fournis par la formule
standard. Etant donné que nous avons considéré que les assurés disposent tous du même
type de contrat qui comprend une garantie en cas de décès et une garantie en cas de
vie, le risque de longévité a été estimé nul ce qui est cohérent avec les résultats obtenus
lors du test de sensibilité à l’âge des assurés que nous avons réalisé précédemment.
En appliquant le choc de mortalité de la formule standard, le capital requis pour le
sous-module mortalité a été estimé à 162 923e. De la même façon, en appliquant le
choc catastrophe de la formule standard nous avons trouvé un besoin en capital pour le
risque catastrophe de 1 055 921e. Après agrégation des risques du module vie, le capital
requis pour le module vie est estimé à 1 107 939e. Afin d’agréger les différents modules,
l’EIOPA recommande l’utilisation de la matrice de corrélation fournie par la formule
standard ce que nous avons appliqué pour le module des risques vie et le module risque
de marché. Avec les hypothèses de notre cas fictif, l’ajustement et le module de risque
opérationnel sont nuls ce qui estime le SCR à 8 392 034e. Nous remarquons que dans
notre exemple de contrats comportant des garanties GMAB et des garanties GMDB,
le risque de marché représente la majeure partie du risque encouru par l’assureur ce
qui justifie l’utilisation d’un modèle interne partiel pour mieux appréhender ce risque
pour ces types de produits. Une fois le SCR calculé nous avons pu déterminer la
marge de risque telle qu’elle est définie dans les spécifications techniques en utilisant
la simplification proposée qui utilise la duration. Ce calcul effectué, nous avons pu
reconstituer le bilan économique au sens de Solvabilité II et calculer le ratio de solvabilité
qui lui est associé.

Ainsi dans ce mémoire nous avons présenté le calcul du capital pour les risques
actions et taux à l’aide de la méthode des simulations dans les simulations, et le calcul
des capitaux pour le risque vie à l’aide de la formule standard, pour les garanties GMAB
et GMDB. Les résultats obtenus nous ont donné une première vision de l’évolution du
capital requis en fonction des caractéristiques des produits. Nous avons montré que
les assureurs peuvent réduire leur exposition au risque de marché en diminuant la part
investie en actions ou en investissant sur des actions moins volatiles. L’importance du
risque de marché pour les produits de type GMAB et GMDB a été mise en évidence
lors de l’application, ce qui justifie l’emploi d’un modéle interne partiel pour mieux
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appréhender ce risque. Nous avons présenté un modèle interne partiel simplifié mais
une des perspectives de ce projet est d’étendre notre modèle à un modèle interne total.
Néanmoins, pour implémenter un modèle interne total, et pour qu’il puisse être utilisé
rapidement pour des prises de décisions par exemple, nous avons présenté une méthode
qui permettrait de réduire le temps de calcul et l’espace utilisé par la méthode des
simulations dans les simulations: le Least Squares Monte Carlo qui réduit le nombre
de scénarios primaires à un seul scénario. Ainsi ce mémoire a montré la lourdeur des
moyens à mettre en place pour satisfaire à la réglementation Solvabilité II dont la date
d’entrée en vigueur est toujours discutée. Solvabilité II est un projet de long terme
qui marque l’arrivée d’une nouvelle culture de risque qui devra être adoptée par les
assureurs.
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Introduction

The regulation of the insurance sector will experience substantial changes in the near
future. Although the current system known as the Solvency I system has shown ef-
ficiency in the recent crisis, it does not take into account all risks borne by insurers.
Thus, a new directive will replace it in January 2014: the Solvency II Directive. This
new regulation is a real change in the solvency assessment process, and to prepare in-
surers for meeting the requirements, the EIOPA and the European Commission submit
Quantitative Impact Study completed with consultation papers. The EIOPA produces
standards but it is revealed that for some products those standards are inappropriate.
This is the case for certain life insurance products such as Variable Annuities. Vari-
able Annuities are unit-linked products with additional death or survival guarantees
that also give beneficiaries the opportunity to benefit from up-movements of financial
markets. However, risks associated to these products are complicated. To meet its obli-
gations, the Solvency II Directive requires insurers to calculate a required capital, the
Solvency Capital Requirement. With the aim of protecting policyholders this capital
must be fairly estimated and the standard formula proposed to simplify the calculation
seems inappropriate to variable annuities. In november 2010, the EIOPA published the
consultation paper no 83 that has alarmed the insurers: variable annuity sellers should
prepare themselves to assess their solvency capital requirement with an internal model
otherwise they could not be allowed to sell their products. Thus, the objective of this
thesis is to estimate the required capital for interest rates and equity risks with an
internal model using the method of nested simulations for a company selling variable
annuities featuring the accumulation (GMAB) and the death (GMDB) guarantees. We
will also illustrate the calculation of the required capital for the life risk-module using
the standard formula.

This thesis consists of several parts. First, we explain the change in the regulation
for required capital by comparing the current framework and the Solvency II framework.
Then, we introduce variable annuity products and their characteristics. In the third
part, we present our calculation structure that includes calculation with an internal
model, as well as the method of nested simulations on which our model is based. The
next chapter presents in detail the economic scenario generator and the whole process
of assets modeling. Then we explain the way we modeled the liabilities’ cash-flows and
calculated the Best Estimate. In order to illustrate the theoretical part presented so far,
we make a sensitivity study of the capital requirement for market risk, and we finally
present a calculation of the solvency capital requirement with our partial internal model.
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Before concluding, we present the perspective of the project through the Least Squares
Monte Carlo concept which is an alternative method of the full nested simulations.



Chapter 1

From Solvency I to Solvency II

Introduction

This first chapter aims to present the evolution of the regulatory context in the insurance
sector. After briefly describing the current solvency regime, we present the solvency II
Directive detailing its actors, its pillar structure and the changes in the balance sheet
in particular with the new definition of capital requirements.

1.1 Solvency I

Since 2002, Solvency I is the solvency regime applied by the European Union’s insur-
ers. The purpose is to maintain efficient and safe insurance market for the benefit and
protection of policyholders. Following this reform, insurers have to conduct a review of
their solvency requirements governed by three prudential principles:

1. Companies must maintain at all times sufficient technical provisions to meet
the commitments towards the clients. As a prudential rule, technical provisions
amount should be higher than the expected amount of claims.

2. Investment must be done having regard to safety and returns. The assets must
be diversified and adequately spread.

3. A sufficient amount of own capital is essential to protect against future losses:
this surplus is called the solvency margin. In life insurance, the solvency mar-
gin is calculated as a fixed ratio of technical provisions and of the sum at risk.
For example, in life insurance 0.3% of the sum at risk and 4% of mathematical
provisions or 1% for unit-linked business. The Authorities require a minimum
level of margin, under which they can take emergency measures necessary for the

24
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well-being of the company. Those measures can result in a refinancing operation,
in a capital increase, or in a reinsuring plan that decreases the required capital.

1.2 The limits

Through the above description, it is notable that a certain importance has been granted
to the simplicity of the approach. Allowing for simplicity is a great value especially for
the compliance costs of both implementing and maintaining compliance following its
implementation. The fixed percentage method used for the calculation of solvency mar-
gin is easy to understand, and brings transparency. Although we haven’t observed ruins
during the last crisis in the insurance sector, simple reasoning and case based reasoning
lead to founded criticism of the current system.

Solvency I exclusively deals with the quantitative aspect and does not provide in-
centive for the qualitative aspect, abandoning risk management.

The quantitative approach uses formulas based on provisions of the accounting year.
This practice is not consistent with the forward-looking idea. Moreover, the prudential
rule translated in the formulas for the regulatory margin results in an overestimation
which penalizes not only the shareholders but also the clients of the insurance company
especially in the context of competition. Also, the risk margin calculation does not
take into consideration the market risk: if we assume two insurance companies with
the same liabilities but with different assets composed of 100% equities for the first one
and 100% bonds for the second one, then the solvency margin amount will be the same
under Solvency I. No distinction is done between the different risks, only the subscrip-
tion risk impacts the margin. The simplicity of Solvency I leads to unaffordable and
unacceptable mistakes, and a simple formula cannot match every insurance risk profile.
This current system is inconsistent with the market.

National regulation systems are quite different across Europe and technical pro-
visions calculations can differ widely from one country to another, so it is an uneven
playing field across Europe and this creates competitive arbitrage. In a European con-
text, characterized by competition but also by a unique market, regulation must be
unified. Today’s challenge is not only about risk quantification, but also about risk
management. Regarding all these lacunas, the European Commission has tried to work
out a new system: “Solvency II”.

1.3 Solvency II

Nominally fully operational in 2014, Solvency II is a mandatory regulation that will
affect all insurers and reinsurers in the European Union. Solvency II’s primary ob-
jective is to strengthen policyholders’ protection as well as the competitiveness of the
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insurance sector and the wider Europe economy by aligning capital requirements more
closely with the risk profile of European companies. Indeed, contrary to Solvency I, Sol-
vency II is not only about technical calculation of capital reserves, but also about each
company’s approach to risk management. This new directive exemplifies the current
trend in solvency regulation towards comprehensive risk-and-economic based regulatory
regimes. With regards to compliance, Solvency II represents the biggest ever exercise
in establishing a single set of rules governing insurer creditworthiness and risk manage-
ment.

1.3.1 The actors

In order to build this new revolution in the whole insurance industry, many different-
skilled actors have worked on the project:

• The European Commission coordinates and drives the project by transmitting
directives, recommendations and tests.

• European Insurance and Occupational Pensions Authority (EIOPA), composed of
high-level representatives from the insurance and occupational pensions supervi-
sory authorities of the European Union’s Member States, advises the Commission
in particular with technical aspects, and with the consistency implementation of
Solvency II.

• The European Insurance Federation (formerly the CEA), has the objective to
adapt the regulation with the development of the European insurances.

• National authorities must ensure the good implementation of the directive in their
respective country. It also provides quantitative impact studies to the insurance
companies. In Luxembourg, the national authority is called “Commissariat aux
Assurances”.

• Professionals from the insurance sector are called for advice by the EIOPA and
the European Commission.

1.3.2 The pillar structure

Built on a Lamfalussy process and widely inspired by the bank regulation Basel II, Sol-
vency II is structured around three guiding principles which cut across market, credit,
liquidity, operational and insurance risks.
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Pillar I :

Pillar I is the quantitative component of the new regulation. It deals with the cap-
ital requirements of insurers wishing to provide coverage in the European Community
market.
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MCR and SCR

Solvency II contains two levels of capital requirements: the Solvency Capital Require-
ment (SCR) and the Minimum Capital Requirement (MCR). The MCR is the min-
imum under which the company is technically insolvent, and the risk considered is
unacceptable for policyholders. Authorities will automatically intervene and take mea-
sures to solve the situation. The SCR is the new solvency target level for firms: Article
101 of the directive requires that “the SCR shall correspond to the Value-at-Risk of the
basic own funds of an insurance or reinsurance undertaking subject to a confidence level
of 99.5% over a one-year period”. Pillar I presents some innovations in the balance
sheets. Both assets and liabilities are to be fair-valued (market value of assets and
liabilities). A risk margin (market value margin) is to be added to the fair value of the
liabilities, also called the Best Estimate, to give the technical provisions.

Figure 1.1: Balance sheet evolution1

To comply with Solvency II, the SCR must be calculated annually but in theory it
should be calculated as soon as the risk profile of the company has changed significantly.
The SCR must be reported to the supervisor and published. Insurance companies can
use the standard formula or they can demonstrate to the regulator their ability to quan-
tify their risk exposure, and meet the requirement with a full or partial internal model.
Considering the large resource commitment from both staffing and financial perspec-
tives, some companies such as small to mid-size players are generally expected to use
the standard formula while large global players are typically opting for the internal

1Sources : Internal training within Deloitte
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model approach that best fits the risk profile.

The standard formula is a simplified approach for capital requirement calculation.
It is a common methodology for European insurance companies based on a modular
approach. The respective merits of a “top-down” versus a “bottom-down” method
were considered by the CEIOPS, but for practical reasons the “bottom-down” or the
so-called “modular” approach was chosen. Indeed, a modular approach allows to test a
number of different modeling treatments for the same risk-module (composed of several
sub-modules). The following picture illustrates the overall structure of the standard
formula.

Figure 1.2: Overall structure of the SCR2

The standard approach is said to be “factor-based” which means that coefficients
are assigned to distinguish the different risks. The specifications of the calculation are
given in the Technical Specifications of the QIS5. All these specifications have
been adjusted in cooperation with the professional world. Correlation matrices are
given to aggregate between the risk sub-modules and across the risk modules. The Ba-
sic Solvency Capital Requirement (BSCR) is the sum of the aggregated modular SCR
and the intangible SCR. The mechanism to calculate the sub-modules SCR is based

2Sources : Technical Specifications of the QIS 5 , Article SCR.1.1.,[7]
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on the calculation of the Net Asset Value3 after applying a shock. This method is
generally called the Delta NAV method.

Figure 1.3: Delta NAV method

Even if the standard formula is an option proposed by the authorities to comply with
the pillar I requirement, all companies should ensure that the standard approach is a
good fit. Indeed, as it is a standard formula, a large proportion of the calibration results
relies heavily on “expert opinion”, judgment, and subjectivity. And of course, this is
also a limit of a standard approach.

3NAV = Asset - Liability
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Pillar II: System of Governance

Robust governance requirements being a pre-requisite for an efficient solvency system,
the pillar II deals with qualitative requirements and the prudential supervision. Insur-
ance companies are requested to comply with a set of requirements:

• The fit and proper rules

• The existence of a proper risk management system

• The Own risk and Solvency Assessment (ORSA)

• The internal control framework

• The role of internal audit, the actuarial function and risk management function

As a key part of pillar II, the ORSA is a strategic analysis process requiring a multi-
functional approach that links together the outputs of risk, capital and strategy plan-
ning. Risk management information is essential for success, and insurers will need to
measure, report and communicate key risk performance metrics. The aim of the ORSA
is to facilitate the links between the pillar I capital requirement and the pillar II risk
assessment. This will demand a lot of effort and investment, but it’s a long run project
and those who will embrace the ORSA, will get a return on the investment in the future,
especially in terms of stakeholders’ expectations.

