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Abstract (version Francaise)

Mots-Clés: Solvabilité Il, Taux de rachat, Risque de Rachat, CAA (Commissariat aux
Assurances), CSSF (Commission de Surveillance du Secteur Financier), PVFP (Projected Value
of Future Profits), SCR (Solvency Capital Requirement), ALM (Asset & Liability Management),
fonction de hasard, modeéle de Vasicek, modéle semi — parametrique, modeéle de Cox a
hasards proportionels, Analyse de survie, modéle parametrique, estimateur de Kaplan-
Meier, comportement de I'assuré, taux de marché, taux de rachat dynamique

Directement lié aux réserves, stratégie ALM et résultats finaux de I’assureur, le rachat est un
des risques les plus élevés auquel I'assureur doit faire face. C'est pourquoi la modélisation de ce
risque, de la maniére la plus proche possible de la réalité, de facon a I'anticiper et le comprendre, est
essentielle. En effet, un scenario haussier ou baissier de ce taux de rachat a des conséquences
directes sur les flux futurs, actif et passif, de I'assureur.

Ce mémoire vise a comprendre et determiner les facteurs de rachat qui poussent les assurés
détenteurs d’un contrat en unités de compte au sein d’'une compagnie d’assurance vie
luxembourgeoise a racheter, de maniére totale ou partielle, leur police d’assurance — vie. Une
analyse de survie sera realisé sur un portefeuille donné afin de déterminer I'impact de ces rachats
sur la duration globale du portefeuille. Cela debouchera sur une étude approfondie de I'influence de
chaque covariable sur le risque de rachat, ainsi que les forts débouchés aussi bien marketing que
« risk —management » d’une telle analyse. Enfin, nous etudierons quels sont les facteurs de rachats
en fonction des catégories socio — professionnelles des assurés, et les possibilités de modéliser ce
phénoméne via un taux de rachat dynamique.

Dans une premiere partie, nous traiterons de I'aspect réglementaire et prudentiel sur la
place financiere luxembourgeoise, tout en mentionnant ses spécificités. Nous présenterons
également I'entreprise d’assurance — vie, NPG Wealth Management, au sein de laquelle ce mémaoire
a été réalisé.

Dans une seconde partie, nous adapterons un modele de survie semi — paramétrique a nos données
de rachat, et ainsi étudier les principaux pilotes de la décision de rachat de la part de I'assuré.

Enfin, nous nous intéresserons a I'impact des différents facteurs de rachats au sein des différentes
catégories socio — profesionelles des assurés de I’échantillon, et a la construction d’un modéle de
prédiciton du taux de rachat. Ce modele sera basé sur un taux de rachat dynamique, qui aura pour
but d’illustrer I'influence de I’évolution des taux de marché sur le taux de rachat observé au sein du
portefeuille d’assurance — vie étudié.
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Abstract (English version)

Key words :Solvency Il, Lapse rate, Surrender risk, CAA (Commissariat aux Assurances), CSSF
(Commission de Surveillance du Secteur Financier),PVFP (Projected Value of Future Profits),
SCR (Solvency Capital Requirement), ALM (Asset & Liability Management), hazard function,
Vasicek model, Semi — parametrical model, Cox PH model (Proportional Hazards), Survival,
parametrical model, Kaplan-Meier estimate, policyholder behaviour, market rates, dynamic
lapse rate, contract value

Directly connected to the insurer reserves, ALM strategy and performance final results, the
surrender act is among the major risks a life insurer faces. In the actual prudential — risk approach
regulatory framework, modeling this risk as proper as possible in order to anticipate them makes
sense: a bullish or bearish interest rates scenario will have a direct consequence in terms of asset
and liability management and stock of reserves. The better insurers would be able to model the
surrender rates on their portfolios, the better they would be able to anticipate their own financial
cashflows & liabilities.

This paper aims to determine which factors incite the policyholder to surrender or not, and in
which proportions, within a life insurance portfolio. A survival analysis will be done in order to assess
the impact of surrenders on the global portfolio duration. The sensitivity of each covariate on the
surrender risk will be studied deeply afterwards. This will lead us at the end to draft a dynamic
surrender model and describe a risk policyholder profile based on thepolicyholder job occupation.

In the first place, after a presentation of the regulatory framework in Luxembourg and NPG
Wealth Management, we will get interested, through a survival analysis, to the variables which
trigger the surrender decision. We will fit, to the portfolio data a semi — parametrical model — the
Cox proportional hazards model, and determine the influent covariates. Hence, we will be able to
determine how policyholders surrender their life insurance policy, and in which conditions.

In the second place, we will see that, in function of the job occupation, policyholders do not react
equally in front of the decision to surrender. This study will indicate the type of profile which is the
less susceptible to surrender, hence a decrease of the surrender risk for the life insurer

Finally, we will see the large impact of the evolution of financial market rates on the decision to
surrender. In this sense, we will build a dynamic surrender model, in order to assess a qualitative
prediction of what the surrenders would be, on a duration basis, over the next 100 months.
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Introduction

The life insurance industry in Luxembourg is profitable business, with more than €20 billion of
reserves as of 2013. Thanks to unique investment vehicles in Europe, this business attracts life-
insurance policyholders from all around the globe. The life insurance business benefits from an
advantageous legal framework, which largely explains its popularity. Conversely, the insurer faces
some risks all along the lifetime of a life —insurance policy. On one side, the market risks (bonds,
equities, currency, real estate, counterparty ...); on the other side, human risks (mortality, surrender
)

In the actual regulatory framework, insurers have to anticipate and know their risks, in order to be
able to honor their commitments to the policyholders, remain solvent. Among these risks, the
surrender risk is one of the biggest the life insurer has to face.

Several things might induce people to surrender their own life insurance portfolio. The first one,
more financial, is depending on the gap between the benchmark market rate and the credited rate
on the insurance product via a double S-curve. The second one is more “human”, depending on
macro-economic variables. The “human” aspect of the structural rate (e.g. the investors’
irrationality) makes this rate difficult to model, predict and assess.

Others surrendering factors are harder to assess, mainly because of a lack of data: For instance,
since the 2008 sub primes crisis, more and more governments are hunting down tax evasion and tax
heavens. The recent declarations (in March 2013) of Luxembourg to think about more transparency
frightened some investors, who surrendered their portfolios in order to not be caught by their
countries’ authorities.

Modeling the conjectural surrender is not completely related to the world financial situation. In
2009-2010, life insurance investors did not surrender massively their portfolios, while bankruptcies
and saving plans headlined. Conversely, it has been observed that investors become more attentive
as soon as their portfolio’s performances are compromised. Besides, hypothesis regarding surrender
rates can have a huge impact on insurance company’s results if they’re not correct: Anti-selection,
randomness, rate risk (when the insurer has to borrow money to reimburse the surrender value to
the investor) ... are among the surrender risks the insurer has to model and anticipate.

After the sub-primes crisis, European authorities set up a new regulatory framework, Solvency Il.
This new directive compelled life insurers to have a very clear idea of the risks they are facing and
how sensitive they are towards them. The lapse risk is complex, by its dependence to both market
risk (equity, bonds, counterparty ...) and human (death, age, job occupation ...), which makes its
modelling essential for the life insurer. With this manner, by apprehending the policyholder
behaviour, the life insurer will be not only able to model and predict the lapse rate he can expect. He
will also be able to direct a marketing strategy to target some policyholders with the lowest
surrender-risk profiles.
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1. The Luxembourg Framework

1.1. The life insurance industry in Luxembourg

1.1.1. Overview

For several years now there has been a noticeable rise of interest in the life insurance
products offered in Luxembourg, often considered as profitable investment vehicles. In an attractive
framework, more and more people across Europe are choosing these products as a mean of placing
their assets, structuring their wealth, and planning transmission of their wealth. This interest is
backed up by the figures. The Luxembourg insurance supervisory authority, confirms it: After the
2011 drop for total premiums, the Luxembourg life insurance business succeeded to bounce, unlike
others countries in the European Union in the same industry. As a consequence, the Luxembourg life
insurance business represents 62% of the total insurance premiums in 2012 in the Grand-Duché.

The total amount of premiums for Luxembourg life insurers soared by 43.09%, which contrasts with
the average around 0 predicted by the EIOPA for the Eurozone. With more than 20.5 million
premiums in 2012 (22 million in 2012, and 14.5 million in 2011), the Luxembourg life insurance
business in Luxembourg keeps being attractive aboard: the percentile of foreign investors grows up
every year (Premiums coming from the French market grew up by 111.09% in 2012). The
Luxembourg market does not escape to this rule, with an increase of premiums of 32.29%.[1]

Following the financial crisis, the wealthiest people have been looking for ways to protect their
assets.

The interest in these products is first and foremost linked to the regulatory provisions put in
place to regulate the business. At the heart of these provisions is the system known as the “security
triangle” which guarantees an optimal security to the policyholder. The cornerstone of this system
relies on the legal obligation that all the assets representing the client’s savings are deposited within
a depositary bank approved by Luxembourg’s national control authority. The whole mechanism is
regulated by an agreement between the insurance company, the depositary bank and the CAA.
Indeed, the regulation of life insurance products in Luxembourg offers a framework that is both safe
and flexible, a unique situation in Europe: the policyholder benefits from the “super-benefits”
system: all the underlying assets the life insurance product will be, in the case of a very unlikely
problem with the insurance company, swiftly returned to the policyholder.

This regulatory framework has been created in 1991, but it has taken on a new meaning since the
financial crisis of 2008. Moreover, the life insurance contract proved its status of very popular
vehicle these last few years, as being particularly suitable: by choosing these products, policyholders
can optimize the structuring of their wealth and prepare their succession in an optimal tax
framework and all this while keeping the same bank as well as the same asset manager — both CAA
compliant. The asset manager will, for the largest accounts, be able to create a dedicated fund in
which the registered assets will be managed.

Besides the guarantee of security, life insurance in Luxembourg offers other attractions. To
begin with there is the flexibility offered by these policies with a view to making the most of the
policyholder’s investments. Luxembourg offers great flexibility for life insurance-linked investment
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policies as well as a large number of eligible assets, regulated or otherwise (unlike France, for
instance, where a life insurance contract one can only invest in conventional funds, as OPCVM).
Based on the invested capital and the extent of the policyholder’s wealth, investments can also be
exploited through bonds, stocks, international funds or even structured products such as hedge
funds or private equity funds.

