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Abstract

The traditional methods used in Reserving are aggregated methods, based on a seg-
mentation of contracts: in general, for each segment, a di�erent pattern is �tted to the
developments of the previous years to predict the claim amount of the next years.

Using a segmentation reduces the volatility of the estimation by aggregating claims
with similar patterns together. Under the Solvency II regulation, this segmentation must
build homogeneous risk groups.

The goal of this study is to challenge the current segmentation of claims used by SCOR
P&C. This segmentation is based on expert judgements, contains technical limitations
and is built on criteria regarding the contracts features. To challenge this segmentation,
Machine Learning methods were used on a database containing variables describing both
the contracts and the claims' features. The missing values of the database were �lled
using advanced techniques based on correlations between the variables.

The challenging segmentations are based on:

− Decision Tree regressors: �tted to durations of Incurred or Paid cash-�ows, with
each leaf corresponding to a class;

− Clustering methods: based on variables and/or indicators.

The sturdiness of these segmentations was tested using more advanced algorithms
such as Neural Networks, Random forests or Gradient Boosting.

The results were compared to the current actuarial segmentation based on two criteria:

− Homogeneity: studied by measuring the intra-variance of indicators, regarding In-
curred and Paid cash-�ows, for sets of classes;

− Quality of prediction: using Chain-Ladder method to estimate the cash-�ow N not
knowing the last development period. As well as predicting IBNR and Reserves for
the last 3 or 5 years of development on a database of closed-claims.

Once the most predictive segmentation selected, its composition will be analysed to
study the relevance of its use and its limits.

Keywords:
Actuarial Sciences, General Insurance, Claims Reserving, Machine Learning,
Patterns of Development, Chain-Ladder, Facultative contracts, Sklearn, Neu-
ral Networks, Decision Tree, Random Forest, Gradient Boosting, Dimension
Reduction, MCA, Missing Values, missMDA, Clustering, K-means, K-modes,
K-prototypes



Résumé

Les méthodes usuelles de provisionnement non-vie sont des méthodes agrégées, reposant
sur une segmentation des contrats. Pour chaque segment, un développement est ajusté
sur les développements historiques pour estimer le montant de sinistres à venir.

L'utilisation d'une segmentation permet de réduire la variance de l'estimation en
regroupant des sinistres similaires ensemble. Sous Solvabilité II, cette segmentation doit
former des groupes de risques homogènes.

L'objectif de cette étude est de challenger la segmentation des sinistres actuellement
utilisée chez SCOR P&C, basée sur avis d'experts, contenant des limitations techniques
et construite sur des critères relatifs aux contrats.

Pour ce faire, des méthodes de Machine Learning ont été utilisées sur une base de
données contenant des variables au niveau contrat et au niveau sinistre. Le traitement
des valeurs manquantes a été e�ectué en utilisant une méthode basée sur les corrélations
entre les variables.

Les segmentations testées ont eté construites à partir de :

− Arbres de décision ajusté sur les duration de cash-�ows d'Incurred ou de Paid : une
classe sera attribuée à chaque feuille ;

− Clusterings : sur les variables et/ou indicateurs.

Pour mesurer la prédictibilité de ces classes, des algorithmes plus élaborés (Réseaux
de neurones, Random Forest, Gradient Boosting) ont été utilisés.

Les résultats des nouvelles segmentations ont été comparés à la segmentation actuelle
sur 2 critères :

− Homogénéité des classes : en mesurant l'erreur de prédiction sur les durations de
cash-�ows;

− Qualité de la prédiction : en estimant le montant de l'année N, en enlevant la
dernière diagonale, et en estimant le montant d'IBNR et de Réserves, pour les trois
ou cinq dernières années de développement.

Une fois la segmentation la plus prédictive sélectionnée, sa composition sera étudiée
pour mesurer la cohérence de son éventuelle utilisation et ses limites.

Mots clefs :
Sciences actuarielles, Assurance Non-Vie, Provisionnement Non-Vie, Ma-
chine Learning, Type de développement, Chain-Ladder, Réassurance Facul-
tative, Sklearn, Réseaux de neurones, Arbres de Décision, Forets Aléatoires,
Gradient Boosting, Réduction de dimension, MCA, valeurs manquantes,
missMDA, Clustering, K-means, K-modes, K-prototypes
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Executive summary

Keywords:
Actuarial Sciences, General Insurance, Claims reserving, Machine Learning,
Patterns of development, Chain-Ladder, Facultative contracts, Sklearn, Neu-
ral Networks, Decision Tree, Random Forest, Gradient Boosting, dimensions
reduction, MCA, missing values, missMDA, Clustering, K-means, K-modes,
K-prototypes

Goal of the study

The traditional methods used in Reserving are aggregated methods, based on a segmen-
tation of contracts. The amounts estimated depend on the segmentation: a segmentation
aggregating claims with similar development patterns will enhance the prediction quality.
However, a segmentation mixing claims with di�erent patterns could compute amount
not corresponding to the underlying risk: a short-tail claim assigned to a long-tail class
will have its underlying risk overestimated, and vice versa.

The goal of this study is to �nd ways to create homogeneous classes of claims, for
which the underlying will be correctly estimated. Using such a segmentation will enhance
the prediction quality, as described hereafter:

Figure 1: Impact of the segmentation regarding the estimation error

The current segmentation used by SCOR is partly based on expert judgements, con-
tains technical limitations and is built on criteria regarding the contracts features. This
study will analyse the relevance of this segmentation, by building new segmentations
using Machine Learning algorithms on a database containing claim-level features.
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Framework of the study

Building the development patterns indicators

In order to describe the di�erent patterns of development, the undiscounted durations
for Incurred and Paid cash-�ows have been computed. The underlying hypothesis behind
these indicators is that a small duration will re�ect a short pattern of development (short
tail), while higher values for that indicator will re�ect longer pattern of development (long
tail). Therefore, the models will revolve around building homogeneous classes regarding
these indicators. Hereunder are examples to illustrate how the durations can describe
the patterns:

Figure 2: Impact of the development patterns on the values of the indicators

Presentation of the study database

A database composed of Facultatives contracts as for 4Q18, was extracted from SCOR
central accounting system, gathering contracts and claims features. This database con-
tains information related to the contract itself, such as type of policy, scope of business
or type of cover, and also information related to the claims, such as the country in which
the claim occurred or the type of event that led to the claim.

The database contain nearly 450,000 lines and 20 variables, as well as two tables of
development for both Incurred and Paid.

The database quality was challenged on the three criteria put forward by the Solvency
II legislation: appropriateness, completeness and accuracy.

The process was �rstly applied to the Fire database, composed of the claims in the
Fire line of business, representing 50% of the whole database, being short-tail and quite
homogeneous. Once established, the process was generalized to the whole database.

Improving the quality of the study database

The database contained missing values that needed to be �lled in order to use Machine
Learning algorithms. The correlations between the variables were used in the missing
values management process, via a method based on dimension reduction. Principal
component analysis (PCA1) have been applied to the dataset variables, and the missing
values were projected on the principal axes of the PCA.

Due to technical limitations, optimizing this process was necessary. To do so, clusters
were used to reduce the size of the database and an other measure of the quality was put
in practice, based on the study of the probabilities of belonging in each category for a
missing value.

1A special kind of PCA (MCA) have been used in order to also consider categorical variables.
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Building the challenging segmentations

The challenging segmentations were built following two di�erent kinds of algorithms:

− Tree-based segmentations (supervised approach);

− Cluster-based segmentations (unsupervised approach);

Tree-based segmentations

The tree-based segmentations are built from a decision tree regressor �tted to an indicator
(undiscounted duration of Incurred or Paid cash-�ows). Once the regression tree built,
each leaf will be considered as a class. The predicted value for each class is the mean of
the indicator of the class. Hereunder is presented the process of the value assignment:

Figure 3: Value assignment process for tree-based segmentations

Cluster-based segmentations

The cluster-based segmentations are built using either k-means (if all variables are nu-
merical) or k-prototype (if variables are both numerical and categorical). The predicted
value assignment process follows the same principles as the classes of the tree-based seg-
mentations. The predicted value of each class, for each indicator, will be the mean of
that indicator, for the claims composing the class. Hereunder is presented the process of
the value assignment:

Figure 4: Value assignment process for cluster-based segmentations
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In this study, three di�erent kinds of cluster-based segmentations were studied, each
based on a di�erent selection of variables:

− Clusters based on the indicators only: this segmentation will aggregate claims
having similar values for the indicator.

− Clusters based on variables only: this segmentation will build homogeneous classes
regarding the variables.

− Clusters based on the variables and indicators: these segmentations provide a com-
promise between the two previous segmentations, by considering both the variables
and the values of their indicators in the clustering process.

Selecting of the segmentations per method

In order to choose the best segmentation per method (trees �tted to Incurred/Paid,
clusters based on indicators/variables/indicators & variables), it is necessary to compare
these segmentations between each other. To allow a comparability between the segmen-
tations based on supervised and unsupervised algorithms, a speci�c methodology had to
be put in place. This methodology is composed of the following steps:

1. Reducing the size of the database to consider biases: since the claims with the most
recent underwriting years had a bias in their indicator values (as they did not have
enough time to be fully developed), they had to be dropped;

2. Random split of the database between a training set and a test set (70%/30%);

3. Fitting a segmentation process to the training set for both supervised and unsu-
pervised methods;

4. Classifying the test set using either:

− The decision tree used to build the classes for the tree-based segmentations;

− Classi�cation algorithms for the cluster-based segmentations (Decision Trees,
Random Forests, Gradient Boosting and Neural Networks). The classi�cation
algorithms are �tted to the training set to predict the classes of the test set.

5. Once the whole test set is allocated to the classes of the new segmentations, the
mean of the indicator for that class was assigned as the values for that class (and
thus for each indicator).

6. A value being now available for each indicator and each class, the Mean Squared
Error (MSE) of prediction between each segmentation could be computed and
compared with each other.

7. After the study of the MSE, one set of parameters per method was kept. This
choice was done by looking at the reduce of MSE and the complexity of the models
(elbow method, study of the improvement, trade-o� between improvement and
complexity/number of classes).

The claims with the most recent underwriting years, that were not considered when
building the classes (due to a bias in their indicators' value) needed to be reclassi�ed in
the newly built classes. While for tree-based segmentations, classes are clearly de�ned
by sets of rules that compose the tree; the cluster-based segmentations are not so clearly
de�ned. Therefore, classi�cation algorithms were used to reclassify the most recent claims
in the cluster-based segmentations.
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Study of the segmentations

The prediction quality of the segmentations has been compared considering:

− The 2018 cash-�ow of Incurred and Paid;

− IBNR / Reserves.

All these estimations were done using Chain-Ladder, as it highlights the natural devel-
opment of the classes without experts judgements.

2018 cash-�ow predictions

The most recent year of development (2018) has been taken out of the triangle and
estimated using Chain-Ladder, as illustrated hereafter:

Figure 5: Predicting the 2018 cash-�ow

Since the measure is only measuring the cash-�ow of the next year, it is quite volatile.

IBNR and Reserves predictions

The last 3 or 5 years of development have been taken out of the triangles, then the
Ultimate, of a database composed of closed claims, was estimated using Chain-Ladder.
The Ultimate amounts being known, since the database used is made of fully developed
claims, it is possible to know the IBNR/Reserves for 3/5 years prior. This process is
illustrated hereafter:

Figure 6: Prediction des IBNR / Reserves
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Analysis of the results

The quality of prediction was quanti�ed via two indicators:

− Delta % = AmountPredicted−AmountActual
AmountActual

Measures how close to the real value the total prediction is, but errors can com-
pensate;

− |Error|/|CF | =
∑

j∈UWY |CF
j
Predicted−CF

j
Actual|∑

j∈UWY |CF
j
Actual|

With CF j. amount for the j-th underwriting year.
Measures the sum of errors for each underwriting year, divided by the sum of the
absolute values of each actual cash-�ow.

These measures were used for each prediction: Cash-�ow of 2018 for Incurred and Paid,
IBNR/Reserves predictions with three or �ve years taken out.

On the Fire database, the prediction using the aggregated pattern (aggregating all
the claims in the same class) was the best for almost all the indicators. This was due to
the homogeneity of the Fire database and to the fact that the segmentations had too few
claims per class to correctly evaluate the factors of development. The Actuarial Segment
was outperformed by most of the segmentations; and especially by the segmentation
based on clusters of variables.

A study of the composition of the segmentation based on clusters was then conducted.
After analysing the composition of the classes, some risk-pro�les could be associated to
each class.

The process was then extended to the whole database. Due to the heterogeneity of
the database, and the larger number of claims, the estimations for the whole database
were more precise, and the Actuarial Segment was performing better than on the Fire
Database. Even though the Actuarial segment was better on the whole database, it was
still outperformed by the best segmentation (based on a tree �tted to Incurred durations).

The challenge of SCOR's current segmentation highlighted some of its �aws, especially
regarding the volatility of small classes' developments. However, it is worth noting that
these volatilities were only occurring due to the fact that only the natural developments
were considered, with no experts judgement. Indeed, the business practices often contains
corrections to reduce the volatility and experts judgement regarding the section of factors
of development.



x

Conclusion

The goal of this study was to see how SCOR's current segmentation, containing experts
judgements would compare with segmentations based on Machine Learning.

The study was conducted with a scienti�c approach. By justifying every choices
and by limiting the experts judgements, in order to have a fair comparison between the
segmentations based on algorithms and the current one.

To build the segmentations, indicators describing the development patterns were
built, enabling a quanti�cation of the homogeneity of the classes.

The segmentations with the best homogeneities regarding these indicators were then
selected, and the natural developments of their classes were compared to those of SCOR's
current segmentation.

The challenging segmentations could outperformed the current segmentation's. There-
fore, the segmentations created are composed of more homogeneous classes, regarding
the natural developments.

The whole process of the building of the classes was e�cient as the classes obtained
formed homogeneous groups and had more precise predictions than the Actuarial Seg-
ment. The use of indicators was justi�ed, indeed, di�erent kinds of patterns have been
distinguished.

The challenge of SCOR's current segmentation also highlighted some of its �aws and
ways to improve it, as well as the fragility of the natural pattern of development.

This study takes advantages of Machine Learning to compute e�cient models, while
still being interpretable and keeping in mind the business applications and its constraints:
interpretability, transparency and control over the models.





Note de synthèse

Mots clefs :
Sciences actuarielles, Assurance Non-Vie, Provisionnement Non-Vie, Ma-
chine Learning, Type de développement, Chain-Ladder, Reassurance facul-
tative, Sklearn, Réseaux de neurones, Arbres de Décision, Forets Aléatoires,
Gradient Boosting, Réduction de dimension, MCA, valeurs manquantes,
missMDA, Clustering, K-means, K-modes, K-prototypes

Objectif de l'étude

Les principales méthodes de provisionnement sont des méthodes agrégées, basées sur
une segmentation des contrats. L'estimation des réserves est impactée par la qualité
de la segmentation : une segmentation regroupant des sinistres ayant le même type
de développement permettra d'augmenter la précision de prédiction; en revanche, une
segmentation regroupant des sinistres avec di�érents types de dévelopements aura une
estimation erronée des risques sous-jacents : un sinistre à developpement court placé
dans une segmentation à développement long verra son risque sous-jacent sur-estimé, et
inversement.

L'objectif de cette étude est d'élaborer une méthode permettant la construction
de classes de sinistres homogènes. L'utilisation d'une telle segmentation permettra
d'améliorer l'évaluation du risque sous-jacent, comme illustré ci-dessous:

Figure 7: Impact d'une segmentation sur l'erreur d'estimation

La segmentation utilisée chez SCOR est basée en partie sur avis d'experts et sur des
critères relatifs au contrat. Le but de cette étude est de challenger cette segmentation,
en construisant de nouvelles segmentations à partir d'algorithmes de Machine Learning,
appliqués sur une base de caractéristiques au niveau contrat et sinistre.

xi
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Cadre de l'étude

Mise en place d'indicateurs

A�n de décrire les types de développement, les durations non-actualisées pour les cash-
�ows Incurred et Paid ont été etudiées. L'hypothèse de la mise en place de ces indicateurs
est qu'une duration faible traduira d'un dévelopement plus court (short tail) et qu'une
duration longue d'un développement plus long (long tail). Ainsi, la construction des
modèles se fera autour du regroupement de sinistres ayant des valeurs similaires pour ces
indicateurs. Les exemples ci-dessous illustrent l'impact du développement sur les valeurs
des indicateurs :

Figure 8: Impact du type de développement sur la valeur des indicateurs

Présentation de la base d'étude

La base de données est composée de contrats Facultatives, extraits du système interne
de comptabilisation de SCOR, en vue quatrième trimestre 2018 (4Q18). Cette base
de données contient des informations au niveau contrat: le type de police, le domaine
d'activité ou la nature du contrat; ainsi que des caractéristiques au niveau sinistre: pays
dans lequel le sinistre a eu lieu, type d'évenement qui a conduit au sinistre. la base
d'étude contient près de 450,000 sinistres et 20 variables. Ainsi que deux tableau de
développements pour Incurred et Paid.

La qualité de la base de données a été véri�ée sur les 3 critères renseignés dans
Solvabilité II, véri�ant: le caractère approprié, l'exhaustivité et l'exactitude de la base
de données.

Une première mise en place de processus nécessaire à la construction des prototypes
a été ajusté sur la base contenant seulement les contrats de la line of business "Fire".
Cette sous base contient 50% de la base complète et est connue comme étant short-tail.
Une fois les processus calibrés et une analyse de la cohérence des resultats e�ectuée,
l'ensemble de la méthodologie a été appliquée au reste de la base.

Amélioration de la qualité de la base de l'étude

La base contenant des données manquantes sur certaines variables, un remplissage de
ces données est nécessaire pour appliquer nos algorithmes de Machine Learning. Pour
prendre en compte les corrélations entre les autres variables, une methode basée sur la
réduction des dimensions à été utilisée. Des analyses en composantes principales (ACPs2)
ont été appliquées aux variables, et les données manquantes ont étés projetées sur les
axes principaux de ces ACPs. A�n de contounrner des limitations techniques, des clusters
ont été utilisés pour réduire la taille de la base de données. Une nouvelle mesure de la
qualité du remplissage des valeurs manquantes a du être mise en place, basée sur l'étude
des probabilités d'appartenance aux di�érentes catégories.

2Un certain type d'ACP, des MCAs, ont été utilisées pour prendre en compte les variables caté-
goriques.
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Construction des prototypes de segmentations

Les segmentations sont construites selon deux types de méthodes:

− Les méthodes basées sur arbres de décision (approche supervisée);

− Les méthodes basées sur des clusters (approche non-supervisée).

Segmentations basées sur les arbres de décision

Les segmentations basées sur des arbres de décision sont formées à partir d'arbres de
regression, ajustés sur un indicateur (duration non-actualisée d'Incurred ou de Paid). À
partir des feuilles obtenues pour ces arbres de régression, une classe sera attribuée pour
chaque feuille. A�n de déterminer une valeur de prédiction pour chaque indicateur, la
moyenne des individus pour chaque classe sera considerée comme la valeur de prédiction.

Figure 9: Attribution des valeurs de prédictions pour les arbres de decision

Segmentations basées sur les clusters

Les segmentations basées sur clusters sont formées à partir de k-means (si les données
sont numériques) et k-prototypes (si les données sont à la fois numériques et catégorique).
Le principe d'attribution des valeurs de prédictions pour chaque indicateur est similaire
à celui utilisé pour les arbres : la valeur moyenne est attribuée pour chaque classe, et ce
pour chaque indicateur.

Figure 10: Attribution des valeurs de prédictions pour les clusters
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Cette étude s'est concentrée sur trois modèles de segmentations sur clusters, chaque
modèle étant basée sur une sélection di�érente des variables utilisées pour les clusters :

− Clusters basés sur les indicateurs seulement : ces segmentations vont créer dif-
férentes classes de valeurs pour les indicateurs, et allouer les sinistres dans les
classes correspondantes ;

− Clusters basés sur les variables, ces segmentations vont créer des groupes homogènes
au regard des variables ;

− Clusters basés sur les variables et les indicateurs, ces segmentations proposent un
compromis entre les deux methodes précédentes en considérant à la fois les valeurs
des indicateurs et les variables descriptives lors de la construction des classes.

Processus de sélections des segmentations par type de modèle

A�n de sélectionner une segmentation par modèle (arbres sur incurred/paid, clusters sur
indicateurs/variables/indicateurs & variables), il est nécessaire de pouvoir comparer ces
segmentations.

Pour permettre une comparabilité entre les modèles supervisés (basés sur les arbres)
et non supervisés (basés sur clusters), une méthodologie spéciale a du être mise en place.
Cette méthodologie est composée des étapes suivantes :

1. Réduction de la base de données pour prendre en considération un biais dans les
valeurs des durations. En e�et, pour les années les plus récentes (contrats souscrits
en 2016/2017), les sinistres n'ont pas su�sement de temps pour se développer ;

2. Division aléatoire de la base en une base d'apprentissage et une base de test
(70/30%) ;

3. Ajustement d'une segmentation sur la base d'apprentissage pour les modèles su-
pervisés et non-supervisés ;

4. Classi�cation de la base de test dans les nouvelles classes via :

− Pour les segmentations basées sur les arbres : la réutilisation de l'arbre servant
à construire les classes ;

− Pour les segmentations basées sur les clusters : des algorithmes de classi�ca-
tion ajusté sur la base d'apprentissage (arbres de décision/foréts aléatoires,
réseaux de neurones et gradient boosting).