Pillar III: Supervisory reporting and public disclosure

Even if Pillar I and II are the primary focus, it is important not to lose sight of the
pillar III disclosure. This pillar requires to submit to the supervisory authorities the
information which is necessary for the purposes of supervisions, but also to publicly
disclose on an annual basis, a report on their solvency and financial condition.

Enhancing disclosure requirements will help to increase market transparency, which
is important to compare one insurer to another. Supervisors can use this important
source of information to conduct the supervisory review process and evaluate risk pro-
files.

1.3.3 The internal model

The Solvency II Directive gives organizations the opportunity to develop and use in-
ternal models for calculating and reporting their solvency capital requirements to the
supervisor. There is no exact definition of the internal model and this allows for flex-
ibility in the development. The internal model is the collection of processes, systems
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and calculations that together quantify and rank the risks faced by the business. An
internal model quantify risks and can therefore replace parts (partial internal model),
or even all the standard formula. Implementing an internal model requires companies
to understand the specific risk of their portfolios. The internal model must be able to
provide an appropriate calculation of the SCR, but it must also be an integrated part of
the undertaking’s risk management process and system of governance. As every model,
the internal model must satisfy some tests and requirements:

• Statistical quality standards

• Calibration standards

• Profit & loss attribution

• Validation standards

• Documentation standards

Thus, the internal model is an important but expensive project for companies. However
using an internal model will give a better estimation of their solvency capital require-
ment, and this is a real asset for the management of their risks. Estimating the solvency
capital requirement with an internal model generally leads to a smaller value than if
the standard formula had been used (there are exceptions). Thus, companies will have
more assets available for their activities than if they had used the standard formula.
Moreover, the internal model as it leads to a better understanding of the risk of the
company, will be a real decision making tool, and will definitely be an asset to develop
competitive advantage. Although the implementation of an internal model is an expen-
sive investment for companies, the better risk vision that it provides will be profitable
on the long run. The internal model represents the philosophy of the Solvency II Di-
rective: implementing Solvency II requires understanding of several concepts relating
to governance, risk management and capital setting.



Chapter 2

Variable Annuities

Introduction

In this chapter, we present variable annuity products. In a first step it is important
to define and describe those products. Then, we focus on the GMDB and the GMAB
products which are respectively an in case of death guarantee and an in case of survival
guarantee. We present the risks associating to these products and we also present
a method that could be used for their pricing. Finally, we talk about hedging and
reinsurance.

Introduced in the middle of the twentieth century in the United States of Amer-
ica by AXA, Variable Annuities is the US term to describe unit-linked products with
secondary guarantees. Variable annuities are basically unit-linked contracts with addi-
tional guarantees. Often used for retirement products, the structure is also used for any
life product. This product knows a great success these times. Indeed, in the context
of perturbed financial market and retirement system changes, people need guaranteed
and performing investments. Variable annuities can offer them those guarantees. They
are known as Guaranteed Minimum x Benefit (GMxB).

2.1 Unit-Linked Products

Unit-linked product is a type of life insurance where the cash value of a policy varies
according to the current value of the net asset value of the underlying investment
assets. The premium paid is used to purchase units in investment asset chosen by the
policyholder. The investment risk is borne exclusively by the policyholder.

2.2 The GMxB

As the investment risk with unit-linked products is exclusively borne by policyholders,
insurers have added guarantees to these products for attractiveness reasons. A guar-
antee minimizes the loss under the conditions of the contract. If the insured situation
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happens (death, ...) then the beneficiary receives:

max(Gt;FVt)

Where Gt is the value of the guarantee at t and FVt the value of the fund at t.
In order to calculate the guaranteed amount at time t, Gt, different mechanisms exist:

• Premium Return: the guaranteed capital is equal to the maximum between the
initial investment and the value of the fund when the guarantee is applicable.

• The Roll-up guarantee: the capital guaranteed is the greater between the ini-
tial investment value increased at a specified rate of interest and the value of the
fund when the guarantee is applicable.

• The Ratchet or contract anniversary value: the guaranteed amount is equal
to the greater of the contract value at guarantee application time, or premium
payments, or the contract value on a specified date. The specified date is generally
the contract anniversary dates.

Guarantees can be grouped into two types of guarantees: In-case-of-death and in-
case-of-survival guarantees. The most famous guarantees are known as GMxB for
Guaranteed Minimum x Benefit. These guarantees form a toolbox that responds to the
different needs of the client.

2.2.1 Guaranteed Minimum Income Benefit (GMIB)

This guarantee provides the owner with a base amount of lifetime income after a given
period regardless of how the investments have performed. This guarantee only takes
effect if the owner decides to annuitize the contract.

2.2.2 Guaranteed Minimum Withdrawal Benefit (GMWB)

It guarantees that a certain percentage of the amount invested can be withdrawn peri-
odically (more generally annually) until the invested amount is recovered, regardless of
market performance. A lifelong version of this product exists (GLWB).

2.2.3 Guaranteed Minimum Death Benefit (GMDB)

This guarantee ensures a payment to a named beneficiary if the contract owner dies in
a given period. The GMDB is generally bought by investors who want to invest in the
stock market which gives them high returns since they know that their families will be
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protected against financial loss in the case of an early death. The guaranteed amount
is generally a ratchet or a roll-up guarantee. The following picture illustrates a case.

Figure 2.1: Guarantee Minimum Death Benefit

In case of death at time t, the beneficiary receives:

max(FVt;Gt)

where FVt is the fund value at time t and Gt is the guaranteed amount of the GMDB.

2.2.4 Guaranteed Minimum Accumulation Benefit (GMAB)

This rider is nearly the same as the GMDB but it is the in-case-of-survival guarantee.
Indeed, it ensures the owner to receive a minimum percentage of the amount invested
after a given number of years (typically the maturity of the contract) regardless of the
actual investment performance.
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Figure 2.2: Guarantee Minimum Accumulation Benefit

At the applicable date of the guarantee, if the policyholder is still alive, he receives:

max(FVT ;GT )

Where FVT is the surrender fund value at T (typically the maturity of the contract)
and GT the guaranteed amount of the GMAB.

2.3 Risk mapping

The risk mapping consists in identifying the risks associated to the contract. Variable
annuities associate insurance risks and market risks. In the following table, we identify
the risks arising from a contract including a GMDB and a GMAB:
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GMDB X X X X X
GMAB X X X X X

GMAB + GMDB X X X X X X

Table 2.1: Risk Mapping

The market risk is composed of several risks:

• Illiquidity premium risk arises from the risk of increase of the value of technical
provisions due to a decrease in the illiquidity premium. The illiquidity premium
is generally represented by an increase in the discount rate applied in the calcula-
tion of the present value of future payments under certain (long-term) insurance
contracts.

• The interest rate risk is the impact of fluctuations in interest rate on the insur-
ance’s profitability. As an example, when interest rates rise, new bonds are sold
with higher yields than older bonds, so the price of the older bonds go down. In
other words, if the company has to sell bonds before maturity, it may be worth
more or less than it paid for it depending on the movement of the interest rates.

• Currency risk arises from changes in the level or volatility of currency exchange
rates.

• Spread risk results from the sensitivity of the value of assets, liabilities and finan-
cial instruments to changes in the level or in the volatility of credit spreads over
the risk-free interest rate term structure.

• Concentration risk is the risk of concentrating the investment in a particular
stock, or particular sector. Indeed we cannot predict which sector (or asset) will
perform. This is the reason why it is highly recommended to well-diversify the
portfolio.
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• When the investment contains equities, a risk arises from the possible deprecia-
tion of this investment. Exposure to equity risk refers to all assets and liabilities
whose value is sensitive to changes in equity prices.

For GMAB and GMDB, the insurance risk is composed of:

• Mortality risk is associated with insurance obligations where an insurance under-
taking guarantees to make a single or recurring series of payments in the event
of the death of the policyholder during the policy term. In our case, this risk is
associated to the GMDB.

• Longevity risk is associated with insurance obligations where an insurance under-
taking guarantees to make a single or recurring series of payments in the event of
the survival of the policyholder during the policy term. In our case, this risk is
associated to the GMAB.

• Lapse risk arises from unanticipated (higher or lower) rate of policy lapses, termi-
nations, changes to paid-up status (cessation of premium payment) and surren-
ders.

• Expense risk arises from the variation in the expenses incurred in servicing insur-
ance.

The counterparty default risk module should reflect possible losses due to unex-
pected default, or deterioration in the credit standing, of the counterparties and debtors
of undertakings.

2.4 Pricing

The pricing of GMAB and GMDB is similar to the pricing of an option. In this section,
we briefly present a possible method of pricing for a contract associating a GMDB and
a GMAB.

This method is based on the pricing principle that the price of the guarantee is equal
to the expected present value of future costs of the contract.

To simplify the explanation, we consider a contract in which the death guarantee and
the accumulation guarantee are fixed (respectively K1 and K2). We also consider that
the insured person dies at the end of a year. The beneficiary is ensured to receive the
maximum between the guarantee and the surrender value. Thus, the insurer guarantees
the following payment at t:
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Max(Gt;FVt) = FVt + Max(0;Gt − FVt)︸ ︷︷ ︸
financial risk borne by the insurance

where FVt is the surrender fund value at t and Gt is the guaranteed amount at t.
The insurer will pay K1 if the fund has under-performed, and if the owner dies (for the
death guarantee). Similarly, the insurer will pay K2 if the fund has under-performed
at maturity, and if the policyholder is still alive at the maturity of the contract. So in
order to quantify the risk, we have to multiply the sum at risk by the probability that
the insurer pays which is for each year the probability of death of the policyholder, and
for the maturity of the contract, the probability that he is still alive.
The idea is to observe that Max(0;Gt − FVt) is a put option of strike Gt maturing at
t. If we take a contract maturing in N years, a pricing method can be:

P =

[
N∑
i=1

Max (0;K1 − FVi)
(1 + r)i

× 1/i−1qx

]
+N px × Max (0;K2 − FVN)

where

• FVi is the surrender fund value at the end of the year i.

• r is the risk-free interest rate

• 1/i−1qx the probability that a person of age x dies between i-1 and i.

• npx the probability that a person of age x is still alive after n years.

We note that this method is rather practical in the case that the fund follows a dynamic
like the Black and Scholes dynamics which provides a closed-form solution for the price
of put options. However, the fund is generally composed of more than one type of assets
and that does not always allow for a closed-form solution. The insurer must then use
Monte Carlo estimation.

2.5 Hedging strategy

Hedging strategy can be used to reduce the risk of the insurance. For variable annuities,
in order to reduce the risk, the insurer can hedge the financial risks.

Financial Hedging strategy
Sellers of variable annuities can use hedging strategies for the financial risk. Those
strategies consist in using the method of replicating portfolio. The seller of variable
annuities usually takes positions on the underlying asset or more precisely on options.
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In a perfect case, the aim of the replicating method is:

Mathematical Provisions at t + hedging portfolio at t = guarantee at t

and the aim is that at t+1 the equality is still verified:

Mathematical Provisions(t+1) + hedging portfolio(t+1) = guarantee(t+1)

In order to realize this kind of hedging strategy, the seller needs to match the sensitivity
of the portfolio and the sensitivity of the undertakings. For this, financial Greek letters
are used. The most famous example is the delta neutral strategy. The letter delta
represents the sensitivity of the option (here a put option) due to the variation of the
price of the asset. The delta gives the quantity of the underlying asset to buy to cover
a position in call options. Thus the delta neutral strategy means that the overall value
of the portfolio will not change for small changes in the price of its underlying asset.
Thus, the seller of call options will have a delta neutral position by buying delta equities
for each option sold. In the case of GMAB and GMDB contracts, we have shown that
the insurers is selling put options. So in order to cover, the insurer can have a delta
neutral position in put options. Then similarly, this short position in put options (the
position of seller) can then be covered by a short position in the underlying asset.
However, as the delta varies with the value of the underlying asset, the delta neutral
strategy has to be done continuously, and this implies transactions fees. So as to reduce
the number of transactions, a threshold is usually established in order to determine when
the portfolio has to be modified (and to avoid modifying it too often). Other hedging
strategies can be used going through the greek letters but we will not present them.

Reinsurance
Reinsurance is the insurance of insurance companies. Reinsurance contracts are gen-
erally used to hedge against larger claims. Reinsuring contracts can decrease the risk
partially or fully.
In the case of GMDB and GMAB contracts, the insurer can transfer its risk fully
or partially to a reinsurer . If the risk is transferred fully then the insurer is just the
manager of the contracts and the risk is borne by the reinsurer. However it is important
to note that the insurance is exposed to the risk of default of the reinsurer, and if the
reinsurer goes bankrupt then the insurance have to bear the guarantee sold. In the
context of the recent crisis, this risk is not to be under-estimated.



Chapter 3

Capital calculation with an internal
model

Introduction

This chapter aims to present the method used to assess the required capital in the
application of this thesis. In this aim, the first section presents the regulatory context
in terms of capital requirement calculation for variable annuity products (this thesis is
realized in Luxembourg and even if the Solvency II Directive is not enforced yet, the
regulator already requires the use of an internal model for variable annuity products).
Given this regulatory context and given the complexity of a quantile estimation, the
method used to estimate the required capital for interest rates and equity risks will
be performed through an internal model approach with the nested simulation concept.
The description of this method is shared into two parts: the first one tries to explain
and justify qualitatively this concept and the second one tries to explain the theoretical
concept of this method.