On top of all that, Luxembourg is unanimously recognized for its financial expertise. Here, investors
can find the right solutions for getting the most out of their investments in the way they want. Life
insurance products allow them to benefit from specially adapted solutions.

In tax terms, life insurance is a neutral product with the advantage to avoid frictions
between Luxembourg and the country of residence of the policyholder. It is not about tax avoidance
here, no one in other European countries is pointing the finger at Luxembourg in this regard (until
recently, with the tax evasion issue in France, subject then raised in the European parliament). Life
insurance products are offered with the greatest respect for tax law, as established by the country of
residence of the policyholder, and in many other countries, life insurance products are recognized
and allow holders to benefit from tax exemptions. On top of this, the fact that the European savings
directive, regulating tax on savings, has not yet been extended to life insurance products constitutes
another attraction.

1.1.2. Luxembourg specificities

The “Commissariat aux Assurances” (CAA) is the legal and official entity to monitor the whole
insurance industry in Luxembourg. The CAA has a range of missions, as, for instance, the ability to
deliver the required accreditation to an insurance company (life, non-life, reinsurance, brokers ...) or
a prudential and frequent monitoring ...The entity has to assist to international meetings in order to
develop mutual standards inside the EU (as Solvency Il), and submit deadlines to insurance
companies to deliver prudential and EU frameworks reports and figures.

It is a public institution under the authority of the Minister of Treasury and Budget, endowed with
legal personality separated the state and enjoying financial independence. However, even if the CAA
has a legal entity separated from the state, the government still keeps some power inside the
institution. Besides nominating and repealing its members, it gives its approvals regarding the
accounts, the budgets and the accreditations. Whenever prudential reasons require collaborations,
the CAA works with others supervisory authorities, national or foreign.

The CAA is composed of two distinct authorities:

- The Directive board is the highest executive authority of the CAA. It is composed of a
chairman (In 2013, Mr. Victor ROD) and two other members, named by the government.
The Management is responsible of all matters not specifically reserved —according to the
law- to the Minister or the Council.

- The Council is a five government-members board, competent to fix the financial framework
in which the Commissioner activity can be expanded. It is responsible to adopt the annual
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budget and accounts of the entity, and has also the right to give its opinion on the policy
pursued by the management.

The CAA has the charge of all fees itneeds to operate. These fees are fully supported by taxes on
companies and offices under the CAA supervision.

The monitoring is carried out in accordance with international and European standards.

- Before issuing an insurance license, the Commissioner instructed a particular case on the
quality of the shareholders, professional integrity and morality of the officers, the future
business plans sustainability and the invested capital adequacy.

- During the insurance activity, the Commission is regularly asking for and issuing on the
activities of the companies, their assets, liabilities as well as their solvency margin. Most of
the companies’ statements must be certified by internal or external auditors, and/or by
actuaries.

- The Office carries out regularly controls. It is entitled and allowed to be issued any useful
document or information explaining the figures sent by the insurers. The Commissioner is
also legally authorized to use a whole range of measures and/or sanctions to bring
companies in failure or in difficulty to comply and reconcile with legal and regulatory
statements. These measures may lead to a withdrawal of the accreditation in case of
severe cases.

- After the cassation of the insurance operations (bankruptcy, failure, fraud ...), the CAA
remains able to supervise the conduct of the insurance business liquidation, in order to
safeguard the interests of the policyholders.

1.1.3. Luxembourg insurance framework

Luxembourg established, in the 90’s, a strict regulatory framework designed to provide an
optimal protection for individual investors’ savings and interests, using life insurance contracts as
investments tools. The life insurance business is governed by prudential rules providing a safety
reference model unique in Europe; thanks to a triple-protection system, detailed a few lines below.
The insurance sector is monitored by the CAA.

Luxembourg-based life insurance policies are submitted to a triple protection thanks to the special
and prudential Luxembourg regulatory framework:

- Quarterly CAA checks on balances between technical provisions and underlying (regulated)
assets.

- Underlying (asset) securities are deposited within an approved bank in accordance with
CAA’s terms and conditions. The law stipulates that assets matching the insurer’s liabilities
must be deposited with a bank approved by the insurance industry regulatory authority,
the Commissariat aux Assurances (CAA). Each life insurance company is required to sign a
depositary agreement with a custodian bank and have this agreement approved by the
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CAA. A difference is made between regulated assets and others assets belonging to the
company (unregulated assets). If a life insurance company cannot face its engagements,
the CAA can freeze its accounts to protect policyholders’ savings.

In case of a company’s default, Luxembourgish policyholders are first rank creditors for regulated
assets: The law of 6th December 1991, as modified, grants subscribers to a Luxembourg life
insurance contract the status of first ranking creditors on all assets in the technical reserves. This
privilege, known as the "super privilege", takes precedence over all other creditors, whoever they
are, granting contract holders priority in the recovery of credit related. This rule does not work in
France, where the provided protection to a life insurance policyholder is capped to an amount of
€70,000. Naturally, this high — level policyholder protection is one the advantages making the
Luxembourg competitive for the life insurance business.

This mechanism, known as the "triangle of security", ensures that assets matching the insurer’s
liabilities are clearly separated from the company’s other assets and lodged in a separate bank
account. Client assets are thus legally separated from those of the insurance company’s
shareholders and creditors (meaning creditors are not allowed to seize a dime of the savings).
Furthermore, the custodian bank itself is required to segregate assets and protect the interests of
subscribers to a life assurance contract.

Other interests lure investors to bring their savings in the Grand Duché:

- Tax efficiency: all interests, dividends and capitals gains earned in a Luxembourgish life
insurance contract are reinvested free of taxes (e.g. subject to the application of the
international tax treaties).

- Competitive investment options: The CAA set up some investment restrictions to protect
investors but also to provide them a wide range of investment solutions (linked to the
amount invested and the investible wealth of each investor).

- Luxembourg products are various, with a high-technical level and a high-savings
component.

Another part makes theLuxembourg financial centre attractive for the life insurance business : its
particular asset management rules: A life insurance policyholder can invest, starting to a minimum
of€ 250,000, in a wide range of assets which cannot be found somewhere else in Europe under the
life insurance framework : securities, bonds, hedge funds, real estate, unlisted property ... More than
90% of life insurance vehicles are unit — linked solutions within the Luxembourg life insurance
market.

The 10% remaining are, for most of them, supporting the euro. This type of investment, eventually
denominated in other currencies (USD, GBP, NOK, DKK ...) interest expatriate policyholders who do
not wish to undergo exchange risk with regard to their country of residence mainly. Besides, these
investments are less profitable because of the cost of reinsurance and the responsibility of the
insurer towards the currency.

Capital management can be done with in-house mutual funds, owned by the insurer (generally a few
funds offering hundreds of different fund managers) and / or within one or more funds managed

by a private banker or asset manager CAA — compliant. The insured may split the management of its
contract with several bankers or asset managers. The triangle does not guarantee safety to
subscribers for recovering all their assets (excluding cash) in the presence of an insurer that does not
market risk — e.g. offer only internal funds (dedicated or group).
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In other cases (for example, in the presence of a Euro), there is pooling of assets and liabilities. On a
starting point of€2.5 million, theLuxembourg life insurance framework — established in the Circular
Letter (No. 08 / 1) of the CAA’s January 2, 2008 — allow a high flexibility and investment, including
without limitation issuer and / or asset class.

1.2. The Life insurance regulatory Framework: Solvency Il

1.2.1. Solvency i

The solvency Il directive is a new regulatory framework for the European insurance industry,
that adopts a more risk-based approach (market consistent values), and implements a non-zero
failure regime: The insurance company must be able to honor its own engagements with a
probability of 99.5% (=0.5% probability of failure). [2]

1.2.2. Solvency Il goals

Weaknesses, in the Solvency | directive were observed during the crisis. Even if AlG is not
concerned by the European directive, its failure during the 2008 financial crisis made Europeans
regulators realize that they needed a more advanced risk-thorough directive, in order to prevent
European insurers, life and non-life, from bankrupting.

Luxembourg also experienced directly the impact of the 2008 financial crisis and the necessity to
migrate their insurance company to the Solvency Il framework as soon as possible: Excell Life
International was a life insurance and Luxembourg-based company. In 2010 and 2011, the
Luxembourg insurance regulator noticed irregularities in the accounts, a lot of non-respects to
Luxembourg legal insurance framework, and the marketing of life-insurance policies fused to non-
compliant investments, as for instance, in the Lehman Brothers fund “Orelius Golden Invest”. The 17
February 2012, the insurance agreement was removed to this company, which was placed in
liguidation. The “Commissariat aux Assurances” published a note on its website to summarize the
weaknesses and irregularities listed [Annex 1].

While the former directive was aimed at revising and refreshing the solvency regime in use, the
essence of the Directive is to require insurers to provide transparency over their risk and the levels
of capital held to cover that risk. Insurers are required to demonstrate that they have fully defined,
assessed, governed, quality tested and (where necessary) remediated the data that is material to
Solvency II.

Solvency Il has also created new requirements for the provision of asset data in the form of new
data fields, new data coding conventions, greater granularity of data and increased frequency of
reporting.
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The Solvency Capital Requirement, developed in Solvency Il, aims to:

- Reduce the risk than an insurer would be unable to meet claims

- Reduce losses suffered by policyholders in the event that a firm is unable to meet all claims
fully

- Provide early warning to supervisors so that they can intervene promptly if capital falls
below the required level

- Promote confidence in the financial stability of the insurance sector

One of the main goals of the directive is to contribute to the objectives of the European Union
Financial Services Action Plan ( EU FSAP), by encouraging the insurance sector to work and use with
a single license/method throughout member countries. Indeed, the introduction of a unified legal
framework for prudential regulation will help to maximize harmonization through the Eurozone, and
be consistent with the principles used in banking supervision.

One of the main differences with the former directive, Solvency |, is the market consistent approach:
this new approach is based on economic principles that measures assets and liabilities in order to
align the insurers’ risks with the capital they detain to safeguard policyholders’ savings. Similar to the
reasoning behind Basel Il for the banking sector, and due to the weaknesses the 2008 financial crisis
highlighted, the directive aims to modernize insurance standards and improve risk management
techniques: establishment of a new set of capital requirements, valuation techniques, governance
and reporting standards, and harmonization of the regulation all across the EU.

Finally, new capital requirements have been designed for providing a better reflexing about the
insurer’s individual risk, and giving, for small insurance companies, a formula to determinate their
Solvency Capital Requirement. This is likely to lead to a supervisory need for companies to show
greater competency in risk assessment, and an easier way to audit companies, thanks to a more
unified approach for evaluating technical provisions.