5. Une fois la base de test classée, les valeurs des indicateurs par classe ont été at-
tribuées comme la moyenne de chaque indicateur par classe;

6. Une valeur par classe pour chaque indicateur étant maintenant disponibles, les
intra-variances (erreurs moyennes quadratiques) peuvent-être estimées et comparer
entres les di�érentes segmentations ;

7. Une fois les erreur de prédiction obtenues pour di�erent paramètres, une segmenta-
tion par modèle a été choisie. Ce choix est basé sur l'étude de la réduction d'erreur
et sur la compléxité des modèles (méthode du coude, compromis entre amélioration
de la prédiction et complexité/nombre de classes).

Les sinistres les plus récents n'étant pas été pris en compte lors de la construction des
classes, il est nécessaire de les reclasser dans les nouvelles classes. Les segmentation basées
sur les arbres sont clairement de�nies par les règles composant les arbres; ce qui n'est pas
le cas pour les segmentations basées sur les clusters. Ainsi, la classi�cation des nouveaux
sinistres dans les classes basées sur les clusters a été e�ectuée par des algorithmes de
classi�cation.
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Étude de la prédictabilité des meilleurs segmentations

La qualité de prédiction des segmentations a été estimée en prédisant :

− Les cash-�ows d'Incurred et de Paid ;

− Les montants d'IBNR et de Réserves.

Toutes les prédictions ont été estimées par Chain-Ladder, car cette méthode met en
évidence les développements naturels de chaque segmentation, sans jugement d'expert.

Étude de la prédictabilité du cash-�ow d'Incurred et de Paid

La dernière année de développement été enlévée du triangle, puis été évaluée par Chain-
Ladder :

Figure 11: Prédiction du cash-�ow de l'annee 2018

Étude de la prédictabilité d'IBNR et de Réserves

Les montant d'IBNR et de Réserves : seuls les sinistres clos ont été gardés. Pour ces sin-
istres, les 3 dernières années développement ont été enlevées et les montant d'IBNR/Réserves
ont été estimés par Chain-Ladder.

Figure 12: Prediction des IBNR / Reserves
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Analyse des résultats

La qualité de prédiction a été mesurée selon deux indicateurs :

− Delta % = MontantPredit−MontantReel
MontantReel

Mesure la distance entre la prédiction et le montant réel au total, des erreurs
peuvent se compenser ;

− |Erreur|/|CF | =
∑

j∈annee de souscription |CF
j
Predit−CF

j
Reel|∑

j∈annee de souscription |CF
j
Reel|

Avec CF j. montant pour l'année de souscription j.
Mesure la somme des erreurs pour chaque année de souscription, divisée par la
somme des cash-�ows de toutes les années.

Ces mesures ont été utilisées pour chaque prédiction : estimations des cash-�ows de
2018, prédictions pour IBNR/Réserves en enlevant 3 ou 5 années de développements.

Cette analyse a d'abord été e�ectuée sur la base de données Fire, représentant 50%
de la base complète, réputée homogène et ayant un développement court. Sur cette base,
les prédictions obtenues par la segmentation aggrégée (tous les sinistres dans la même
classe) était la meilleure sur presque tous les indicateurs. Ceci étant du à l'homogénéité
de la base Fire, et au fait que certaines classes des segmentations avait trop peu de
sinistres pour pouvoir correctement estimer les facteurs de développement.

Sur la base Fire, la segmentation actuarielle avait de moins bonnes performances que
la plupart des autres segmentations.

A�n de mieux percevoir les classes construites par les algorithmes, une analyse de
la composition de chaque classe a été e�ectuée. Après analyse, des pro�ls de risques
distincts ont pu être identi�és pour chaque classe, ayant chacun des caractéristiques
propres.

La généralisation du processus montre de meilleurs résultats, dus à l'hétérogénéité
des nouvelles lines of business et au plus grand nombre de sinistres présent dans la base,
permettant une meilleure estimation des facteurs de développement (et ce même pour
les plus petites classes).

De maniere générale, les prédictions sont plus précises sur la base complète, et spé-
cialement pour la segmentation actuarielle.

Le challenge de la segmentation actuarielle a mis en évidence certaines de ses faib-
lesses, notamment la volatilité de l'estimation des développements naturels pour les plus
petites classes. Cependant, il est important de préciser que cette volatilité n'est présente
que dans notre cadre d'étude. En e�et, en pratique, des corrections sont mises en place
limiter la volatilité des facteurs de développement, notamment via la non-sélection des
ratios en dehors d'un certain intervalle.
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Conclusion

Le but de cette étude est de challenger la segmentation actuelle, contenant des juge-
ments d'experts, en la comparant avec des segmentations issues d'algorithmes de Machine
Learning.

Pour construire les segmentations, des indicateurs décrivant le developpement des
sinistres ont été mis en place. A�n de mesurer l'homogénéité au niveau de développe-
ments.

Les segmentations ayant les meilleurs homogénéités ont été sélectionnées. Leurs
développements naturels ont été utilisés pour prédire des montants de provisions, et
comparés à ceux obtenus pour la segmentation actuelle.

Les nouvelles segmentations obtenues sont capables de prédire plus précisement que
la segmentation actuelle. Et sont donc plus homogènes au niveau des développements.

Cette étude a été construite en ayant une approche la plus scienti�que possible. En
justi�ant les di�érents choix, a�n de limiter les jugements d'experts, pour permettre une
comparaison juste entre les résultat des algorithmes et la segmentation actuelle.

La démarche de la construction des classes est cohérente. En e�et, les classes obtenues
forment des groupes homogènes et ont une meilleure homogénéité au niveau des développe-
ment naturels. Les segmentations arrivent bien à séparer di�érents types de développe-
ment dans di�érentes classes.

Cette étude a mis en évidence certains défauts de la segmentation actuarielle, et
souligné la fragilité des développements naturels.

Finalement, cette étude propose une méthode se basant sur du Machine Learning
pour produire des modèles performants, tout en considérant l'importance des contraintes
métier : interprétabilité, transparence et contrôle des modèles.
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Introduction

The huge increase in the amount of data is entirely reshaping our daily lives. The use of
data to optimize processes of all industries is becoming a reality. In fact, progress related
to Arti�cial Intelligence is appearing more and more frequently, and in every domain.

In statistical modelling, the use of this data is mainly done using Machine Learning.
The use of Machine Learning in the insurance �eld is being thoroughly studied all over
the world. Indeed, as some of the insurance �eld processes are heavily regulated due to
the nature of their implications, a gap between what the new techniques can provide in
terms of innovations and what is currently done has widened.

In P&C Reserving, Machine Learning has been used to improve the quality of pre-
diction compared to more naive methods, for example, Mario Wuttrich in his paper:
"Neural Networks applied to Chain-Ladder Reserving" (2017) [17] has used Machine
Learning techniques to predict IBNR amounts, using aggregated methods (based on a
segmentation of claims) with development factors computed using Neural Networks on
information based at the claim level (individual claim reserving).

Examples of more complex aggregated methods to estimate development factors,
resulting in an improvement of the quality of prediction, are �ourishing. However, the
use of Machine Learning to improve the quality of these segmentations is far less popular.

The goal of this paper is to challenge these segmentations with the use of Machine
Learning, by building new segmentations of claims using data available at the contract
and claim levels, and to measure the relevance of the new segmentations by comparing
them to the existing one used by SCOR.

To evaluate the homogeneities of the segmentations, the developments obtain via
Chain-Ladder have been used, as they clearly highlight the natural developments of the
classes without any experts judgements.
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SCOR's current segmentation process, called the Actuarial Segmentation, is as fol-
lows:

− The great majority of contracts are classi�ed in di�erent actuarial segments, based
on what seems at �rst like arbitrary criteria (Subsidiary, Line of business or Type
of policy for example);

− All the claims belonging to the same actuarial segment are considered to have the
same development pattern;

− Therefore, all the claims belonging in the same segment will all be projected in the
same way, inducing a certain amount of IBNR.

In order to challenge the existing segmentation with the use of Machine Learning,
the following steps are followed:

− Building of the database, containing information that can explain the di�erent
types of underlying risks;

− Construction of indicators (target variables) that can describe the development
patterns, for both Incurred and Paid cash-�ows;

− Building the segmentations, using either decision trees or clustering methods;

− De�ning measures of the quality of a classi�cation and estimating the e�ects of
using such classi�cations, essentially by estimating IBNR and Reserves amounts
using Chain-Ladder;

− Selecting the most predictive segmentation, and compare its composition with the
Actuarial Segment;

− Studying the relevance of using such models.

This thesis is organized in three parts:

1. Reserving and Machine Learning theory:

This part will cover the theory behind the usual Chain-Ladder and the principle
of a segmentation of claims. In this study, only Chain-Ladder based reserving has
been used to compare the impact of the segmentations on the IBNR estimations.
This part will also detail the Machine Learning algorithms used later in this paper:
Decision Tree and Clustering to build the new segmentations, and Neural Networks,
Random Forest and Gradient Boosting to study the predictability of the classes.

2. Presentation of the study database:

In this part, the process of building the database will be detailed. Starting with
the export of the raw database from Business Object. Some variables needed
treatments to be used, it was necessary to create new variables. Among all the
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variables, a selection was made in order to only keep the usable and relevant ones.
All the kept variables will have their values displayed and the correlations between
the variables are also detailed to prevent an eventual bias in the model.

An issue raised in this paper is the management of missing values. To solve that
problem, methods based on dimension reduction have been used. However, due
to technical limitations, this method must be complemented by the use of clus-
tering to reduce the number of categories. Moreover, as the function to �nd the
optimal parameters, was not usable on large datasets, another method, based on
probabilities of belonging to the categories was used.

In a �rst step, a focus was made on a more homogeneous subset of the database,
with claims in the "Fire" Line of Business, composing half of the whole database and
being related to property risks, this database will be referred as the Fire Database.
The reduction of the database was done so as to quicken the explanatory process.
Once the whole process established for this subset, it will be generalized to the
whole database.

3. Building of a new segmentation:

To challenge the current segmentation, two types of segmentations were tested,
based on either Decision Trees or Clusterings. The study of the errors on indica-
tors, regarding Incurred and Paid cash-�ows, was used to choose the right set of
parameters for each type of approach.

For all these segmentations, the 2018 cash-�ow and IBNR / Reserves prediction was
estimated and compared with the Actuarial Segment and a segmentation containing
one class with all the claims:

− The estimation of the cash-�ow of Incurred/Paid for the year 2018;

− The estimation of the IBNR / Reserves not knowing the last three years of
development;

− The estimation of the IBNR / Reserves not knowing the last �ve years of
development.

From these results, the segmentation predicting the closest to the actual values was
kept, and its composition was studied, as well as the patterns of each of its class.
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Part I

Reserving and Machine Learning

theory

Introduction

The study of this paper revolves around the relevance of new segmentations
compared to others based on di�erent criteria.

The processes used can be quite complex and involve di�erent steps, sometimes
juggling between Reserving and Machine Learning notions.

De�ning precisely the framework of this comparison and the techniques used
is essential. Therefore, de�ning the notions used in this study was done sep-
arately, as to not lose the reader by spreading new notions throughout this
paper.

4



Chapter 1

Traditional methods in Reserving

This chapter details the Reserving methods used, as well as some concepts regarding the
Reserving methodology that will later be used in this paper.

This study being based on the quality of the segmentation itself, it is adequate to use
the Chain-Ladder with no expert judgements, as it highlights the natural development
of the claims. Therefore, enabling a fair comparison between the segmentations, without
introducing experts judgements.

1.1 Claim life cycle

The typical claim cycle is composed of many steps, displayed hereafter:

Figure 1.1: Claim life cycle

In Reserving, it is needed to estimate how a claim will develop in order to predict the
necessary amount to set aside in order to cover the payments that will occur. A common
way to do so is by using the Chain-Ladder method.

5



1.2. THE CHAIN-LADDER METHOD 6

1.2 The Chain-Ladder method

In this section will be introduced the theory behind the Chain-Ladder method, its con-
struction and the way it is used in P&C Reserving. This section will be focused on
incurred amounts, please note that the methodology is the same for paid amounts.

1.2.1 Underlying hypotheses

The Chain-Ladder method is constructed around strong hypotheses:

1. Two adjacent development years are proportional;

2. The way the claims develop throughout the years is the same (independence of
underwriting year).

From these hypotheses, by knowing the development of the claims for previous under-
writing years, it is possible to estimate the Incurred/Paid amount for the calendar year
using a proportional approach.

These hypotheses rely on the absence of changes in the underwriting policy or the
claims management, if changes like these were to happen, the patterns of development
could drastically change from one year to another, making the proportional approach
irrelevant.

1.2.2 Construction of the Chain-Ladder method

If an upper triangle of incurred amount is known, it is possible to compute development
factors for each period. A common way to do so is by considering the average of the
development factors weighted by the incurred amount for each development period.

Let Cji ∀i × j ∈ [1 : N ] × [1 : P ] i ≤ j be an upper triangle of incurred cumulative
amounts with:

− Cji cumulative amounts of incurred: Cji =
∑i

k=1 c
j
k = Cji−1 + cji with cji being

the incremental amount of incurred for the i-th development period and the j-th
underwriting year, i ≤ j by construction;

− N the number of development periods;

− P the number of underwriting years.

Let f ji be the development factor for the i-th period and the j-th underwriting year,
f ji is the ratio of the cumulated amounts of the i-th and i-1-th period:

f ji =
Cji
Cji−1

(1.1)
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1.2. THE CHAIN-LADDER METHOD 7

The underlying hypothesis states that supposedly the development factors for all the
underwriting years are the same. Therefore: ∀i ∈ [1 : P ] ∃fi such that:

∀j ∈ [1 : N ] : f ji = fi (1.2)

From that theoretical results, still under the hypothesis that all the underwriting years
will have the same development pattern, it is possible, knowing the incurred amounts
of the previous years to estimate the incurred amount of the years to come. To do
so, estimating fi is necessary, one common way to do so is to consider the mean of f ji
weighted by their respective amounts of incurred:
∀i× j ∈ [1 : N ]× [1 : P ] i ≤ j

f̂i =

∑N−i
j=1 f

j
i × C

j
i−1∑N−i

j=1 C
j
i−1

=

∑N−i
j=1 C

j
i∑N−i

j=1 C
j
i−1

(1.3)

The development factors now built, �lling the triangle of development is possible, to
do so, the incurred amount of the second half of the triangle will be deduced from the
previously computed development factors:
∀i× j ∈ [1 : N ]× [1 : P ] i > j

ˆ
Cji = f̂i × Cji−1 (1.4)

Hereunder is a visualization of the �lling process:

Figure 1.2: Filling the lower triangle of developments

Note: It is common practice to exclude some factors of development that can seem
to have abnormal values, which can be due to the fact that a certain segment may have
few claims, and therefore a high volatility. However, these corrections introduced a form
of experts judgement. Therefore, the predicting process in this paper will not consider
any form of correction, as to only focus on the natural underlying patterns, induced by
the segmentations.
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1.2. THE CHAIN-LADDER METHOD 8

Convergence of the claims

The lower triangle now �lled, either the claims are said to be fully developed, if that
is the case, limi→N fi = 1. If the claims are long tail, there might not be enough devel-
opment periods available to consider the claims fully developed. If so, the development
factors have to be estimated for the future development periods (using a parametric for-
mula for example) and set to converge in a certain way that can be predicted, via either
expert judgement or market value.

Figure 1.3: Predicting Incurred amounts

Knowing the pattern followed by the claims enables an insurance or reinsurance company
to de�ne the following amounts:

De�nition 1.2.1. Ultimate amount: corresponds to the sum of the cash-�ows for a
claim (of either Paid or Incurred), it is de�ned as such:

Ultimate =
∑

j∈UWY

Ultimatej =
∑

j∈UWY

T∑
i=1

cji (1.5)

With:

− j the underwriting year;

− i the periods of development;

− cji the incremental amount of Incurred or Paid per period;

− T horizon at which the claims are considered fully developed: ∀j > T, cji = 0.
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1.3. WHY IS A SEGMENTATION NEEDED? 9

De�nition 1.2.2. Incurred But Not Reported (IBNR): corresponds to the amount of
reserve to set aside in order to match the amount necessary to cover the Ultimate cost
of the claims:

IBNR =
∑

j∈UWY

IBNRj =
∑

j∈UWY

(Ultimatej −Actualj) (1.6)

With:

− j the underwriting year;

− Ultimatej the sum of all cash-�ows;

− ActualJ the amount already paid and in reserve.

Note: When using Paid cash-�ows for Ultimate and Actual (instead of Incurred),
this amount corresponds to the Reserves.
On the triangle of development, it is possible to visualize the Ultimate and IBNR amounts
as such:

Figure 1.4: Visualizing the IBNR on a triangle of cumulated developments

1.3 Why is a segmentation needed?

For reserving projections, such as Chain-Ladder, a segmentation of claims is necessary
to regroup claims with the same kinds of patterns and to exclude claims with di�erent
patterns in other segments.

If all the claims of an insurer portfolio are grouped into one single segment, some
claims with di�erent behaviours could be projected using the same pattern. This could
result in overestimating or underestimating the amounts of reserve.

For example, if an insurance company decides to group two di�erent type of claims,
one being short-tail (the claims are quickly fully developed) and one being long-tail
(the claims take longer to reach their full development), the development pattern of the
portfolio containing both types of claims will be sensible to the proportion of each type
of claims.
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1.3. WHY IS A SEGMENTATION NEEDED? 10

Hereunder is an example of the impact of the proportion of short-tail/long-tail claims
in the development pattern:

Figure 1.5: Impact of the proportion of claims on the pattern of development

While the pattern of the whole portfolio is sensitive to the proportion of di�erent
claims, the patterns for each type of claims remain the same. Therefore, it is possible
that the portfolio merging short tail and long tail claims will not predict IBNR amounts
corresponding to the underlying risks: if a short-tail claim falls in a long-tail class, the
IBNR amount regarding that claim will be over-estimated, and vice-versa.

Through this simple example, the necessity of segmenting the claims with di�erent
patterns is put into evidence. On the other hand, having a too detailed segmentation,
by reducing the number of claims in each segment, could also increase the volatility of
the estimation of the development factor: there is a trade-o� between homogeneity of
the segment and the quality of the prediction.
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1.3. WHY IS A SEGMENTATION NEEDED? 11

1.3.1 Regulatory aspects of the building of homogeneous risk groups

The European Directive Solvency II, enforced since the 1st of January 2016, deeply re-
structured the Insurance regulations. The Solvency II regulation speci�es the framework
of the segmentation:
Directive 2009/138/EC, Section 2, Article 80:

Segmentation

"Insurance and reinsurance undertakings shall segment their insurance and
reinsurance obligations into homogeneous risk groups, and as a minimum by
lines of business, when calculating their technical provisions."

References to segmentation policy are also present in the O�cial Journal of the European
Union, L12, Volume 58, Article 34 (3):

Calculation methods

[..] Where a calculation method is based on grouped policy data, insurance
and reinsurance undertakings shall ensure that the grouping of policies creates
homogeneous risk groups that appropriately re�ect the risks of the individual
policies included in these groups.

And in the the O�cial Journal of the European Union, page 9:

The segmentation of insurance and reinsurance obligations into lines of busi-
ness and homogeneous risk groups should re�ect the nature of the risks under-
lying the obligation. The nature of the underlying risks may justify segmen-
tation which di�ers from the allocation of insurance activities to life insurance
activities and non-life insurance activities, from the classes of non-life insur-
ance set out in Annex I of Directive 2009/138/EC and from the classes of life
insurance set out in Annex II of Directive 2009/138/EC.

Respecting the framework imposed by the Solvency II regulation is mandatory for a
segmentation to be approved by the regulator. Therefore, the construction of the new
segmentations must consider and comply with these guidelines.

Conclusion on the reserving methods

The reserving methods presented in this chapter are fairly simple. Allowing us to focus
on the study of the natural underlying patterns, that are highlighted when using a Chain-
Ladder without any experts judgements. The quality of the segmentations will therefore
be more easily interpretable.
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Chapter 2

Machine Learning

This chapter focuses on the theory behind the Machine Learning algorithms used later
in this paper.

Each parameter is brie�y presented, to allow the reader to understand how the al-
gorithm works and how the tuning of the parameters can modify its structure and its
results. For more details on the parameters, as well as a proper mathematical framework,
please refer to the appendix A.

Machine Learning algorithms can be divided into two major categories: supervised
and unsupervised learning:

2.1 Supervised Learning

In Supervised Learning, the algorithms will �t a model on a training dataset in order to
predict either a class (in Classi�cation) or a numerical value (in Regression). Once the
model has estimated either values or classes, it will compare the model's evaluation and
the actual values.

In this section, the following algorithms will be explained:

− Arti�cal Neural Network;

− Decision Tree;

− Random Forest;

− Gradient Boosting.

By adjusting the model, the algorithm will get closer to predicting the "real" values.
In the end, a complex enough model will have results matching perfectly the "real" values.
However, when used to predict values or classes from another dataset with di�erent data,
called the test dataset, the model will not be as correct as it was on the training set,
this phenomenon is called over-�tting. For this reason, only the error estimation on a
dataset not used for �tting, called the test dataset, will be displayed. The test dataset
is obtained using a random selection of the rows of the total database.

12



2.1. SUPERVISED LEARNING 13

2.1.1 Arti�cial Neural Networks

Arti�cial Neural Networks are based on the communication processes of brain cells. An
Arti�cial Neural Network is composed of di�erent neurons arranged in layers, each neuron
is connected to every neuron of the two layers next to it (the layer before and the layer
after), by synapses:

Figure 2.1: Example of Neural Network

The example above is a Neural Network with an input layer composed of 3 neurons
(3 variables used for predictions), two hidden layers each composed of 4 neurons and
�nally the output layer composed of one �nal neuron.