3.1 Internal model for variable annuities

Following the arrival of variable annuity products in Europe, the EIOPA has decided
to regulate the sale of these products in the context of Solvency II. Indeed, variable
annuities are profitable but also risky products. The risks associated to these products
are multiple and complicated. The EIOPA published in November 2010 the Consulta-
tion Paper no 83 which describes particular aspects of variable annuity business. The
market risk was highlighted and the standard formula was said to be inappropriate.
Thus, the insurance authorities could require a validated internal model (or a partial
internal model) to allow the sale of variable annuities. This is an alarming news for
small and mid-size companies. When the Solvency II Directive is applied, it will be
forbidden to sell variable annuities for companies who do not have a validated full or
partial internal model.
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A partial internal model is used for the calculation of one or more risk modules, or
sub-modules of the basic solvency capital requirement. In our case, we will model the
equity and the interest rate sub-modules with the method of nested simulations and
we will approximate the market risk by these two sub-modules to present the general
mechanism of a partial internal model. The calculation of the life risk module will be
performed using the shocks of given by the standard formula. The choice of modeling
the market risk with an internal approach is motivated by the fact that it is the most
significant risk for GMDB and GMAB products. We will show in our application that
the structure of our partial internal model can be illustrated as follows:
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Figure 3.1: Simplified structure of the SCR

Thus the capital requirement for the market risk1 module will be calculated using the
following definition: the capital requirement is the value-at-risk of the basic own funds
of an insurance or reinsurance undertakings subject to a confidence level of 99.5% over
a one year period. The following picture illustrates this definition:

1Here we talk about the capital for market risk by abuse of language (noted SCRMkt), but in fact
we should call it : the aggregation of the required capital for interest rate risk (SCRrate) and the
required capital for equity risk (SCRequity)
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Figure 3.2: Solvency Capital Requirement

Estimating the distribution of own fund at t=1 is not an easy task. In the next part
we present the methodology that we used to assess it: the nested simulations.

3.2 Capital calculation with the nested simulations

method

In order to assess the solvency capital for equity and interest rate risk, we use the method
of nested simulations. The concept of nested simulations becomes to be well-known in
the insurance sector with the arrival of the Solvency II Directive as the calculation of
the capital requirement naturally leads to this concept.

The following graph describes the method of nested simulations.
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Figure 3.3: Nested Simulations2

Remark: We also use the terms “outer simulation” for primary simulation, and “inner
simulation” for secondary simulation.

How does the nested simulations method work?

The concept of nested simulations to assess the solvency capital is based on two steps.

As the graph shows with the economic balance sheet at t=0, the first step of the
method consists in estimating the value of own capital at t=0. Due to the
complexity of this estimation, we use a Monte Carlo estimation by using risk-neutral
world simulations to estimate the own capital at t=0.

The next step consists in estimating the distribution of own capital at t=1.
This distribution is estimated by using a two-level simulation:

• We first simulate real world scenarios between t=0 and t=1. This real world
simulation aims at diffusing the economic variables (equity returns, interest rates,
inflation. . . ) as closely as possible to the economic reality and this is done by

2Sources: Devineau et Loisel, “Construction of an acceleration algorithm of the nested simulations
method for the calculation of the Solvency II economic capital”[10].
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calibrating models using historical database that best represents their current
and future evolutions. In this real world universe, assets offer a risk premium
that is represented by an excess of return.

• At t=1, we have a collection of real world scenarios, but for each real world
scenario we have to valuate the liabilities of the company. As we need to estimate
the value of liabilities at t=1 to deduce the value of own capital at t=1, we need to
carry out a new set of simulations at t=1. Thus at t=1, a Monte Carlo estimation
with risk-neutral world simulations is required. Hence, we understand the term
Nested, which describes the phenomenon of risk-neutral world simulations nested
into real world simulations.

Why do we use the risk-neutral probability to valuate liabilities?

Under the real world, risky assets offer a risk premium and this makes difficult the
realization of a valuation. Thus, when valuating we use the risk-neutral world. Under
this probability the risk premium is equal to zero as investors are considered risk-neutral.
It is important to note that risk-neutral probability is just a tool for valuation. The
risk-neutral probability is based on two assumptions:

• There is no arbitrage opportunity: there is no financial strategy ensuring a
payment at a future date with an initial investment equal to zero.

• Completeness of the market: a complete market is one in which the complete
set of possible gambles on future states-of-the-world can be constructed with
existing assets.

In practice, if the assumption of no arbitrage opportunity can be justified (when an
opportunity arrives on the market it is quickly detected so that it disappears nearly
instantaneously) the assumption of complete market is not verified in insurance as the
options held depend on insurance risk like mortality risk for example. Thus these op-
tions cannot be replicated by assets and thus the market is not complete.

To summarize, estimating the distribution of own capital at t=1 with the nested simu-
lations method means diffusing economic variables under real world between t=0 and
t=1, and then valuating the economic balance sheet conditioned to the realization of
these economic variables.

Inspired by the work performed by Devineau and Loisel on nested simula-
tions (see [10]), we now describe the concept in a more theoretical way:

As we already said, Solvency II is based on the notion of economic balance sheet.

Economic Balance Sheet at t

At
Et
Lt
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with :

• At, Market value of assets at time t

• Et, Equity at time t

• Lt, Fair value of the liabilities at time t.

As the balance sheet is in equilibrium, we have the relation : Et = At − Lt.
The first step to calculate the SCR is to assess the economic balance sheet at t=0.

Let’s denote:

• (Ft)t>0 the filtration that characterizes the available information at t.

• Q the risk-neutral probability

• δu the discount factor in terms of a risk-free instantaneous rate ru,
δu = exp(−

∫ u
0
rhdh)

• Pt, the liability cash-flows at t

The value A0 is known: it is the market value of asset at t=0. In order to assess E0,
we use a Monte-Carlo estimation. Let’s consider n simulations with t ∈ [t;T ]. Then L0

is calculated as follows:

L0 = EQ

[∑
u>1

δuPu | F0

]
=

1

n

n∑
i=1

T∑
t=1

(
δitP

i
t | F0

)
Where δit and P i

t are the values obtained in the simulation i at t.

Then, we deduce E0 (also noted NAV0 for Net Asset Value representing the difference
between assets and liabilities) as follows:

E0 = A0 − L0

Thus, we obtained the economic balance sheet at t=0.

The second step of the concept is to valuate the distribution of the own fund at t=1
(E1 or NAV1). The value of the liabilities is conditioned to the realization at t=1
that we found for each primary simulation. Let’s describe this concept for the primary
simulation p, and for S secondary simulations:

L
(p)
1 = EQ

[
∞∑
t>2

δt
δ1

Pt | F1

]
=

1

s

S∑
s=1

T∑
t=2

δp,st
δp1
P p,s
t

where:

• L(p)
1 the fair value of liabilities for the first period for the primary simulation p
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• δp1 the discount factor for the first period for the primary simulation p

• δp,st the discount factor at t, for the primary simulation p and the secondary
simulation s.

• P p,s
t the liability cash-flow at t for the primary simulation p and the secondary

simulation s

Thus we can determine the value of E1 for each real world scenario and this gives us
an estimation of the distribution of E1.

The SCR is then calculated as:

SCR = E0 − P (0, 1) . q0.005(E1)

Where

• P (0, 1) is the price at t=0 of a Zero coupon bond that matures at t=1.

• q0.005(E1) is the quantile of threshold 0.50% for the distribution of the E1

Proof:
The SCR is defined as the capital needed in order to have:

P (E1 < 0) 6 0.5%

Assume that the amount S = −P (0, 1).q0.005(E1) is invested in cash during the first
year at risk-free return.

let Eajust
1 ,Aajust1 ,Lajust1 be the economic variables after incorporating S.

P
(
Eajust

1 < 0
)

= P
(
Aajust1 − Lajust1 < 0

)
≈ P

(
A1 +

S

P (0, 1)
− L1 < 0

)
The approximation is done because we assume that the impact of the capital S in
the whole value of the first year results and in the conditional subsequent results is
negligible.

P

(
E1 +

S

P (0, 1)
< 0

)
= P (E1 − q0.005(E1) < 0)

so, we deduce:
P (E1 < q0.005(E1)) = 0.50%

In practice, the method of nested simulations is probably the most accurate method
but it is heavy to implement and is time and storage consuming. There are the major
limits of the concept.
The above description of the nested simulations shows that in order to implement the
concept of nested simulations, we need to make some modeling assumptions. These
assumptions have to be chosen with care.
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3.3 Models and calibrations assumptions

Modeling assumptions used to estimate the capital requirement are supposed to be
adapted to the risk of the company. Assumptions have to be made, and we have to
be aware that different assumptions can lead to substantially different estimations of
the capital requirement. Especially for the estimation of a quantile, models’ structure
and parameters’ calibration will therefore have a direct impact on the estimation of the
capital requirement. Models should be correctly chosen so as to produce adequately
dispersed scenarios that give suitable calibration in the tail. For instance, the equity
model must provide extreme scenarios with the appropriate probability, especially in
the calculation of a quantile: choosing a model that under-estimates extreme scenarios
would lead to the under-estimation of the solvency capital requirement. Also, calibrat-
ing a model on a very short historical database that does not include extreme scenarios
would not lead to a satisfying calibration. The data used for calibration is important
and should ensure that the real risk of the company is captured.
Insurers try to make the best assumptions about models and calibrations by using their
knowledge about their portfolio. This subjectivity is supposed to lead to an estimation
of the capital requirement adapted to the portfolio of the insurance company, and this
is what an internal model aims at.



Chapter 4

Economic Scenario Generator

Introduction

The previous chapter introduced the concept of nested simulations that will be used
to assess the capital for equity and interest rates risks for products of types GMAB
and GMDB. In order to put this method into practice, we need to build an economic
scenario generator (ESG). An ESG is a tool that produces forward-looking scenarios for
multiple financial and economic variables. In our case, our economic scenario generator
will provide economic scenarios for the evolution of equity returns and interest rates
what will allow us to valuate a portfolio allocated in the monetary market, in bonds
and in equities.
As presented in the concept of nested simulations, our economic scenarios generator
must produce real world scenarios to time t=1, and risk-neutral scenarios after t=1. So
in this chapter, the first section will present the equity modeling: the Black and Scholes
equity model will be compared to the Merton equity model which is more appropriate
in a quantile calculation as it provides heavier tails of distribution and this in the aim
of avoiding the under-estimation of the capital requirement. We need to diffuse real
world scenarios and risk neutral scenarios, thus we will present two methods used to
calibrate the Merton model under risk real world and we will also present the change
in the drift that allows us to produce risk-neutral equity scenarios.
The next section presents the modeling of interest rates. We will use the one-factor
Cox-Ingersoll-Ross model motivated by the fact that this model overcomes the problem
of negative interest rates. In fact we will show that this model produces strictly positive
interest rates under certain constraints in its continuous form. But when discretizing the
process with the explicit Euler scheme, the positivity of the simulated interest rates is
not ensured anymore. To overcome this problem we will present another discretization
scheme which is the implicit Euler Scheme. Similarly to the equity model, we need
to diffuse risk real and then risk neutral interest rates scenarios. In this aim we will
differentiate the risk-neutral world calibration from the risk real world calibration.
As it is observed in the reality, the evolutions of interest rates and equity returns are
not independent and this has to be considered in our ESG. Thus, a section is dedicated
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to the presentation of the dependence structure implemented: a linear dependence will
be used using correlated Brownian motions. The regulator mandates some tests on the
economic scenario generator, so last but not least, we give the results obtained when
performing the test of the martingale. A test of convergence is also required by the
regulator but this test will be presented later in the application.

4.1 Equity modeling

4.1.1 Useful theory: Ito Processes

Let X be the solution of the following stochastic differential equation:

X(t) = X(0) +

∫ t

0

m(X(s), s)ds+

∫ t

0

σ(X(s), S)dW (s)

Then X is a Ito process that can also be written as:

dX(t) = m(X(t), t)dt + σ(X(t), t)dW(t)

Where :

• W is a Brownian Motion

• m the drift

• σ is the volatility

4.1.2 The Black and Scholes model

Many equity models exist, but probably the most famous model in finance, the Black
and Scholes model or the Black Scholes Merton model is often used to diffuse the equi-
ties over a period of time.
Under the real world probability P, the Black-Scholes differential equation is:

dSt
St

= µdt+ σdWt

where:
W is a standard Brownian motion under historical probability
σ denotes the constant volatility of the risky asset
µ the constant drift

Even if the Black and Scholes model is very used for its simplicity to put into practice,
it is based on quite heavy assumptions:
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• There is no arbitrage opportunity: there is no financial strategy ensuring a pay-
ment at a future date with an initial investment equal to zero.

• It is possible to buy or sell any fraction of asset.

• The market is complete and continuous.

• Short selling is possible without any restriction.

• Constant volatility: probably the heaviest assumption, the measure of how much
can a stock be expected to move in the near term is constant over time.

• Interest rates are constant and known : the Black-Scholes model uses a constant
rate as the risk-free rate.

• Efficient markets: this assumption of the Black-Scholes model suggests that people
cannot consistently predict the direction of the market or an individual stock.

• No dividends: he stock does not pay dividends.

• No commission and transaction costs: there are no fees for buying and selling
stocks.

• Liquidity: it assumes that it is possible to purchase or sell any amount of stock
at any given time.

By using the Ito Lemma:
Let X be a Ito process and let f(t, x) be a C1,2 function, then:

df(X(t), t) =

(
∂f

∂t
+m(X(t), t)

∂f

∂x
+

1

2
σ (X(t), t)2 ∂f

2

∂x2

)
dt+ σ(X(t), t)

∂f

∂x
dW (t)

Let use the Ito lemma with d ln (St):

d ln (St) =

(
1

St
m(St, t) + 1

2

(
−1

S2
t

)
σ2(St, t)

)
dt+ σ

1

St
dWt

d ln (St) = (µ− 1
2
σ2)dt+ σdWt

lnSt = lnS0 +
∫ t

0

(
µ− 1

2
σ2
)
dt+

∫ t
0
σdWt

Finally we find, St = S0 exp
(
(µ− 1

2
σ2)t+ σWt

)
It is interesting to note that the properties of a Brownian motion allow us to write:

ln

(
St
S0

)
∼N

(
(µ− 1

2
σ2)t, σ2t

)
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4.1.2.1 Risk-neutral world

Under risk neutral probability, we show by using the Girsanov theorem that the price
of equities follows the following stochastic differential equation:

dSt
St

= rdt+ σdWQ
t

where:

• r is the risk-free interest rate

• WQ
t is a Standard Brownian motion under risk neutral probability

4.1.2.2 Model simulation

Models are usually expressed in a continuous form which permitted to discover some
famous closed-form solutions. But in practice, we need to discretize the process in order
to simulate trajectories (discrete data). Since the Black and Scholes model provides
a closed-form solution for the price of equity as previously shown, we can simulate it
without discretization error, with an exact discretization.