To sum it all up, Solvency Il intends to provide:

- Analignment of economic and regulatory capital

- Freedom for companies to choose their own risk profile and match it with the appropriate
level of capital

- An active and market consistent capital management to have a risk prudential approach

- Encouraging improvements by identifying risks and their matching mitigation.

- Streamlining the way that insurance groups supervise and recognize their economic reality

1.2.3. Solvency Il organization

As mentioned before, Solvency Il is structurally speaking similar to Basel |l regulation. Both are based
on three pillars including quantitative and qualitative requirements, market discipline, and specific
figures (capital, risk, supervision and disclosure).However, Basel Il applies separate models for
investment credit and operational risks, while Solvency Il focuses on a risk-based portfolio analysis,
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considering dependencies between risk categories [3]. Besides, Basel Il concentrates on the asset
side while Solvency Il assessment of capital adequacy applies economic principles on the total
balance sheet (both assets and liabilities).

- Pillar 1 deals with all the quantitative requirements. It ensures firms are capitalized
enough, with an adequately risk-based capital. All valuations are done here with a
prudential and market consistent methodology. Companies are free to use either the
standard formula detailed in the directive (EIOPA), or an internal model approach. The use
of internal models is subject to stringent standards and company needs.

- Pillar 2 imposes high level standards regarding risk management and governance. It also
gives to supervisors a greater power to challenge their firms on risk management issues
(ORSA: Own Risk and Solvency Assessment). As a consequence, every insurance company
has to undertake its own forward-looking assessment of its own risks, e.g. capital
requirement plus adequacy of capital resources.

- Pillar 3 insists on greater levels of transparency regarding both supervisors and the public.
On a quarterly or annually basis, firms have to provide a report regarding both about their
solvency and financial conditions. This ensures that a firm’s overall financial position is
better represented and included more up-to-date information.

1.2.4. Solvency Il in Luxembourg

Originally, Solvency Il wassupposed to be implemented in2012 but the complexity of the directive
and the need to achieve Europe-wide consensus between regulators has seen the implementation
date pushed back not once but twice, and is now expected to be January 2015.

In Luxembourg, insurers are more in advance on this subject than other countries, mainly for two
reasons:

- The small size of the country: rules are easier and quicker to apply; The CAA and the
government both work to implement EU directives promptly and adapt local legislation to
support and develop cross-border life insurance business

- Ahard-to-please regulator, the CAA, which kept another deadline imposed by the
European Parliament, in 2012 as a limit for companies for the upgrade

However, some parts still need to be thought by the insurers: for instance, providing data for each
asset held on a security-by-security basis is very complicated to do, and, in July 2014, most of
Luxembourgish insurers use the block of business basis, easier to set up.

Since year-end 2009, the CAA asks to every insurance company based in Luxembourg to produce and
send to them a list of reporting files to ensure transparency and solvency in the Grand-Duché. They
send quarterly excel spreadsheets specific to every insurance company they have to fill with their
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key figures: CAA Database, CAA Declaration 9, CAA stress-tests figures on guaranteed-rate portfolios,
Annex D ... [Annex 2].

1.3. NPGWM, New PEL Group Wealth Management

NPG Wealth Management, formerly PanEuro Life, is a life insurance holding,founded in 1991, and
bought in 2006 by J.C. Flowers (found in 2001 by James Christopher Flowers, a former Goldman
Sachs partner[4]), a leading private equity investment firm focused on investments in the financial
services sector, which owns since 99.5% of the insurance holding.

All the insurance companies of the group (Private Estate Life, Altraplan Luxembourg, Altraplan
Bermuda, Vestalife, Augura Life) are held by the Luxembourg-based holding, NPG Wealth
Management. The firm offers wealth management solutions, private placement and unit-linked life
insurance products. Operations are based in Luxembourg, Ireland, Gibraltar and Bermuda. At the 31
December 2013, NPG Wealth Management managed 6 billion assets under management. NPGWM
workers, at the same date, are split as presented below:

Belgique J g
France
lle Of Man | 1

Luxembourg | 264

Sweden J 12

UK | 2

Ireland I 5

17/119 | Memoire IA — Zacharie Guibert — ISFA 2010



Training 1

Consultant | 32

Fermanent 2
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Indepent. Sales J 10

Fixed Term J

[ %)
n

NPGWM mostly targets wealthy clients all over Europe, reached through intermediaries as brokers,
investment advisors or private banks. It offers a diversified panel of life insurance investment
supports, separated in three main classes: internal funds, external funds and dedicated funds.
Regarding internal funds, two categories of investment support exist: unit-linked investment or
guaranteed-rate ones.

- Guaranteed rate solutions: Premiums are invested and managed by the company
(the insurance company acts as a fund house); the funds are currency-labeled, and
represent 10% of the total PEL contracts.

- Unit-linked investments (90% of PEL contracts are unit-linked): Usually composed of
bonds, equities, and sometimes private estates values, unit-linked accounts follow
the evolution of financial markets; it can provide higher gains, but also losses,
according to the prevailing market conditions and the supported undertakings risks.

1.3.1. NPG Wealth Management funds

1.3.1.1. Internal funds

These funds are developed and managed, as guaranteed rate portfolios, by the insurance company
herself. They can be compared, from a functional point of view, as undertakings for collective
investment in transferable securities (UCITS). Collective internal funds are available to all the insurer
customers.

NPGWM has 45 internal funds, for a global Assets Under Management” value of € 587 million, e.g.
averagely speaking € 13 million per fund. More than 99% of internal funds belongs to PEL.

PEL has, in its internal funds both investment supports, on one hand, portfolios with a guaranteed
rate, and on the other hand, unit-linked portfolios. On the € 586 million of internal funds, € 162
million belong to PEL guaranteed-rate funds (8 funds, in Euros except three in Dollars).
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1.3.1.2. External funds

It concerns mutual funds and funds managed by fund houses. Luxembourg-based life insurance
contracts particularly enjoy, unlike other countries in Europe, a wide range of funds. These fund
houses are subject to an approval procedure and prudential monitoring from the Luxembourg
supervisory authority, the CAA and the ASSF.

NPG WM has 382 external funds only composed of mutual funds, for instance JP Morgan Japan
Equity.The global Assets Under Management value is equal to € 2,3 billion, e.g. averagely speaking €
6 million/fund. On PEL’s side, there are 247 external funds, for a global AUM value equal to €2
billion.

52 fund houses are represented; the top three is composed of Carmignac Patrimoine, Dexia Money
Market, and Carmignac Securities). It is usually very hard to negotiate with fund houses regarding
their funds commissions. NPGWM chose to be, for internal fund an important client of the
Carmignac fund house in order to be able to negotiate these: In total, 16 Carmignac funds are
registered in PEL external funds, for a global assets under management value of € 725 million, e.g.
37%. For no dedicated funds, the CAA forbids investing more than 2.5% of the portfolio in private
equity funds, hedge funds ... For convenient reasons, NPGWM chose to invest only in mutual funds.

1.3.1.3. Structured products

In order to diversify its investment solutions, and to propose alternative products rather than bonds
and equities, banks developed financial products, built with a bond and an option (call, put ... on the
relative index)

In NPGWM, structured products represent 975 funds, for a global AUM value of €618 million.In PEL,
structured products represent 63 funds for a global amount of € 386 million.

The main structure designer is SociétéGénérale Investment Services, which designs more than 90%
of broadcast structured products. However, Société Générale does not emit all of them, PEL counts
15 structured products broadcasters. The two broadcasters completing the podium are Barclays and
Mediobanca.

1.3.1.4. Dedicated funds

With a premium of min €250,000, the investor can have access to a dedicated internal fund. The
more money the investor brings, the more investment options he has. The policyholder has the
liberty to choose the funds in its portfolio and fund houses.

The value of NPG Dedicated funds is € 1.3 billion, and around €400 million for PEL. The following
table summarizes the financial supports the policyholder is able to invest in according to its savings.
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Investment Investment Personal wealth Investment rules

category
A > €250,000 > €250,000 Unlisted securities forbidden
B » € 250,000 > €500,000 All except assets with
discretionary management
C » €250,000 > €2,500,000 All assets and discretionary
management
D » €2,500,000 > €2,500,000 Every financial asset existing

1.3.2. NPG wealth Management Counterparties and Incomes

As detailed above, NPGWM life insurance products cover various asset classes. In counterparty,
these products are structured as single premium policies or regular premiums ones. Policies can
include death cover, a range of options (partial or full surrenders in case of specific events, top-ups,
switches ...) to adapt the contract to the client investment will, needs and/or strategy. As we saw,
dedicated funds policyholders define themselves their own investment policy and assets classes.

Regarding the diversity of investment supports offered by the Luxembourg place, we easily
understand that unit-linked contracts are more popular than guaranteed rate ones. In NPGWM, the
proportion is 90%-10%. Indeed, investors are looking, besides safety, more freedom regarding their
investments wills. However, they can find guaranteed-rate investments in their native country. Life-
insurance contracts do not have a predefined maturity, the contracts ending with the policyholder’s
death. A surrender option exist for the majority of life-insurance policies: Clients can withdraw their
assets in cash, fully or partially.

NPGWM income comes from various fees, from contract management to distribution, services
andsoon:

- Fees and charges are determined according to the policyholder fund value

- Fund house pay to the different companies rebates coming from assets and funds
commissions

- Commissions are paid to brokers for their clients portfolio’s management and for every
new client they bring back

- Charges are received by the company in case of death, surrender, or any event defined in
advance in the contract
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1.3.3. The Camelea portfolio

The Camelea porfolio is one portfolio of Private Estate Life. It represents the PEL biggest portolio. At
the end of December 2013, this portfolio is characterised by:

Portfolio Date 31 December 2013

Portfolio in EUR 1,260,434,666
Number of Clients 8,495
Number of contracts 9,735

Average client Age 56
99.60%

% Belgium portfolio

All the survival analysis and further studies presented below will be on this portolio.

1.4. NPGWM Solvency Il outputs

1.4.1. Solvency Capital Requirement

According to the article 1010f the Solvency Il directive, the SCR shall correspond to the value at Risk
of the basic own funds of an insurance or reinsurance undertaking, subject to a minimum legal level
of 99.5% over a one-year period: The citation 64 of the same directive goes deeper: The SCR should
be determined as the economic capital to be held by insurance undertakings in order to ensure that
those undertakings will still be in a position with a probability of at least 99.5%, to meet with their
obligations to policy holders and beneficiaries over the following 12 months. This amount of capital’s
requirement is defined on Pillar |, and can be interpreted as the level of capital allowing insurers to
absorb significant losses while giving guarantees to policyholders those payments will be honor as
planned.