The neurons of the Arti�cial Neural Network are each associated with a value:

Neuron (i, h)V alue = z
(h)
i = φ

W (h)
i,0 +

nh−1∑
j=1

W
(h)
i,j × z

(h)
j

 (2.1)

With:

− h ∈ {1, 2, ...,H} layer of the neuron;

− z
(h)
i value of the i ∈ {1, 2, ..., nh} neuron of the h layer;

− φ the activation function: sigmoid, Recti�ed Linear Unit (ReLU(x) = max(x, 0));

− W h
i,j weight of the value of the j-th neuron of the previous layer, in the value of the

i-th neuron of the h layer.

Iteratively, from the equation above, the output value is a function of all the weights
for each layer and of the input values. Therefore, the model will compute an optimisation
algorithm (a gradient descent algorithm for example) to minimize the error between the
actual data and the model's estimation.
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2.1. SUPERVISED LEARNING 14

Note: Neural Networks are based on calculus using numerical data, therefore the
scale of the variables has an impact on the importance of the variables, to allocate each
variable with the same weight, a scaling of variables is necessary (using a min-max method
or standardisation).

Arti�cial Neural Network parameters The following parameters are available to
customize the Arti�cial Neural Network. More parameters are available for �ne algorithm
tuning but the following are the most important:

Parameter What is controls

Hidden layers
Controls the number of hidden layers,
and the number of neurons composing each layer

Activation
The type of activation to use, can either be: an identity function,
a logistic function, an hyperbolic tangent function or a ReLU

Solver The optimisation algorithm to use: Newtonian, Gradient Descent...
Learning rate The learning rate of the optimisation algorithm
Max iteration The maximum number of iterations for the optimisation algorithm

Table 2.1: Arti�cial Neural Network parameters

To get more details about the Arti�cial Neural Network please refer to the Appendix A.

2.1.2 Decision Tree

A decision tree is a simple algorithm that separates the dataset by successive cuts in
the span space of the dataset variables. At each node the algorithm will �nd the best
variable to use and at which point to cut in order to obtain the best criteria that will cut
the population into the two most homogeneous subsets (sub-populations) and thus until
a certain condition is veri�ed. In this paper, the assumption that all the Decision trees
are binary is made, which means that for every split, only two subsets will be obtained
from the original dataset.

Figure 2.2: Example of a Decision Tree
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2.1. SUPERVISED LEARNING 15

Decision Tree parameters The following parameters are available to customize the
Decision Tree. More parameters are available, but the following are the most important:

Parameter What is controls

Criterion
The impurity function, used to measure the quality of a split.
Commonly: Gini/Entropy in classi�cations, MSE in regressions

Max depth The maximum depth of the tree
Min samples split The minimum number of observations required for a node to be split
Min samples leaf The minimum number of observations required to constitute a leaf
Max leaf nodes Maximum number of leaves (cannot exceed 2Max Depth)
Min impurity decrease Threshold of decrease of impurity to allow a node to be splitted
Min impurity split If the impurity is below this threshold, the node will not split.

Table 2.2: Decision tree parameters

To get more details about the Decision Tree please refer to the Appendix A.

2.1.3 Random Forest

A Random Forest is a bagging method based on Decision trees:

Bagging = Bootstrap + Aggregate

− Bootstrap: A Bootstrap algorithm will enhance the sturdiness of an algorithm
learning process; It re-samples the dataset using sampling with replacement, there-
fore the same line can appear multiple times; This sampling with replacement can
be done on both observations and variables.

− Aggregate: Many decent classi�ers together will have better results and a smaller
volatility than a unique very good classi�er. Many classi�ers will be computed, and
at each node, the split will be �tted on the re-sampled dataset, the �nal output will
be the average over all the classi�ers. This will reduce the variance of prediction.

The Random Forest algorithm will generate multiple decision trees, with each split
�tted to di�erent samples generated using Bootstrap and will either:

− For classi�cation: Place the observations where they have been placed the most
among all the trees composing the forest.

− For regression: Associate the observations with the mean value on all trees com-
posing the forest.
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Hereunder is an example of a Random Forest classi�cation decision if the majority
of trees have made the same decision as the �rst sample:

Figure 2.3: Random Forest decision making

Random Forest parameters The following parameters are available to customize
the Random Forest. More parameters are available for �ne algorithm tuning, but the
following are the most important:

Parameter What is controls
N estimators Number of trees that compose the Random Forest
Max features Proportion of variable available at each split for each tree
Bootstrap Whether to use bootstrap samples of observations or not
+ Decision Tree parameters Decision Tree parameters will be applied to each tree

Table 2.3: Random Forest parameters

To get more details about the Random Forest please refer to the Appendix A.
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2.1.4 Gradient Boosting

Gradient Boosting is a method also based on Decision Trees. Gradient refers to the
optimisation approach: the algorithm is based on using di�erent models one after the
other. Each model will be adjusted to the error of the previous models.

Boosting refers to the use of many "weak" models with high variance (models that
taken alone have bad results) but that taken together end up with a better model having
a small variance.

Hereunder is a theoretical example to better visualize how a Gradient Boosting algo-
rithm works:

Figure 2.4: Gradient Boosting iterative process

Gradient Boosting parameters The following parameters are available to customize
the Gradient Boosting. More parameters are available for �ne algorithm tuning, but the
following are the most important:

Parameter What is controls
Loss Loss function to optimize

Learning rate
Weights of the contribution of each successive tree,
the smaller the learning the higher the number of trees,

N estimators Number of steps to perform

Subsample
Fraction of lines to use in the samples (if subsample < 1:
results in Stochastic Gradient Boosting)

Max_features Proportion of variables available at each split for each tree
Bootstrap Whether to use bootstrap samples of observations or not
+ Decision Tree parameters Decision Tree parameters will be applied to each tree

Table 2.4: Gradient Boosting parameters
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Advantages and disadvantages of each algorithm:

Hereunder is a table describing the usual advantages and disadvantages of each algorithm
presented:

Advantages Disadvantages
Takes into account the
interaction between the variables

Takes a long time to compute

Requires scaling of the variablesNeural Networks
Very hard to interpret

Very easy to visualize High variance
Decision Tree The user can have a full

control over the output
Prone to over-�tting

Still easy to visualize Prone to over-�tting
Good prediction in general
for a rather simple model

Harder than the Decision Tree to visualize
Random Forest

Reduce of the variance compared
to a decision tree alone

Can be long to compute

Good prediction Harder than the Random Forest to visualize
Gradient Boosting

Resist to over �tting Can be very long to compute

Table 2.5: Advantages and disadvantages of each algorithm
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2.2. UNSUPERVISED LEANING 19

2.2 Unsupervised Leaning

In Unsupervised Learning, the model does not try to predict or to �nd the correct output
values. Unsupervised algorithms only work on the dataset, in order to achieve a certain
task.

Unlike supervised training, the algorithm will not compare its result with the reality,
there is no correct answer, the algorithm is left alone and untouched until it reaches its
goal.

Unsupervised Learning is mainly used to �nd patterns in the datasets, for example
dividing the dataset in di�erent parts or �nding dependencies among the variables.

2.2.1 Dimension reduction algorithms

2.2.1.1 PCA theory

PCA (Principles Component Analysis) is a method used to reduce the dimensional com-
plexity of a dataset while keeping its characteristics/diversity.

The PCA method, applied to a dataset X = Xi,j with i ∈ 1, 2, .., n row index and
j ∈ 1, 2, .., p column index, will compute a subset of lower dimension (q < p) that will
maximize the variance of the dataset when projected on it.

Which translates into building the best subset of dimension ∀i ∈ {1, .., p} minimizing
the Mean Square Error between the real data and the projected data:

‖Xreal −Xprojected‖2

The following steps need to be followed in order to compute the PCA:

1. Standardization of the data:

Zj =
Xj −Xj√
n× V ar(Xj)

with Xj =


X1,j

X1,j
...

Xn,j

 ∀j ∈ {1, ..., p}

This step is necessary, otherwise the PCA will separate variables with high values
from the ones with small values regardless of their correlations.

2. Once the dataset is standardised, constructing the covariance matrix is needed:

Σ(Z) =


σ1,1 σ1,2 ... σ1,p

σ2,1 σ2,2 ... σ2,p
...

...
. . .

...
σn,1 σn,2 ... σn,p


With:

σi,j =
1

n− 1
×

n∑
k=1

(zij)(z
i
k) ∀i, j ∈ {1, ..., p} × {1, ..., n}
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3. The eigenvectors of the correlation matrix and their corresponding eigenvalues can
be obtained via diagonalization of the correlation matrix, they are the principal
components (axis on which the projected variance will be maximum):

Σ(X)× νj = λj × νj ∀j ∈ {1, 2, ..., p}

The subset of dimension q < p is equal to Span(ν1, ν2, ..., νq) and its explained vari-
ance is equal to: ∑q

i=1 λi∑n
i=1 λi

(2.2)

Studying the evolution of the explained variance for di�erent dimensions is necessary
in order to determine which dimension to use. A dimension that is too low might not
replicate well enough the characteristics of the database while a value that is too high
will make the PCA closer to the database, making it less useful.

PCA can be used to visualize potential groups of observations or to explain the
relations between the variables. By construction, PCA can only be done on numerical
variables. Furthermore, as it is based on linear algebra, the structure of dependencies
can only be linear.

2.2.1.2 MCA theory

MCA (Multiple Correspondence Analysis) is the generalization of PCA for categorical
variables. In order to be used, categorical variables must be re-encoded as numerical
ones. To so so, the One-Hot Encoding method has been used.

De�nition 2.2.1. One-Hot Encoder

This method will create an indicator vector for each category of the variable:

Figure 2.5: One-Hot Encoder

When using One-Hot Encoder, the size of the dataset can increase signi�cantly if it
contains categorical variables with a lot of di�erent categories, as for every category, a
new column will be computed.

ROLLAND Louis



2.2. UNSUPERVISED LEANING 21

One-Hot Encoding can be done whether the variables are ordinal or not. Once the
categorical variables are numerically encoded, the PCA will be applied to the following
triplet of matrices: (

IXD−1
Σ ,M =

1

IJ
DΣ, D =

1

I
1I

)
(2.3)

With:

− X: the indicator matrix of category for each variable: Let a dataset with I observa-
tions and J variables, with each variable j ∈ J having nj di�erent categories, X will
be a matrix containing I rows and

∑J
j=1 nj columns, each column corresponding

to the indicator vector for a category in a categorical variable (cf Fig. 2.5);

− DΣ = diag (1n1 , 1n2 , ..., 1nJ ) with ∀j ∈ {1, 2, .., J} 1nj =


1
1
...
1

 of length nj ;

− M = 1
IJDΣ the metric;

− D = 1
I1I matrix of the row weights.

Note:
While for a PCA the maximum number of dimensions is the number of variables, for
a MCA the maximum number of dimensions is equal to the sum of all categories for
all variables. Therefore, a higher number of dimensions can be required when using an
MCA, especially if the variables have a lot of di�erent categories.

2.2.2 Clustering algorithms

Many problems require the building of homogeneous classes, but computing the optimal
classes is one of the most complex and time-consuming tasks, in fact it is a NP-hard
problem, which means that the computing complexity of this problem is above any
polynomial function. Clustering algorithms o�er an alternative to this segmentation
problem with far less costly method.
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The following clustering algorithms are all based on the same principle, called the
Lloyd's algorithm:

1. The number of clusters N is set by the user, each cluster will be associated with a
center of gravity, also called centroids;

2. N points are randomly placed in the feature space of the database, these points
will be the centroids of the clusters;

3. All the points of the dataset will be associated to the clusters with the closest
centroids based on a distance measure.

4. The centroids are then set to be equal to the center of gravity of the points for each
cluster;

5. The same process is done multiple times until the number of movements among
the clusters is less than a de�ned number.

The main di�erence between clusters based on only numerical or only categorical or
mixed type variables is the measure of the distance between points to determine in which
cluster an observation belongs to.

While less costly, this algorithm can be stuck in local minima, for this reason it is
common use to compute the algorithm multiple times with di�erent starting centroids.
To determine which segmentations is the best, the inertia can be studied.

De�nition 2.2.2. Inertia: The sum of the squared distances between the observations
and the centroids of the cluster they belong to:

Inertia =

K∑
k=1

Ik∑
i=1

(
xki − xk

)
(2.4)

With:

− K the number of clusters;

− Ik the number of observations in the cluster k;

− xk the centroids (center of mass) of the k-th cluster;

− xk. observations belonging in the k-th cluster.
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2.2.2.1 Clustering for only numerical variables: k-means

For only numerical variables, the measure used is the Euclidean distance.

De�nition 2.2.3. Euclidean distance:

Let X and Y be two observations with N numerical variables: X =


x1

x2
...
xN

; Y =


y1

y2
...
yN

.
Euclidian Distance(X,Y ) =

N∑
j=1

‖xj − yj‖2 (2.5)

The algorithm will assign the observations to the cluster with the closest centroid
and thus iteratively until all the observations are correctly classi�ed.

Note: The k-means algorithm makes the assumption that the optimal subsets are
convex. Therefore, when trying to predict clusters for supposedly non-convex subsets,
other algorithm should be used (A�nity Propagation, Agglomerative clustering or Mean-
shift for example). The di�erent outputs of these methods are displayed hereafter, using
an example available on the Sklearn website:

Figure 2.6: Comparison of the results using di�erent clustering algorithms

In this study, after visualizing the distributions of the numerical variables used, the
convexity of the subsets does not seem to be problematic, moreover, the other algorithms
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are often more complex and require more computer power, due to the size of our database,
testing some of the other clustering algorithms was not possible. For more information
on this subject please refer to the Sklearn website [22].

2.2.2.2 Clustering for only categorical variables: k-modes

Introduced by Z. Huang (1998) [6], k-modes o�er an alternative to the k-means algorithm
for categorical variables.

The variables are encoded using One-Hot-Encoding and to measure the distance
between two observations, the Hamming distance is used:

De�nition 2.2.4. Hamming distance:

Let X and Y be two observations with P categorical variables: X =


x1

x2
...
xP

; Y =


y1

y2
...
yP

.

Hamming Distance(X,Y ) =

P∑
j=1

1 (xj 6= yj) (2.6)

The less categories two observations have in common, the farther they are. Using
that distance, the clustering algorithm follows the same iterative principle as the k-means
algorithm: the algorithm will assign the observations to the cluster with the closest
centroid and thus iteratively until all the observations are correctly classi�ed.

2.2.2.3 Clustering for both numerical and categorical variables: k-prototypes

While k-means were only able to cluster numerical variables and k-modes only categorical
variables, k-prototype, also introduced by Z. Huang [6], enables the computation of
clusters based on mixed variables (numerical and categorical). The distance used for
k-prototypes is a mix of the two previous distances (2.5 and 2.2.4).

De�nition 2.2.5. Distance used for k-prototypes:
Let X and Y be two observations with N numerical variables and P − N categorical

variables: X =


x1
...
xN
...
xP

; Y =


y1
...
yN
...
yP

.

K-prototype Distance(X,Y ) =

N∑
j=1

‖xj − yj‖2 + γ

P∑
j=N+1

1 (xj 6= yj) (2.7)
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With (xi)
N
i=1, (yi)

N
i=1 being the numerical attributes and (xi)

P
i=N+1, (yi)

P
i=N+1 being

the categorical attributes. The distance for k-prototypes is the sum of the Euclidean
distance for numerical attributes and the Hamming distance for categorical attributes
weighted by a factor γ to even-out the weights of each type of variables.

Conclusion on the Reserving and Machine Learning Theory

The theoretical notions now de�ned, they will be put to use in the following two parts.

The Machine Learning algorithms will be used to:

− Fill the missing values of the dataset: unsupervised algorithms (PCA/MCA) are
used to �ll the missing values based on the correlations between the variables.
Clusters are also used to reduce the number of di�erent categories;

− Build the alternative segmentations: decision trees and clusters (k-means and k-
prototypes);

− Evaluate the homogeneity of the newly built segmentations: supervised algorithms;

− Classify the recent claims: classi�cation algorithms.

The reserving notions de�ned will be used to quantify the quality of prediction of the
segmentations considering:

− The predictability of the 2018 cash-�ow, for Incurred and Paid;

− IBNR and Reserves predictions on a database of closed claims.

The estimations will be done using Chain-ladder, as it gives the natural development
patterns of each class without any experts judgements.
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Part II

Presentation of the study database

Introduction

In this part will be presented the di�erent variables contained in the database,
the selection of variables and the reasons behind that selection.

Then, a presentation of the techniques used to improve the quality of the
database will be detailed, especially via the �lling of missing values based on
dimension reduction.

The processes will �rstly be applied to a subset of the database, called the Fire
database, as it composed of the line of business Fire, composed of property
contracts and representing 50% of the whole database. Once established, the
processes will be generalized to the whole database.

An overview of the variables is available in the appendix B. In this overview,
the distribution of each variable is presented for the Fire database, as well as
a study of the correlations between variables.

The process of building the patterns indicators will then be detailed. A study
of the relevance of these indicators is available at the end of the appendix B.
It is not included in this part as it uses notions presented in the part three.
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Chapter 3

Overview of the database

The database is composed of claims regarding Facultatives contracts.

Facultatives: A facultative contract provides an optional reinsurance protection related
to one risk only. Whereas the common protections provide a protection to a group of
risks, Facultatives can be used to cover unusual risks that fall outside of common covers'
scope.

Most of the risk covered by the Facultatives are related to SCOR Business Solution,
which is SCOR's major Specialty Insurance branch. Scor Business Solution, also refereed
as SBS is the Corporate risk insurance arm of SCOR, it provides customized covers for
clients exposed to risks with commercial high values.

The number of claims in classical reinsurance is low, by nature of the business. How-
ever, since each facultative contract provides cover single risks only, the number of fac-
ultatives contract is rather high. For these reasons, the choice of building a database
composed of facultatives contracts was made.

The database is extracted using Business Object, from SCOR's internal sources, with
data available at SCOR 2018 year-end. All amounts are in Euro as SCOR 4Q18 exchange
rates.

The database contains information describing the contracts and the claims them-
selves. It has nearly 450, 000 claims, on all subsidiaries and with underwriting years
ranging from 1950 to 2018
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3.1 Regulatory aspects of the building of the database

Through this section, the compliance of the database construction with regulations on
both data privacy (GPDR) and the data quality (Solvency II) will be detailed.

3.1.1 GDPR

The General Data Protection Regulation (GDPR) is a European Regulation enforced on
the 25th of May 2018, replacing the Data Protection Directive 95/46/EC [21]. The GDPR
regulates the use of personal data by observation, company or organization. Therefore,
it has important impacts on the way companies deal with personal data. However,
despite having completely reshaped personal data management, it is solely con�ned to
the protection of personal data. The database of this study does not contain personal
information regarding individuals, since it is only composed of Facultative contracts
between companies and SCOR, the GDPR does not apply on the database of this study.

3.1.2 Solvency II

The Solvency II regulation brought up criteria regarding all �elds of the insurance sectors,
including data science.

The Solvency II regulation explicitly speci�es three criteria, as stated on the Solvency
II regulation documentation, article 82 (3): [19]:

Data quality and application of approximations, including case-by-case
approaches, for technical provisions

Member States shall ensure that insurance and reinsurance undertakings have
internal processes and procedures in place to ensure the appropriateness, com-
pleteness and accuracy of the data used in the calculation of their technical
provisions."

In order to include the database in the IBNR estimation process and to comply with the
Solvency II regulation when building the database, these three criteria: appropriateness,
completeness and accuracy, must be veri�ed.

A study of the database compliance with these three criteria will therefore be pre-
sented in the section 4.3: Quality of the study database.
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3.2. ORIGINAL VARIABLES 29

3.2 Original variables

The following variables were directly extracted from BO:

Variable's name Description Type
CLM - Claim Identi�cation number of the claim Key
Country_Claim Country of the claim Categorical
Country_Cedent Country of the cedent Categorical
Inception _Date Date of the start of the cover Date
Claim_Date Date of the claim Date
First_Noti�cation_Date Date at which SCOR knew about the claim Date
Creation_Date Date of creation of the claim in SCOR database Date
Closing_Date Date at which the contract was declared closed Date
Contract_Expiry_Date End date of coverage Date
Lob Contract's line of business Categorical
Sob Contract's scope of business Categorical
Top Type of policy Categorical
Claim_Cause Claim's type of cause Categorical
Subsidiary_Event Event that led to the claim Categorical
Subsidiary_Event_Type Type of event that led to the claim Categorical
Fac_Sector Sector of the contract Categorical
Risk_Nature Code transcribing the type of underlying risk Categorical
Insured_Sector Sector of the insured (internal classi�cation) Categorical
CLM_UWY* Contract's underwriting year Categorical
CLM_Subsidiary * Classi�cation among SCOR entities Categorical
CLM_Subsidiary_Ledger* Sub-classi�cation of Subsidiary Categorical
CLM_Cedent* Contract's Cedent Categorical
CLM_Cedent_group* Group of Cedent Categorical
CLM_Cedent_Ultimate_group* Group of Cedent at ultimate Categorical
Main_Currency Currency of the contract Categorical
CLM_Last_position* Number of estimates done by SCOR on the claim Numerical
Claim_latent whether the contract is classi�ed as latent or not Binary
Nature Nature of the coverage: QS, XL or XS Categorical
Brokerage_rate Brokerage rate in % Numerical
Retrocession_rate Retrocession rate in % Numerical
Follow_up Name of the procedure if there is one Categorical
Sum_Insured Amount under coverage Numerical
PML_100% Probable Maximum Loss in total Numerical
PML_SCOR Probable Maximum Loss for SCOR Numerical
SCOR_EGPI Estimated Gross Premium Income Numerical
Annual_Limit Limit of coverage Numerical
Layer_cap Limit of the layer Numerical
Attachment_point Deductible of the layer Numerical
SCOR_Liab SCOR's share of Liab_Amount Numerical
Liab_Amount Max liability for the contract Numerical

Table 3.1: Original variables

The variables in gray were not kept, the reasons behind it is explained in the next section.
* The pre�x CLM refers to the sub-universe "Claims" from which these variables

originate from, however, they are variables related to the contract.
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3.3 Selection of variables

This section will present the selection of variables, in order to obtain a database only
containing variables that can describe the underlying risk.