St+∆t = St exp

(
(µ− 1

2
σ2)∆t+ σ (Wt+∆t −Wt)

)
The following properties of the Brownian motion,

• Independence in the increments

• Wt+∆t −Wt ∼ N (0,∆t)

allow to simulate (Wt+∆t −Wt) by
√

∆t.Z where Z ∼ N (0, 1). Thus the exact dis-

cretization formula to simulate the Black and Scholes model is:

St+∆t = St exp

(
(µ− 1

2
σ2)∆t+ σ

√
∆t Z

)
where Z ∼ N (0, 1)

4.1.2.3 Calibration

The calibration of an internal model is an important part. We have used a historical
data of 5 years which is quite short. Please note that here we just want to present a
method used for calibration, but in the context of an internal model it would be better
to use larger database.
The Maximum Likelihood approach will be used to the problem of estimation of the
parameters (µ, σ) = Θ from the data. This method can be used for both continuous and
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discrete random variables. The concept of this method is to estimate the parameter Θ
for the assumed density function that will maximize the probability of having observed
the given data sample. The probability of observing a particular data sample, is called
the Likelihood Function, and is denoted l(Θ).

By defining the log-returns of the data sample (x1, ..., xn) as:

Xi = ln

(
Si+1

Si

)

The likelihood Function for independent and identically distributed (iid) variables is:

l(Θ) = fΘ(x1, ..., xn) =
n∏
i=1

fΘ(xi)

For numerical reasons, we usually convert the Likelihood Function to the Log-Likelihood
Function L(Θ) :

L(Θ) =
n∑
i=1

ln (fΘ(x1, ..., xn))

The Maximum Likelihood Estimator (MLE) Θ̂, is found by maximizing the Likelihood
or Log-Likelihood function. In the Black and Scholes model, the log-returns increments
form normal iid random variables, each with a known density determined by mean (m)
and variance (v) fΘ(x) = f(x;m; v) with:

m =

[
µ̂− 1

2
σ̂2

]
∆t ; v = σ̂2∆t

By differentiating the Gaussian density function with respect to each parameter and
setting the derivative to zero, the MLE method provides closed-form solutions for the
mean (m) and variance (v) of the log-returns:

m̂ =
1

n

n∑
i=1

xi ; v̂ =
1

n

n∑
i=1

(xi − m̂)2

The estimator of the variance presented above is biased and in practice we usually use
the following unbiased estimator:

v̂ =
1

n− 1

n∑
i=1

(xi − m̂)2

In order to illustrate this model, we have used the data sample of BNP Paribas from
the 01.04.2000 to the 12.30.2005 (length of the sample is 1531). The average price over
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the period is about 47.8e with a standard deviation of 6.46. The average return is
0.000273 with a standard deviation of 0.019741 (σ̂).

Figure 4.1: BNP PARIBAS Index from 01/2000 to 12/2005

We find the following estimators:

Calibration
µ̂ 0.0004684
σ̂ 0.0197417

Using these estimations, it is interesting to compare the estimated distribution to the
empirical distribution.
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Figure 4.2: Fitted distribution of returns

The above picture shows that the adjusted distribution does not really fit the empirical
distribution. We use a quantile-quantile plot in order to criticize the replication of
the tails of distribution. The quantile-quantile plot (qqplot) is a graphical technique
used for determining if two data sets come from a common distribution. The following
picture presents the obtained quantile-quantile plot.
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Figure 4.3: QQ-Plot of Sample Data versus Standard Normal

The above qqplot shows that the Gaussian assumption seems not to fit the returns
distribution, and yet the Black Scholes model is very used in the professional world.
Indeed, when putting theory into practice, the closed-form solution provided by this
model allows for a relative simplicity. The Black and Scholes model is based on quite
heavy assumptions that are not all verified on the markets. More particularly, some
assumptions are particularly wrong when the market is perturbed or when the market
knows some discontinuities. Thus, when using the Black and Scholes model, profes-
sionals must be careful about the assumptions taken especially in the calculation of the
SCR which is a quantile. Thus, we present another model, the Merton model.

4.1.3 The Merton Model

The Black and Scholes model is often used for its simplicity but the tails of distribution
do not fit the fat tails observed in the reality. In order to improve this lacuna, we
introduce the Merton model. The publication of some economical results or other
extreme events can affect the brutal changes in the financial world. The empirical
observation below introduces this jump phenomenon.
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Figure 4.4: CAC40 Index from 01/2000 to 12/2011

These jump observations can be modeled through Poisson Jump processes. In
this model, we add a source of risk (Poisson jumps) without adding assets:

• The Brownian component represents the global fluctuations of the market due to
the constant arrival of information concerning the overall market.

• The jump component represents information specific to the financial investment
(good or bad news about the company,...).

Under the historical probability P, the Merton model differential equation is:

dSt
St

= µdt + σdWt + dJt

where the compounded Poisson process J is defined as :

Jt =
Nt∑
i=1

Zi
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with {
Nt follows a homogeneous Poisson Process with intensity λt
Zi ∼ N (0;σz)

• W is a Brownian Motion

• σ the constant volatility of the risky asset

• µ the constant trend

• W, N and Z are mutually independent processes

The Merton model provides a closed-form solution:

St = S0 exp

((
µ− 1

2
σ2

)
t+ σWt +

Nt∑
k=1

Zk

)

We note that when Nt = 0 then the jump component is equal to zero. The stock return
R(t) is equal to the following:

R(t) = ln

(
St
St−1

)
=

(
µ− σ2

2

)
+ σ (W (t)−W (t− 1)) +

N(t)∑
k=1

Zk −
N(t−1)∑
k=1

Zk


Hence, the return still follows a log-normal distribution, but with the Merton model,
at some date point, we can observe discontinuities in the curve and this is empirically
observed. We note that the above stock return formula also shows that returns are
independent and identically distributed. This means that the value of the return does
not depend on the position of the time interval of the returns, but it depends on the
step of time.

4.1.3.1 The martingale property

Under the condition of no arbitrage opportunity, a pricing rule implies that the present
value of the price of the underlying asset is a martingale under the probability Q.

For the Merton model, we show that the process Ŝt = ertSt is a martingale if and only
if:

µ = r − λ
(

exp

(
σ2
z

2

)
− 1

)
This condition can be verified by calculating the expected value of the exponential of
the Poisson jump part.
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4.1.3.2 Model simulation

Similarly to the Black and Scholes model, the exact discretization can be used to sim-
ulate a Merton trajectory.

St = St−∆t exp

((
µ− σ2

2

)
∆t+ σ

√
∆tεt +

N∆t∑
j=1

Yj

)

Where

• Nt ∼ P(λ∆t)

• Yj ∼ N(0; 1)

• εj ∼ N(0; 1)

4.1.3.3 Calibration

In order to calibrate the Merton model, we first use the moment method estimation
(MME). Then, we use the maximum likelihood approach.

The density 1 of returns is given by the following formula:

f(x) =
exp(−λ)√

2π

∞∑
n=0

 λn

n!
√
σ2 + nσ2

z

exp

−
(
x− µ+

σ2

2

)2

2 (σ2 + nσ2
z)




Using this density formula we can determine the central moments2(moment about the
mean), the idea of calculating the central moments and not just the simple moments
comes from the coefficient (x− µ) in the density function of returns):

• Because of the symmetry of the distribution, odd central moments are equal to
zero.

• Even central moments are given by the following formula:

E
[
(R− E (R))2k

]
=

(2k)!

2kk!

∞∑
n=0

λn exp (−λ)

n!

(
σ2 + nσ2

z

)k
1The mathematical proof is given in appendix
2The mathematical proof is given in appendix
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Four linearly independent equations are necessary to assess the four unknown param-
eters (µ, σ, λ, σz). With the sample of observed returns (r1, ..., rn), we deduce the fol-
lowing system of equations:

r̄ =
1

n

∑n
i=1 ri = µ− σ2

2

E
[
(R− E (R))2] =

1

n

∑n
i=1 (ri − r̄)2 = σ2 + λσ2

z

1

n

∑n
i=1 (ri − r̄)4 = 3 exp (−λ)

∑∞
n=0

λn

n!
(σ2 + nσ2

z)
2

1

n

∑n
i=1 (ri − r̄)6 = 15 exp (−λ)

∑∞
n=0

λn

n!
(σ2 + nσ2

z)
3

Where R is the log-return, and n the number of observations. To solve numerically this
system, we implement the Newton-Raphson algorithm. The sum in the above system
is approximated by the sum of the first 20 terms (the convergence is fast).

Another method of calibration is to use the maximum likelihood estimator. The Log-
likelihood function is:

L
(
x1, ..., xN , µ, σ

2, λ, σ2
z

)
=

N∏
i=1

exp(−λ)√
2π


∞∑
n=0

 λn

n!
√
σ2 + nσ2

z

× exp

−
(
xi − µ+

σ2

2

)2

2 (σ2 + nσ2
z)





In order to illustrate with a practical case, we apply the method of moments and the
maximum likelihood method to the data set used for the Black and Scholes illustration
(BNP Paribas Index from the 01.04.2000 to the 12.30.2005).

Parameters Method of Moments Maximum Likelihood

µ̂ 3.52622985e-004 5.0771594e-004

σ̂ 0.01257 0.01215

λ̂ 0.19976 0.28096

σ̂z 0.0340298 0.0290436

Table 4.1: Parameters Estimation of the Merton model

Using two methods allows us to criticize the consistency of the results obtained. Indeed,
we note that the two methods give the same order of magnitude even if the maximum
likelihood method gives a larger value for µ̂.
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The variance of the Merton model is given by the following formula:

V =

Brownian Motion Variance︷︸︸︷
σ2 + λσ2

z︸︷︷︸
Poisson Jump Variance

Thus, we can compare the variance part explained by the Poisson jump and by the
Brownian motion with both methods of calibration:

Variance Method of Moments Maximum Likelihood
Annualized Variance3 9.73705% 9.62124%
Explained by the Poisson jump ≈ 59.397% ≈61.584%
Explained by the Brownian Motion ≈40.603% ≈38.416%

Table 4.2: Variance decomposition of the Merton model

As shown in the above table, the variance part explained by the Poisson jump com-
ponent is a little more important with the maximum likelihood method than with the
method of moments. Let’s compare the different adjusted densities:

Figure 4.5: Comparison of the Merton model and the Black and Scholes model

3On the basis of 250 days a year
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The comparison of the adjustments shows that the Merton model better fits the em-
pirical distribution. We also see that the Merton adjustment presents larger tails of
distribution than the Black and Scholes model as the following graph shows:

Figure 4.6: Zoom on the tail of distribution

The above figure shows that the Merton model better fits the empirical distribution of
returns than the Black and Scholes model does. It is important to note, especially for
the calculation of a quantile, that the tails of distribution are better adjusted with the
Merton model than with the Black and Scholes model.

4.2 Interest rate modeling

In this section we present two one-factor models: the Vasicek model and the Cox-
Ingersoll-Ross model (CIR). One-factor models are based on a quite heavy assumption:
the short rate is correlated with every maturity rate. This is generally not observed in
practice, however, one-factor models such as the Vasicek and the CIR model are very
convenient to use as they provide a closed-form solution for zero-coupon prices. For
more detail on interest rate model other than those presented here, the reader can refer
to BRIGO and MERCURIO [4].
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4.2.1 The Vasicek model

The Vasicek model (Vasicek, 1977) is one of the earliest stochastic short term interest
rate. In this model, the short rate follows an Ornstein-Uhlenbeck process with constant
positive coefficients. Under historical probability, the stochastic differential equation of
the model is:

drt = a (b− rt) dt+ σ dWt

Where:

• rt is the short rate at time t

• a is the speed of reversion

• b is the long term mean level

• σ is the instantaneous volatility

• W is a Brownian motion

The particularity of this model is that it features mean reversion: if the interest rate is
above the long term mean (rt > b) then a (b− rt) becomes negative so that the short
rate will be pushed closer to the long term mean level b. Likewise, if the rate is inferior
to b (r < b) then a (b− rt) is positive so that the rate will be pushed to be closer to
the long run mean b. Thus, the idea of this model comes from the observed economic
phenomenon that interest rates are pulled back to a long run average value over time.
Nevertheless, with the Vasicek model there is a positive probability that r becomes
negative. This phenomenon is economically non acceptable4 and some models like the
Cox-Ingersoll-Ross model have overcome this problem.

4.2.2 The Cox-Ingersoll-Ross model (CIR)

The CIR model was suggested in 1985. It follows a square-root process. Under historical
probability, the CIR model is:

drt = a (b− rt) dt+ σ
√
rt dWt

Where:

• rt is the short rate at time t

• a is the speed of reversion

4We consider negative rates as non acceptable although we have recently observed negative interest
rates, indeed the German treasury has just sold sovereign debt at a negative interest rate.
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• b is the long term mean level

• σ is a constant parameter

• W is a Brownian motion

This model is an example of conditional volatility: when the short rate is high, the
volatility of interest rate changes is also high, and vice versa. Another difference is that
this model only produces strictly positive rates under the condition:

2ab > σ2

Thus, when calibrating, it is important to make sure that this constraint is met.

4.2.2.1 Zero-coupon valuation with a CIR model

The zero-coupon rate at t maturing at T is the actuarial rate of a bond with a coupon
rate equal to zero. At time t, the price of a zero-coupon bond maturing at T is given
by:

P (t, T ) = A(t, T ) exp (−B(t, T )rt)

with:

A(t, T ) =

 2γ exp

(
(γ + a)(t− T )

2

)
(γ + a)(exp(γ(T − t))− 1) + 2γ


2ab

σ2

B(t, T ) =
2(exp(γ(T − t))− 1)

(γ + a)(exp(γ(T − t))− 1) + 2γ

γ =
√
a2 + 2σ2 ; rt : the short rate

Let R(t, T ) be the continued interest rate at t for maturity T-t, then the relation

R(t, T ) = − 1

T − t
ln(P (t, T ))

leads to the following formula:

R(t, T ) =
rt ×B(t, T )− ln(A(t, T )

T − t
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4.2.2.2 CIR simulation

In order to simulate with the Cox-Ingersoll-Ross model, we can use the explicit Euler
scheme:

rt+∆t = ab.∆t+ rt(1− a∆t) + σ
√
rt.∆t.Z

Where Z ∼ N(0, 1).