The SCR can be determined with two methods: equivalent or modular

- Equivalent approach: instantaneous shocks all made at the same time
- Modular: calculation per type of risks; for each type of risk, an SCR of each one is
determined.

A portion of the risk is absorbed through both future discretionary bonuses and risk diversification
effect. The aggregation of the individual SCR module is done by a correlation matrix provided by the
EIOPA. [5]
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The final SCR as defined in the Sll framework can be developed as follows:

SCR = BSCR + SCRoperational (—Adjustments)

- BSCR: Basic SCR; composed of 5 risks modules: non-life underwriting, life underwriting,
health underwriting, market and counterparty risks.
- SCRoperational: the charge of capital for operational risk

BSCR Calculation:

Where:

BSCR = \/Corr(i,j) X SCRi x SCRj

- Corr(i,j)denotes the entries of the correlation matrix (e.g. correlation parameters).
- SCRi (Resp j) the SCR for the risk i (resp. j), with i and j run over all of the component risks.

SCR operational:

It represents the risk of a change in value caused by the fact that actual losses, incurred for
inadequate or failed internal processes, people and systems, or from external events (including legal
risk), differ from the expected losses.
It excluded however strategic decisions, reputation ... risks.
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1.4.2. Solvency Margin

The insurance business requires, each year, to determinate the risk margin, which corresponds to
the cost of immobilization of an amount equal to the solvency capital requirement: The value of
technical provisions shall correspond to the current amount insurance and reinsurance undertakings
would have to pay if they had to transfer their insurance and reinsurance obligations immediately to
another insurance or reinsurance undertaking. It effectively means that if an insurer was, as a result
of a shock, to use up all its free surplus and capital, then it would still have sufficient assets to safely
wind-up and transfer its obligations to a third party.

Twelve pages of the EIOPA report [5 bis]are describing the definition of this technical item and the

general methodology for the risk margin calculation. It also gives the cost of capital rate to apply in
the risk margin calculations, the level of granularity and the simplifications made and applied to the
risk margin.

The risk margin should be calculated per line of business. A straight forward way to determine the
margin per line of business is as follows. The calculation of the risk margin is based on a SCR
projection scenario in the time.

n
RM=COC><Z SCR, X ———
t=1 t (1 + eyttt

Where:

- SCR;is the SCR for year t and the corresponding undertaking
- Tyyq is the risk free rate for the maturity t+1 (no illiquidity premium included)
- COCis the cost of capital: Because the investors demand a certain return higher than the risk
free rate on all capital, the company is making a cost by holding the extra amount of capital.
Under the Sl directive, this Cost of Capital is defined as equal to 6%.
However, the final risk margin must be free of market risk: indeed, according to QIS 5 requirements

[6], the risk margin has been designed to guarantee that sufficient technical provisions are available
even in case of a stressed scenario.

We determine the 2013 market risk tanks to the shock, considering
SCR market risk = Variation | PVFP(before and after equity shock) |
The risk margin has to be calculated with:

- amounts net of reinsurance

- a projection of obligations until extinction

- an appropriate allocation for each line of business

- anallowance for diversification between lines of business
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1.4.3. CAA Excel spreadsheet

The insurance industry Luxembourg supervisor, the CAA imposed a migration to the Solvency |l
framework starting year-end 2011. Since then, annually, insurance companies have to report their
Solvency Il figures to CAA experts. To do so, the CAA sends to every insurance company, a secured
reporting sheet (Annex 3), where insurers have to write down their shocks figures.

Nine tabs constitute the reporting sheet:

- Validations: Eventual messages if incoherencies noticed

- Questionnaire: The CAA asks methodology and assumptions questions that the company
has to respond in a standard way (yes no, in which proportion). For instance, the CAA asks if
simplifications have been made on a specific shock

- Données: Technical provisions analysis (only concerns guaranteed-rate portfolios for PEL)

- BilanSolvabilité 2: The Basis for the Solvency Il balance sheet is the signed accounts. The
CAA specifies the specific adjustments, which explanations can be found in Annex.

- SCR: it represents the solvency capital required to ensure that the insurance company will
be able to meet its obligations over the next 12 months with a probability of at least 99.5%
The CAA Excel spread sheets already include correlation matrixes between the different risks
in order to model correctly the diversification effect and to consider the correlation between
all the risks. The correlation matrixes in use are the ones defined in the EIOPA report.
Insurers are free to change the correlation parameters if they have internal models or
calculations to justify the changes. Here, we kept the original CAA correlation values.

- To calculate the SCR, we report the variation values coming from the shocks in the CAA
spread sheet.

The market risk (“Risque de marché”), is calculated as the sum of the interest rate risk, the
equity risk, the real estate risk (we do not have real estate investments in NPGWM), the
spread risk, the currency risk, and the concentration risk.

- MCR: The minimum capital requirement represents the threshold below which the
supervisor, the CAA, would intervene. The MCR is intended to correspond to an 85%
probability of adequacy over a one year period and is bounded between 25% and 45% of the
SCR. As a consequence, the Best Estimate in use to calculate the MCR has to be free of
insurance.Best Estimate values free of reinsurance are used to determine the MCR and the
under risk capital and the importance/impact of the profit sharing.

- Fondspropres

- Best Estimate: Best Estimate value including reinsurance, Risk margin, reinsurance
participation ...
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1.4.4. PEL Lapse risk in the SCR estimation

On the 2013 Solvency Il reporting, the PEL Best Estimate for was equal to €3,039 million. The PEL
SCR 2013 for the lapse risk is equal to €45 million, on a total SIl 2013 SCR of €135 million. The lapse
risk consequently represents more than 33% of the total SCR. This highlights the importance for the
life insurer to model and estimate lapse rates. With the equity risk, this is the biggest risk the life
insurer carries.

1.4.5. Duration

Once the solvency Il calculation is done, we are able to propose a precise estimation of each
portfolio/ company duration: The duration represents the change in the value of a fixed income
security that will result from a 1% change in interest rates. Duration is stated in years. For example, a
5-year-durationmeans the bond will decrease in value by 5% if interest rates rise by 1% and increase
in value by 5% if interest rates fall by 1%. Duration is a weighted measure of the length of time the
bond will pay out. Unlike maturity, duration takes into account interest payments that occur
throughout the course of holding the bond. Basically, duration is a weighted average of the maturity
of all the income streams from a bond or portfolio of bonds.

As an example, for the Private Estate Life company, as of end of December 2012.

0720133330520 Solvency | CAR deadline of the 12th July 2013 12012 whole duration calculation for sheet G220130712_PEL and ATF
LU Duration annege 52 FIMALSummary
[PEL |
Source of information -
Actuarial report version 2 for PEL Reserves Duration
Guaranteed portfolio 192 292 536 3,94
Unit linked portfolio 3 019 095 006 8,07
Total 3 211 387 542 7,82

However, this duration is highly affected by partial and full surrenders within the different NPGWM
investment products. Indeed,a surrender affects the reserves, and consequently has a direct impact
the duration.
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1.5. The surrender risk

1.5.1. Overview of the surrender risk

From the reserves and the duration raises a new problem: The lapse modeling. Indeed, the lapse
rate is directly connected to the insurer reserves and ALM strategy.

Indeed, a bullish or bearish interest rates scenario will have a direct consequence in terms of asset
and liability management and in stock of reserves. These consequences may even become critical in
case of large surrender (bullish scenario) or no surrender at all (bearish scenario), complying the
insurer to pay a guaranteed rate as planned in its guarantees higher than its own assets’ yield. Thus,
The CAA request, regarding the transmission of the stress-tests results on guaranteed rate portfolios
makes completely sense: the insurer and the regulator have to know the risk they can face and their
ability to face it. And this goes through an anticipation of the lapse rate and an interest rate
variation.

Lapses impact the duration of the portfolio in a significant way. Their surrender modeling is crucial
and strategic for the insurer.

The surrender phenomenon is very important in the life insurance business: The better insurers
would be able to model the surrender rates on their portfolios; the better they would be able to
anticipate their own financial flows/ liabilities (costs — management underlies abetter asset-liability
management) and satisfy their clients’ requirements.

Several things might induce people to surrender their own life insurance portfolio. The first one,
more financial, is depending on the gap between the benchmark market rate and the credited rate
on the insurance product via a double S-curve:

- if the gap stays between two boundaries, deterministic surrenders are not modified
- Ifthe gap is beyond these two limits, surrenders increase or decrease till a min or max

The second one is more “human”, depending on macro-economic variables. Thanks to a lot of
macro—economic data (stock exchange market rates, unemployment ...), these surrenders can be
determined statistically. However, others risks, belonging to this category cannot be determined like
this, for lack of data: For instance, since the 2008 sub primes crisis, more and more governments are
hunting down tax evasion and tax heavens. The recent declarations (in March 2013) of Luxembourg
to think about more transparency frightened some investors, who surrendered their portfolios in
order to not be caught by their countries’ authorities.

Nethertheless, modeling the conjectural surrender is not completely related to the world
financial situation. In 2009-2010, life insurance investors did not surrender massively their portfolios,
while bankruptcies and saving plans headlined. Conversely,it has been observed that investors
become more attentive as soon as their portfolio’s performances are compromised (lower than
another company for instance).
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Surrenders focus the insurer’s attention and researches since the 90’s, for two reasons; a
good understanding of investor’s global behavior, and more generally, surrenders and explanatory
factors allows to:

- Adapt new contracts’ clauses and characteristics which purpose would be clients’ retention
(keep clients longer with stricter surrender conditions) for instance.
- Improve strategies regarding the Asset-Liability Management, EV calculations ...

Hypothesis regarding surrender rates can have a huge impact on insurance company’s results if
they’re not correct: Anti-selection, randomness, rate risk (when the insurer has to borrow money to
reimburse the surrender value to the investor) ... are among the surrender risks the insurer has to
model and anticipate.

Three rules (IFRS, Solvency Il, and the MCEV method (CFO Forum)) integrate the surrender risk in an
international level, each one proposing methods to assess it:

- IFRS: (IFRS2 in particular), require to evaluate the insurance company’s liabilities, and
include the cost caused by lapses of options and guarantees.