Out of all the variables presented in the last section, some were not selected for
various reasons:

− Used only to create new variables: CLM_Claim and all the dates;

− Too many missing values: Insured_Sector, Subsidiary_Event_Type (more than
75% of missing values);

− Too many di�erent categories: Insured_Name, Subsidiary_Event, CLM_Cedent,
CLM_Cedent_Ultimate_group, CLM_Cedent_group;

− They were not relevant to describe the underlying risk: Brokerage_Rate, Retro-
cession_Rate;

− Their use would bias the model as the information they contain is not supposed
to be known when classifying the claim: CLM_Last_Position_Number, Clos-
ing_Date, Claim_Latent;

− Too many incorrect observations: Coutry_Cedent, Annual_Limit, Layer_cap, At-
tachment_point, SCOR_Liab, Liab_Amount.

Having too many di�erent categories can be problematic. Indeed, when encoded
using one-hot encoding, having a lot of di�erent categories can make the database grow
drastically bigger (one column per category).

3.4 Constructed variables

New variables needed to be constructed, in order to use other information that was not
directly available from BO or needed treatments.

Variable's name Desciption Type of variable
Key Concatenation of four other variables Key
Geo_insured Country of the insured Categorical
Contract_Length Time between inception date and expiry date (in years) Numerical
SCOR_PML_% Share of SCOR based on the PML Numerical

− Key is the concatenation of: CLM_Claim, CLM_Subsidiary, CLM_Subsidiary_ledger
and CLM_U/W_Year.
Despite CLM - Claim being an individual Key in each subsidiary, it was not unique
among the merge of all subsidiaries, therefore it had to be replaced by another Key,
more precise, in order to identify each and every claim individually.
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− Geo_insured: Combination of 2 other variables

� Segment Geo N1, that is more precise globally but less precise in the USA;

� Segment Geo SII, that is less precise globally but more precise in the USA.

Geo_insured is equal to the most precise variable every time. Therefore, equal to:
Segment Geo SII when Segment Geo N1 is equal to USA; and equal to Segment
Geo N1 otherwise.

The variables with dates were replaced by lengths of time based on a claim life-cycle:

− Construction of Contract_Length:

Contract_Length =
DaysBetween(Inception_Date,Expiry_Date)

365.25

SCOR_PML_% is SCOR's share related to the Probable Maximum Loss, reconstructed
using the PML variables:

− Construction of SCOR_PML_%:

SCOR_PML_% =
Probable Maximum Loss for SCOR

Probable Maximum Loss total
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3.5 Indicators

In order to create homogeneous classes composed of claims with the same pattern of
development, building indicators to describe these very patterns is necessary.

Are de�ned, for the following indicators:

− N is the year-end 2018;

− development periodi is the i-th development period (on a quarterly basis);

− Inc or Paid are the cash-�ows for the incurred and the paid amounts respectively
(equal to zero if there was no cash-�ow for a certain development period);

The following indicators are candidates which can describe the risk:

− Incurred_N is the Amount of Incurred accumulated up to the year N :

Incurred_N =
N∑
i=1

Inci

− TF_Incurred_N is the undiscounted duration for the incurred cash-�ows (TF
stands for "Time-Factor": ) de�ned as:

TF_Incurred_N =

∑N
i=1 Inci × development periodi∑N

i=1 Inci

Note: TF_Incurred_N could induce a division by zero if the settled amount of
the incurred reaches zero. For example: An amount of incurred was registered, as
a claim was noti�ed. But after veri�cation, the claim was not covered by SCOR,
therefore the insurance company was not liable anymore, and the claims settles at
0. Which implies:

Incurred_N =

N∑
i=1

Inci = 0

Moreover, for some claims, the settling process was not always exact, as some claim
ended with a very low amount of incurred, resulting in a huge TF_Incurred_N.
Therefore, to cancel that e�ect, all the TF_Incurred_N with an Incurred amount
settling at less than 0.1e (in absolute value) were forced to be equal to 0e.

− TF_Max_Incurred_N is a twist from the previous formula to capture the e�ects of
claims developing and settling at zero. Instead of dividing by the sum of Incurred,
the sum is divided by the maximum of cash-�ows:

TF_Max_Incurred_N =

∑N
i=1 Inci × development periodi

max
1≤i≤N

(Inci)
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− Paid_N is the Paid amount accumulated up to the year N :

Paid_N =
N∑
i=1

Paidi

− TF_Paid_N is the undiscounted duration of the Paid cash-�ows, with the same
adjustments made as for Incurred, de�ned as:

TF_Paid_N =

∑N
i=1 Paidi × development periodi∑N

i=1 Paidi

− TF_Max_Paid_N is built to prevent division by zero from happening (cf: In-
curred), instead of dividing by the sum of Paid, the sum is divided by the maximum
of Paid cash-�ows:

TF_Max_Paid_N =

∑N
i=1 Paidi × development periodi

max
1≤i≤N

(Paidi)

Hereunder is a �ctive example to visualize how the Indicators values change regarding
the development patterns of a claim:

Figure 3.1: Impact of the development patterns on the values of the Indicators

Note: It is possible to see how a negative cash-�ow, occurring after a long time,
could make the duration negative.
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Conclusion on the overview of the database

Throughout this chapter, the process of the building of the database was detailed. At
this step the database is composed of 446345 lines, 19 variables + 1 Key, 4 Indicators,
and two tables of development. Among these variables, 3 were created, 6 are numerical,
13 categorical and 1 (underwriting year) can be either used as categorical or numerical.

Figure 3.2: Composition of the whole database

Reduction of the database size: the Fire database

From now on, only the claims in the Line of Business (Lob) Fire will be kept. This line
of business contains property related claims.

Figure 3.3: Distribution of the lines of business

Reducing the database was done in order to hasten the research process in both data
pre-processing and algorithm-testing. The choice of the Fire Lob was made because it
was the biggest Line of Business, containing 49.45% of the whole database (220659 out of
446345 lines). Once the whole process is established, it will be extended to the database
containing all Lines of business.
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Chapter 4

Missing value management

The data analysis showed that some variables had missing values. Most of the algorithms
do not handle missing values, or �ll them using basic techniques such as:

− Dropping the rows containing missing values;

− Replacing the missing values with the medians/means of the columns;

− Creating a new category 'Missing value' for categorical variables.

However, as the proportion of missing values is rather important and as some corre-
lations between variables are strong, �nding a way to use the correlations, could improve
the quality of the database.

4.1 Filling missing data using dimension reduction

In order to �nd a better estimation of which category the missing data could have be-
longed to, the missMDA method, based on PCA and MCA, has been used. The idea
behind the missMDA method is to perform successive PCA or MCA in order to adjust
a missing value using the correlations between variables.

1. The algorithm will �rst replace the missing value by either the mean or the median
(step 1.1), then it will perform a PCA/MCA on the �lled dataset (step 1.2);

2. Using the result of the PCA/MCA it will adjust the value of the missing data by
projecting it on the principal axis (step 2.1 & 2.2);

3. Then it will perform again a PCA/MCA on the adjusted dataset and so forth (step
3).
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Herunder is an illustrated example of the missMDA algorithm:

Figure 4.1: missMDA algorithm example

By projecting the missing data on the principal axis, it will arti�cially increase the ex-
plained variance of this axis. In order to reduce over-�tting, a method of cross-validation
is implemented using either leave-one-out or k-fold validation. Hereunder is a graph
showing the process for �lling missing values, using the missMDA method, taken from
the package's user guide:

The result of the MCA for missing data is a table of "estimated frequency", based
on the correlation with other variables, of belonging in each category.

Note: It is worth noting here that the MCA will simply recreate structure of de-
pendencies within the dataset. The only goal here is to �ll the missing value using
correlations, there is no direct link with the underlying risk!
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4.2 Application on the Fire database

The MCA having been de�ned and having seen how it can be used to �ll missing values,
it will be used to �ll the missing values present in the database. The database has several
variables with missing values, the percentages of missing values are displayed hereafter:

1. Claim_Cause: 66.85%

2. Country_Claim: 0.87%

3. Risk_Nature: 55.33%

4. Sob: 10.19 %

5. Top: 22.44 %

The missMDA package, in R, has been used to �ll Claim_Country, Sob and Top due
to their low yet signi�cant amount of missing values. Such processes could not be used
to �ll Risk_Nature and Claim_Cause as they had too many missing values. They were
�lled by a new category "Missing Value".

Hereunder is the plan of the database �lling process for missing values:

Figure 4.2: Process of �lling missing Data
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4.2.1 MCA for Sob & Top

To �ll the missing data for both Sob and Top, an MCA on Sob, Top, Fac_Sector,
Geo_Insured and Subsidiary was computed.

The number of categories is equal to:

11 (Sob+1NA)+12 (Top+1NA)+10 (Fac)+39 (Geo_Insured)+9 (Subsidiary) = 81

As seen in the previous section, a dimension in MCA does not correspond to a variable
but rather to a category of a variable, since it is based on One Hot Encoding (as a column
does not refer to a whole variable but just to one category for a variable). Therefore, the
number of dimensions ranges from 1 to 79 (81 - 2 as the 'NA' categories for Sob and Top
do not count as they will be �lled by other categories). The percentages of explained
variance for the MCA on this subset is as follows:

Figure 4.3: Percentages of explained variance for Sob/Top

Finding the optimal number of dimensions

The optimal number of dimensions is de�ned as the number of dimensions such that,
when tested on cross-validation, the number of misclassi�cations is the lowest.

A function to �nd the best number of dimensions is available in the package missMDA
(estim_ncpMCA). This method will randomly transform known data into missing values
and predict its value using MCA. This is done in order to measure the sturdiness of the
model and avoid over-�tting.

Unfortunately, this method could not be used to �nd the optimal number of dimen-
sions for this very large dataset due to technical limitations. The maximum number of
dimensions that could be computed is 10 and the best model with dimension ranging
from 1 to 10 was the one with 10 dimensions.

As the function giving the optimal number of dimensions to use could not be used
for Sob and Top, �nding a new way to determine which number of dimensions to choose
is necessary.
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The method selected consists of computing tables of probabilities for a wide range of
dimensions, and to select the one giving the highest maximum probability of belonging
to a category, for both Sob and Top.

While the optimal number of dimensions function could not be computed for dimen-
sion higher than 10, the table of probabilities itself could be computed for dimension up
to 54.

A table containing the minima, means and medians of maximum probabilities for
di�erent numbers of dimensions is available hereunder:

Sob Top
Number of
dimensions

Min Mean Median Min Mean Median

10 26% 46% 45% 22% 43% 39%
20 27% 48% 43% 22% 47% 48%
40 28% 56% 48% 21% 50% 50%
54 26% 68% 64% 23% 54% 56%

Table 4.1: Sob/Top comparison between number of dimensions

As computing the MCA was not possible for numbers of dimensions higher than 54,
due to technical limitations, the model using 54 dimensions has been chosen, as it is the
one with the highest means and medians for the maximum probability.

4.2.2 MCA for Country_Claim

The Country_Claim variable has 201 categories, the MCA has been computed using
Geo_Insured and Subsidiary, as they are all geographical variables and highly correlated
to Country_Claim. The number of all categories is equal to:

201 (Country_Claim) + 39 (Geo_Subsi) + 9 (Subsidiary) = 249

The percentage of explained variance for the MCA on this subset is as follows:

Figure 4.4: Percentages of explained variance for Country_Claim
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With this current subset, the maximum number of dimensions cannot exceed 20,
resulting in the highest probability for a missing value to belong in an existing class to
be 20% on average.

In order to enable an MCA computation using more dimensions, it is necessary to
reduce the total number of categories. To do so, the small countries will be grouped
together among clusters based on the same 3 variables: Country_Claim, Geo_Insured
and Subsidiary.

The small countries are de�ned as countries in Country_Claim appearing less than
500 times: it represents 158 countries out of 201 countries in total.

To predict the ideal number of clusters to merge the small countries into, clusters
were built for number of clusters ranging from 1 to 30 and the inertia 2.2.3 was studied.

Below is a graph showing the decrease in total inertia as the numbers of clusters
increases:

Figure 4.5: Clusters inertias on all countries

Using the Elbow Method, as de�ned by Sebastian Raschka in his Python Machine
Learning manual [14], one way to �nd the best number of clusters is to choose the number
after which the decrease in inertia is less important. In this case the decrease in inertia
is less important after 5 clusters, therefore the chosen number of clusters to merge small
countries into will be 5.

Once the optimal cluster built, a new database is created from the original dataset:
for each line with a small country, their original country will be replaced by a cluster.
By doing so, the new dataset contains 96 columns only.

96 = 249 (original columns)−158 (number of small countries)+5 (number of clusters)

Now that the Country_Claim variable has been pre-processed; it is possible to com-
pute the estim_ncpMCA with a maximum dimension of 90 (due to technical limitations).
For a maximum number of dimensions of 90, the optimal number of dimensions obtained
via cross-validation using the missMDA package is 65.

In order to justify the use of this number of dimensions, the same process used for
Sob/Top will be applied. The minima, means and medians of the vector of maximum
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probability, for di�erent dimensions will be estimated, in order to con�rm or in�rm 65
as the best number of dimensions.

A table containing the minima, means and medians of maximum probabilities for
di�erent numbers of dimensions is available hereunder:

Country_Claim
Number of
dimensions

Min Mean Median

20 14.4% 25.2% 24.0%
30 25.4% 37.0% 38.2%
35 28.5% 39.6% 41.0%
40 29.8% 41.6% 43.2%
45 31.4% 44.1% 45.8%
50 33.5% 47.3% 49.2%
55 32.5% 51.78% 54.1%
60 35.0% 52.1% 53.6%
65 30.0% 53.1% 54.5%
70 22.6% 37.6% 32.2%
75 14.9% 29.5% 21.0%
80 14.1% 28.6% 19.2%

Table 4.2: Country_Claim comparison between number of dimensions

The study of the vectors of maximum probabilities con�rms that 65 is indeed a
coherent choice for the number of dimensions, as it is the number of dimensions that
has the highest median and the highest mean for maximum probabilities. Therefore, the
table of frequencies obtained using 65 as the number of dimensions was kept to �ll the
missing values.

Moreover, Country_Claim also provides an example that the study of the maximum
of probabilities for the table obtained via missMDA was coherent. The same number of
dimensions was said to be the best for both methods.
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Once the process of �lling values is complete, a new variable, Country_Claim_no_NA,
is created from the Country_Claim variable with the missing value replaced by the coun-
try associated with the highest probability. The small countries are untouched in the
�nal variable, that way no cluster is contained in the Country_Claim_no_NA variable.
The construction of the Country_Claim_no_NA variable is summarized hereunder:

Figure 4.6: Construction of the Country_Claim_no_NA variable

Note: When applying the missMDA on the database containing clusters for small
values, verifying that no missing value had its highest probability in a cluster was nec-
essary. Otherwise, associating it to the most frequent country of the cluster could be a
solution but it might induce a small bias in the �lling process.
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4.2.3 Risk_Nature & Claim_Cause

As Risk_Nature and Claim_Cause have a lot of missing values (54% and 67%), as well
as a lot of di�erent categories (117 and 103), computing a MCA to �ll the missing data
would not be e�cient. In order to see whether a missing value actually holds some
information for Risk_Nature and Claim_Cause, seeing its impact on the underlying risk
is needed, here transcribed via TF_Incurred:

Figure 4.7: TF_Incurred_N density di�erence between Risk_Nature �lled or NA

Figure 4.8: TF_Incurred_N density di�erence between Claim_Cause �lled or NA

For both Claim_Cause and Risk_Nature, the Time Factor density's tail seems to be
heavier for high values when there is missing data. In order to keep the behaviour of the
missing data on the indicators, a new category: 'Missing_value' is created.

Conclusion on the missing value management

Di�erent ways of dealing with missing values were detailed in this chapter, from simple
ones, like the creation of a new category "Missing_value" to replace the missing values,
up to more advanced methods using PCA/MCA to take into account correlations with
other variables. A mix of clustering and dimension reduction was used to compensate
the technical limitations of the missMDA package, making it usable on larger datasets.

ROLLAND Louis



4.3. QUALITY OF THE STUDY DATABASE 44

4.3 Quality of the study database

A special care was taken when building the database to make sure that it contains no
bias, this analysis was done regarding the three major axes stated in the Solvency II
regulation documentation [19] and in the recommendations of the French Institute of
Actuaries for the writing of the actuarial thesis [18]:

Accuracy The accuracy of the database was indeed necessary to justify the use and
reliability of the database, each variable had to be carefully studied to verify that no bias
could be left in the database. For example, di�erent categories could, in fact, be related
to the same category. Moreover, as the �lling of some �elds were mandatory to register
a claim in SCOR's claims database, these mandatory �elds were sometimes �lled in a
speci�c way, as a code for underwriters to specify that they did not know the required
piece of information. Keeping these incorrectly �lled �elds could induce a bias in the
algorithms, hence why a careful analysis of each variables was necessary.

Completeness At �rst, the database was far from being complete, indeed some vari-
ables contained a lot of missing values. The variables containing too many missing values
were dropped, and the one containing few missing values were �lled using the techniques
described in the chapter regarding the missing values [4].

Appropriateness The appropriateness of the use of the variables was studied at dif-
ferent steps during the database construction. Firstly, the selection of variables was done
looking at whether the variable could describe the underlying risk or not. Secondly, the
selection of variables was presented to experts, to see whether they agreed or not on the
reliability of the selection of variables and if indeed the selected variables could describe
the underlying risk. By doing so, some variables were taken out of the selection because
it was known that the way they were used at SCOR made them irrelevant regarding the
underlying risk. Moreover, when building the new segmentations, making sure that no
biases were contained in the variables used is mandatory.

Conclusion on the presentation of the study database

This part was focused on the presentation of the Fire database, its construction and how
to improve its quality. After all these steps, the Fire database contains no more missing
values and is ready to be used to build new segmentations.
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Part III

Challenging the existing

segmentation

Introduction

In this part will be detailed the di�erent steps taken to build the challenging
segmentations.

The segmentations are built using either supervised or unsupervised algo-
rithms, �ve di�erent types of segmentations were studied:

− Two segmentations based on decision trees �tted to either Incurred or
Paid indicators;

− Three segmentations based on clustering on indicators, variables, or both.

From all these models, only one segmentation per type has been kept. The kept
segmentation was chosen regarding the homogeneity of the classes, quanti�ed
by the MSE on the indicators.

Once chosen, the �ve segmentations are compared to the Actuarial Segmen-
tation and the aggregated segmentation (segmentation composed of only one
class) on their ability to predict the actual cash-�ows and IBNR / Reserves
amountsa.

aAll the amounts predicted have been rescaled for con�dential reasons.
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Chapter 5

Building the new segmentations

The new segmentations were built using two di�erent methodologies:

1. Decision Tree regressors, in which each leaf value was associated to a distinct class;

2. Clustering methods based on either the variables or the indicators, or both.

For each type of segmentation (2 based on Trees and 3 based on Clustering methods),
only one segmentation will be kept, this segmentation will be chosen regarding the errors
of prediction for various ranges of parameters.

5.1 Selection of the Fire sub-database

The previous part focused on the Fire database, composed of claims belonging in the Line
of Business "Fire" (220,659 out of 446,345 lines). Beyond the selection of the Lob=Fire
database, a new selection of lines is necessary to prevent biases in the models:

1. Dropping the most recent underwriting years due to bias in the indicators values:
As the indicators are homogeneous to durations, keeping the most recent years
introduced a bias in the indicators. When looking at the aggregated triangle (the
triangle containing all claims of the Fire database in the same segment), the claims
could be considered fully developed after 3 years (just for the Fire Database, as the
Fire Line of business is rather short-tail). Therefore, to prevent a bias in the value
of the indicators, only the claims having underwriting years before 2015 (included)
have been kept.
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This e�ect can be seen on the median values for TF_Incurred_N and TF_Paid_N
in the Fire dataset:

Figure 5.1: Underwriting year bias in the median values of the indicators

2. Dropping the underwriting years before 2003:
Due to an eventual bias in the claims management after SCOR's downgrade, and
the drop in the number of claims in 2002;

3. Dropping the extreme values for the indicators to prevent the whole error being
due to only a few claims:
The segmentations being built based on the value of the indicators, some adjust-
ments needed to be made in order to better see the impact of the segmentation on
the error. Without these adjustments, most of the error would be due to claims
with very high values for the indicators, and the study of the homogeneity would
be less clear.

Will be kept in the Database only the claims having:

− TF_Incurred ∈ [−25; 25];

− TF_Paid ∈ [−10; 25];

− TF_Max_Incurred ∈ [−10; 25];

− TF_Max_Paid ∈ [−10; 25];

− Underwriting years ∈ [2003; 2015].

By doing so, the resulting database contains 38,605 lines:

Number of lines
Fire Database 220,659
- Claims with UW_Y < 2003 - 174,219
- Claims with UW_Y > 2015 -5940
- Adjustment for TFs -1895
= Final number of claims in the sub-database 38,605
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5.2 Construction of the Actuarial Segmentation

The Actuarial Segmentation is constructed from variables available at the contract level
and from expert judgement.