However, it is important to note that even when the condition 2ab > σ2 is met, it is
possible to obtain negative interest rates with the explicit Euler scheme. If we consider
that rt+∆t is positive then:

ab.∆t+ rt(1− a∆t) + σ
√
rt.∆t.Z > 0

which involves

Z >
ab.∆t+ rt(1− a∆t)

−σ
√
rt.∆t

but Z ∼ N(0, 1) is not bounded from below, so whatever the condition on (a, b, σ) is,
the probability to simulate a negative interest rate cannot be equal to zero. Thus, if we
use the explicit Euler scheme, it can lead to negative short rate. Indeed, the condition
necessary for positive interest rates is a condition that works only for the continuous
form of the equation.

drt ≈ rt+δt − rt
To solve this problem let’s consider the process rt as the limit of the explicit Euler
scheme (see Alfonsi paper on the discretization schemes of the CIR process[2]):

rt = lim
n→∞

∑
ti<t

[a
n

(b− rti) + σ
√
rti
(
Wti+1

−Wti

)]
Which leads to:

rt = lim
n→∞

∑
ti<t

[a
n

(
b− rti+1

)
+ σ
√
rti+1

(
Wti+1

−Wti

)
− σ

(√
rti+1
−√rti

) (
Wti+1

−Wti

)]

Then we need to calculate 〈√rt,Wt〉 by using the Ito lemma with the function
√
rt

(twice differentiable function on R∗+)

We find: d〈√rt,Wt〉 =
σ

2
dt

then,

rt = lim
n→∞

∑
ti<t

[
1

n

(
ab− σ2

2
− arti+1

)
+ σ
√
rti+1

(
Wti+1

−Wti

)]
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We find the implicit Euler scheme:

rti+1
− rti =

1

n

(
ab− σ2

2
− arti+1

)
+ σ
√
rti+1

(
Wti+1

−Wti

)

If we consider that
√
rti+1

is positive, let’s assume
√
rti+1

= X:

X2(1 +
a

n
)− σX

(
Wti+1

−Wti

)
− rti −

1

n

(
ab− σ2

2

)
= 0

By resolving this polynomial equation of the second degree, we prove that two solutions
exist: ∀(a, b, σ) ∈ R3

+



X1 =

σ
(
Wti+1

−Wti

)
+

√
σ2
(
Wti+1

−Wti

)2
+ 4

(
1 +

a

n

)(
rti +

1

n

(
ab− σ2

2

))
2
(

1 +
a

n

) > 0

X2 =

σ
(
Wti+1

−Wti

)
−

√
σ2
(
Wti+1

−Wti

)2
+ 4

(
1 +

a

n

)(
rti +

1

n

(
ab− σ2

2

))
2
(

1 +
a

n

) 6 0

We have proved that a unique positive solution exists to the equation given by the
implicit Euler scheme. We deduce:

rti+1
=


σ
(
Wti+1

−Wti

)
+

√
σ2
(
Wti+1

−Wti

)2
+ 4

(
1 +

a

n

)(
rti +

1

n

(
ab− σ2

2

))
2
(

1 +
a

n

)


2

This scheme preserves the monotonicity property (it is still an increasing function of
rt) satisfied by the CIR process:

r0 < r
′

0︸ ︷︷ ︸
Two initial conditions

=⇒ rt < r
′

t
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It is interesting to compare the results given by the CIR model and the result obtained
with the implicit Euler scheme. For a good comparison, we use the same Brownian
motion for the two different discretizations, and we compare the obtained interest rate
curves in one year (dt = 1year).

Figure 4.7: Implicit Euler Scheme vs Explicit Euler Scheme

Graphically, we see that the implicit Euler scheme gives larger values than the explicit
Euler scheme.

Other solutions exist to avoid negative interest rates. For example, it is usually consid-
ered that:

r̂t+δt = max
(
r̂t (1− aδt) + abδt + σ

√
δtr̂tZ; 0

)
This solution puts negative interest rate to zero as there are very few negative simula-
tions. Another solution consists in taking the module of the result as the square root
of negative rate introduces complex numbers:

r̂t+δt = |r̂t (1− aδt) + abδt + σ
√
δtr̂tZ|

These two last solutions are simple solutions, and they are not really consistent. This
is the reason why we will prefer the solution given by the implicit Euler scheme to
simulate.
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4.2.2.3 Link between the historical and risk-neutral parameters

The historical parameters and the risk-neutral parameters can be chosen independently.
In general, the risk neutral parameters (a1, b1, σ1) differ from the historical parameters
(a, b, σ). But, in practice, it is often used to constrain these parameters, using a risk
premium parameter λ. These constraints are used to get a simple interpretation of the
change of parameters, in other word in the change of probability. Thus it is usually
assumed that σ1 = σ. We present the general framework of this method in appendix.
In our case, we will use two independent calibrations. We will present a method to
estimate the parameters independently using interest rate instruments (zero-coupon
prices) for the risk-neutral world and historical data for the historical world.

4.2.2.4 CIR calibration

It is important to insist on the different methods used to calibrate the CIR process.
Under the historical probability, we use historical data of interest rates, whereas in
risk-neutral world, we replicate the price of interest rate instruments.

Risk-neutral world calibration

In order to calibrate the CIR model, we use the zero-coupon curve published5 (12.31.2012)
by the french institute of Actuaries, “Institut des Actuaires”. Please note that normally,
in the context of an internal model, the curve published by the EIOPA should be used.
We will estimate the parameters (σ, a, b) by minimizing the distance (the Least Squares
approach) between the observed zero-coupon prices and the zero-coupon prices given
by the formula of the CIR model (we can also do it with zero-coupon rates):

min
σ,a,b

[
n∑
i=1

[Pi − Pob,i]2
]

or min
σ,a,b

[
n∑
i=1

[Ri −Rob,i]
2

]
Where:

• Pi is the theoretical zero-coupon price of maturity i

• Pob,i is the observed zero-coupon price of maturity i

• Ri is the theoretical interest rate of maturity i

• Rob,i is the observed interest rate of maturity i

As we have to make an assumption for the short rate rt, we assume it is equal to the
3-month Euro-Libor rates. We decide to estimate the parameters (a,b) for fixed values
of σ under the constraint 2% < σ < 8%. We choose the value of σ that best fits the
curve and minimizes the above formula. With this calibration method we obtain the
following results:

5This curve is given in appendix
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Parameters Estimators
σ̂ 0.05
â 0.224

b̂ 0.0485

We note that the condition 2ab > σ2 is met. Using these estimators, we can now plot
the fitted interest rates curve and compare it to the observed zero-coupon interest rate
curve.

Figure 4.8: CIR Adjustment

We can see that it is hard to explain the full interest rates curve with only the short
rate, and this is a limit of our model. Please note that in theory, we should recalibrate
the parameters of the model for each outer scenario but as this work is difficult in
practice, we will use the same parameters in our application.

Real world calibration
The calibration under historical world requires to use historical data, thus we use the
Euro-Libor (3 months) database. On a first approach, we use the maximum likelihood
approach method based on the assumption that the residuals follow a normal distri-
bution. However, in practice, by plotting the distribution of conditional residuals, it
appears that the normal assumption is not verified.

Thus, we have tested another method based on the Quasi-Maximum Likelihood ap-
proach. It consists in optimizing the log-likelihood function computed as if the normal
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assumption on residuals was empirically verified. It is interesting to use the observed
error terms to simulate instead of simulating Brownian motions. In other words, the
error terms simulation would consist in randomly selecting in the observed residuals.

Using the implicit Euler scheme, the assumption on residuals is:

εt+1 =
(1 + a) rt+1 − rt − ab+

σ2

2
σ
√
rt+1

∼ N (0, 1)

After maximizing the likelihood function, we obtain 3 estimators (â, b̂, σ̂). Given these
three estimators, we need to back-test them. The test consists in validating the cali-
bration method.

Back-testing explanation:

For the back-test, the database is cut into several parts with the same length. For
instance, we calibrate the model using elements 1 to 100 of the database, thus we
obtain estimators, and we check if the (observed) element 101 is in the following interval
defined with the percentile observed in the element 1 to 100 (this interval corresponds
to the thresholds 1% and 99%):

r101 ∈

[σp0.01 +
√
σ2p2

0.01 +Rt

2 (1 + a)

]2

;

[
σp0.99 +

√
σ2p2

0.99 +Rt

2 (1 + a)

]2


with

• Rt = 4 (1 + a)

(
rt + ab− σ2

2

)
• p.99 and p0.01 are respectively the 99th and the 1st percentile observed in the data

used for the calibration.

We repeat this method by using elements 2 to 101, and we check if r102 is in the
confidence interval. Using a large data base (length 2000) it is possible to verify if the
calibration method is appropriate.

We have performed this test, and we have observed that by calibrating 1000 times,
the predicted value is outside the interval 9 times. This shows that the model is well
adjusted to the threshold.
However, in the context of nested simulations, implementing this method in an ESG is
not an easy task, this is the reason why we will use for the application of this thesis
the parameters given by the maximum likelihood approach.
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4.2.3 Discount Factors

In order to calculate the Best Estimate, we have to determine which discount factors
(DFt) to use to calculate the present value of future cash-flows.
For insurance products, the values of the cash-flows (Ft) used in the calculation of
the Best Estimate depend on two sources of risk: the financial risk and the insur-
ance risk. We can represent these two sources with two filtered probability spaces:
(Ωf , (F i

t )t≥0, P
f ) for the financial risk and (Ωi, (F i

t )t≥0, P
i) for the insurance risk. Then

the Best Estimate is calculated as:

BE = EP f⊗P i

[DFt × Ft]

Given that the value of the cash-flows only depend on the insurance risk (for example
only the mortality):

BE = EP f

[DFt]× EP i

[Ft] = P (0, T )× EP i

[Ft]

Then the initial zero-coupon curve can be used to calculate the Best Estimate if the
cash-flows do not depend on the financial world.

However, in our case, the value of the cash-flow also depends on the evolution of the
underlying assets, and this is the reason why we cannot use the initial zero-coupon
curve. Especially when we consider interactions between assets and liabilities, we have
to remain consistent and use the simulated short rate of each trajectory to calculate
the discount factors.

4.3 Correlation

In order to remain consistent with the empirical observations, it is important to intro-
duce a dependence between interest rates evolution and stock returns evolution. To do
this, we will use correlated Brownian motions. The Cholesky decomposition is used to
build correlated Brownian motions.

4.3.1 The Cholesky decomposition

Every symmetric, positive definite matrix A can be decomposed into a product of a
unique lower triangular matrix L and its transpose TL:

A = L.TL

where L is called the Cholesky factor of A, and can be interpreted as a generalized
square root of A.
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4.3.2 Correlated Brownian Motions

We use correlated Brownian motions as the dependence structure between interest rates
and equities.

dW1
t .dW2

t = ρ.dt

W1
t and W2

t are respectively the Brownian motion used in the equity model and the
Brownian motion used in the CIR model. W1

t and W2
t are correlated , M is the

correlation matrix of Wt = (W1
t ,W

2
t ).

M =

(
1 ρ
ρ 1

)
Remark: We note that for ρ = 1 ou ρ = −1, the correlation matrix is not positive
definite.
By using the Cholesky decomposition, there exists a unique matrix L such as M = LTL.
So we need to build two correlated Brownian motions by simulating an independent
Brownian motion Bt = (B1

t ,B
2
t ).

For independence reasons, we show that:

cov(Bt) =

(
var(B1

t ) 0
0 var(B2

t )

)
=

(
t 0
0 t

)
= t.

(
1 0
0 1

)
By stating Wt = TLBt comes:

cov(Wt,Wt) = cov(TLBt,
TLBt) = TL. cov(Bt)︸ ︷︷ ︸

tI2

.L = t(TL.L) = t.M

So in order to simulate correlated Brownian motions we have to simulate independent
Brownian motionsBt = (B1

t ,B
2
t ) and the correlated Brownian motions, Wt = (W1

t ,W
2
t )

are given by the following formula:

Wt = TL.Bt

4.3.3 Correlation estimation

The estimation of the coefficient ρ depends on the composition of the portfolio. For
instance, if the portfolio is composed of European equities, then we can estimate ρ
as the historical correlation between the returns of the Euro Stoxx 50 index and the
EONIA (Euro OverNight Index Average) for the last ten years.
It is important to note that the estimation of this parameter depends on the choice
of historic data. Between 2000 and 2006, we observe a larger correlation between the
Euro Stoxx 50 and the EONIA compared to the 2006-2012 data set.
The data set from 2000 to 2012 gives the following result:
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Estimation
ρ 0,07

QIS5 (upward Shock) 0,50

We observe that our estimation is very different from the correlation given in the
Fifth Quantitative Impact Study.

4.4 Tests

The regulation mandates some tests on the economic scenario generator.

Test of the martingale: This test is used to ensure that the asset, under risk neutral
world, provides an average return equal to the risk-free rate. We have realized this test
with 6000 simulations, and we find a relative error of about 0,30%.

Test on the parameters: Parameters of the CIR model are supposed to reproduce
the risk-free interest rates term structure. In our case, the test consists in simulating the
short rate a lot of times, and comparing the average curve obtained with the risk-free
rate curve. Due to the assumptions taken when using a one-factor model, this test was
not satisfied. Two factors models would have been more appropriate but the choice of
the CIR model is also motivated by its simplicity to put into practice.