- Solvency II: introduces a split by risk in the calculation of the solvency capital requirement,
and a new design for the assessment of reserves. The surrender risk is the main center of
this new European regulation [5]

- MCEV: the reinforcement of the reference benchmark measure for the valuation of an
insurance company emphasizes the cost of options and guarantees, and consequently,
surrenders [7]

The Luxembourgish position as a tax heaven (different legislation than the rest of Europe), and the
shelter of various international funds makes the study of surrenders particularly interesting here.
Indeed, surrenders in Luxembourg are not a reflection of the Luxembourgish surrenders, unlike, for
instance, France, Belgium, Germany ..., because, as mentioned before, 80% of the funds life
insurance companies manage comes from abroad. Surrenders should consequently vary according
the investors citizenship (increasing the last few months in Scandinavian and Belgium portfolios
because of a stricter law regarding life — insurance savings abroad).

For all these reasons, it is essential for the life insurer to know what factors influence the
policyholders’ decision to surrender, in which proportions ... Beyond a ALM strategy, by
apprehending the policyholder behaviour, the life insurer will be not only able to model and predict
the lapse rate he can expect. He will also be able to direct a marketing strategy to target some
policyholders with the lowest surrender-risk profiles.
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1.5.2. NPGWM calculation lapses for Unit-Linked contracts

1.5.2.1.  Required data

In NPGWM, lapses are calculated with a deterministic way. As for 2010, the gross amount of claims
paid for PEL adds up to more than EUR 500 million in comparison with a total assets of more than
EUR 3 300 Million, so that we need to consider lapses as an important item in the company. From
that perspective we need to use a consistent method to calculate a lapse rate; moreover this lapse
rate assumption will be used for different major matters such as the calculation of the Embedded
value and of the Best Estimate though the projections of cash flows.

To proceed the lapses calculation, we need the following data:

Calculation
| 1
Source of Data
Information Needed

The data comes from technical accounting or data extracts from BOXI, the data providing software in
use within NPGWM. Eclipse and Navision corresponds to some companies not modeled into BOXI,
and handled per technical accounting teams (for instance the ‘dedicated funds’ team).

1.5.2.2. NPGWM deterministic methodology

Considering the year N, we have to calculate an annual lapse rate for this year. We can consider that
we have to calculate this rate for one contract, one product, one portfolio or one firm. In all cases,
we can consider that the methodology remains the same.
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We will calculate this lapse rate based on a three year history. We considered indeed that 3 years
was the best choice. Less would give a greater influence on special events;more would not be
consistent with the fact that we will use that rate for future vyears.
Let’s define a few notations:

- Reserve BOY; is the reserve at the beginning of yeariin €
- Reserve EOY; is the reserve at the end of yeariin €

For each year, we are performing an average of the reserve and then calculating a lapse rate. The
final output is the lapse rate which is going to be used for the future years

We first have to calculate the average reserves of year i:

. . Reserve BOY; + Reserve EOY;
Average reservei = Avi = >

Total amount of surrenders for year i in €

Lapse for year i = -
fory Average reserve i

e For all companies the lapse rate for the three year period is the following

1

(5) * 33 | Total surrender for year i

Lapse rate =
(Z) * [Reserve BOY; + Y3_, Reserve EOYi]

e  Which is the same than the following formula :

>3 . Lapse for year i
3

Lapse rate =
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We get, as a final extract:

= 5,69% . S
53ARP 6.87% -2,47% -7, 74% 7.633.996 7.546.302 7.824.511
53ASP -5.71% -7.78% 0.15% = HE 1.118.771 1.099.771 1.064.686
ADIAMERIS -1,25% -2,62% chizats 0 19.144.355
BBL RENTE 0.00% -35,96% -190,28% ZaHS 30.589 31.504 22.608
BBL TOP LUX 7,45% -21,69% 11,44% e 7.730.493 7.562.039 3.736.548
-16,02%
BIL PRIVILEGE -17,59% -18,26% -12,20% 35.682.201 31.147.076  25.188.037
7,95% n
Gameles -7.51% -5,68% -10.66% 96.613.816 355.924.595 851.638.176
DUCAT -7.75% -12,01% -16,10% SR 275.814.138 268.407.139 237.727.591
DUCAT+ A11.71% -16,43% -40,14% eEe0% 4.892.252 5.103.947 4.143.793
-18,46%
DUCAT NEW GENERATION 7.26% -27,39% -20,72% 743.135 715.431 453.408
® -15,75% "
E01 (ICA SPAIN- FRONT) -25,00% -13,47% 8.77% 39.356.724 34.206.800 28.555.261
4,69% _
E01 (ICA SPAIN- SPREAD) -14,06% 0.00% 0.,00% 2.133.207 2.134.048 1.934.684
-19,06%
ELITE INVEST -26,06% -10,77% -20.35% 5.324.960 3.069.908 2.541.819
23,66%
ESTONIA 23.15% -27.87% -19.97% 1.100.537 875.813 841.566
GIP-GIB1-GIB2 RP -34,71% -90,30% -8,94% A% 195.580 159.947 61.673

This calculation is done of course for all products in every company; for consistency purposes, the
same methodology is used for all different companies. This lapse rate calculation is assumed to be
calculated with an expert judgment analyzing the impact of the lapse rate coming from the evolution
of the number of policies and reserves.

1.5.2.3.  NPGWM calculation for guaranteed-rate funds

What we call “Minimum guaranteed-rate funds” are funds providing to the policyholders an annual
guaranteed-rate of return on an 8-years basis. “Resetting Guaranteed-Rate funds” are funds
providing to the policyholders an annual rate of return on a yearly basis. The guaranteed rate is
rest/updated the 31* January of each year. | won’t detail here the setting of the guaranteed-rate for
such funds.

The monitoring of the surrenders rates for the guaranteed rate funds (MGR/RGR) occurs on a
quarterly basis. At the moment, there are 4 Minimum Guaranteed Rate Funds and 2 Reset
Guaranteed Rate Funds.

67 MGR EUR 2.75%
69 MGR EUR 1.50%
77 MGR USD 1.00%
78 MGR EUR 1.00%
79 MGR EUR 0.25%
73 RGR usb

76 RGR EUR
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The result of this study will provide PEL with an experienced surrender rate that will be used in the
stress tests calculation.

The calculation is also done on a 3 year-basis as presented before.

1.5.2.4. Opening
Having the surrender rate calculated on a yearly basis, based on the surrender results of the past
three years, returns convenient results for the current year Solvency || modelling.

However, with this methodology, we are not able to make any precice prediction. Indeed, a
Lagrange interpolation or fitting a trend on the available yearly surrender value would be not precise
and relevant enough to make any sigificative predicton on a monthly basis. Besides, this type of
calculation does not bring any information on the policyholder behaviour based on his
characteristics and external events, such as the evolution of financial markets and unemployment.

The importance in the final 2013 SCR of the 2013 Lapse SCR, presented in section 1.4.4, shows us the
importance to anticipate and understand this risk.

31/119 | Memoire IA — Zacharie Guibert — ISFA 2010



2. Survival analysis on the surrender rate

2.1. Introduction

The concept of the survival analysis is to study and model the failure time, which is, in our case, the
surrender time.

2.1.1. Survival time

The survival time is defined as “a length of time that is measured from time origin to the time the
event of interest occured”[8].

To determine survival time precisely, there are three requirements. A time origin must be
unambigously defined, a scale for measuring the passage of time must be agreed uopon, and finally
the definition of event must be entirely clear.

The difficulty of such a study dwells into the fact that some policyholders experienced the event
while some did not at the end of the study, which makes their actual survival curves unknown. This
is where intervenes the censoring effect

2.1.2. Censored Event

Censoring is defined as “the time when we have some information about individual survival time,
but we do not know the survival time exactly”. [9]

Three types of censoring exist [10]: right censoring, left censoring, and interval censoring.

Right censoring is said to occur if if the event occurs after the survival time.The censoring timeis the
time beyond the studied subject cannot be observed. The observed survival time starts at time 0 and
continues until the event X or a censoring time C, which ever comes first.

The observed data is resumed with (T, §), where T = min(X, C) is the follow — up time, and
8 = Iy<c is an indicator for status at the end of follow — up time.

P 0if X > C (observed censoring)
T XsCT 1if X < C (observed failure)
This case of censoring is particulary used when no events occured before the end of the study.

Censoring can also occur if we observe the presence of a condition, without especially knowing
where the condition began — left censoring.

The interval censoring is the case of an individual known for having experienced an event within an
interval of time, but without knowing though the acual survival time.

32/119 | Memoire IA — Zacharie Guibert — ISFA 2010



2.1.3. Survival time distribution

Let T represent survival time, and regard it as a random variable with a cumulative distribution
dpP(t)

function P(t) = Pr(T < t), and a probability density function p(t) = T.The more optimistic

survival function S(t) is the complement of the distribution function:

St)=Pr(T>t)=1-P(t)

The distribution of survival times can also be represented by the hazard function, which assesses the
instantaneous risk of demise at any time t, conditional on survival to that time:

Pri((t < T <t+At|T > t))
At

Models for survival data usually employ the hazard function or the log hazard. For example,

o=

assuming a constant hazard, h(t) = pu, implies an exponential distribution of survival times , with
the density function p(t) = ue #t. Other common hazard models include h(t) = exp(u + pt),
leading to the Gompertz distribution of survival times.

2.2. Cox regression model

The not parametric method does not control covariates andrequires categorical predicators [11].
When there are several prognostic variables, multivariates approaches should be used. However, a
multiple linear regression or a logisitic one cannot be used here, because they cannotdeal with
censored observations. Another method is needed to model survival data with the presence of
censoring. One very popular model in survival data is the Cox proportional hazards model,
introduced by Cox in 1972[12].

Modeling the surrender risk with a semi-parametrical model: Survival analysis examines and models
the time for events to occur. The prototypical such event is death, from which the name “survival
analysis”.

This makes this analysis especially adapted to the surrender case. Instead of modeling the death (0
for survival, 1 for death), we model the surrender event (0 if the policyholder remains in the
portfolio, 1 if he surrenders).

The survival analysis focuses on the distribution of survival times. Although there are well
known methods for estimating unconditional survival distributions, most interesting survival
modeling examines the relationship between survival and one or more predicators, usually termed
covariates in the survival analysis literature.
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Survival analysis typically examines the relationship of the survival distribution of covariates.
We are seeking, with the Cox model, to achieve to [13]

- Incorporate continuous covariates into our survival analysis

Analyze the effect of covariates on survival ( and not only the presence)
A natural first guess for a survival regression model would have been h(t,x) = By + B1x

There is in this case no error term, as the randmoness is implicit to the survival process. Here, the
notation in use is h(t, x) the hazard function for an individual whose “independent” variable has the
value x, while B, is abaseline hazard function (for the time being assumed constant in time t) for
individuals with x = 0.