A segment could be composed of the contracts belonging in a precise Line of Business
and a precise subsidiary. For example: MFPFIRE01 contains property related contracts
underwritten in the UK.

There are 42 di�erent classes in the Actuarial Segmentation (in the Fire Database),
hereunder is the distribution of the classes:

Figure 5.2: Actuarial Segmentation classes

Only the classes containing more than 500 claims are displayed (27 out of 42 categories
containing 2613 lines have been omitted).

5.3 Framework of building the challenging segmentations

The Solvency II legislation states that the segmentation has to form groups of homoge-
neous risk. Moreover, as to better predict the development patterns of the claims, the
classes should contain claims with the same kind of pattern of development. In order to
compare the segmentations with each other, the following two criteria have to be taken
into account:

1. Homogeneity regarding the indicators;

2. Similarity regarding the pattern of development.

The homogeneity of the classes will be quanti�ed by studying the intra-variances of
the classes. For each class and for each indicator (TF_Incurred, TF_Paid, TF_Max_Incurred
and TF_Max_Paid), a measure of error will be computed.
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The measure of error retained is as such:

Mean Square Error = MSE =

∑
(Predicted V alue− V alue of the TF )2

Number of claims

This measure will tell how homogeneous the classes are regarding the indicators: the
lower the MSE, the lower the intra-variance groups.

The study of the MSE is the �rst way to compare the segmentations with each other.
Since this error will be available on all four indicators, the choice will be made looking at
the four errors. The choice will consider both the reduce of the MSE and the complexity
of the model.

Once the model chosen, Incurred and Paid amounts will be estimated using a Chain-
Ladder method, �tted to the previous years only. The estimated amounts will then be
compared to the actual values. The comparison will be done on the segmentations' ability
to predict the cash-�ow of Incurred/Paid for the year 2018, as well as IBNR/Reserves
for the three and �ve previous years.

Beyond the previously introduced criteria, based on easily quanti�able statistical re-
sults, the segmentations should also be coherent regarding claims management in general.
To study this aspect, the composition of each class will have to be studied, to see whether
it makes sense to use these classes as claims segmentations and if they form homogeneous
risk groups.

Reminder: To prevent over-�tting, all the errors displayed in this paper are the
errors obtained for a test database, on which the model has not been �tted. In order to
have a fair comparability with the Actuarial Segmentation and the segmentation which
has only one class, the error for these models will be the one regarding only the claims
of the test database, composed of 30% of the claims, randomly selected.
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5.4 Segmentations based on Decision Trees

For the classes based on Decision Trees, a regression tree was �tted to an indicator:
either TF_Incurred_N or TF_Paid_N. No trees were �tted to TF_Max_Incurred_N
and TF_Max_Paid_N but their MSE were used to choose the best parameters. The
model will split the database in order to create leaves that contain claims with similar
values for the �tted indicator.

The choice of the decision tree was made because it is the only algorithm which
allows the user to have complete control over the number of classes. The goal of this
study being to create new segmentations that will later be used to estimate reserves using
Chain-Ladder, having control over the number of observations per class is necessary.

Indeed, a certain volumes of claims per underwriting year is necessary to compute a
coherent Chain-Ladder. For the same reason, the variable "underwriting year" was not
used, as claims from all underwriting years are necessary to compute the Chain-Ladder.

By choosing the maximum number of leaves, as well as the minimum number of
observations per leaf, di�erent trees were �tted for each indicator.

In order to estimate the error on all indicators, the following method was used:

1. Fit a regression Tree to an indicator and consider each leaf as a class;

2. The tree, by grouping claims with similar values for the indicator, will create ho-
mogeneous classes regarding this indicator.

3. Associate the means per class for the other indicators as the values for that class
(therefore the same for all claims belonging to the same class);

Figure 5.3: Predicted value assignment process for tree-based segmentations

Now that a predicted value is available for each indicator, all the MSE can be com-
puted for the model.

In order to have a fair comparison between the new segmentations and the Actuarial
Segment, having a somewhat similar number of classes is necessary. The limit was
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set looking at the number of classes of the Actuarial Segment, for the subset of the
Fire database: the classes of the Actuarial Segment having more than 100 claims is 15,
therefore, the maximum number of classes for our models will be 15 × 2 = 30, to have
the same order of magnitude.

Regarding the number of minimum observations per leaf, a minimum of 100 was
�xed. Below this number, the number of claims per underwriting year might become
too little to compute a Chain-Ladder. The upper limit was set at 5000, which was more
than enough considering the size of our dataset and the range of the maximum number
of leaves.

5.4.1 Study of the MSE for trees �tted to TF_Incurred_N

Hereunder are the errors for each indicator, for classes built by �tting a tree to TF_Incurred_N.
In order to have a point of comparison with the Actuarial Segmentation, the MSE of the
Actuarial Segmentation and the variance of the indicator are also displayed. On the
X-axis are the maximum number of claims per leaf, the Y-axis is the negative MSE, and
the di�erent lines refer to di�erent maximum number of classes:

Figure 5.4: MSE for TF_Incurred Figure 5.5: MSE for TF_Paid

Figure 5.6: MSE for TF_Max_Incurred Figure 5.7: MSE for TF_Max_Paid

As the minimum number of claims per leaf grows higher, the di�erences between the
models with di�erent maximum number of classes grows shorter. Indeed, the constraint
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on the minimum number of claims per leaf can reduce the number of di�erent classes, up
to the point where the maximum number of leaves have no impact on the �nal model.
For example, the models with 15 and 30 classes with 2000 observations minimum per
leaf are the same.

There is a general trend: the higher the maximum number of leaves and the lower the
minimum number of observations per leaf the lower the MSE. However, the improvement
brought by having a higher number of classes is less important after 20 classes.

For these reasons, the chosen model for the Tree �tted to TF_Incurred_N is the
model with 20 as the maximum number of classes and 100 as minimum number of claims
per classes. This model will be referred as: DT_20_100_Inc.

5.4.2 Study of the MSE for trees �tted to TF_Paid_N

Hereunder are the errors for each indicator, for classes built by �tting a tree to TF_Paid_N.
In order to have a point of comparison with the Actuarial Segmentation, the MSE of the
Actuarial Segmentation and the variance of the indicators are also displayed. On the
X-axis are the maximum number of claims per leaf, the Y-axis is the negative MSE, and
the di�erent lines refer to di�erent maximum number of classes:

Figure 5.8: MSE for TF_Incurred Figure 5.9: MSE for TF_Paid

Figure 5.10: MSE for TF_Max_Incurred Figure 5.11: MSE for TF_Max_Paid

ROLLAND Louis



5.4. SEGMENTATIONS BASED ON DECISION TREES 53

Same comments than for the Tree �tted to TF_Incurred_N, with the only di�erence
that for this tree, an over-�tting seems to occur for the model with 20 classes, indeed,
the model with 150 as the minimum of claims per leaf is better than the one with 100.
For this reason, the chosen model for TF_Paid_N is the one with 20 classes and 150
claims minimum per leaf, it will be referred as: DT_20_150_Paid.

Same comment regarding the constraint on the minimum number of claims per leaf:
the models with 15 and 30 classes with 2000 observations minimum per leaf are the same.

5.4.3 Conclusion of the MSE analysis for the tree-based models

The classes built by �tting a tree to an indicator also reduce the error for the other indi-
cators. It is worth noting that the di�erence between the MSE of the Actuarial Segment
and the variance (which correspond to an MSE for a segmentation having only 1 class)
is very small, and that the actuarial segmentation is easily outperformed regarding the
MSE, which could have been expected as these models are only built on these indicators.
For the reasons stated previously, the chosen segmentations are:

− DT_20_100_Inc: 20 classes and 100 observations minimum per leaf for the Tree
�tted to TF_Incurred_N;

− DT_20_150_Paid: 20 classes and 150 observations minimum per leaf for the tree
�tted to TF_Paid_N.
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5.5 Segmentations based on Clustering

In this section, the segmentations were built using clustering methods. Once the cluster
built, each cluster will be associated to a class.

However, as the clustering methods are unsupervised algorithms with, by essence, no
good or bad results, how can the quality of a cluster compared to another be measured?
Indeed, clustering methods, will build a segmentation composed of homogeneous classes
regarding the variables used to build the classi�cation, but how to be sure that the classes
are homogeneous risk-wise? And how to compare it with the Actuarial Segmentation?

To enable a kind a comparability between the segmentation based on clusters and
those based on supervised methods, the following method has been followed:

1. Building of the classes using clustering on the train database;

2. Predicting the classes for the test database, only using the descriptive variables
with four di�erent algorithms1:

− Neural Networks: with 1 hidden layer composed of 100 neurons;

− Decision Tree: with no limit regarding the depth or the number of leaves;

− Random Forest: composed of 10 trees, �tted to bootstrap samples, comparing√
number of variables at each split, with no limit regarding the depth or the

number of leaves;

− Gradient Boosting: with a learning rate of 1% and 100 iterative trees each
having a maximum depth of 3.

3. Associating all the claims in each class, with the mean of the values of the class it
belongs to, as predicted value, and thus for each indicator.

Figure 5.12: Predicted value assignment process for cluster-based segmentations

Now that a "predicted value" has been computed for all the indicators, it is possible
to measure the MSE for these segmentations.

1The parameters chosen were simple, the goal was to see how the algorithms compared to each other,
not to optimize each algorithm.
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The segmentations based on clusters are based on either:

− All the indicators, only numerical values ⇒ k-means algorithm;

− All the variables, categorical and numerical values ⇒ k-prototype algorithm;

− Indicators + variables, categorical and numerical values ⇒ k-prototype algorithm.

5.5.1 Study of the MSE for clusters based on the indicators

In this section, the clusters will be based on the indicators only. The classes are built using
k-means on TF_Incurred_N, TF_Paid_N, TF_Max_Incurred_N and TF_Max_Paid_N.
Once the classes built, the MSE for each indicator was estimated. Hereunder are the MSE
for these clusters, with the number of classes on the x-axis:

Figure 5.13: MSE for TF_Incurred Figure 5.14: MSE for TF_Paid

Figure 5.15: MSE for TF_Max_Incurred Figure 5.16: MSE for TF_Max_Paid

For every indicator, the best MSE was the one obtained via predicting the classes
using Random Forest. The di�erent algorithms used to predict the classes have a great

ROLLAND Louis



5.5. SEGMENTATIONS BASED ON CLUSTERING 56

impact on the MSE values, which led to think that the clusters based on Indicators are
hard to predict.

The decrease in error is important up to 8 clusters but seems to level out after that.
A peak in improvement seems to occur between 3 and 4 clusters (especially for Paid
indicators). For that reason, the number of clusters chosen for the clustering methods
based on indicators is the segmentation with 4 classes.

5.5.2 Study of the MSE for clusters based on variables

In this section, the clusters will be based on the variables only. The classes are built
using k-prototypes on all the dataset variables, once the classes built, the MSE for each
indicator was estimated. Hereunder are the MSE for these clusters:

Figure 5.17: MSE for TF_Incurred Figure 5.18: MSE for TF_Paid

Figure 5.19: MSE for TF_Incurred Figure 5.20: MSE for TF_Paid

Compared to the clusters based on the indicators, the error reduction is less important
for the clusters based on the variables, which is logical, as they are not directly based on
the indicators themselves. Interestingly, the clusters based on variables outperform the
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actuarial segmentation at around 20 clusters, which is roughly the number of classes of
the Actuarial Segmentation.

The MSE decreases steadily for classes up to 9, after that the reduce in MSE is lower
(except a peak at 14 for TF_Incurred_N and TF_Max_Incurred_N). A great reduction
is also present near 20.

The chosen number for this segmentation will be 9, while 14 provided a greater
improvement for TF_Incurred_N and TF_Max_Incurred_N, the decrease was lower
for TF_Paid_N and TF_Max_Paid_N.

Moreover, the impact of the algorithm is more important for this segmentation, all the
algorithms end up having roughly the same MSE and thus for all the points, which seems
to indicate that all the algorithms came up having the same results for the classi�cation
of the claims.

5.5.3 Study of the MSE for cluster-based on both the variables and
indicators

In this section, the clusters will be based on the indicators and the variables. The classes
are built using k-prototypes on all the dataset variables and the four indicators, once
the classes built, the MSE for each indicator was estimated. Hereunder are the MSE for
these clusters.

Figure 5.21: MSE for TF_Incurred Figure 5.22: MSE for TF_Paid

ROLLAND Louis



5.6. CONCLUSION ON THE CHOICE OF THE MODELS 58

Figure 5.23: MSE for TF_Max_Incurred Figure 5.24: MSE for TF_Max_Paid

The clusters based on the variables and the indicators are very similar to the ones
based on variables only. Overall, the clusters based on both slightly outperform the
ones based solely on the variables, and the segmentations based on both seem to be
less predictable as it is possible to see di�erences in the MSE due to the di�erence in
classi�cation of the di�erent algorithms.

For the four indicators, the MSE decreases steadily up to around 23 classes, compared
to the clusters based on variables only, the error seems to be less volatile, for that reason,
and to have a wide range in the number of clusters, the number of classes chosen for the
segmentation based on both variables and indicators is 23.

5.6 Conclusion on the choice of the models

The selected model will now be referred as:

− DT_20_100_Inc: Segmentation based on a Decision Tree �tted to Incurred, with
20 leaves and 100 observations minimum per leaf;

− DT_20_150_Paid: Segmentation based on a Decision Tree �tted to Paid, with 20
leaves and 150 observations minimum per leaf;

− 4_clusters_on_4_TFS: Segmentation based on clusters on the 4 indicators with
4 classes;

− 9_clusters_on_var: Segmentation based on clusters on the variables with 9 classes;

− 23_clusters_on_vartf: Segmentation based on clusters on variables and the 4 in-
dicators with 23 classes;

Hereunder is the table of the MSE for each indicator and for each model on the test
database. The percentages below the MSE for the new models are the improvements
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regarding the Actuarial Segmentation MSE:

Improvement =
New SegMSE −Act SegMSE

Act SegMSE

TF_Incurred TF_Paid TF_Max_Inc. TF_Max_Paid
One Segment (Variance) 12.901 2.347 2.896 3.526
MSE Actuarial Segment 12.793 2.288 2.839 3.429

DT: 20 leaves / 100 min �t on Inc.
12.390
(-3.15%)

2.157
(-5.73%)

2.763
(-2.68%)

3.158
(-7.90%)

DT: 20 leaves / 150 min �t Paid
12.720
(-0.57%)

2.088
(-8.74%)

2.761
(-2.75%)

3.030
(-11.64%)

Cluster on 4 TFs: 4
12.472
(-2.51%)

2.000
(-12.59%)

2.6278
(-7.44%)

3.0585
(-10.80%)

Clusters on variables: 9
12.776
(-0.13%)

2.241
(-2.05%)

2.833
(-0.21%)

3.342
(2.54%)

Clusters on variables + TFs: 23
12.664
(-1.01%)

2.186
(-4.46%)

2.771
(-2.40%)

3.280
(-4.35%)

Table 5.1: Comparison of the MSE (test database) of the chosen models

Looking at this table it is possible to see that all the segmentations (except 9 cluster
on variables for TF_Max_Paid) reduce the MSE for all the indicators, therefore, they
should all compose more homogeneous risks groups than the Actuarial Segmentation,
based on these 4 indicators.
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Distribution of the classes in the new segmentations

Classes of DT 20 100 Inc Classes of DT 20 150 Paid

For the tree-based segmentations, the three biggest classes contain respectively 60.92%
and 61.73% of the whole database.

Classes of the Actuarial Segmentation
Classes of 4 Clusters on 4 TFs

For 4_Clusters_on_4_TFs: 55.75% of the claims are contained in the biggest class.

Classes of 9 Clusters on variables Classes of 23 Clusters on variables and
TFs

The classes based on clusters of variables are more evenly distributed compared to the
other new segmentations.
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Chapter 6

Study of the quality of prediction

for the segmentations

This chapter detail the challenge the quality of prediction of the segmentations selected
in the last chapter. This comparison challenges the segmentations on two criteria:

1. The segmentation's ability to predict 2018 cash-�ow: a pattern is �tted per class,
on the triangle as at year-end 2017, to predict the 2018 cash-�ow;

2. The segmentation's prediction regarding the total amount of IBNR. To predict the
Ultimates amounts: a pattern is �tted per class on a triangle made of closed claims,
as at year-end 2015 (three years taken out) or year-end 2013 (�ve year taken out).
From these Ultimate amounts, the IBNR and Reserves are obtained and compared
to the actual values.

The results on these two criteria determine which segmentation is the best among all the
models.

Once the best segmentation selected, a study of its composition will be presented, to
analyse the coherence of the output of the algorithm.
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6.1 Predicting the 2018 cash-�ow

In this section, the segmentations will be compared to each other based on their ability to
correctly predict the cash-�ow of 2018: the year 2018 will be taken out and a pattern will
be �tted for each class to predict the cash-�ow for the year 2018. Finally, the predicted
amounts will be compared to the actual values to see how good the predictions are.

Figure 6.1: Process used to compare the quality of the N cash-�ow prediction

6.1.1 Classifying the most recent years: 2016 and 2017

The segmentations were built on a database composed of claims with underwriting years
ranging from 2003 to 2015. This was done so as to prevent a bias in the models, due to
a "cut" in the possible values for the indicators of the recent claims.

In order to have a fair comparison of the models, as well as to include the predictability
of the classes in the comparison process, classifying the new claims is necessary. To
classify the most recent claims, the segmentation will be considered built, and the claims
of the most recent contracts (underwritten in 2016 & 2017) will be classi�ed in the new
classes.

6.1.1.1 Classi�cation for the tree-based models

The trees �tted on the years 2003-2015 give sets of rules to predict the classes of all
claims. Therefore, the tree �tted to the years 2003-2015 will be used to classify the
claims of the years 2016-2017.

6.1.1.2 Classi�cation for the cluster-based models

Di�erent algorithms were tested to see which one would have the best accuracy in pre-
dicting the classes, these tests were done on the 2003-2015 database, using a 10-fold
cross-validation1.

1The choice of keeping an unstrati�ed k-fold and a non-weighted accuracy was made voluntarily, as
to analyse the impact of the size of the classes "by hand".
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An optimisation of the algorithm was done on the following parameters:

− Decision Tree: max depth of the tree;

− Random Forest: max depth of each tree, proportion of variables to use per tree
and number of trees;

− Neural Network: number of neurons per layer and number of layers;

− Gradient Boosting: learning rate and depth of the tree.

The following accuracies were obtained for the segmentations based on clusters:

Model
Average
Accuracy

Standard
deviation

Computing
time

Decision Tree 45.85% 2.57% 50 seconds
Random Forest 52.13% 3.27% 39 seconds
Gradient Boosting 58.10% 3.35% 1h 23mins

4 Clusters
on 4 TFs

Neural Network 52.02% 5.21% 1h 13mins
Decision Tree 65.73% 12.88% 50 seconds
Random Forest 68.02% 12.70% 39 seconds
Gradient Boosting 64.39% 15.08% 4h 10mins

9 Clusters
on variables

Neural Network 67.72% 10.54% 50mins
Decision Tree 66.95% 13.11% 51 seconds
Random Forest 69.76% 13.64% 42 seconds
Gradient Boosting 73.74% 8.71% 8h 47mins

23 Clusters on
variables and TFs

Neural Network 73.44% 8.51% 17mins

Table 6.1: Algorithms accuracies for Cluster-based segmentations

All the algorithms give somewhat close accuracies, a Gradient Boosting algorithm
was selected for "4 Clusters on 4 TFs" and "23 Clusters on variables and TFs", with a
learning rate of 0.05 and 100 estimators. A Random Forest was selected for "9 Clusters
on variables", with 500 estimators, with

√
numberofvariables
numberofvariables as the proportion of variables

to use and no limit regarding the depth of the tree.

It is worth noting that, while the accuracies for the clusters on variables are rather
correct, the ones for the clusters on TFs only are not great at all, indeed, as one class
contains 55.75% of the database, one model classifying all the claims in that class would,
on average, outperform the classi�cation based on Decision Trees, Random Forests and
Neural Networks.

Moreover, the accuracies on the clusters based on variables only are worse than the
accuracies based on both the indicators and variables, which is unexpected since the
indicators values or not considered in the classi�cation process and as the number of
classes is higher for the segmentation based on both the variables and the indicators.
This can be due to the clusters on variables being not distinct enough due to the small
number of classes.
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6.1.2 Distribution of the recent claims in the new segmentations

Hereunder are the distributions of the newly classi�ed claims (2016-2017), as well as the
claims on which the classes were built (2003-2015).

Distribution of the classes
of the Actuarial Segmentation

Distribution of the predicted
classes of DT 20 100 Inc

Distribution of the predicted
classes of DT 20 150 Paid

Distribution of the predicted
classes of 4 Clusters on 4 TFs

Distribution of the predicted
classes of 9 Clusters on variables

Distribution of the predicted
classes of 23 Clusters on variables and TFs
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6.1.3 Comparing the results

The claims for 2016/2017 having been reclassi�ed in the classes for each segmentation,
the cash-�ow for the year 2019 can be estimated for underwriting years ranging from
2003 to 2017.
For the following tables:

− Delta % = AmountPredicted−AmountActual
AmountActual

Measures how close to the real value the total prediction is, but errors can com-
pensate;

− |Error|/|CF | =
∑

j∈UWY |CF
j
Predicted−CF

j
Actual|∑

j∈UWY |CF
j
Actual|

With CF j. amount for the j-th un-

derwriting year.
Measures the sum of errors for each underwriting year, divided by the sum of the
absolute values of each actual cash-�ow.