Chapter 5

Asset and liability model

Introduction

The previous chapter presented the economic scenario generator. The next step is to
present how we use these scenarios to evaluate the situation of the company (cash-in
and-out flows) at each step. Thus these scenarios are integrated in an asset and liability
model. So in this chapter we first present the method used to evaluate the assets at
each step. Then we present the modeling assumptions of liabilities with a deterministic
model taken from the mortality table TH0002. After that we detail the steps in the
asset and liability model to evaluate the economic situation of the company at each step.
The last part of this thesis is dedicated to the implementation of the tool. Indeed, as
the method of nested simulations is very time and storage consuming, we have tried to
avoid loops in the computer code and we present the matrix calculation method used
to implement the model and optimize the run time.

5.1 Asset and liability management

Asset and Liability Management (ALM) reflects the relationship between the liabilities
and the assets covering them, taking into account interactions between them.

5.1.1 Asset in ALM

The asset is composed of bonds, equities and a monetary part. Bonds are supposed to
be at par. The coupon is also assumed to be fixed. The simulation of an interest rate
curve at each step, will allow us to valuate bonds in the portfolio.

The market value of bonds is given by:

MVt =
T∑
k>t

cashflows(k)× exp (−R(t, k))

75
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R(t,k) is the zero-coupon rate at t of maturity the date of the removal of the coupon k.
The market value, MVt, is used to assess the value of the fund, and also to rebalance
the fund each year.
As bonds are considered to be at par, the value at t=0, of the yearly coupon for a bond
maturing in t=T, is calculated as:

C =
1− exp(−R(T ))∑T
k=1 exp(−R(t, k))

Thus, the value of bonds changes over time, depending on the evolution of interest
rates.
As under risk-neutral world the average return is equal to the risk-free rate, we have to
remain consistent and use the one-year interest rate simulated with the CIR
model at each step as the risk-free interest rate used in the equity model.
At each step, the portfolio is rebalanced with the same initial risk profile.

5.1.2 Liability in ALM

Guarantee payments are made at the end of each year after deducing the fees. We
consider that the premium is a unique premium. In our application we will not study
the cover of the guarantees with the risk premium (naked product).

We will study a closed portfolio of policies (there is no new policyholders) starting
at t=0, maturing at t=10. The portfolio is studied as a unique contract with a model
point. The model point is to represent the average contract, based on the following
characteristics:

• age of the policyholder (it can be the average of the group)

• sex of the policyholder

• GMAB guarantee at maturity T

• GMDB guarantee

• Fees charged on the value of the contract

As we do not consider lapse other than mortality, we retrieve at each step, a pro-
portion of qx of the fund and consider that the proportion of qx dies. Thus, mortality
is taken deterministic.

5.1.3 Asset and liability interactions

Conditioned by the scenario given by the ESG, the ALM model has to make the com-
pany one year older. The ALM model proceeds as follows (example to go from t=t to
t=t+1):
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• Step 1: Valuation of the fund at t=t+1 using the ESG

• Step 2: Calculation of the cash-flows which are fees and the death proportion.
It is important to note that the value of the guarantee is not retrieved from the
fund, but from the own funds.

• Step 3: Calculation of the cash-flows used in the calculation of the Best Estimate.

• Step 4: Fund rebalancing, after deducing the cash-flows, the fund is rebalanced
to its original asset allocation. To rebalance the bonds part, we sell the bonds
in our portfolio by calculating their market value and we buy again bonds of the
same initial maturity.

5.2 Best Estimate

In this part we describe how we calculate the Best Estimate of a product including a
GMAB and a GMDB. The Best Estimate is defined as the expected present value of
future cash-flows. It takes into account all the cash in and out flows, required to meet
the insurer’s obligations over time.

Best Estimate =Insurer’s Obligations - policyholders’ Obligations

Realistic probability assumptions are essential for the calculation of the Best Estimate
and it is calculated under the risk-neutral probability. It is important to describe the
cash-flows taken into account in the calculation of the Best Estimate.

Chargings:

As all financial products have fees, the amount depends on the investment fund. The
expense charged on the contract are intended to cover the insurer’s fees. The difference
between real expense and expense received by the insurer is what the insurer expects
to earn. Fees are generally separated into:

• An investment management fee: this fee is charged for the management of the
fund. It may vary depending on the type of investment.

• Insurance charges: they include administrative and distribution charges. They
are generally an annual amount.

• Surrender fees: these charges apply if the policyholder surrenders before the ma-
turity of the contract.

It is important to note that those fees cannot only be seen as cash-in flows for the
company, because the company has to pay other actors like a broker for instance. So
the only flows that can be seen as a cash-in-flows in the calculation of the Best Estimate
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is the difference between the fees charged on the contract and the operating costs. The
amount of operating costs remains a cash-out-flow.

We consider that the fees received at t are paid by the proportion of the portfolio
remaining at (t-1).

Guarantee payment:

Guarantees are cash-out-flows for the company. Under the notations:

• GD
t the death guarantee at t

• GA the accumulation guaranteed amount at the maturity of the contract

• f the fixed percentage of fees charged on the value of the fund

• Ft is the fund value at t for the number of remaining living policyholders. At each
step, the surrender value of the units for the dead policyholders and charged fees
are retrieved from the fund whereas the value of the guarantee is not retrieved
from the fund but from the own funds of the company.

Let’s consider that the GMDB is characterized by a payment at the end of the year
of max(GD

t , (1 − f).Ft) if the policyholder dies between t and t-1 (we consider that
the amount value of the fund taken in the calculation of the cash-flow is the value of
the unit after deducing the fees), and the GMAB is characterized by a payment of
max(GA, (1− f).Ft) at the maturity of the contract.

Under the following assumptions:

• Payments are done at the end of the year

• Policyholders, aged x, die at the ends of years

• fees are a percentage of the fund value at each end of year and are separated into
freal and fc, respectively the real fees (paid by the insurance) and the charged
fees. In fact real fees depend on the number of policies but in this formula to
simplify we consider that real fees are a percentage of the fund value.

Thus, the Best Estimate at t=1 is calculated as (The cash-flows at t=1 has already
been deduced from the asset of the company):
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BE =
1

S

∑S
i=1

∑T
t=2DF

i
t

[
1/t−1qx.max

(
GD
t ;F i

t .(1− fc)
)

+ (freal − fc) .F i
t

]
+ DF i

T .
[
Tpx.max

(
GA; (1− fc).F i

T

)]
with:

• F i
t is the value of the fund at time t for the inner scenario i and S is the number

of inner scenarios.

• DF i
t is the discount factor at time t for the inner scenario i.

• 1/i−1qx the probability that a person aged x dies between i-1 and i.

• Tpx the probability that a person aged x is still alive after T years.

It is important to note that when we use 1/i−1qx and Tpx from a mortality table, we
assume that the mortality rates do not change in the future (risk of mortality trend).

5.3 Global structure

In order to calculate the net asset value at t=0, we need to calculate the Best Estimate
at t=0. The following picture presents the structure of the estimation of the Best
Estimate at t=0 (BEt=0).
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Figure 5.1: Best Estimate calculation at t=0
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The following picture presents the architecture of the estimation of the distribution of
the net asset value at t=1 used for the market risk module calculation.

Figure 5.2: NAVt=1 calculation
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5.4 Implementation

The implementation was made using MATLAB (Matrix Laboratory). MATLAB is a
programming environment for algorithm development, data analysis, visualization, and
numerical computation. During the implementation several difficulties had to be faced.
The major difficulty to face was the run time and the storage necessary when using
the nested simulation approach. In order to take up this calculation challenge we have
used matrix calculus. Indeed, MATLAB is particularly powerful in the manipulation
of matrix calculus. This is the reason why, the implementation has followed one main
idea: using matrix operations instead of loops.

In our implementation, we use three dimensional matrices. The following picture
illustrates the ESG implementation.

Figure 5.3: Three dimensional matrix for the ESG

On the above picture, the red points of the cube represent a realization of the fund
at t=1 (an outer scenario). As we have to make a second level of simulation, we repeat
the value of the first realization on the line of the matrix, this is the reason why there
are several red points. The other points (t > 1) represent the secondary scenarios
conditioned to the realization of the primary scenario (red point). Each floor of the
matrix represents an outer scenario and the inner scenarios conditioned to it. The
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following picture illustrates the mechanism of the three dimensional matrix presented
above.

Figure 5.4: Illustration of the implementation

Using three dimensional matrices allows to calculate the three dimensional cash-
flows matrix for the Best Estimate. We also use three dimensional matrices to store
realizations of the CIR model, and this simplifies the calculation of the present value
of future cash-flows. Once we have the matrix of cash-flows, we can use basic matrix
operations with MATLAB. It is important to note that the time step of the simulation
was one year, if we had chosen a shorter time step the run time and the storage would
have significantly increased this is to say that even if the nested simulations concept is
a very accurate method this method is limited by the capacity of computers.
Implementing with three dimensional matrices has reduced time computing, but it
demands large matrices storage and the capacity of storage is limited. However using
matrix calculation instead of loops is a good way to optimize the implementation.
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Application

Introduction

This chapter presents an application of the implementation performed so far. The
aim of this chapter is to present the capital calculation for products of types GMAB
and GMDB. The first section is dedicated to the presentation of the context of the
application. Then, we illustrate the calculation of the capital requirement for interest
rates and equity risks with the nested simulations approach through a sensitivity study.
Please note that in our application we approximate the market SCR by the aggregation
of the equity required capital and the interest rates required capital. Normally to talk
about market SCR we should add the other risks given in the standard formula. To
complete the application, we have included our study in the context of a simplified
partial internal model approach by estimating the life SCR with the shocks given by
the standard formula. Thus this chapter illustrates a sensitivity study of the required
capital for interest rates and equity risks but it also exemplifies the calculation of the
life SCR using the shocks of the standard formula.

6.1 Context of our application

We consider a company who sells contracts maturing in ten years. To improve the
visibility of the study of sensibility of the market risk, we will study three cases: in
the first one the company sells contracts including just a GMAB (there is no GMDB),
in the second one the company sells contracts including just a GMDB (there is no
GMAB), and in the third case the company sells contracts including both guarantees.
The third case will be used to illustrate the study of the convergence in the next section.

In the following application we will make some simplifying assumptions in order to
have a first approximation of the solvency capital requirement. The following graph
illustrates the structure adopted:

84
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Figure 6.1: Simplified structure of the SCR

As our contract only includes in-case-of survival and in case-of-death guarantees,
we do not have to consider the modules Health and Non-Life.
Moreover the following assumptions are also made:

• There is no loss-absorbency of technical provisions and deferred tax compensating
the loss of the insurer. Adjustment = 0.

• The risk arising from intangible assets is equal to zero.

• The counterparty default risk is equal to zero. This assumption is a rather strong
assumption in the current economic context but it remains consistent if we con-
sider a portfolio composed of sovereign bonds with high rating.

Concerning the market risk module, we simplify by doing the following assumptions:

• As there is no investment in property: Property=0.
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• The spread risk is equal to zero: it is a strong assumption especially in the current
context (recent downgrades and default of governments).

• Assets, liabilities and all the cash-flows of the company are in the same currency.
Thus the currency risk is equal to zero: Currency = 0.

• The portfolio is well-diversified: the concentration risk is equal to zero. Thus,
concentration=0.

• The liquidity is supposed sufficient.Thus, Illiquidity =0.

For the life module, as products contain life guarantees we will consider:

• Management expenses remains stable, thus the expense sub-module is equal to
zero. This assumption is consistent if the product has been sold for a long time,
management fees are known.

• The lapse has not been modeled, so we will not study the lapse and the lapse
sub-module is equal to zero.

• There is no disability or morbidity guarantee.

On the liability side:

The portfolio of the company is composed of a group of policyholders. We consider
that the group is homogeneous. This assumption is rather consistent, as in practice
policyholders are generally grouped with a model point which consists in “calculating
the average characteristics of the group”. The group shares the following characteristics:

• Male, aged 60

• The death probability is taken from table TH0002

• They all own the same kind of policies:

◦ We consider that policyholders pay a single premium at the beginning of the
contract.

◦ We first consider that the death guarantee (GMDB) is a 2% roll-up guaran-
tee.



6.1. CONTEXT OF OUR APPLICATION 87

◦ We also first consider that the accumulation guarantee pays the initial amount
invested.

◦ 0.50% are charged each year on the value of the contracts. We consider that
company’s costs are equal to charged fees.

• In our application, the lapse is not modeled, and only the qx proportion is retrieved
from the fund.

The investment of the unit-linked is allocated as follows:

The above pie-chart shows that the portfolio includes three-year maturity bonds and
five year-maturity bonds. As the maturity of the policies is ten years, the duration of the
bonds’ part can appear inconsistent from an ALM point of view but our implementation
re-balances the fund each year as the initial defined risk profile. Thus, bonds are sold
every year and new bonds of maturity 3 and 5 years are bought every year. The coupons
are calculated depending on the interest rate curve. Equities have a volatility of 20%
(σ) and an historical return of 5%. The equity model used is the Merton model, and
consequently to the result of the section about the calibration of the Merton model, we
have adjusted the parameters so that the Poisson component explains 60% of the total
variance and the Brownian part 40%. The own funds are invested safely, on a monetary
fund. We will consider that the risk premium for the guarantees is included in the own
funds. The hedging strategy of the guarantees is not studied in this application.
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Thus the accounting balance sheet of the company at t=0 is:

Accounting Balance sheet at t=0

Asset Liabilities

Equities 50 000 000 Own Capital 20 000 000

Bonds 30 000 000 Mathematical provisions 100 000 000

Monetary 40 000 000

Total 120 000 000 Total 120 000 000

We will make vary the characteristics of the contracts (a contract including just a
GMAB, or just a GMDB, or including both). We consider that the accounting value of
assets is equal to the market value of assets at t=0. Thus, there is no unrealized gain
or loss of the assets portfolio.
Before calculating the economic balance sheet, we need to test the convergence of our
tool and determine the numbers of simulations to use.

6.2 Convergence

Studying the convergence is important as we need to determine a sufficient number of
simulations, and we need to control the accuracy of the estimation by calculating a
confidence interval. The following graph presents the convergence of the Best Estimate
at t=0 depending on the number of simulations.
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Figure 6.2: Convergence of the Best Estimate at t=0

The convergence is quite slow, given the above picture, we will take 6000 simulations.
The study of the convergence of the Best Estimate at t=1 is similar to the previous
convergence study, thus we will take 6000 inner scenarios.