However, this is a bad model. The range of 5, + [1x may extend below zero for certain values of 5,
or x, but the range of h(t, x) must be [0, .

By chance, a similar problem has arisen and been solved in generalized linear modeling. There, the
predicators are incorporated into different distributions for the dependent variable. For a Poisson
model, the mean must be positive, and the exponential function is used as the canonical link
function between covariates and mean. Thus, we can suit by exponentiating the covariate terms :

h(t,x) = exp(By + f1x) = hg exp(f1x) >0
In case of more than one predictor: h(t,x) = hy exp(8Tx) > 0

For a cohort with identical predictors x, the above form implies that lifetimes are exponential
distributed, which we know to be unrealistic.

This examination entails the specification of a linear-like model for the log hazard. For example, a
parametric model based on the exponential distribution may be written as a multiplicative model for
the hazard h;(t) = exp(a + B1xi1 + BaXiz + -+ + BrXix)

In this scenario, i is a suscript for observation, and the x are the covariates. The constant « in this
model represents a kind of log baseline hazard — considering h;(t) = e* when all the x are equal to
zero.

2.2.1. The Cox model

2.2.1.1. Overview
A Cox model is s statistical technique for exploring a relationship between the survival of a patient
(in our case, the surrendering event) and several explanatory variables. [14]

As for the survival analysis, it aims to study the time between the entry to the study (subscription
time of a Camelea life-insurance policy) and the subsequent event (the surrender).

The Cox model has the pros to provide an estimate of the surrender effect on survival after
adjustment on the other explanatory variables. On top on that, it offers the possibility to estimate
the hazard (or risk) of surrender for a policyholder, considering its prognostic variables.
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The Cox model is based on a modeling approach to the analysis of the survival data. Its purpose is to
simultaneously explore the effects of several variables and survival. The model allows isolating one
effect from the rest of the covariates. The model can also be used to determine the covariates which
influence the policyholder’s survival within the Camelea portfolio.

From a set of observed survival times in a sample of policyholders, we can estimate the proportion
of the population who would remain in the portfolio a given length of time under the same
circumstances (fixed covariates). This is the Kaplan-Meier method, which is used for producing the
survival function.

The regression method introduced by Cox is used to investigate several variables at any time t —and
is also known as the proportional hazard regression analysis.

The procedure models and/ or regresses the survival times — the hazard function, on the explanatory
variables.

In order to be valid, the Cox model must be fitted before coming to a conclusion. The final model,
coming from a Cox regression analysis, will yield an equation for the surrender risk as a function of
several explanatory variables.

Interpreting the Cox model involves examining the coefficients for each explanatory variable [15]:

e A positive regression coefficient for an explanatory covariate means that the
higher the risk is, the worst the prognostic will be — e.g. a higher surrender rate

e A negative regression coefficient implies a lower surrender rate for policyholders
with higher values of that variable

2.2.1.2. The hazard function

The Cox model allows defining a hazard function based of several variables. A hazard function is
defined as the probability that an individual will experience an event (in our case, a policyholder
facing the surrender of his policy) within a small time interval, given that the individual was alive at
the beginning of the time interval. It can therefore be interpreted as the surrender risk at time t.

The hazard function, generally noted h(t) can be estimated as such:

number of policyholders experiencing a surrender
in the interval beginning at t

h(t) = (number of policyholders remaining in the portfolio
without surrendering it) X (interval width)
2.2.1.3. The regression function

The regression is a way to describe the relationship between the different variables. Let’s illustrate
this with an example:

We have two variables, X and Y:
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e X, the age of the policyholders
e Y, the respective amount of savings

Performing a regression of Y on X comes to investigate on the relationship between the dependent
variable Y, based on the explanatory variable X.

When more than one explanatory variable need to be included in the regression model, the method
is known as multiple regression (for instance, including the variable W as the sex of each
policyholder).

The Cox method is based on a multiple regression, except that the dependent variable Y is the
hazard function at a given time t. If we have several explanatory variables of interest X (for example,
for our problem, the sex, the age, the level of savings), then we can express the hazard or surrender
risk at time ¢ as

h(t) = hO (t) X exp(ﬁageage + .Bsexsex + .Bsavingssavings)

The quantity hy(t) is the baseline — underlying hazard — function and corresponds to the probability
of surrendering when all the explanatory variables are set to zero. The baseline hazard function is
analogous to the intercept in ordinary regression (due to e = 1).

The regression coefficients Bqge, Bsexs Bsavings 8ive the proportional changes that can be expected
in the hazard, related to changes in the explanatory covariates. These coefficients are estimated by
the likelihood statistical methodology (see 2.2.2.4.).

The assumption of a constant relationship between the dependent variable and the explanatory
ones is called proportional hazards. It means that hazard functions for any two random policyholders
at any point in time are proportional. In other words, if a policyholder has one risk to surrender at
some initial point that is twice as high as that another policyholder, then at all later times, the
surrender risk remains twice as high. This main model assumption of proportional hazards must be
tested to validate the model.

2.2.2. The Cox proportional hazards model

2.2.2.1. Overview

Let T be a nonnegative variable representing the failure time of an individual in the populatiopn. The
distribution of failure time, T, can be represented in the usual manner in terms of density or
distribution functions as well as in more specialized ways such as the hazard function. Specifically,
the hazard function at time t among individuals with a covariate z is defined as:

Pt<T<t+AtIT =t)
At

hela) = fn
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which represents the risk of failure at any time t, given that individual has not failed prior to t.
Indeed, h(t|z) provides a convenient starting point for modeling the relationship of hazard functions
among different covariates z.

One such modelassumes that covariates affect the hazard functions in a multiplicative manner based
on

h(t|z) = hy(t)ef?

where [ is a row vector of p unknown parameters and h(t) is an arbitrary baseline hazard function.
The factor e describes the risk of failure for an individual with regression variable z related to the
factor ePZ at a standard value z = 0 [16]. From a ratio of hazard functions corresponding to any two
z-values not dependent on t is coming the name of “proportional hazards”.

Let’s consider the following generalization:

h(t,x) = hy(t,a) exp(BTx)

where a are some parameters influencing the baseline hazard function. The hazard ratio is
decomposed into a product of two items

- hy(t, @), a term that depends on time but not the covariates
- exp(BTx), a term that depends on the covariates but not time

This is the COX PH model, for Cox Proportional Hazards. The specificity and the beauty of this model,
as observed by Cox, is that if you use a model of this form, and you are interested in the effects of
the covariates on survival, then you do not need to specify the form of hy (¢, ). Even though, we can
still estimate 5. The COX PHM is thus semi-parametrical, as some assumptions are made on
exp(BTx), but no form is pre-specified for the baseline hazard h,(t, ).

We are talking in this model about proportional hazards for the following reason: Consider two
individuals with covariates x; and x,. The ratio of their hazards at time t is

ht, x1) _ ho(t, @)exp(f1x)
h(t,x;)  ho(t, a)exp(B,x)

h(t,x1)

h(tx,) exp{(B1 — B2)}

This concludes that h(t, x;) « h(t, x;), e.g. hazards are proportional each other and do not depend
on time. In particular, the hazard for the individual with the covariate x; is exp{(8; — B2)} times
that of the individual with the covariate x,. The term exp{(B; — B,)x} is called hazard ratio
comparing x; to x,.

If 5 = 0, then the hazard ratio for the covariate is equal to e® = 1.This means that the very
covariate has no impact on the survival. Thus, we can use the notion of hazard ratios to test
ifcovariates influence survival. The hazard ratio also indicates how much more likely one individual is
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to surrender at any particular point of time. If the hazard ratio comparing men to women was 2, this
would mean that, at any time, men are twice as likely to surrender than women.

However, there may be some interactions between covariates and time, in which case hazards are
no longer proportional anymore. Similarly, there is no reason to expect the log of the hazard
function to be linear with the covariates. At the beginning, the assumption of proportional hazards
will be assumed and appropriate, and then verified.

2.2.2.2.  Survival function

The survival fonction is expressed as such: S(t) = exp(— fot h(t)dr).

In our case here, our estimate of the hazard function is a discrete approximation to a continuous
function. As the estimation of the baseline function that we will see just after, we will use the
estimate flo (t;) the estimate of the baseline function to express the estimate of the survival one.

N d;
ho(t)) = L
O S ereey exp(BTx))

With :

- d; the number of surrenders at time ¢
- R(t;) the set of individuals that could surrender at time ¢t

With A, (t;), we can estimate ftt,i ho(t)dt, and follows our estimate of the baseline survival
-1

function Sy (t;) = exp[— X< ho(4)]-

Breslow (1972) provided an estimate for A, (t), which is obtained by maximising h(t) in which the
parameters 8 are substituted by the maximum partial likelihood estimators 3 The estimator of the
baseline survival function S, (t) is given by

S, 5(t) l_[ <1 d )

0,B = -
i!ti<t ZjER(ti) exp{ﬁzj}

the estimated survival function,f(t), as an illustration of the time until the first surrender event. The

dashed lines are showing a point-wise 95% confidence envelope around the survival function

2.2.2.3. Cumulative hazard

The Cox PH model is a semi-parametric method of estimation. We do specify a model for the effect
of the covariates, but anything specifically modelled on the baseline hazard function side. The
Kaplan Meir estimator used through the R package to estimate the survival function does not
required either to specify a model for the survival function [17] Thus, considering both hazard and
survival functions are untimely linked, we can adapt the Kaplan-Meier method to estimate the
baseline hazard function.