Hereunder is the result table for the Incurred cash-�ow of 2018:

Incurred 2018 cash-�ow
Amount Delta % |Error| / |CF|

Actual 368,875,264 // //
One Segment 305,627,643 -17.15% 19.72%
Actuarial Segment 381,993,796 3.56% 29.29%
DT 20 100 Inc 316,914,859 -14.09% 17.65%
DT 20 150 Paid 335,585,277 -9.02% 19.64%
4 Clusters on 4 TFs 277,386,795 -24.80% 27.60%
9 Clusters on variables 328,666,982 -10.90% 16.67%
23 Clusters on Var & TFs 357,989,774 -2.95% 23.67%

Table 6.2: Incurred 2018 cash-�ow predictions

Hereunder is the result table for the Paid cash-�ow of 2018:

Paid 2018 cash-�ow
Amount Delta % |Error| / |CF|

Actual 317,757,021 // //
One Segment 360,864,091 13.57% 53.45%
Actuarial Segment 446,393,658 40.48% 75.67%
DT 20 100 Inc 316,914,860 -0.27% 126.76%
DT 20 150 Paid 394,575,500 24.18% 62.92%
4 Clusters on 4 TFs 378,169,193 19.01% 67.73%
9 Clusters on variables 392,870,084 23.64% 60.43%
23 Clusters on Var & TFs 445,240,269 40.12% 78.28%

Table 6.3: Paid 2018 cash-�ow predictions
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The two tables of results are very sensitive to the classi�cation of the new claims.
Indeed, as the Fire Database is composed of very short tail claims, most of the 2018 cash-
�ow amount is due to the claims with an underwriting year of 2016 or 2017. However,
as we have seen earlier, this classi�cation is quite volatile for the segmentations based on
clusters.

In general, the Incurred estimation is more accurate than the Paid estimation. The
Actuarial Segmentation is also outperformed on 3 out of 4 measures of errors by the
segmentation having only one class. This can be due to the homogeneity of the Lob=Fire
database.

This �rst measure of quality of prediction is quite volatile because based on the
prediction of an unique cash-�ow.

6.2 Predicting the IBNR / Reserves amounts

In the last section, the prediction of the cash-�ow of 2018 was done on the whole range of
underwriting years (2003-2015) and compared to the actual cash-�ow of 2018. However,
when estimating IBNR or Reserves, a selection regarding the years of development and
the underwriting years needs to be made.

Knowing that:
IBNR =

∑
j∈UWY

(Ultimatej −Actualj)

We need to know the "real" values for Ultimatej , ∀j ∈ UWY in order to compare it
with the predicted values. However, the only claims for which the ultimate is known are
the closed claims: claims for which it is considered that no payment will be made.

Therefore, for the study of the IBNR / Reserves, our database must be only composed
of closed claims, hence the dropping of the open claims for this study2.

2The closed claims represented 35628 claims, 92.29% of the Fire sub-database.
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6.2.1 Predicting the IBNR / Reserves not knowing the last 3 years of
development

In this section, the IBNR / Reserves will be estimated for closed claims. The 3 most recent
years will be deleted: the development for 2018, 2017 and 2016. From the remaining
development, a pattern will be �tted for each class, and the Ultimate amount will be
estimated.

Figure 6.2: Process used to compare the quality of IBNR prediction

The ultimate amount being estimated, it is now possible to compare the estimation
of IBNR / Reserves for each segmentation and compare it with the actual value:

IBNRPredictedN−3 = UltimatePredicted −ActualN−3

Knowing that the claims are closed for the year N , we have that ActualN is equal to
Ultimate, therefore the actual IBNR for the year N − 3 is as follows:

IBNRActualN−3 = UltimateActual −ActualN−3 = ActualN −ActualN−3

The deletion of the last 3 years of development also reduced the number of under-
writing years:

The underwriting years were initially ranged from 2003 up to 2017, now that 3 years
of development have been deleted, the last 3 underwriting years have to be taken out:
2018, 2017 and 2016. Moreover, the deletion of the last 3 underwriting years means that
no developments were available to calculate the development factors for the three oldest
underwriting years: 2003, 2004 and 2005.

The comparison for the IBNR / Reserves amounts not knowing the 3 last years of
development will therefore be made only considering the 9 years ranging from 2006 up
to 2015.
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Hereunder are the results of the IBNR estimations:

IBNR predictions
Amount Delta % |Error| / |CF|

Actual value 25,306,093 // //
One Segment 777,716 -96.63% 37.62%
Actuarial Segment -33,272,204 -231.48% 95.50%
DT 20 100 Inc 7,829,356 -69.06% 37.99%
DT 20 150 Paid 33,719,195 33.25% 47.41%
4 Clusters on 4 TFs 28,350,728 12.03% 59.69%
9 Cluster on variables 12,796,456 -49.43% 38.50%
23 Clusters on Var & TFs -7,298,270 -128.84% 56.40%

Table 6.4: IBNR prediction with 3 development years taken out

Hereunder are the results of the Reserves estimations:

Reserves prediction
Amount Delta % |Error| / |CF|

Actual value 256,596,807 // //
One Segment 331,198,458 29.07% 58.36%
Actuarial Segment 406,321,433 58.35% 69.11%
DT 20 100 Inc 333,818,542 30.09% 56.54%
DT 20 150 Paid 373,416,394 45.53% 75.79%
4 Clusters on 4 TFs 305,804,145 19.18% 55.78%
9 Cluster on variables 374,530,195 45.96% 75.94%
23 Clusters on Var & TFs 498,003,307 94.08% 101.26%

Table 6.5: Reserves prediction with 3 development years taken out

The Actuarial Segmentation, the segmentation that has only one class and the seg-
mentations based on variables and TFs give overall bad results. However, the other
segmentations give at least somewhat realistic IBNR amounts. Regarding the Reserves,
the results are more stable.

It is worth noting that for both the IBNR and the Reserves, the Actuarial Segmen-
tation is outperformed by the segmentation that only has one class.
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6.2.2 Predicting the IBNR / Reserves not knowing the last 5 years of
development

The process is the same as before, the only di�erence is that instead of taking 3 years of
development out, 5 were taken out.

Hereunder are the results for the IBNR estimations:

IBNR
Amount Delta % |Error| / |CF|

Actual value 45,218,528 // //
One Segment 182,685,548 304.01% 91.26%
Actuarial Segment 177,245,1903 291.97% 86.05%
DT 20 100 Inc 186,178,519 311.73% 91.87%
DT 20 150 Paid 209,114,260 362.45% 106.82%
4 Clusters on 4 TFs 259,320,314 473.48% 139.54%
9 Cluster on variables 184,309,725 307.60% 91.54%
23 Clusters on Var & TFs 249,857,348 452.56% 133.98%

Table 6.6: Results of the IBNR prediction with 5 development years taken out

Hereunder are the results for the Reserves estimations:

Reserves
Amount Delta % |Error| / |CF|

Actual value 452,195,462 // //
One Segment 356,575,131 -21.15% 28.54%
Actuarial Segment 578,188,041 27.86% 47.44%
DT 20 100 Inc 366,375,145 -18.98% 32.34%
DT 20 150 Paid 390,978,738 -13.54% 23.64%
4 Clusters on 4 TFs 366,420,150 -18.97%% 32.84%
9 Cluster on variables 532,977,480 17.86% 19.22%
23 Clusters on Var & TFs 455,569,693 0.72% 18.17%

Table 6.7: Results of the Reserves prediction with 5 development years taken out

The prediction for the IBNR with 5 years taken out is overestimated for all segmenta-
tion. Indeed, the IBNR amount is volatile, and close to 45,000 while all the segmentations
predict an IBNR amount around 185,000,000. The results on the Reserves are more co-
herent.

Taking out 2 more years in the study of the prediction of IBNR / Reserves means
that the measure of error is done only focusing on the 5 underwriting years ranging from
2008 up to 2013. The small number of underwriting years studied makes the results even
more volatile.

3A correction of 7.9 billion was made due to a small class having an abnormal development factor

ROLLAND Louis



6.3. SELECTION OF THE BEST SEGMENTATION 70

6.3 Selection of the best segmentation

For all the indicators, the 5 segmentations were sorted from best to worst based on their
predictabilities. Each got attributed a number corresponding to their rank, the sums of
the ranks for all indicators were done to study which segmentation was the best overall.

Segmentation

Criteria Cash-�ow
Measure
of error

DT 20 100
Inc

DT 20 150
Paid

4 Clusters
on 4 TFs

9 Clusters
on variables

23 Clusters on
variables + TFs

Delta % 4 2 5 3 1
Incurred

|Error|/|CF| 2 3 5 1 4
Delta % 1 4 2 3 5

Predicting 2018
cash-�ow

Paid
|Error|/|CF| 5 2 3 1 4
Delta % 4 2 1 3 5

IBNR
|Error|/|CF| 1 3 5 2 4
Delta % 2 3 1 4 5

IBNR/Reserves estimation
(3 years taken out)

Reserves
|Error|/|CF| 2 3 5 1 4
Delta % 2 3 5 1 4

IBNR
|Error|/|CF| 4 2 5 3 1
Delta % 4 2 5 3 1

IBNR/Reserves estimation
(5 years taken out)

Reserves
|Error|/|CF| 4 3 5 2 1

Total 35 32 47 27 39

Table 6.8: Ranks of the segmentations

Considering all the measures of error for Incurred and Paid, the best segmentation is
the one with 9 classes based on the clusters on variables (it is also the best considering
only the Incurred or Paid related predictions separately).

6.3.1 Presentation of the best segmentation

The best segmentation is the one with 9 classes based on clusters of variables. Hereunder
is the distribution of the classes for this segmentation, with the claims of the most recent
contracts (underwritten in 2016 & 2017) in a distinctive colour:

Figure 6.3: Distribution of the classes of 9 Clusters on variables
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The two previous chapters focused on the homogeneity of classes regarding indicators
of the development patterns and quality of prediction by studying the estimation of 2018
cash-�ow, IBNR and Reserves.

However, beyond these statistical criteria, it is necessary to study the very compo-
sition of the classes to see whether they are coherent enough to be used by an insur-
ance/reinsurance company and if they comply with regulations.

6.3.2 Comparing the development patterns

The development pattern of each class will be displayed for Incurred and Paid, to see
whether the segmentation has created homogeneous and distinct groups regarding the
development patterns (which should be the case since this segmentation is the one that
has the best predictability).

Hereunder are the patterns of development of Incurred for each segmentation:

Figure 6.4: Incurred developments for 9 clusters on variables

The classes 2, 3, 4, 5 and 6, have a lot of positive developments on Incurred. On the
other hand, 0, 1 and 8 have very little to no positive developments and have very similar
patterns.
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Hereunder are the patterns of development of Paid for each segmentation:

Figure 6.5: Paid developments for 9 clusters on variables

The classes 0 and 6 are the shortest tailed for Paid. While 3 and 4 are rather long-
tailed. The class 2 even has positive developments, due to one claim4 having a late
positive development for a high amount, shifting the whole pattern.

Overall, even if some classes have distinct patterns, they remain close to each other.
This was expected as the Fire database is homogeneous and short tail in general.

Hereunder are the undiscounted durations, in years, obtained from the patterns5:

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8
Duration of Incurred 1.02 1.34 -0.99 0.05 0.69 0.89 0.25 0.39 1.18
Duration of Paid 2.03 2.34 2.25 3.19 2.89 2.76 1.95 2.72 2.56

Table 6.9: Undiscounted durations for 9 clusters on variables

4A claim for a mining company in Chile was �rstly noti�ed as a machinery breakdown, after a court
decision, a faulty design was said to be the cause of the claim, reducing SCOR's liability by more than
2Me.

5These durations are calculated from the patterns of development, considering therefore the In-
curred/Paid amount as a weight (for our indicators, TF_Incurred and TF_Paid, each row has the same
weight.)
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6.3.3 Risk pro�le of the classes

In this section, the risk pro�le of each class will be highlighted. This analysis was done
regarding the previous studies on the numerical variables and the patterns, as well as a
study on the categorical variables.

For the analysis of the categorical variables, a focus was made on the scope of business
and the type of policy, as well as the country of the claim. Speci�c comments regarding
other variables were made if necessary. A display of the composition of the classes
regarding these three variables (Sob, Top, Country_Claim) is available in the appendix
C.

Class 0 (23.24% of the database6)

The claims of the class 0 are divided between: residential (all the residential busi-
ness is contained in the class 0 (four times the average)), commercial, industrial (non-
petrochemical), and infrastructure covers. Half of its policies are related to physical
damage on named perils (highest proportion among all the classes, more than three
times the average7), the second biggest kind of policy is physical damage and business
interruption, also on named perils (two times the average). The claims of this class are
related to small risks on which SCOR has a big share. This class contains all the activity
related to the Italy entity (2.3%).

The claims are mainly from the south of Europe: 78.63% of Spain, 13.39% of Portugal,
2.59% of Italy and 1.58% from Andorra.

The underlying risk is especially short tail, with the second lowest duration for Paid,
and shows no positive developments on Incurred.

Class 1 (13.14% of the database)

The business of the class 1 is in majority composed of industrial (non-petrochemical)
(two times the average), 20% of the claims are related to food production (four times
the average). Its policies are mainly related to "All risk" covers for physical damage and
business interruption.

The claims are mainly from South America: 24.23% from Columbia, 17.69% from
Ecuador, 13.10% from Mexico, 7% from Chile.

The class 1 has the longest duration for Incurred, since it has no positive develop-
ments, and a median duration for Paid.

Class 2 (7.96% of the database)

The business of the class 2 is composed at 41% of commercial covers (two times the
average) and a third of Industrial (non-petrochemical) covers. Its policies are composed of
88% of physical damage and business interruptions on "All risk" (1.5 times the average).

6underwriting years ranging from 2003 and 2017, with a selection considering the TF extreme values.
7Compared to the proportion observed among all the classes.
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The claims are mainly from the Americas and Israel: 21.63% from Chile, 10.92% from
Israel, 8.60% from Canada and 6.50% from Mexico.

The class 2 has a negative duration for incurred, due to one claim8 having a positive
development eleven years later. Without this claim, the pattern would be located in the
average of the other patterns.

Class 3 (7.99% of the database)

The class 3 has the highest share of �nancial institution covers (eight times the
average) and the second highest share of infrastructure covers. Half of its policies are
for physical damage covers, it also has the third highest share of covers for named perils.
23% of the claims cover risks related to real estate (10 times the average), 10% cover
risks relate to telecommunications (3 times the average).

The claims are from South East Asia: 57.37% from Honk-Kong, 13.82% from China,
5.74% from Malaysia, 3.74% from Taiwan and 3.68% from South-Korea.

The class 3 is the shortest tail for Incurred, due to positive developments but the
second most long-tail for Paid. Which seems to indicate that the risk is quickly estimated,
but then re-evaluated downward. It also indicates that SCOR has a prudent approach
in the management of these claims.

Class 4 (10.37% of the database)

The business of the class 4 is very similar to the business of the class 1, with larger
risks: 57.90% is composed of industrial covers (non-petrochemical) (two times the aver-
age), a quarter of infrastructure covers, the rest is evenly distributed. It contains 10% of
risks related to metallurgy (four times the average).

The claims are from South Asia (except South-Korea): 26.23% from Thailand, 15.78%
from Indonesia, 9.21% from South-Korea, 8.02% from India, 4.96% from China.

The class 4 is the second most long-tail for Paid with a duration of 2.89 years but is
rather short-tail for Incurred, with a duration of 0.69 years.

Class 5 (5.19% of the database)

Class 5 has the highest share of Commercial covers. Its policies are mainly related to
physical damage and business interruption. 27% (12 times the average) of the contracts
cover retailers and 19% cover governments (10 times the average). A �fth of the claims
are related to theft acts.

The claims are mainly from South America: 28.19% from Brazil, 25.90% from Mexico,
19.79% from Columbia, 5.01% from Ecuador, 4.83% Venezuela.

8A claim for a mining company in Chile was �rstly noti�ed as a machinery breakdown, after a court
decision, a faulty design was said to be the cause of the claim, reducing SCOR's liability by more than
2Me.
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Class 6 (5.44% of the database)

The class 6 has the second highest share of commercial business and Financial insti-
tution business. Half of its policies are physical damage related, 30% is related to named
perils.

The claims are mainly from Europe (and the United Arab Emirates): 41.43% from
Germany, 13.15% from the United Arab Emirates, 8.17% from Italia, 8% from Austria,
6.11% from Malta.

The class 6 is very short tail with a duration of 0.25 years for Incurred and 1.95 years
for Paid (smallest duration for Paid among all classes).

Class 7 (12.91% of the database)

The class 7 has the highest share of infrastructure and the second highest share
of industrial covers (petrochemical). All its policies are for both Physical damage and
business interruption: two thirds for all risks and a third for named perils. 16% of the
claims are related to water treatment (8 times the average).

The claims are mainly from the south of Europe (although more diverse than the
other classes): 25.95% from Portugal, 17.17% from Spain, 6.89% from France, 4.45%
from Israel, 3.69% from Saudi Arabia.

The incurred duration for the class 7 is low due to positive developments.

Class 8 (10.76% of the database)

The class 8 is composed of large energy related contracts, it also has the highest
median EGPI and by far the highest Incurred and Paid amounts.

Half of the class 8 business is related to petrochemical industry covers (almost all of
petrochemical contracts are in the class 8), a third of it is for infrastructure. 90% of its
policies are for physical damage and business interruption on all risks. 15% of the claims
are related to power generation (excluding nuclear, thermal, hydro and renewable). The
class 8 contains the highest rate of XL covers: 23%, 6 times the average rate.

The claims are mainly from North America: 33.44% from the USA, 6.27% from
Canada, 5% from Germany, 4.69% from Austria and 3.96% from France.

The duration for Incurred is the second highest, indeed the class 8 has no positive
developments.
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6.3.4 Conclusion on the best segmentation

The Fire line of business being very homogeneous by de�nition, �nding a way to build
more homogeneous subgroups was a challenge.

The study of the development pattern of each class showed that the segmentation
managed to distinguish di�erent kinds of patterns. Moreover, the newly built classes
outperform the Actuarial Segmentation, regarding the prediction quality, measured by
comparing the prediction (obtained by the natural developments) and the actual values
of 2018 cash-�ows and IBNR / Reserves.

However, the errors studied are volatile, and a few big claims can distort an otherwise
homogeneous class. Indeed, since there is no correction regarding the development fac-
tors, claims that have abnormal behaviours will corrupt the estimation for all the claims
of its class. For example, the claim which has a late positive development in the class
2 makes all the claims of the class 2 have a late positive development, which would not
have occurred if this claim was deleted or if a selection of development factors was made.

A study of the composition of each class showed that risk-pro�les could be assigned
per class. Therefore, the segmentation put forward is coherent and interpretable.

Overall, the selected segmentation separates the di�erent types of patterns, as it is
the best segmentation regarding the prediction errors, while clearly de�ning new sets of
claims with di�erent characteristics, as detailed in the risk pro�le of each class.

The results on the Fire database are quite volatile, due to the restricted numbers
of claims per class. But in general, the Actuarial Segmentation is still outperformed in
terms of homogeneity and predictability.
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6.4 Conclusion on the segmentation challenge

The objective of this project is to study the relevance of the Actuarial Segmentation, and
especially the homogeneity of the classes, regarding their development patterns.

To do so, new segmentations have been built. The construction of these segmentations
follows a framework composed of di�erent steps de�ned in this paper:

− Building of indicators to describe the patterns of development;

− Selecting the segmentations around the homogeneity of these indicators;

− Comparing the values predicted by the natural developments of each class, in order
to quantify the predictability of the segmentation.

The results obtained by using this framework are coherent: the precisions of prediction
are better than the ones obtained for SCOR's current segmentation, as the classes built
are composed of more homogeneous claims.

Moreover, by considering a classi�cation process for the recent underwriting years,
the segmentations are not only better in a retrospective view but are also coherent when
used for new underwriting years. That aspect is re�ected by the di�erent risk pro�les
that can be interpreted and linked to the newly built classes.

The classes built on trees and those built on clusters give good results of the same
order of magnitude, despite being constructed using very di�erent methods. Indeed,
for tree-based segmentations, the classes are de�ned by rules that describe the interac-
tion between the variables and the underlying risks (estimated by indicators). However,
clusters are solely built on similarities between the claims, no causal links between the
variables and the indicators are estimated.

Therefore, the fact that the best segmentation is the one based on clusters on variables
tells us that:

− Groups with di�erent behaviours are clearly present in the dataset. As the study
of the classes have shown, some groups have speci�c characteristic that make them
stand out.

− The variables chosen describe the underlying risk (or at least a majority of it).
Indeed, if variables that are irrelevant to the underlying risk were considered in
the building of the classes, then the classes would be homogeneous regarding those
irrelevant variables but not regarding the risk.

− The indicators might not describe the pattern as much as expected, as the best
segmentation is the one not taking into account the indicators. This can be due to
the high number for which the indicators are equal to zero, but also to the fact that
most of the claims had similar values, due to the homogeneity of the Fire database.