As we previously mentioned, the Best Estimate at t=0 is calculated as:

BEt=0 =
1

P

P∑
p=1

T∑
t=1

DF p
t × F

p
t

We consider that our trajectories are independent and follow the same distribution, (the
theory also precises that variables are square-integrable) then we can built a confidence
interval (level 95%). As the calculation of the cash-flows implies a maximum, the
distribution is not a Gaussian distribution. However using the Strong Law of Large
Numbers and the Central Limit Theorem, we can determine a confidence interval:

[
B̂Et=0 − 1.96× σ̂√

P
; B̂Et=0 + 1.96× Ŝp√

P

]

Ŝp =

√
1

P

∑P
p=1

(
B̂E

p

t=0 − B̂Et=0

)2

Numerically, we find a confidence interval for the Best Estimate at t=0, for P=6000
simulations:
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BEt=0 = 98 918 200e± 0.21 million

If we take BEt=0 =98 918 200e for the value of the estimation (as we have to choose
one), then the economic balance sheet is presented as follows:

Economic Balance sheet at t=0

Asset Liabilities

NAVt=0 21 081 800

Market Value of Assets 120 000 000 Best Estimate 98 918 200

Total 120 000 000 Total 120 000 000

We also need to determine the number of outer scenarios for a sufficient convergence
of the quantile of the net asset value at t=1. As it is more complicated to determine
a confidence interval for the estimation of the quantile of the NAV mkt

t=1 , and as we are
limited by the run time, we will limit the number of outer simulations to 5000. In order
to study the convergence of the calculation of NAV mkt

t=1 , we will calculate the relative
error of the estimator of the NAV mkt

t=1 compared to the result estimated with 5000 outer
simulations and 6000 inner simulations. The following table summarizes the results:

Number of outer simulations Relative Error

1000 4.1%

2000 2.6%

3000 0.74%

4000 0.16%

Given the above results, we will use 6000 inner scenarios and 4000 outer scenarios.
Indeed, the implementation of this application with three dimensional matrices demands
a lot of storage but our simplified case, the storage is not so large and this allows us to
have results rather quickly.

Thus, using 4000 outer simulations and 6000 inner simulations, we estimate in our
example the value of the quantile 0.50% of the net asset value at t=1 (for market risk):

q0.005NAV
mkt
t=1 = 13 139 664 e
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This value was extracted from the following distribution of NAV mkt
t=1 :

Figure 6.3: Distribution of the Net Asset Value at t=1

We can deduce from this study, the market SCR of our example:

SCRmarket = 8 046 202e

6.3 Sensitivity study

In this section, we will study the sensitivity of capital requirement for market risk. In
our model, this capital requirement is calculated as:

SCRMarket = NAVt=0 − P (0, 1)q0.005NAV
mkt
t=1

We will study the sensitivity of SCRMarket to:

• The Guarantees

• The allocation of the unit-linked

• The volatility of equities

• The age of policyholders
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6.3.1 Sensitivity to the guarantees

In this section we want to study the sensitivity of SCRMarket to the guarantees. Let’s
first consider that the company sells policies including just a GMAB whose character-
istics are given in the table below:

Table 6.1: Sensitivity of the SCRMarket to the GMAB guarantee

GMAB Characteristics (% of the initial investment) SCRMarket (e)

100% 5 962 996

110% 8 053 923

120% 9 935 567

130% 11 229 981

Figure 6.4: Impact of the GMAB guarantee on the SCRMarket
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The above table shows that if we increase the guaranteed amount of the GMAB, the
risk increases for the company. When the percentage of the guarantee goes from 100%
to 130%, the SCRMarket increases of about 90%. Indeed, when increasing the guarantee
of the GMAB, the number of unfavorable scenarios increases (scenarios where the fund
has less performed than the guarantee), so the company must have more capital to
meet its obligations with the probability of 99.5%. The increase of SCRMarket is quite
fast, and this is the reason why a company must be careful to the characteristics of the
guarantee. Let’s now study the sensitivity of the SCRMarket to the death guarantee.
For more visibility, in this sensitivity study we consider that the contract includes only
a GMDB. The following table presents the results:

Table 6.2: Sensitivity of the SCRMarket to the GMDB guarantee

GMDB Characteristics (Roll-up rate) SCRMarket (e)

2% 3 502 124

3% 3 884 298

4% 4 156 061

5% 4 437 428

Figure 6.5: Impact of the GMDB guarantee on the SCRMarket
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Similarly to the accumulation guarantee, when the GMDB roll-up rates increases, the
SCRMarket also increases as expected (the number of unfavorable scenarios increases).
When the roll-up rate goes from 2% to 5% the SCRMarket increases of about 26%. This
shows that an increase in the roll-up rate has a significant impact on the SCRMkt.

6.3.2 Sensitivity to the allocation

In this section, we present the sensitivity of the SCRMarket to the risk profile of the
investment. We study the sensitivity for contracts including both a GMAB (100% of the
initial investment) and a GMDB (2% roll-up). In order to study the allocation of the
investment, we make vary the equity and bonds parts without changing the monetary
part. The following table presents the results:

Table 6.3: Sensitivity of the SCRMarket to the allocation

Allocation

Equities 50% 60% 70% 80%

Bonds 30% 20% 10% 0%

Monetary 20% 20% 20% 20%

SCRMarket (e) 8 046 201 10 470 101 12 349 461 15 390 331

Figure 6.6: Impact of the equity proportion on the SCRMarket
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The results show that when the equity part of the fund increases, the SCRMarket in-
creases (nearly linearly). Thus, it means that requirements increase when the equity
part increases. This is an expected result, indeed, as the volatility of the fund in-
creases, the SCRMarket also increases. As the volatility of equity returns is larger than
the volatility of bond returns, it appears consistent that the SCRMarket increases when
the equity part increases. This shows that if the insurer wants to reduce its exposure
to market risk, a possibility is to reduce the part of the fund invested in equities.

6.3.3 Sensitivity to the volatility of equities

In this part, we test the sensitivity of the SCRMarket to the volatility of equities in the
fund. We illustrate this example with the same initial allocation (which is 50% equity,
20% monetary and 30% bonds) and same guarantees (GMAB 100%, and GMDB 2%
roll-up). The following table presents the results:

Table 6.4: Sensitivity of the SCRMarket to volatility of equities

Volatility of equities SCRMarket(e)

20% 8 046 201

25% 10 488 521

30% 12 556 212

35% 13 757 942

Figure 6.7: Impact of the volatility of equities on the SCRMarket
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The results show that the SCRMarket is very sensible to the volatility of equities. Thus
if the volatility of equities goes from 20 to 35%, the SCRMarket increases by about 70%,
which is a considerable increase. Thus if the insurer wants to reduce its exposure to
market risk, a possibility is to invest in less volatile equities and as we can see, the
decrease is quite fast.

6.3.4 Sensitivity to the age of policyholders

In this part, we study the sensitivity of the SCRMarket to the age of the policyholders
at t=0. Longevity and mortality are not market risks, however this sensitivity study
shows that our model is sensible to the characteristics of the portfolio. The following
table summarizes the results:

Table 6.5: Sensitivity of the SCRMarket to the age of policyholders

Age SCRMarket(e)

60 8 046 202

65 8 884 205

70 9 815 256

Figure 6.8: Impact of the age of policyholders on the SCRMarket

The results given in the above table have been tested on the basic contract which
includes a 2% roll-up GMDB and a 100% GMAB. The results show that the SCRMarket
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increases when policyholders are older. Indeed, as contracts include a GMAB and a
GMDB, both longevity risk (the probability that a person is still alive at a date is
under-estimated) and mortality risk (people die prematurely) exist for these contracts.
However, in our example, the value guaranteed by the GMDB (2% roll-up) is higher
than the value guaranteed by the GMAB (100%), and moreover, the GMDB guarantee
is generally applied before the GMAB guarantee, so if policyholders are older, it means
that it is more likely that more policyholders die and use the death guarantee, what
means that the company pays a larger amount (and earlier) when the death guarantee
is applied (compared to the GMAB).

6.4 Solvency Capital Requirement

In this section we illustrate the calculation of the Solvency Capital Requirement with
our internal model. We remind that we consider that the company sells contracts in-
cluding a GMAB (100% of the initial investment) and a GMDB (2% roll-up guarantee).

Market risk module:
The SCRMarket has already been calculated in the previous section with our internal
model.

SCRMarket = 8 046 202 e

Life risk module:
We have to calculate the life risk module. In our case, we have shown that we have to
calculate the longevity sub-module, the mortality risk sub-module and the catastrophe
risk sub-module.

Mortality risk sub-module:
The mortality risk is associated to the death guarantee. Article SCR.7.16 in the QIS5
stipulates for the mortality shock, “A permanent 15% increase in mortality rates for
each age and each policy where the payment of benefits (either lump sum or multiple
payments) is contingent on mortality risk”. By applying this shock we find a capital
requirement for the mortality risk sub-module of:

LifeMort = 162 923e

Catastrophe risk sub-module:
The catastrophe risk sub-module in the QIS5 aims to capture extreme mortality event.
Article SCR.7.82 in the QIS5 stipulates for the life catastrophe shock, “Absolute increase
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in the rate of policyholders dying over the following year of 1.5 per mille (only applicable
to policies which are contingent on mortality)”. By applying this shock we found a
capital requirement for the catastrophe sub-module of:

LifeCat = 1 055 921e

Longevity risk sub-module:
The longevity risk sub-module in the QIS5 is associated to the GMAB guarantee.
Article SCR.7.28 in the QIS5 stipulates for the longevity shock,“a (permanent) 20%
decrease in mortality rates for each age and each policy where the payment of benefits
(either lump sum or multiple payments) is contingent on longevity risk”.By applying
this shock we find:

LifeLg = 0

This result is consistent with the results of the sensitivity study as we have observed
that when the contracts includes a GMAB and a GMDB the company is exposed to the
longevity risk or to the mortality risk. In our case, if policyholders live longer, then less
death guarantees will be applied but more accumulation (GMAB) will be applied. But
the death guarantee amount is larger than the accumulation guarantee and the death
guarantee is also paid earlier. Thus it is expected to find a risk capital for longevity
equal to zero.

Aggregation of the life module:
In order to aggregate the life risk sub-modules, the following correlation matrix is given
in the QIS5 (Article SCR.7.7):

Table 6.6: Correlation coefficients for the life risk module

Mortality Longevity Catastrophe

Mortality 1 -0.25 0.25

Longevity -0.25 1 0

Catastrophe 0.25 0 1

Using this matrix we find the capital requirements for the life module:

SCRLife =
√
Life2

Mort + Life2
Lg + Life2

Cat + 0.5× LifeMort (LifeCat − LifeLg)

Numerically, we found:
SCRLife = 1 107 939e
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Basic Solvency Capital Requirement:
The EIOPA precises that “In order to fully integrate the partial internal model into the
standard formula for the purpose of calculating the Solvency Capital Requirement, insur-
ance and reinsurance undertakings should use the correlation matrices of the standard
formula set out in these technical specifications”. Thus, after calculating the capital
requirement for the life risk module, we can now use the correlation coefficient between
the market risk module and the life risk module given in the QIS5 which is 0.25 (Article
SCR.1.32) to calculate the Basic Solvency Capital Requirement.
The BSCR is calculated as:

BSCR =
√
SCR2

Market + 0.50× SCRMarket × SCRLife + SCR2
Life

We found:
BSCR = 8 392 034e

Operational module:
The operational risk module represents the risk arising from inadequate actions or
events. The definition of this risk and the calculation of its module is given in the QIS5
(Article SCR.3.6):

SCRop = min (0.3×BSCR;Op) + 0.25× Expul

Where:

• Expul is the amount of annual expenses incurred during the previous 12 months
in respect life insurance where the investment risk is borne by the policyholders.

• Op is the basic operational risk charge for all business other than life insurance
where the investment risk is borne by the policyholders.

As we do not consider the previous twelve months,Expul = 0.
Elements before t=0 are taken equal to zero. We calculate Op with the standard
formula in the QIS 5 and we find Op=0. Thus, the operational risk module is equal to
zero.

SCROp = 0

Solvency Capital Requirement calculation:
Finally, in our case, the SCR is calculated as:

SCR = BSCR + SCROp = BSCR
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Numerically,
SCR = 8 392 034e

Risk Margin:
Several simplification are proposed in the QIS5 in order to estimate the risk margin.
We have chosen the method using the modified duration. Article TP.5.49. in the QIS5
stipulates:

CoCM = (
CoC

(1 + r1)
)×Durmod(0)× SCRt=0

Where:

• CoCM the risk margin.

• SCRt=0 is the solvency capital requirement at t=0.

• Durmod(0) is the modified duration.

• CoC is the cost-of-capital rate given in the QIS 5 (equal to 6%).

To calculate the modified duration we first calculate the duration:

Dur(0) =

∑
t

tFt
(1 + rt)t∑

t

Ft
(1 + rt)t

We calculate this duration using the cash-flows of the central scenario.
We find:

Dur(0) = 9.2059

And then, we deduce the modified duration by:

Durmod(0) =
Dur(0)

(1 + ra)

Where ra is the actuarial rate equal to the constant rate that gives the same duration.
We find:

ra = 3.88%

Durmod(0) = 8.8621

Thus we can calculate the risk margin:

CoCM = 4 450 291 e
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Solvency II Balance sheet:
For our application, we obtained the following Solvency II balance sheet (in millions of
euros):

Figure 6.9: Solvency II balance sheet

Solvency Ratio:
The solvency ratio reflects the solvency of the company. It is defined as the ratio
between the own funds and the SCR: numerically we find 1.982. This value describes
a relatively satisfying solvency of the company.



Chapter 7

Perspective

In this thesis, we have presented a partial internal model using nested simulations.
A perspective of the project is to extend the partial internal model to a full internal
model. However, we have seen that using the method of nested simulations involves
large storage and run time, and we are conscious that even a good optimization of the
calculation with three dimensional matrices will not be sufficient enough to model a
whole company. The nested simulations method is probably the most accurate method,
but other methods exist to take up this calculation challenge. Thus in this part, we
present one of them, the Least Squares Monte Carlo.