38/119 | Memoire IA — Zacharie Guibert — ISFA 2010



The estimate for the baseline hazard function at the time t;of the ith event is:

d;
Y jerct;) exp(BTx)

ho(t;) =
With :

- d; the number of surrenders at time t
- R(t;) the set of individuals that could surrender at time ¢

2.2.2.4. Partial likelihood estimate

By fitting the Cox proportional hazards, we wish to evaluate hy(t) and 8. One approach is to
attempt to maximise the likelihood function for the observed data simultaneously with respect to
hy(t) and 3. Cox proposed an approach in which the partial likelihood function, not depending on
ho(t) is obtained for . The partial likelihood is a technique developed to make inferences on
regresssion parameters, within the presence of regressison parameters (h(t) in the Cox PH model).
Based on the Cox proportional hazards model, the partial likelihood function is expressed as
follows[18]

Let t4, ty, ..., t,, be the observed survival time for n individuals.Let the ordered surrender time of p
individuals be t(1) < tp) < ... <t and R(t(;) the risk set of individuals who are investing in the
Camelea portfolio and uncensored at the time just prior to ¢;y. The conditional probability that the
ith individual surrenders at t;) given that one individual from the risk set on R(t;)) surrenders at
LGy is

V= P(policyholder i surrenders at t;| one surrender from the risk set R(t;))at t(;)

v P(policyholder i surrenders attj))

- ZkER(t(D) P(policyholder k surrenders at t))

Taking the expression to the limit, with At — 0, we get

_ htg) _ exp(B'x; (£())
Lkereegy) Me(t))  Lerqegy) eXpB'xi (£(j))

\Y

Hence a partial likelihood function for the Cox PH model given by

P
_ exp(B'x; (t(;)))
M= QZkER(t(D) exp(B'xx (t()))

In which x; (¢(j,)is the vector of covariate values for the policyholder i surrendering at time tj). The

general method of partial likelihood was discussed by Cox [link]

However, this likelihood function is only for uncensored policyholders. Let t4, t5, ..., t,, be the
observed survival time for n individuals, and §; be the event indicator, which is O if the ith survival
time is censored (e.g. no surrender), 1 otherwise.
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This way, the log likelihood function presented above can be expressed as follows:

, )
~ exp(B'x; (t;))
L(B) = 1:1[ [ZkeR(ti) exp(B'xy, (£;))

Where R(t;) is the risk set at t;.

2.2.3. Model validation

2.2.3.1.  Proportional hazards assumption validation

The main assumption of the Cox proportional hazards model is precisely proportional hazards.
Proportional hazards means that the hazard function of one individual is proportional to the hazard
function of a second individual, e.g. a hazard ratio constant over time. There are several methods for
verifying that a model satisfies the assumption of proportionality [13] [19].

2.2.3.2. Graphical method
The Cox PH model survival function is obtained by the relationship between hazard function and
survival function.

S(t,x) = so(t)exp(2f=1ﬁixi)

Where x = (xl, Xo, ey xp)’ is the values of the vector of explanatory variables for a particular
individual. Taking the logarith twice of this expression leads to

D
In(=In S(t, x)) = Z Bix; + In(=1In(S,(0)))
i=1

Then the difference in log-log curves corresponding to two different individuals with variables

X, = (xn,xlz, ...,xlp) and x, = (X21,X22, -+, X2p) is given by

p
In(=InS(, x,1)) —In (=1InS(¢, x3)) = Zizlﬁi (X1 = %2¢)

expression which does not depend on the time t. This relationship is very helpful inasmuch as it
helps identifying situations where it may have proportional hazards. By plotting estimated

In(— In(survival)) versus the survival time, parrallel curves should be observed in case of
proportional hazards.

However, this method doesnot work well for continuous or categorical predictors having many
levels,the graph becoming in this very case, cluttered. In addition, the curves are sparse when there
are a few time points and it may be difficult to tell how close to paralle is close enough.

Furthermore, looking at the Kaplan-Meier curves and In(— In(survival)) is not enough to be
certain of proportionality since they are univariate analysis and do not show whether hazards will be
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still proportional when a model includes many other predictors. But they support the argument.
Some other statistical methods should be used for checking more precisely the proportionality.

2.2.3.3. Adding time -dependent covariates in the Cox model

The aim is to create time-dependent variables by creating interactions between predictors and a
function of survival time, in order to inlude them in the model at the end [20].

Let’s call a predictor of interest X;. We can create a time dependent covariate X;(t) = X; X f(t),
with f(t) a function of time, for instance t or In(t). The model assessing the proportional hazards
assumption for X; adjusted with the other covariates is

h(t,x(t)) = hy(t) exp (ﬁlxl + Boxy + o+ Bixj + o+ Bpx, + 6x; X f(t))

where x(t) = (xl, X2, o Xp, Xj (t)) "is the values of the vector of explanatory variables for a

particular individual. The null hypothesis to check proportionality is the condition § = 0. The statistic

test can be carried out using either Wald or likelihood tests.
N
In the Wald test, the testis W = (LA)
’ se(d)
The likelihood ratio test calculates the likelihood under the null hypothesis, Ly, and the likelihood
under an alternative hypothesis, L. The likelihood ratio statistic LR is then

Ly
LR = —21In (—) = —2(l - 1)
Lq

where [y and [, are log-likelihood under two hypothesis respectively.

Both statistics have a y?2distribution with one degree of freedom under the null hypothesis. If
thetime — dependent covariate is significant (e.g. null hypothesis rejected), then the predictor is not
proportional.

Note: Similarly, the PH assumption for several predictors can be assessed simultaneously

2.2.34. Tests based on the Schoenfeld residuals

Another statistical test for checking the proportional hazard assumption is based on the Schoenfeld
residuals. If the PH assumption holds for a due covariate, then the Schoenfeld residuals for that
covariate will not be related to survival time. So this test is successful by finding the correlation
between the Schoenfeld residuals for a particular covariate and the ranking of survival times. The
null hypothesis is that correlation between the Schoenfeld residuals and the ranked survival times is
zero. The rejection fo the null hypothesis can be summarized by the violation of the PH assumption.

2.2.4. Cox proportional hazards diagnostics

2.2.4.1.  Schoenfeld residuals
Once the model has been fitted, the adequacy of the fitted model needs to be assessed. The model
checking procedures below are based on residuals.
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Unlike Cox Snell residuals and deviance results, the Schoenfels residuals are covariate-wise residuals.
They were at the origin called partial residuals because the Schoenfeld residuals for the ith
individual on the jth explanatory variable X; is an estimate of the ith component of the first
derivative of the logarith and the partial likelihood function with respect to ;. Taking the logarith of
the partial likelihood drives to

dNL(B) P
6—[3]- = Zi=1 8i(xij — a;j)

Where x;; is the value of the jth explanatory variable j = 1,2, ..., p for the ith individual, and
o Yierqe;) X ji exp(B'x1)
e Yier(ty exp(B'x)

The Schoenfled residual for ith individual on X; is given by Toji = 6i{xji — aji}. The Schoenfeld

residuals sum to zero.

2.2.4.2.  Model Schoenfeld residuals

In order to validate the model and its assumptions, we need to plot the Schoenfeld residuals for
each covariate in order to check the proportional hazards assumption over time. Indeed, this
assumption is the main one for keeping the Cox PH model valid and draw conclusions; The Cox PH
model is valid only if the surrrender effect is not a function of time.

The Schoenfeld test allows to validate the hypothesis. The mathematical formulation of the
surrender risk of a policyholder i in the Cox model can be expressed as

hi(t) = hy(t). e Xi®OLWD)

o IfB(t) = B, the risks are proportional, and the surrender risk can be expressed as detailed in
the Cox model.
e If §is not constant, the impact of one or several covariates changes over time

For the covariate j, plotting the function f;(t) is a way to analyze the risk variations over time. If the
proportional hazards assumption is validated, residuals have in theory an aspect completely
randomize, and the avergae evolution of the covariate over time is a horizontal line.

2.2.5. Solving the Proportional hazards assumption

Let’s suppose now that statistic tests or other diagnostic techniques gave strong evidence of non
proportionality for one or more covariates. In order to face and solve this problem, two solutions
can be proposed [20]:

e Stratified Cox model
e Cox regression model with time-dependent variables

42/119 | Memoire IA — Zacharie Guibert — ISFA 2010



2.2.5.1. Stratified Cox model

2.2.5.1.1. Principle

An alternative for dealing with non proportional hazards is to stratify over the covariates not
satisfying the proportional hazards assumption. In essence, stratification involves fitting a model that
has a different baseline hazard in each stratum.

The advantage of this model is that it doesn’t involve worrying about a (subjective) functional form
assumed for the time interaction.However, the disadvantages are:

- The baseline hazards are estimated with in strata only, meaning that there is more
uncertainty in their estimates as information is not pooled over strata as in the Cox
extended model

- By stratifying over the covariate x, we lose ability to quantify its effect

- Continuous covariates have to be arbitrarily categories

Nonetheless, stratification is a solution for solving the issue of PHA violation.

2.2.5.1.2. Formulation

The stratifed Cox model stratifies the predictors not satisfying the proportional hazards assumption.
Data is stratified into subgroups and the model is applied for each stratum. The model is given by
hig(t) = hog4(t) exp(ﬁ’xig), where g represents the stratum.

It is remarquable in this situation that the hazards are not proportional because the baseline hazard
can be different between strata. The coeffcients 5 are assumed to be the same for each stratum g.
The partial likelihood function is here the product of the partial likelihood in each stratum. A
drawback of this approach is that we cannot identify the effect of this stratified predictor. This
technique is most useful when the covariate with non-proportionality is categorical and not of direct

interest.
2.2.5.2. Cox regression model with time-dependent covariates
2.2.5.2.1. Principle

Until now, we have assumed that the values of all the covariates did not change over the period of
observations. However, the values of covariates can change over time t. Such a covariate is called a
time-dependent covariate. The second method to consider is to model non-proportionality by time-
dependent covariates [21]. The violation of the proportional hazards assumption is equivalent to
interactions between covariates and time. That is, the PH model assumes that the effect of each
covariate is the same in all points in time. If the effect of a covariate varies over time, the
proportional hazards assumption is violated for this very covariate.

2.2.5.2.2. Formulation

In order to model a time-dependent effect, an option is creating a time — dependent covariate X (t),
where fX(t) = BX X f(t). f(t) is a function of time, such as ¢, In ¢, ...The choice of time-dependent
covariates may be based on theoretical considerations and strong clinical evidences.
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The Cox regression model, with both time dependent covariates X;(t) and time — independent
predictors X; can be rewritten as

ek (©) = h@ exp | ity )

The hazard ratio at time t for the two individuals with two different covariates x and x* is given by

ﬁ@=w422&w—m+22@w@—mm]

In the hazard ratio formula, the coefficient &; is not time — dependent. &; represents the over all
effect of X; (t). Conversely, the hazard ratio is a function of time t. This means that the hazards of an
event occuring at time t is no longer proportional, and the model is no longer a proportional hazard
model.