The homogeneity of the Fire database limited the improvement brought by the Machine
Learning methods. Now that the method is established for the Fire database, it will be
generalized to the whole database, and the improvements will be compared.
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Chapter 7

Generalization on the whole

database

The process of challenging the Actuarial Segmentation now established for the Fire
database, it will be extended to the database containing all lines of business. The whole
database contains di�erent lines of business, and more diverse risks. Hereunder is the
distribution of the lines of business:

Figure 7.1: Distribution of the lines of business
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The whole database is more heterogeneous than the Fire database. That e�ect can
be seen in the means of indicators per line of business1, displayed hereunder:

Agriculture Automobile Aviation Construction
Credit &
Surety

Decennial Fire Liability
Machinery
Breakdown

TF_Incurred 1.96 1.78 2.14 2.45 2.10 5.21 1.22 1.91 1.51
TF_Paid 2.02 2.30 3.51 3.56 2.87 7.21 2.12 2.98 2.37
Size % 0.80% 0.65% 2.79% 23.31% 0.08% 2.09% 49.44% 6.12% 2.13%

Marine &
Transport

Multi-line O�shore
Pers. Ins.N

Life
Political
Risks

Space
Special
Risks

Theft
Crime

Workers
Compensation

TF_Incurred 2.70 1.48 1.36 1.74 5.07 2.13 2.43 2.57 2.19
TF_Paid 3.02 2.58 2.24 2.00 2.21 3.13 2.12 2.40 2.64
Size % 6.26% 0.00% 2.70% 0.34% 0.03% 0.07% 0.31% 1.02% 1.85%

Table 7.1: Means of indicators per line of business

For that reason, it was more likely to have a greater improvement, since it would
be easier for the algorithm to �nd classes with distinctive behaviours. Moreover, the
segmentation will have more data to estimate the factors of development, making the
prediction process sturdier.

The same process used for �nding the best segmentations on the Fire database was
applied to the whole database: the segmentations were built on a train database and the
errors were compared on the test database.

Some technical limitations occurred when generalizing the process to the whole database:

− The python algorithm used in this study for computing the k-prototype is still in
development and takes a very long time to compute on a big dataset. In order to
reduce the computation time when measuring the MSE for the cluster, the number
of iterations used for the clustering algorithm was lowered from 10 (for the Fire
database) to 3, inducing more volatility in the MSE estimation. Even with only 3
iterations, it would often take more than 10 hours for a single set of parameters to
be computed;

− The size of the database and the format of the import in ResQ required the merging
of big datasets, and the limits of memory of the servers were sometimes reached.
Despite the server being very powerful with 120 GB of ram and 12 CPUs, although
shared between multiple users. Moreover, since the ResQ import �les are very
heavy (more than 6GB per type of cash�ow per type of segmentation), a manual
import in ResQ would take nearly half a day, and thus for each type of cash-�ow
and segmentation.

1Considering the values between -20 and 30 for the underwriting years ranging from 1950 to 2010.

ROLLAND Louis



7.1. PREDICTION RESULTS ON THE WHOLE DATABASE 80

From the study of these errors, one segmentation per model was selected. The parameters
for the selected segmentation are as such:

− Segmentation on tree �tted to Incurred: 15 classes/1000 claims min. per class;

− Segmentation on tree �tted to Paid: 15 classes/1000 claims min.;

− Segmentation on clusters on indicators: 6 clusters;

− Segmentation on clusters on variables: 24 clusters;

− Segmentation on clusters on the variables and the indicators: 21 clusters.

The most recent claims were assigned to the existing classes. Then, all the segmen-
tations were tested on their ability to predict the cash-�ow of the most recent year for
Incurred/Paid and the IBNR/Reserves prediction. The accuracies for the segmentations
based on clusters are better on the whole database (due to more data available for the
algorithm to learn).

7.1 Prediction results on the whole database

Some corrections were needed for the whole database:

− The years 1950-1973 contained volatile late developments that impacted the ulti-
mate predictions, they were therefore taken out (representing 505 claims);

− A huge claim related to the World Trade Center attacks gave the underwriting year
2001 a bigger weight and shifted the whole development pattern, that claim was
therefore taken out;

Hereunder are the results of predictions for the selected segmentations:

Segmentations

Criteria CF
Measures
of error

Act.
Seg.

One
Seg.

DT 15
Inc

DT 15
Paid

6 clus.
on TF

24 clus.
variables

21 clus.
variables
& TF

Delta % -6.4% 1.5% -2.3% -4.4% 10.7% -5.5% 12.0%
Inc.

|Error|/|CF| 27.5% 22.7% 35.4% 27.0% 35.7% 28.3% 42.7%
Delta % 13.8% -6.5% -15.9% -9.6% 0.1% 7.2% 3.4%

Predicting
2018 cah-�ow

Paid
|Error|/|CF| 37.3% 25.6% 24.1% 25.5% 46.5% 34.4% 36.8%
Delta % 126.4% 155.9% -17.6% 78.0% 83.0% 25.9% 2.6%

IBNR
|Error|/|CF| 277.2% 150.6% 66.2% 102.8% 139.7% 105.8% 100.5%
Delta % 178.3% 90.5% 40.1% 74.5% 35.3% 34.4% 42.1%

IBNR Reserves
estimation

N-3 Res.
|Error|/|CF| 200.4% 121.2% 78.9% 103.3% 59.4% 67.0% 78.5%
Delta % 122.4% 260.0% -108.8% 170.8% 162.2% 60.8% 89.4%

IBNR
|Error|/|CF| 234.9% 244.5% 152.7% 169.5% 197.8% 99.8% 115.1%
Delta % 58.0% 46.7% 12.3% 39.1% 30.3% 12.9% 5.2%

IBNR/Reserves
estimation

N-5 Res.
|Error|/|CF| 101.3% 65.7% 52.1% 60.8% 52.7% 45.8% 45.7%

Table 7.2: Results of prediction for the whole database
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The results on the whole database are overall better than the ones of the Fire
database. The average error among all models on the cash-�ow prediction went from
11.78% (for Fire) to 6.11% (for all lines of business) for Incurred an from 23.04% (for
Fire) to 8.07% (for all lines of business) for Paid.

Moreover, the size of the dataset (despite making every step of the process much
slower) made the estimation of the development factors sturdier. Indeed, the results on
the whole database are less volatile than on the Fire database.

The Actuarial Segmentation is more precise, but is still outperformed by some chal-
lenging segmentations. The best segmentation overall is the one based on trees �tted to
Incurred, containing 15 classes. On the next page is the tree from which the classes are
obtained.

Hereunder are the development patterns of Incurred for each class of the segmentation
based on tree �tted to Incurred:

Figure 7.2: Incurred developments for segmentation based on tree �tted to Incurred

Hereunder are the development patterns of Paid for each class of the segmentation
based on tree �tted to Incurred:

Figure 7.3: Paid developments for segmentation based on tree �tted to Incurred

Both the developments of Incurred and Paid are more spread out than for the Fire
database. The positive development of Incurred for the class 1 is due to a large claim
related to an o�-shore petrol platform, and the one of the class 13 is due to a large claim
related to a decennial contract.
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Hereunder is the decision tree from which the classes are obtained:

Figure 7.4: Decicion tree �tted to Incurred with: 15 classes / 1000 claims per class min.
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The splits are done considering a value for the numerical variables, the claims that are
below that value will go to the left and the others on the right. Regarding the categorical
variables, as they are encoded in One-Hot, they are either equal to 1 or 0 whether the
claim had that category for that variable or not.

For example Main_Currency_GBP ≤ 0.5 will split on the left (True) the claims
that are not in GBP and on the right (False) the claims that are in GBP

For the tree: mse refers the mean square error of the node, samples to the size of the
node and value to the mean value of the node.

Some classes are easily interpretable, such as the long-tail claims related to sexual
abuse, or the claims of the line of business Decennial (that is essentially contained in
the classes 9, 11 and 13). As well as more short tail classes such as the classes 0 and
1 in Singapore, or the class 2, which is composed at 70% of claims of the Fire Line of
business, showing once again the homogeneity of the Fire subset.

Compared to the segmentation based on clusters, the rules of this segmentation are
clearly de�ned, making it easier to use, as no classi�cation step is required to allocate
the new claims to the classes.

7.2 Conclusion on the whole database

The results of the generalization con�rm our expectation. Indeed the predictions are
better due to both the heterogeneity of the base and the increase in the number of
claims.

The fact that the best segmentation was based on clusters for the Fire database and
on trees for the whole database indicates that:

− The homogeneity of the Fire database reduces the improvements brought by splits
on durations;

− The heterogeneity of the complete database enables the dividing of sub-groups
based on their duration values.

Dividing this study in two steps (�rst the study on the Fire database and then the
generalization on the whole database) made the research process much quicker. Indeed,
adjusting our models and doing the explanatory process directly on the whole database
would have taken too much computation time and calibrations.

Furthermore, testing the process on both a homogeneous dataset and a heterogeneous
dataset gave us con�rmation on the reliability of the process.

This study also highlighted the fact that aggregating all the claims is, in terms of
predictions, better than creating inhomogeneous classes. Especially if the claims are
already homogeneous, which is the case for the Fire database.
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Conclusion

This thesis revolved on the challenging of SCOR's current segmentation of claims. To
do so, new segmentations were built using Machine Learning on a database containing
both contracts and claims features.

To enhance the quality of the database and to enable the use of Machine Learning
algorithms, the missing values of the study database were �lled using methods based
on the correlations between the variables and dimension reductions. Due to technical
limitations, this method has to be complemented with clusters to reduce the computation
time and enabled the use of a more complex model, giving better results. A method for
choosing the parameters of the algorithm also had to be implemented for big datasets.
This method gave results that were proven to match with the method originally used
(based on cross-validation) and for cheaper computational costs.

Regarding the building of the classes, indicators (undiscounted durations) were built
to describe the development patterns. These patterns were proven to describe the devel-
opment pattern, as the segmentations built around these indicators were able to di�er-
entiate di�erent kinds of developments.

Challenging segmentations were built around the homogeneity of these indicators,
using either decision tree or clustering methods. The challenging segmentations showed
overall good results regarding the homogeneity of the claims and the quality of the
prediction. The best segmentation was thoroughly studied and its composition made
sense regarding claims management.

The framework in itself is interesting and can be generalized to create indicator-
related segmentations in other domain. Alternatives to these methods were also tested
but had limited results, such as clusters on the development ratios for certain periods or
mixing clusters and decision trees (for example: using a tree to split a cluster in two).
And more advanced methods could have also been used, such as �nding the optimal
segmentation by using genetic algorithms.

Machine Learning innovations often come with lack of interpretability and concrete
application. This study, by focusing on simple algorithms used at di�erent steps of the
process, put forward a method that takes advantage of Machine Learning while remaining
relevant to the current practices.
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Appendix A

Mathematical framework for

Machine Learning algorithms

A.1 Arti�cial Neural Network

Let χ be a d-dimensional feature space, d being the number of variables used for predic-
tions in the dataset and x ∈ χ the vector containing features values for an observation.

The output of each neuron depends on three parameters:

1. The output of the previous layer (or the variables themselves for the �rst layer);

2. A vector of weights containing an intercept that will be applied to the output of
the previous layer.

3. An activation function φ that translates the rate of "�ring-up" for each cell:

(a) Binary function that activates above a threshold (θ):

φ(z) =

{
1, if z ≥ θ.

0, if z < θ.
(A.1)

(b) Linear function / Recti�ed Linear Unit(ReLU):

φ(z) = z or Max(z, 0) (A.2)

(c) Logistic function:

φ(z) =
1

1 + e−z
∈ [0, 1] (A.3)

(d) Hyperbolic tangent

φ(z) = tanh(z) =
sinh(z)

cosh(z)
=
ez − e−z

ez + e−z
∈ [−1, 1] (A.4)
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Figure A.1: Activation functions

The means of the activation functions have little to no importance since they can be
adjusted by the intercepts introduced by the weights.

Mathematical notations

Let a Neural Network composed of H hidden layers, each hidden layer noted h ∈
{1, 2, ...,H} will be composed of nh neurons.

∀x ∈ χ:
The output for the �rst hidden layer (h = 1) is given by:

z
(1)
i (x) = φ

W (1)
i,0 +

d∑
j=1

W
(1)
i,j × xj

 (A.5)

The output of the i ∈ {1, .., nh} neuron in the h ∈ 2, ...,H hidden layer is given by:

z
(h)
i (x) = φ

W (h)
i,0 +

nh−1∑
j=1

W
(h)
i,j × z

(h−1)
j (x)

 (A.6)

Eventually, the output of the Neural Network, noted Out, is given by:

Out(x) = φ

β0 +

nH∑
j=1

βj × z(H)
j (x)

 (A.7)
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The output in this case is a function of both the features of x ∈ χ and of all the
weights that composed the Neural Network.

The z(h)
j (x) notation can be generalized by declaring that z(0)

j (x) = xj and the nh
notation by declaring that n0 = d.

∀h× i× j ∈ {1 : H} × {1 : nh} × {0 : nh−1}

Out(x) = Outα(x) α =

((
W h
i,j

)
h={1:H};i={1:nh};j={0:nh−1}

; (βj)j={0:nH}

)
(A.8)

In this example, the model was built to solve a regression problem, please note that in
the case of a classi�cation problem, the whole process is similar, it is just needed to add
a �nal activation function right before the output layer to determine the most adequate
class. This is usually done with a binary function (cf. EqA.1).

Algorithm optimization

To study the convergence and the e�ciency of the Neural Network it is possible to com-
pare the model's outputs with the actual data, a common way to do so is by computing
a Loss Function. For example:

Loss(α) =
1

2
×
∑
x∈χ

(Outα(x)−Real data(x))2 (A.9)

In order to optimize the Neural Network minimizing this Loss Function is needed.
Since all the weights are continuous and if all the activation functions are continuous, a
gradient descent algorithm can be used in order to �nd a minimum.

The gradient descent method is based on the Taylor development of order 1 (higher
orders can be used; however, the derivatives can quickly become too complicate to cal-
culate).

Let Loss(.) ∈ L1 function of α, using the Taylor for α near α and for ∇αLoss(α)
gradient of Loss(α):
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Algorithm 1 Gradient Descent Algorithm

Require: η > 0: learning rate ; α0 Initial value of weights; N number of iterations
α = α0

L(α) = Loss(α0)
∇ = ∇αLoss(α0)
for n ∈ [1 : N ] do
α = α−∇αLoss(α)× η
L(α) = Loss(α)
∇ = ∇αLoss(α)

end for
return L(α);α

A.2 Decision Tree

Let χ be a d-dimensional feature space, d being the number of variables used for predic-
tions in the dataset and x ∈ χ the vector containing feature values for an observation.

Let Ck be the set of classes for the k-step in the tree.

∀k ∈ {1, 2, ...,K}

Ck =
(
cki

)i=Ik
i=1

With:

1. K being the depth of the tree;

2. cki being the i-class for the k-step;

3. Ik being the number of nodes of the k-step;

Each cki has an associated value v
k
i , which can be a class for classi�cation or a number

in regression.

Note: Decision trees are often presented with �nal nodes present in di�erent layers.
However, in this framework, when a node does not split, it will still be present in the
next layer as itself just one layer deeper, in fact, all �nal nodes will be present in the
�nal layer:

Although the model is exactly the same, this hypothesis lightens the notation as only
the �nal layer needs to be referred to.

From this framework, a decision tree can be de�ned as a function:

T : x ∈ χ→
(
vKi
)IK
i=1

T (x) =
∑IK

i=1 v
K
i 1
(
x ∈ cKi

) (A.10)

Probabilities of belonging in each class can de de�ned by declaring that: ∀i×k×x ∈
{1, 2, ..., Ik} × {1, 2, ...,K} × χ
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Figure A.2: Framework hypothesis regarding �nal nodes

p(cki ) =
‖x ∈ cki ‖
‖x ∈ χ‖

How to measure the Purity

De�ning an Impurity Function is needed in order to measure the purity of the set of
subsets:

Π
(
p(ck1), p(ck2), ..., p(ckIk)

)
Such that:

1. Π
(
p(ck1), p(ck2), ..., p(ck

Ik
)
)
achieves its maximum at the point

(
1

Ik
,

1

Ik
, ...,

1

Ik

)
2. Π

(
p(ck1), p(ck2), ..., p(ck

Ik
)
)
achieves its minimum at the points: (1, 0, 0, ..., 0), (0, 1, 0, ..., 0),

(0, 0, 1, ..., 0),..., (0, 0, 0, ..., 1).

3. Π
(
p(ck1), p(ck2), ..., p(ck

Ik
)
)
is a symmetric function of (p(ck1), p(ck2), ..., p(ck

Ik
))

The impurity for a split at a node is given by: ∀k × i ∈ {1, 2, ...,K} × {1, 2, ..., IK}

Impurity of cki = I(cki ) = Π
(

(p(ck+1
1 |cki ), p(ck+1

2 |cki ), ..., p(ck+1
Ik+1 |cki )

)
Although the impurity function has been de�ned for splits with any number of sub-

classes, it is worth noting that when using decision trees, in most cases, the impurity
function is only used for splits in two child-leaves, and thus at every node.

For example: the split of the cki node divides the c
k
i class in two sub-classes ck+1

j and

ck+1
j+1 with j ∈ {1, 2, Ik+1 − 1}.
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Figure A.3: Split for the cki node.

Two main impurity functions are used for decision trees: the Gini Index and the
Entropy:

Gini Index

The Gini Index is based on the decrease of impurity, in this case, the decrease of impurity
induced by a split: for example, the decrease of impurity induced by the split on the cki
node.

The test will split a node in two sub-classes: ck+1
j and ck+1

j+1 .
The impurity is then given by:

IGini

(
cki

)
=

∑
t=(j,j+1)

pt × (1− pt) = 1− p2
j − p2

j+1 (A.11)

Entropy

Entropy is based on the information theory, the goal of entropy is to reduce the random-
ness of the choice.

For the same example, the decrease of impurity given by entropy is:

IEntropy

(
cki

)
= −

∑
t=(j,j+1)

pt × log2 (pt) = −pj × log2 (pj)− pj+1 × log2 (pj+1) (A.12)

Although the Gini Index seems di�erent from the Entropy, in application it has almost
no impact on the model's output. Laura Elena Raileanu and Kilian Sto�el showed that, in
98% of the cases, this choice had no e�ect on the output: Theoretical comparison between
the Gini Index and Information Gain criteria [13] that 98% of the trees tested were
exactly the same using either Gini Index or Entropy as impurity functions. Hereunder is
a comparison of the impurities obtained by Gini and Entropy1 functions:

1A scaling was made to better visualize the similarities between the two functions.
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Figure A.4: Gini Index and Entropy comparison for a split in two child nodes (scaled)

A.3 Random Forest

In order to better understand the strength of the bootstrap method, let's study the
variance of the Random Forest prediction:

σ2 (TRandom Forest (x)) = σ2
B∑
b=1

(
Tb (x)

B

)
Under the hypothesis that trees have small dependencies, which can be done using

random Bootstrap samples:

σ2
B∑
b=1

(
Tb (x)

B

)
≈

B∑
b=1

σ2

(
Tb (x)

B

)
=

1

B2

B∑
b=1

σ2 (Tb (x)) =
1

B
σ2 (Tb (x)) (A.13)

Under the hypothesis that every variance for each tree is bounded, the limit of the
random forest variance converges to 0 as the number of perfectly independent Bootstrap
samples tends to in�nity.

Although, it is clear that the hypothesis of the Bootstrap samples being perfectly
independent is far from being true, since they are based on the same dataset; as long
as they are not 100% correlated and as long as the prediction models are coherent, the
variance will tend to decrease as the number of Bootstrap samples increases.
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Algorithm 2 Random Forest Algorithm

Require: χ: training dataset; B: number of trees in the forest;
prow size of the bootstrap sample for observations; pcol size of the bootstrap sample
for variables.
for b ∈ [1 : B] do
-Draw a bootstrap sample of size prow of observations from the training data
-Select pcol variables at random from the N variables
-Fit a Decision Tree Tb to the bootstrapped data:

Tb(x) =

IK∑
i=1

vKi,b1
(
x ∈ cKi,b

)
end for
Output the ensemble of trees, to make prediction at a new point:
return

TRandom Forest (x) =
1

B

B∑
b=1

Tb (x)

ROLLAND Louis



Appendix B

Variables analysis of the Fire

Database

Through this section will be presented all the Fire Database variables. The values of
each variable will be displayed and a study of correlations will be presented, in order to
have a more concrete look at the relations between the variables in the database.

B.1 Analysis for numerical data

This section will present the numerical variables, �rst by displaying the densities of every
variable and then by displaying the correlation between these variables.

B.1.1 Densities and cumulative distribution for numerical variables

In this section, densities and cumulative distributions will be presented for all the nu-
merical variables. Some of the variables having extremely high values, they needed to be
displayed in logarithmic scale.
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Sum_insured The distribution of the variable Sum_insured is displayed hereunder
in logarithmic scale for more visibility as it has very high values.

Figure B.1: Density and cumulative distribution for Sum_Insured

Level 10% 30% 50% 70% 90%
Quantile 4.0× 106 8.6× 107 4.6× 108 2.1× 109 1.8× 1010

Since the logarithmic scale is used, 3169 lines (1.43%) were not displayed as their
values were equal to zero.

PML_100% The distribution of the variable PML_100% is displayed hereunder in
logarithmic scale for more visibility as it has very high values.

Figure B.2: Density and cumulative distribution for PML_100%

Level 10% 30% 50% 70% 90%
Quantile 0.0 30,051 k 108,239 k 304,898 k 1,895,758 k

Since the logarithmic scale is used, 23853 lines (10.81%) were not displayed as their
values were not in the plot range (either < 5000 or > 1013 ).
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Contract_Length The distribution of the variable Contract_Length is displayed
hereunder:

Contract_Length =
DaysBetween(Inception_Date,Expiry_Date)

365.25

Figure B.3: Density and cumulative distribution for Contract_Length

Level 10% 30% 50% 70% 90%
Quantile 1.00 1.00 1.00 1.00 1.16

In order to make the graph more readable, 583 lines (0.26%), were not displayed, as
their values were above 4.
Peaks for integers were predictable as most of the contracts are yearly covers with 85.12%
of Contract_Length values are between 0.9 and 1.1.