7.1 The Least Squares Monte Carlo approach

The Least Squares Monte Carlo approach is similar to the full nested simulations: the
LSMC approach consists in using the same numbers of outer scenarios but we reduce the
number of inner scenarios (risk-neutral scenario) to one per outer scenario. Using only
one inner scenario leads to very inaccurate liability valuations, but the LSMC consists
in doing a regression through these very inaccurate valuations, hence the name Least
Squares. We then use the fitted regression curve instead of the inaccurate valuations
obtained with a single inner scenario. The following graph explains the LSMC approach:
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Figure 7.1: Least Squares Monte Carlo approach

Figure 7.2: Least Squares Monte Carlo regression curve

The Blue points on the first graph represent the net asset value at t=1 obtained by a
single inner scenario. The red curve represents the fitted regression curve that will be
used instead of simulating a lot of inner scenarios. Thus, on the regression, the liability
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valuation at t=1 is the response variable and the explanatory variables are the input
risk drivers of the economic scenario generator. The regression function gives us an
approximation of the liability value at t=1. This concept can appear quite unlikely,
but it is used and it works.
The perspective of the project is to create a full internal model using the Least Squares
Monte Carlo method. Even if this method can appear simple, finding the right regres-
sion function is a real challenge.



Conclusion

With the arrival of the Solvency II Directive, insurers must prepare themselves to have
a more accurate view of the risks they bear, but also to have an economic view of their
balance sheet. The directive requires the calculation of the solvency capital requirement
and as we described in this thesis, this capital can be estimated by using a standard
formula or a (full or partial) internal model. However sellers of variable annuities will
not be allowed to use the standard formula. Thus, the aim of this thesis was to present a
method to estimate a required capital with an internal model but also with the standard
formula for those products, and more precisely for GMAB and GMDB products.

We have presented a simplified partial internal model that calculates the SCR in two
steps: first the required capital for the market risk (simplified to the interest rates
and equity risks) is estimated through our internal model, and then the shocks of the
standard formula are used to calculate the required capital associated to the life risk
module. As in the first step we need to estimate the distribution of own funds at the end
of the first year, we have used the method of nested simulations. The implementation
of this method requires two levels of simulations. The first step to develop it was to
model the assets. We chose the Merton model for the equity part as it takes into
account discontinuities due to the brutal arrival of positive or negative information and
as it presents fat tails of distribution. The one-factor interest rate model Cox-Ingersoll-
Ross was used, the choice of this model was motivated by its simplicity to put into
practice but also because it does not produce negative interest rates. The choices of
the models are important, but we have shown that insurers will also have to focus on
their calibrations. Also in this thesis, we have distinguished the risk-neutral calibration
from the real world calibration. After modeling the asset, we have determined the
cash-flows for the Best Estimate calculation. And finally, we have taken into account
the interactions between the assets and the liabilities with an ALM model.

The implementation of this tool with MATLAB was the major part of this thesis. It
is important to highlight the means to put in place in order to implement the model.
This is also the reason why the model’s complexity will also be limited by the means
available to the insurer.

Thanks to the tool developed, we could test on a simplified case the sensitivity of
the required capital for market risk to the characteristics of the guarantees and to
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the structure of the investment. Thus, the results of our sensitivity study show that
insurers can reduce their exposure to market risk by decreasing the proportion of the
fund invested in equities, or by investing in less volatile equities. By varying the age
of policyholders, we highlighted the sensitivity of our tool to the characteristics of
policyholders. Insurers could realize this kind of study in order to estimate and monitor
their solvency ratio.

Using our partial internal model, we have illustrated a SCR calculation on a simplified
case. This example has highlighted the importance of the market risk for GMAB and
GMDB products as it represents the major part of the solvency capital requirement. It
also justifies the use of a partial internal model to better assess the market risk for these
products. After calculating the risk margin, we have presented the economic balance
sheet according to the Solvency II Directive.

A perspective of our project is to extend our partial internal model to a full internal
model that includes all the risks borne by the insurer. In order to decrease the run time
and the storage, the full nested simulations could be replaced by the Least Squares
Monte Carlo concept that limits the number of inner scenarios to a single one.

Means to comply with the Solvency II regulatory framework are heavy and the effective
date of the directive is still being discussed. Solvency II is a long run project and it
marks the arrival of a new culture of risk.
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Theoretical elements on the Merton
model

In the Merton model, the return is defined as:

R(t) = ln

(
St
St−1

)
= ln (St)− (St−1)

=

(
µ− σ2

2

)
t+ σW (t) +

∑Nt

k=1 Zk −
[(
µ− σ2

2

)
(t− 1) + σW (t− 1) +

∑Nt−1

k=1 Zk

]
=

(
µ− σ2

2

)
+ σ (W (t)−W (t− 1)) +

(∑Nt

k=1 Zk −
∑Nt−1

k=1 Zk

)
=

(
µ− σ2

2

)
+ σW (1) +

∑N(1)
k=1 Zk

Let’s now calculate the density of return:

P [R ≤ x] = P [R ≤ x | N(1) = 0]×P [N(1) = 0]+
∞∑
n=1

P [R ≤ x | N(1) = n]×[N(1) = n]

N(1) is a homogeneous Poisson process, then ∀n ≥ 0:

P [N(1) = n] = exp(−λ)
λn

n!

We can deduce form the independence of the variable in the model that:

(
µ− σ2

2

)
+ σ (W (t)−W (t− 1)) +

 Nt∑
k=Nt−1

Zk

 ∼ N
(
µ− σ2

2
,
√
σ2 + nσ2

z

)
Then, we can write:

P [R ≤ x | N(1) = n] = P

(µ− σ2

2

)
+ σW (1) +

N(1)∑
k=1

Zk ≤ x
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∂

∂x
P [R ≤ x | N(1) = n] =

1√
2π (σ2 + nσ2

z)
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−
(
x− µ+

σ2

2

)2

2 (σ2 + nσ2
z)


Then we deduce the density of return:

f(x) =
exp(−λ)√

2π

∞∑
n=0

 λn

n!
√
σ2 + nσ2

z

exp

−
(
x− µ+

σ2

2

)2

2 (σ2 + nσ2
z)




Given this density function, we can use it to determine the formula of central moments.
For symmetric reasons, uneven central moments are equal to zero. For even central
moments, we use the density of returns to determine the central moments of order 2k:

E[(R− E[R])2k] =
∞∑
n=0

λn exp(−λ)√
2π

∫ ∞
−∞

 x2k

n!
√
σ2 + nσ2

z

exp

−
(
x− µ+

σ2

2

)2

2 (σ2 + nσ2
z)


 dx

then we apply the change of variable, u =

(
x− µ+

σ2

2

)
(σ2 + nσ2

z)

we deduce that,

∫ ∞
−∞

 x2k

n!
√

2π (σ2 + nσ2
z)

exp

−
(
x− µ+

σ2

2

)2

2 (σ2 + nσ2
z)


 dx =

(
σ2 + nσ2

z

)k
c2k

Where c2k =
∫∞
−∞

1√
2π
u2kexp(−u

2

2
)du =

(2k)!

2kk!
We deduce the result,

E
[
(R− E (R))2k

]
=

(2k)!

2kk!
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Curve of zero-coupon rates,
March 2012

A zero-coupon curve is published monthly by the French Insitute of Actuaries.

Maturity ZC Rate
0.25 0.081%
0.33 0.094%
0.42 0.11%
0.50 0.13%

1 0.27%
2 0.55%
3 0.95%
4 1.363%
5 1.739%
6 2.07%
7 2.37%
8 2.63%
9 2.86%
10 3.051%
11 3.22%
12 3.35%
15 3.64%
20 3.82%
25 3.84%
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Risk premium in the CIR model

Both the Vasicek and the Cox-Ingersoll-Ross Models provide closed-form solutions for
zero-coupon bond prices and this is very appreciated, this is also the reason why the
form of the risk premium is usually chosen so as to preserve the general form of the
model. In theory, the volatility of the model is the same under both historical and
risk-neutral world. The general form of interest rate models can be expressed both
under historical and risk-neutral probabilities:

drt = µ(t, rt)dt+ σ(t, rt)dWt

drt = (µ(t, rt)− λ(t)σ(t, rt))dt+ σ(t, rt)dW
Q
t

λ(t) is the risk premium, it represents the excess premium of a risky asset compared
to a non-risky asset.

By applying the above formula, we find the Vasicek equations under both historical
(P) and risk-neutral probabilities (Q):

drt = a(b− rt)dt+ σdWt

drt = a(bλ − rt)dt+ σdWQ
t

With


bλ = b− λσ

a

λ =
µ− r
σ

The zero-coupon price formula remains the same, but only the

parameters are changed.

For the Cox-Ingersoll-Ross model, we use a similar reasoning, the risk premium is given
by:

λ(t, r) =
λ

σ

√
r

Under risk neutral probability, the Cox-Ingersoll-Ross equation becomes:

drt = aλ(bλ − rt)dt+ σ
√
rtdW

Q
t
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With


aλ = a (1 + λ)

bλ =
b

1 + λ



Glossary

ALM: Asset and Liability Management (ALM) reflects the relationship between the
liabilities and the assets covering them, taking into account interactions between them.

CEIOPS: Commitee of European Insurance and Occupational Pensions Supervisors ,
became the EIOPA in 2011.

CIR model: The Cox-Ingersoll-Ross model model was suggested in 1985. It follows a
square-root process that permits to produce strictly positive interest rates.

Directive: A directive is a legislative act of the European Union, which requires mem-
ber states to achieve a particular result without dictating the means of achieving that
result. It can be distinguished from regulations which are self-executing and do not
require any implementing measures. Directives normally leave member states with a
certain amount of leeway as to the exact rules to be adopted. Directives can be adopted
by means of a variety of legislative procedures depending on their subject matter.

EIOPA: the European Insurance and Occupational Pensions Authority (EIOPA), com-
posed of high-level representatives from the insurance and occupational pensions super-
visory authorities of the European Union’s Member States, advises the Commission in
particular with technical aspects, and with the consistency implementation of Solvency
II.

ESG: An Economic Scenario generator is a tool that produces forward-looking scenar-
ios for multiple financial and economic variables.

GMxB: The Guaranteed Minimum x Benefit refer to the guaranteed living and death
benefits associated with variable annuity business. In the terminology GMxB, the letter
x refers to the type of guarantee.

Nested Simulations: the term Nested Simulations is used to feature the two levels of
simulations used in this thesis, it is also called stochastic into stochastic or simulations
into simulations. Thus in this thesis we talk about a neutral-risk simulations nested
into real-risk simulations.

LSMC concept: The Least Squares Monte Carlo concept is an alternative method to

115



116 RISK PREMIUM IN THE CIR MODEL

the full nested simulations. It reduces the number of secondary simulations to a single
one, and uses a regression function to determine the value of liabilities.

QIS: a Quantitative Impact Study (QIS) is a field-testing exercise, run to assess the
practicability, implications and possible impact of specified approaches to insurers’ cap-
ital setting under Solvency II.

QIS5: the Fifth Quantitative Impact Study refers to the quantitative impact study
conducted between August and October 2010.

Ratchet: It is a possible method to define the amount guaranteed. The guaranteed
amount is equal to the greater of the contract value at guarantee application time, or
premium payments, or the contract value on a specified date.

Roll-up: It is a possible method to define the amount guaranteed. It is the greater
between the initial investment value increased at a specified rate of interest (the roll-up
rate) and the value of the fund when the guarantee is applicable.

SCR: the Solvency Capital Requirement is the value-at-risk of the basic own funds of
an insurance or reinsurance undertakings subject to a confidence level of 99.5% over a
one year period.

Unit-linked product: It is a type of life insurance where the cash value of a policy
varies according to the current value of the net asset value of the underlying investment
assets. The investment risk is borne exclusively by the policyholder.

Variable Annuities: it is the US term to describe unit-linked products with secondary
guarantees. Variable annuities are basically unit-linked contracts with additional guar-
antees.
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de la méthode des � simulations dans les simulations � pour le calcul du capital

117

http://www.cmap.polytechnique.fr/~mazari/NoufelFrikha/Alfonsi_2005.pdf
http://www.cmap.polytechnique.fr/~mazari/NoufelFrikha/Alfonsi_2005.pdf
http://www.risk.net/data/lifepensions/pdf/cutting_edge_0209.pdf
https://eiopa.europa.eu/fileadmin/tx_dam/files/consultations/consultationpapers/CP%20No.%2083%20-%20Draft%20Report%20on%20Variable%20Annuities.pdf
https://eiopa.europa.eu/fileadmin/tx_dam/files/consultations/consultationpapers/CP%20No.%2083%20-%20Draft%20Report%20on%20Variable%20Annuities.pdf
https://eiopa.europa.eu/fileadmin/tx_dam/files/consultations/consultationpapers/CP%20No.%2083%20-%20Draft%20Report%20on%20Variable%20Annuities.pdf
https://eiopa.europa.eu/fileadmin/tx_dam/files/consultations/consultationpapers/CP65/CEIOPS-L2-Advice-Partial-Internal-Models.pdf
https://eiopa.europa.eu/fileadmin/tx_dam/files/consultations/consultationpapers/CP65/CEIOPS-L2-Advice-Partial-Internal-Models.pdf
https://eiopa.europa.eu/fileadmin/tx_dam/files/consultations/consultationpapers/CP65/CEIOPS-L2-Advice-Partial-Internal-Models.pdf
http://uk.milliman.com/perspective/solvency-II/pdfs/implications-solvency-II-product.pdf
http://uk.milliman.com/perspective/solvency-II/pdfs/implications-solvency-II-product.pdf


118 BIBLIOGRAPHY
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http://hal.archives-ouvertes.fr/docs/00/36/96/50/PDF/

Devineau-Loisel-ISFA-WP2101-2009-v2.pdf

[11] DEVOLDER P. (1993): Finance Stochastique.
Editions de l’université de Bruxelles.
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