PML_SCOR The distribution of the variable PML_SCOR is displayed hereunder in
logarithmic scale for more visibility as it has very high values.

Figure B.4: Density and cumulative distribution for PML_SCOR

Level 10% 30% 50% 70% 90%
Quantile 3.2× 105 1.7× 106 4.6× 106 1.1× 107 7.8× 107
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Since the logarithmic scale is used 2993 lines (1.36%), were not displayed as their
values were equal to zero.
In logarithmic scale, SCOR's Probable Maximum Loss shows a somewhat symmetrical
density around its median, with a heavier tail for high values.

SCOR_EGPI The distribution of the variable SCOR_EGPI is displayed hereunder
in logarithmic scale for more visibility as it has very high values.

Figure B.5: Density and cumulative distribution for SCOR_EGPI

Level 10% 30% 50% 70% 90%
Quantile 123 5, 894 23, 243 90, 411 637, 479

Since the logarithmic scale is used, 16236 lines (7.36%) were not displayed as their
values were equal to zero.
When plotted in the logarithmic scale, SCOR's Expected Gross Premium Income of the
contract shows a skewed Gaussian-like density with a heavier tail for small values.

SCOR_PML_% The distribution of the variable SCOR_PML_% is displayed here-
under.

Figure B.6: Density and cumulative distribution for SCOR_PML_share
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Level 10% 30% 50% 70% 90%
Quantile 0% 2% 4.3% 8% 15%

The peak at zero is due to contracts on which SCOR has a very little share, as well
as contracts on which the Probable Maximum Loss was either equal to zero (1.24%) or
missing (10.23%), in both cases, it was considered that the Probable Maximum Loss was
equal to zero, therefore SCOR's share of Probable Maximum Loss also had to be equal
to zero.

B.1.2 Correlations between numerical variables

Having highly correlated variables can be problematic for many reasons:

− Having two "similar" variables will increase the weight of these variables, compared
to others, when using only samples of variables, which can bias the model by
overestimating the importance of certain variables (cf. Bootstrap in the Random
forest section 2.1.3);

− Operations on the database, such as diagonalization or inversion, can take much
longer as the matrix can have a rank lower than its number of columns.

For these reasons, the study of the correlation between variables is necessary. In order
to build a matrix of correlations, Pearson's correlation estimator is introduced:

De�nition B.1.1. Correlation coe�cient: Let X and Y , two random variables. The
correlation between X and Y is:

ρX,Y =
cov (X,Y )√

V ar (X)× V ar (Y )
(B.1)

De�nition B.1.2. Person's correlation estimator:

Let x =


x1

x2
...
xn

 and y =


y1

y2
...
yn

 be two n-sized random samples of X and Y .

Let Pearson's estimator for correlation:

rx,y =

∑n
i=1 (xi − x) (yi − y)√∑n

i=1 (xi − x)2 ×
∑n

i=1 (yi − y)2
with x =

∑n
i=1 xi
n

, y =

∑n
i=1 yi
n

(B.2)
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Hereunder is the correlation matrix obtained using Pearson's estimator for correlation:

Figure B.7: Correlations between Numerical variables

In general, all the numerical variables have low correlations between each other, with
two exceptions:

1. PML_100% and PML_SCOR have a correlation of 91.83%. Indeed, the higher
the total probable loss is, the higher SCOR's probable loss will be. The variable
SCOR_PML_% has been created in order to take into account SCOR's share
without replicating the volume e�ect that cause the high correlation. Therefore,
only the variable PML_100& and SCOR_PML_% are kept in the study database.

2. Sum_Insured with PML_SCOR and PML_100% having a correlation of 65.44%
and 68.07% respectively, which seems logical, the more risks SCOR insures, the
more it can loose.

Considering these high correlations when building the variables samples is necessary
in order to allocate the same weight to all variables. For example, if both PML_100%
and PML_SCOR were to be kept when building the variable samples, since they are
extremely correlated, it would be almost the same as one of these two variables having a
probability of belonging in the variable samples two times higher than the other variables.
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B.2 Analysis for categorical data

This section will present the categorical variables, �rst by displaying the frequencies of
the categories for each variable and then by displaying the correlation between these
variables.

B.2.1 Frequencies of categories for categorical variables

This section will go through all the categorical variables1, displaying the frequency for
each of their categories.

Actuarial_segment Hereunder are the frequencies for Actuarial Segments:

Figure B.8: Actuarial_Segment

For more clarity only the categories that are present more than 500 times are displayed
(27 out of 42 categories containing 2613 lines have been omitted).
The actuarial segment variable contains the actuarial segment to which the claim belongs,
it is built mainly from the Lob and Contract Nature, based on arbitrary criteria. The
segmentation being challenged in this paper will not be used to predict the new classes,
but to compare the new models to the existing one.

Reminder: These data analyses are done on the Fire Database (claims with Lob=Fire).

1The variables Subsidiary and Subsidiary_Ledger were not displayed for con�dentiality reasons
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Country_Claim Hereunder are the frequencies for Country_Claim:

Figure B.9: Country_Claim

For more clarity only the categories that are present more than 2000 times are dis-
played (178 out of 201 categories containing 34578 lines have been omitted). Coun-
try_Claim is the country in which the claim happened.

Sob Hereunder are the frequencies for Sob:

Figure B.10: Sob

For more clarity only the categories that are present more than 500 times are displayed
(27 categories containing 2613 lines have been omitted).

ROLLAND Louis



B.2. ANALYSIS FOR CATEGORICAL DATA 103

Sob refers to the Scope of Business, for example:

Code Label
5 Residential/Personal
7 Multi-Family Residential
15 Commercial
20 Industrial Non-petrochemical
25 Industrial Petrochemical
30 Financial Institutions
35 Infrastructures/Civil Works
45 Professional Services/Trades
60 Transport
65 Aviation / Space

Table B.1: Sob categories

Top Hereunder are the frequencies for Top:

Figure B.11: Top

Top refers to the Type of Policy, for example:

− PD stands for Physical damage;

− BI stands for Business Interruption;

− DIC

− wrap around
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Claim_Cause Hereunder are the frequencies for Claim_Cause:

Figure B.12: Claim_Cause

For more clarity only the categories that are present more than 500 times are displayed
(87 out of 102 categories containing 5243 lines have been omitted). Also, the category
corresponding to missing value is not displayed, it is the biggest category with 147532
lines (66.86% of the Fire Database).

Fac_Sector Hereunder is the frequencies for Fac_Sector.

Figure B.13: Fac_Sector

For more clarity only the categories that are present more than 500 times are displayed
(5 out of 10 categories containing 1281 lines have been omitted). Fac_Sector is an internal
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segmentation for Facultative contracts. BS stands for Business Solutions and CFS for
Corporate Functions Solutions.

Risk_Nature Hereunder are the frequencies for Risk_Nature:

Figure B.14: Risk_Nature

For more clarity only the categories that are present more than 500 times are displayed
(102 out of 117 categories containing 35007 lines have been omitted). Risk_Nature refers
to the underlying risk. For example 100 refers to food products and 200 to o�ce buildings.

CLM_UW_Y Hereunder are the frequencies for CLM_UW_Y:

Figure B.15: CLM_UW_Y

The years from 1950 to 1974, containing 352 claims have been omitted. A fall in the
number of claims right after SCOR's downgrade in the end of 2002 can be perceived.
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Such a drop in the number of claims can induce a bias in the model. For example: a
change in the underwriting policy after 2002.

Main_currency Hereunder are the frequencies for Main_currency:

Figure B.16: Main_currency

For more clarity only the categories that are present more than 500 times are displayed
(101 out of 128 categories containing 6618 lines have been omitted).

Nature Hereunder are the frequencies for Nature:

Figure B.17: Nature

Nature of the contract refers to the type of covers.

− QS: Quota-share;

− XL, XS: Excess of Loss.
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Geo_Insured Hereunder are the frequencies for Geo_insured:

Figure B.18: Geo_Insured

For more clarity only the categories that are present more than 5000 times are dis-
played (25 out of 39 categories containing 41538 lines have been omitted). Geo_Insured
is the geographical zone in which the contract is related to.

Follow_Up The Follow_Up variable is not displayed as 99.4% of the lines belong in
the same category, hereunder are the details for each category:

Label of the category Number of occurrences Percentage
No_Follow_Up 219336 99.40%
Deleg Underw. 919 0.42%
Ponct. Follow-up 191 0.09%
Annual visit 108 0.05%
Permanent f.u. 52 0.02%
Ponct. no F.U. 27 0.01%
Rev 12-36 months 25 0.01%
Annuity 1 ≈ 0%

Table B.2: Frequency of categories for Follow_Up
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B.2.2 Correlation between categorical variables

Computing correlations between categorical variables is necessary for the same reasons
as for numerical variables. The usual correlations based on Pearson's estimator being
only valid for numerical data, a new form of correlation between categorical data must
be introduced.

In this analysis, Cramer's V was used as it considers frequencies of categories to
compute a form a dependence between categorical variables.

Cramer's V

Cramer's V is based on Pearson's Chi-squared test of independence: χ2

De�nition B.2.1. χ2: Let:

− X and Y samples of length n for two categorical variables with respectively r and
s di�erent categories;

− ni,. the random variable of the frequency of the i-th category for the variable X;

− n.,j the random variable of the frequency of the j-th category for the variable Y;

− ni,j the random variable of the frequency of i-th category for the variable X and
j-th category for the variable Y.

χ2 =

r∑
i=1

s∑
j=1

(
ni,j − ni,.n.,j

n

)2
ni,.n.,j

n

(B.3)

The χ2 measures the dependence between two categorical variables, X and Y, by
studying the distribution in each category for each variable. Although the χ2 statistic is
able to determine whether two categorical variables are independent or not, it does not
compute a form of correlation, as its values are not contained in [−1, 1]. Moreover, its
value heavily relies on the sample size and the number of categories for each variable,
which should not be the case for a dependence measure.

In order to obtain an equivalence of correlation for categorical variables, �nding a
way to normalize the χ2 statistic is needed. To do so, the limits in value of χ2 have to
be studied.

Study of the value of χ2 for X ⊥⊥ Y : From the previously introduced notation:

P (X = i) =
ni,.
n

∀i ∈ {1, 2, ..., r} and P (Y = j) =
n.,j
n

∀i ∈ {1, 2, ..., s}

The hypothesis X ⊥⊥ Y gives P (X ∩ Y ) = P (X)× P (Y ), therefore:

ni,.
n
× n.,j

n
= P (X = i)× P (Y = j) = P (X = i ∩ Y = j) =

ni,j
n
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thus
ni,j =

n.,j × ni,.
n

∀i× j ∈ {1, 2, ..., r} × {1, 2, ..., s} (B.4)

Hence, by using B.4 the following result can be obtained:

χ2 =

r∑
i=1

s∑
j=1

(
ni,j − ni,.n.,j

n

)2
ni,.n.,j

n

= 0 (B.5)

Thus, if X ⊥⊥ Y : χ2 = 0.

As χ2 is a sum of squares, it is non-negative. Therefore, the minimum of χ2 is reached
when used to measure the dependency between two independent variables.

Now that the minimum value of χ2 has been found. It is necessary to study the
boundness of χ2.

Study of the maximum of χ2:
To do so, the division of the χ2 formula by ni,.n.,j

n can be studied:

χ2 =
r∑
i=1

s∑
j=1

(
ni,j − ni,.n.,j

n

)2
ni,.n.,j

n

= n×
r∑
i=1

s∑
j=1

(
n2
i,j

ni,.n.,j
− 1

)
(B.6)

As 0 < ni,j ≤ ni,. =
∑s

j=1 ni,j :

r∑
i=1

s∑
j=1

n2
i,j

ni,.n.,j
≤ ni,j
n.,j

=
s∑
j=1

n.,j
n.,j

= s (B.7)

By injecting this inequality in B.6 the following inequality can be obtained:

χ2 ≤ n(s− 1)

Using the symmetry between s and r another inequality can be obtained:

χ2 ≤ n(r − 1)

Both of these inequalities imply:

χ2 ≤ n×min((s− 1), (r − 1))

.

By dividing χ2 by its maximum, a measure of dependence between two categorical
variables in [0, 1] is computed, this newly de�ned measure is Cramer's V:

De�nition B.2.2. χ2:

Vcramer =

√
χ2

n×min(s− 1, r − 1)
∈ [0, 1] (B.8)
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With:

− χ2 Pearson's statistics;

− n sample size;

− s the number of columns;

− r the number of rows.

If the variables are independent: Vcramer = 0 while Vcramer = 1 for entirely correlated
variables.

Hereunder is the correlation matrix obtained for categorical variables using Cramer's V:

It is clear that some categorical variables are highly correlated with others:

− Subsidiary with Actuarial_Segment: 99.99%. By construction, the Actuarial Seg-
ment is di�erent for every Subsidiary. Therefore, the Subsidiary can be deduced
from the Actuarial_Segment, which is translated by a Cramer's V ≈ 1.
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− Subsidiary with Subsidiary_Ledger: 99.99%. The Subsidiary_Ledger is a subclass
of the Subsidiary, therefore, the Subsidiary can be deduced when knowing the
Subsidiary_Ledger, resulting in a Cramer's V ≈ 1.

− Risk_Nature with Sob: 99.81%. Also, by construction, the Sob can be deduced
from the Risk_Nature, resulting in a Cramer's V ≈ 1.

In order to allocate the same weight to all variables when using bootstrap on variables,
a choice must be made between taking Subsidiary or Actuarial_Segment, Subsidiary or
Subsidiary_Ledger, Risk_Nature or Sob.

B.3 Analysis for indicators

B.3.1 Densities and cumulative distributions for indicators

In this section, the density and cumulative distribution are displayed for each indicator.
The Incurred and Paid amounts are displayed in logarithmic scale as they had a wide
range of values.

Reminder:

− Incurred_N is the Amount of Incurred accumulated up to the year N :

Incurred_N =

N∑
i=1

Inci

− TF_Incurred_N is the Duration for the incurred cash-�ows, de�ned as:

TF_Incurred_N =

∑N
i=1 Inci × development periodi∑N

i=1 Inci

− TF_Max_Incurred_N is a twist from the previous formula to capture the e�ects
of claims developing and settling at zero.

TF_Max_Incurred_N =

∑N
i=1 Inci × development periodi

max
1≤i≤N

(Inci)
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Incurred_N The distribution of the indicator Incurred_N is displayed hereunder in
logarithmic scale for more visibility as it has very high values.

Figure B.19: Incurred_N density and cumulative distribution

Level 10% 30% 50% 70% 90%
Quantile 0.00 18.59 106.47 602.01 8353.50

Since the logarithmic scale is used, 34965 (15.85%) lines were not displayed as their
Incurred amount was either negative (0.76%) or null (15.09%).

In logarithmic scale, the Incurred amount seems to have a skewed Gaussian density,
with a heavier tail for high values.

TF_Incurred_N The distribution of the indicator TF_Incurred_N is displayed here-
under.

Figure B.20: TF_Incurred_N density and cumulative distribution

Level 10% 30% 50% 70% 90%
Quantile -1.67 0.20 1.49 2.00 3.50

In order to make the graph more readable 12355 lines (5.56%) were not displayed as
their values were either above 25 (0.16%) or below −10 (5.40%).
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TF_Max_Incurred_N The distribution of the indicator TF_Max_Incurred_N is
displayed hereunder.

Figure B.21: TF_Max_Incurred_N density and cumulative distribution

Level 10% 30% 50% 70% 90%
Quantile -0.42 0.05 1.38 2.18 3.78

In order to make the graph more readable 559 lines (0.25%) were not displayed as
their values were either above 25 (0.03%) or below −10 (0.22%).

Paid_N The distribution of the indicator Paid_N is displayed hereunder in logarith-
mic scale for more visibility as it has very high values.

Figure B.22: Paid_N density and cumulative distribution

Level 10% 30% 50% 70% 90%
Quantile 0.00 16.63 98.17 556.32 7459.56

Since the logarithmic scale is used 37682 (17.1%) lines were not displayed as their
Paid amount was either negative (0.61%) or null (16.5%). The high number of Paid
amounts being equal to zero can be explained as some claims have an incurred, and are
therefore present in the database but for which no payment has yet been made.
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In logarithmic scale, the Paid amount seems to have a Gaussian-like density, with a
heavier tail for high values.

TF_Paid_N The distribution of the indicator TF_Paid_N is displayed hereunder.

Figure B.23: TF_Paid_N density and cumulative distribution

Level 10% 30% 50% 70% 90%
Quantile 0.00 1.46 2.00 2.55 4.06

In order to make the graph more readable 1110 lines (0.50%) were not displayed as
their values were either above 25 (0.13%) or below −10 (0.37%).

TF_Max_Paid_N The distribution of the indicator TF_Max_Paid_N is displayed
hereunder.

Figure B.24: TF_Max_Paid_N density and cumulative distribution

Level 10% 30% 50% 70% 90%
Quantile 0.00 1.50 2.00 2.75 4.65

In order to make the graph more readable 294 lines (0.13%) were not displayed as
their values were either above 25 (0.004%) or below −10 (0.010%).
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The Indicators for the years up to N − 1 are not displayed as they are almost the
same as the ones displayed just before.

B.4 Note on the reliability of the Indicators

This note will study the reliability of the indicators regarding their descriptiveness of the
development patterns. This study was done for the Fire database.

The segmentation based on clusters of indicators builds homogeneous classes re-
garding the value of the 4 indicators: TF_Incurred, TF_Paid, TF_Max_Incurred,
TF_Max_Paid. Hereunder are the distributions of the 4 classes of the segmentation se-
lected in the previous section, a PCA was used to display the values in two-dimension2:

Figure B.25: Values of the four clusters for the four indicators

2

First Axis = 0.64∗TF_Incurred+0.44∗TF_Paid+0.51∗TF_Max_Incurred+0.38∗TF_Max_Paid
(explained variance = 60.44%).
Second Axis = −0.65 ∗ TF_Incurred + 0.55 ∗ TF_Paid − 0.06 ∗ TF_Max_Incurred + 0.52 ∗
TF_Max_Paid (explained variance = 31.46%).
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Hereunder are the mean values for each class:

Size TF_Incurred_N TF_Paid_N TF_Max_Incurred_N TF_Max_Paid_N
Class 0 4,089 3.65 4.57 4.23 5.53
Class 1 11,143 -0.17 0.35 0.12 0.34
Class 2 21,521 1.55 2.18 1.65 2.35
Class 3 1,852 -12.74 2.41 -1.60 2.73

Table B.3: Centroids for each class

The classes have distinct pro�les, Class 0 re�ects long-tail claims, class 1 claims for
which they are no positive developments on Incurred, claims 2 is made of short tail
claims, and class 3 contains the claims with a late positive development for Incurred. A
study of the development patterns is necessary to con�rm or in�rm the reliability of the
indicators. Hereunder are the development patterns per class:

Figure B.26: Incurred patterns for each class
(4 clusters on 4 TFs)

Figure B.27: Paid patterns for each class (4
clusters on 4 TFs)

The patterns for each class are very di�erent and follow the analysis made on the
indicators values. Therefore, the indicators are good indicators to split di�erent types of
development patterns.
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Appendix C

Analysis of the best segmentation

This chapter provides a concrete look at the compositions of the di�erent classes, regard-
ing both the numerical and categorical variables.

C.1 Study of the numerical variables

Hereunder is a graph to compare the distribution of the standardized median values for
numerical variables1 and the Incurred and Paid amounts among the clusters.

Figure C.1: Median values for numerical variables among the classes

− 0, 2 and 6 contain smaller risks that have roughly the same values for the �rst 3

1Contract_Length is not displayed because the median value of 1 was the same for every classes.
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variables (those related to the size of the contract);

− 1 and 5 are clearly above 0, 2 and 6 regarding the median size of the risks;

− The class 3 contains claims related to medium risks (as it has an medium Sum_Insured)
but for which the probable maximum loss is very large (re�ected by the high PML).
SCOR only has a small share on these claims;

− 4 has very high PML total and Sum_Insured, the claims it contains are therefore
related to large risks;

− 8 on the contrary, has a medium PML total but very high Sum Insured and EGPI.
Which indicates that the claims are related to large risks (regarding the sum in-
sured) but on which the maximum loss estimated is limited (re�ected by the small
values for PML_100%);

− 7 is a smaller version of 8, but with a much higher PML share.

General trends can also be observed, for example the fact that SCOR tends to have big
shares only on small risks.

Despite not being considered in the clustering process, the Incurred and Paid amounts
are di�erent among the classes. With the class 8 having very high median values, followed
by the classes 1, 4 and 7, and then, the classes: 0, 2, 3, 5, 6.
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C.2 Study of the categorical variables

The following graphs represent the percentages of each category among the classes ob-
tained from the clusters on variables (9 clusters).

Country_Claim

Hereunder are the distributions of the country in which the claim occurred for the 9
classes:

Figure C.2: Class 0 Figure C.3: Class 1 Figure C.4: Class 2

Figure C.5: Class 3 Figure C.6: Class 4 Figure C.7: Class 5

Figure C.8: Class 6 Figure C.9: Class 7 Figure C.10: Class 8
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Sob

Hereunder are the distribution of Scope of business among the 9 classes:

Code Label Code Label
5 Residential/Personnal 30 Financial Institutions
7 Multi-Family Residential 35 Infrastructures/Civil Works
15 Commercial 45 Professional Services/Trades
20 Industrial Non-Petrochemical 60 Transport
25 Industrial Petrochemical 65 Aviation/Space

Table C.1: Sob descriptions
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Top

Top refers to the Type of Policy, for example:

− PD stands for Physical damage;

− BI stands for Business Interruption;

− DIC stands for di�erences in conditions (cover gaps between policies);

− wrap around: liability protection against being sued.
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