In addition to considering time-dependent variables for analyzing a time — dependent variable not
satisfying the PH assumption, there are variables that are inherently defined as time — dependent
variables.

Indeed, time — dependent variables have been lately classified as internal and external.

- Aninternal time — dependent variable is defined as a covariate which changes over time,
based on the characteristics or behavior of the policyholder (age, job occupation ...)

- An external time-dependent variable is defined as a covariate whose value changes because
of characteristics external to the policyholders (stock exchange market rates, unemployment

)

2.2.5.3.  Fitting a Cox regression model with time - dependent covariates

The coxph function handles time — dependent covariates by requiring that each time period for an
individual appear as a separate observation —that is, as a separate row or record, in the data set.
The extended Cox model reflects an interaction between the covariates and time, e.g. a change in
the effect of covariates. The model can also be extended to reflect dynamic changes in the
covariates [20].

By dynamically changing covariates, we mean here covariates that actually change with time, rather
than just their effect changing with time. To incorporate such time — varying covariates, we need to
use the extended Cox model. For instance, the hazard function for a model with one constant
covariate x; and one time — varying covariate x, (t) can be written:

h(t, x1,22(8)) = ho(t) exp{Bix; + B2x2(D)}

The approach to deal with time — varying data is splitting individual at risk at the time of any change
in any individual’s covariate: The aim is to segment, for every policyholder, his policy lifetime within
regular time intervals, indicating for each interval all the covariates’ parameters. The first thing to do
is here to create a new data set, with start and end times at periodic (here, monthly) intervals and a
single covariate indicating the surrender status each month. There will be recorded per policyholder
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per month spent as an investor within the portfolio. Each record will also be containing the relevant
covariates selected in the previous Cox model. The covariate Event is here as an indicator variable,
mentioning if the policyholder was surrendering during the studied interval of time, or censored.

- In case of surrendering during the studied monthly period, we study a new policyholder
profile, starting to zero and studying each month of his policy lifetime.

- In case of no surrender during the studied monthly period —indicator censored, all the
policyholder covariates will be replaced for the next month, identical to all respects expect
with a new value of surrender status, and market rate

2.3. Parametric model

The Cox PH model described earlier is the most common way for analyzing prognostic factors on
survival data. This is probably due to the fact that this model allows to estimate parameters without
assuming any distribution on the survival time.

However, when the proportional hazards method is challenged and/or not acceptable, these models
are not suitable anymore.

This section aims to present both parametric proportional hazards and accelerated failure time
models [22].

2.3.1. Parametric proportional hazards model

The parametric proportional hazards model is the parametric version of the Cox PH model, and is
consequently expressed with a similar form. The hazard function at time ¢ for a policyholder
characterized by a set of p covariates (x4, x5, ...,xp) can be expressed as such:

h(t|x) = ho(t) eXP(/’)lxl + Baxy + o0+ Bpxp) = ho(t) exp(B'x)

The essential difference between these two kinds of models is that the baseline hazard function is
assumed to be a specific distribution when a fully parametric PH model fits to the data, whereas the
Cox PH one has no such constraint. These coefficients are estimated by full likelihood — while partial
in the Cox PH model. Otherwise, these two models are similar, hazards ratios have the same
interpratation and proportionality of hazards is still assumed. These models are usually suitable in
the case of exponential , Weibull, or Gompertz models.

2.3.1.1. Weibull PH model
Let’s assume that the survival time T follows a Weibull law, T ~Weibull(A, p), with a probability
function f(t) = Apt?~1 exp(—AtP), withA > 0andp > 0.

The hazard function is given by h(t) = AptP~!
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p is called the shape parameter;

- If p > 1, the hazard increases
- If p =1, the hazard is constant (exponential model scenario)
- If p <1, the hazard decreases

As particularities, the Weibull function has itsln(—In S(t)) function linear with the time logarithm;
indeed,

S(t) = exp(AtP)
—In(S(t)) = AP
In (=In(5(t))) = In(A) +pln (t)
This property allows a graphical evaluation of the appropriateness of a Weibull model by plotting

In(—In$(t))) vs In(t), where S(t) is the Kaplan-Meier estimate.

We consider here, in addition of all presented before, a survival time function. This “time to event”
function is the time until a policyholder surrenders, or not.

The parameter A consequently needs to be reparametrized as such: 1 = exp(f, + 1 Surr), with
Surr = 1if the policyholder surrendered his policy, 0 otherwise.

The hazard ratio “surrendering versus not surrendering” can be written as:

_exp(Bo + By Surr)ptP!

HR
exp(By) ptP~t

= exp(B1)

This expression indicates that the proportional hazards assumption is satisfied.

However, this expression depends on p having the same value in case of surrender or not
(otherwise, the time would not cancel out).

More generally, under the Weibull PH model, the hazard function of a particular patient with
covariates (xy, X, ..., Xp) is given by

h(t|x) = Ap(t)P~* eXP(ﬂ1x1 + Boxy + o0+ Bpxp) = Ap(t)P' exp(B'x)

The survival timeof this patient has the Weibull distribution with scale parameter A exp(8'x) and
shape parameter p. Therefore, the Weibull family with fixed phas the proportional hazards property.
This highlights that the effect of the explanatory variables within the model alters the scale
parameter of the distribution, while the shape parameter remains constant.

46/119 | Memoire IA — Zacharie Guibert — ISFA 2010



The survival function can be expressed as such
S(tlx) = exp{—exp(B'x)AtP}
After a transformation of the survival function based on the property just seen earlier
In{—InS(t)} =InA+plnt

Its plot should return approximately a straight line if the Weibull distribution is reasonable.The
intercept and slope of the line will be rough estimates of In A and p respectfully. If the two lines for
two groups are essential parralel, this means that the proportional hazards model is valid.

Another approach to assess the suitability of a parametric model is to estimate the hazard function
using the non — parametric method. If the hazard function increased or decreased monotically with
increasing survival time, a Weibull distribution might be considered.

2.3.1.2.  Exponential PH model
The exponential model is a special case of the Weibull one, with p = 1. The hazard function under
this model is assumed constant over time. Both survival and hazard functions are written as

S(t) = exp(—At) and h(t) = 1

Under the exponential PH model, the hazard function can consequently be given by

h(t|x) = 2exp(Bixy + Poxz + -+ + Bpx,) = Aexp(B'x)

In the line, the Weibull density function, expressed as f(t) = exp(— AtP)AptP~1, becomes, for
p=1

f(t) = Aexp(—At)

Its plot should return approximately a straight line if the exponential distribution is reasonable: if the
straight line has a slope nearly one, and goes through the origin, the exponential distribution can be
assumed. Besides, if the hazard function is reasonably constant over time, this would suggest an
exponential distribution.

2.3.1.3. Gompertz PH model
Both survival and hazard functions of a Gompertz distribution are given by

A 6
S() = exp (5 (1 —e™))
h(t) = Aexp(6t)
forA>0and0 <t < 0.

In this case, the Gompertz distribution, In(h(t)) is linear with t. The parameter 8 determines the
shape of the hazard function. When 8 = 0, the survival time has an exponential distribution. And
like the Weibull hazard function, the Gompertz hazard increases or decreases monotically.

As the two previous cases, the hazard function for a particular patient is expressed as
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h(t|x) = Aexp (6t) exp(ﬁlxl + Boxy + -+ ﬁpxp) = Aexp(6t) exp(B'x)

Altough it is straight forward to see that the Gompertz distribution has the proportional hazards
property, this model is rarely used in practice. Moreover, most computer softwares for fitting
exponential and Weibull models use a different form, the Accelerated Failure Time (AFT) model.

2.3.2. Accelerated Failure Time model

Although parametric PH models are very applicable to analyze survival data, there are relatively a
few probability distribution for the survival time which can be used with these models. To face this
issue, the AFT model is an interesting alternative to the proportional hazards model for the analysis
of survival time data. This is measuring the direct effect of the explanatory variables on the survival
time instead of hazard — as done in the PH model. It allows then an easier interpratation of the
results, because the parameters measure the effect of the corresponding covariate on the average
survival time. On a similar way to the PH model, the AFT model describes the relationship between
survival probabilities and a set of covariates.

For convenience reasons, ¥ is to be refered to the regression coefficients and 6 to the accelerating
ones.The usual distributions specified for € in the accelerated model are: Weibull (if shape=1,
exponential), log normal and log logisitic.The corresponding distributions for W are : minimum
extreme value, normal, logistic [23].

Under an AFT model, the covariate effect are assumed to be constant and multiplicative on the time
scale — e.g. the covariate impacts on survival by a constant factor (accelerator factor).

Based on the relationship between between both survival and hazard functions, the hazard function
for a policyholder with covariates (x4, x5, ... ,xp) is

h(tlx) = (ng)) ho (a)(tx)>

The associated log — linear form, in respect to survival time is

In(Ty) = p+ ayxq; + azxy; + -+ apxy; + 0g;

- Wistheintercept
- o isthe scale parameter
- & arandom variable

This expression assumes to have a particular distribution. It is this type of form for the AFT model
whichis adopted by most software packages for the AFT model.
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The survival function of T;can be expressed by the survival function of ;.
S;t)=P(T; =t)
Si(t) = P(In(T;) = In(t))
Si(t) = P(u+ ayxq; + agxy; + -+ apxpy; + 0g; = Int

Int—u—oaX
Si(t) = P(ei 27>

Int—u—aX
5:(6) = Se ()
o
For each distribution of &;, there is a matching distribution of T. Generally, AFT models are named

for the distribution of T rather than the distribution of &; or In T. The distributions of ¢; and the
associated distributions of T; are summarized below

T In(T)
Exponential Extreme value
Weibull Extreme value
Log-logisitc Logistic
Lognormal Normal
Log-gamma Gamma

The effect size for the AFT model is the time ratio. This time ratio, comparing two levels of covariates
x; (x; = 1 versus x; = 0), after controling all the other covariates is exp(a;). This expression is the
intrepretation of the estimated ratio of the expected survival times for two groups.

A time ratio above 1 for the covariate implies that this covariate prolongs the time to event, while a
time ratio below 1 indicates that an earlier event is more likely. Therefore, the AFT model can be
intreprated in terms of the speed of progression of the event/ censor within the data. The effect of a
covariate in an AFT model is to change the scale, and not the location of the baseline distribution of
survival times.

2.3.2.1. Estimation of AFT model
AFT models are fitted using the maximum likelihood method. The likelihood of the N observed
survival times t4, t,, ..., ty is given by

N
Lano) = | [theopris ey
i=1

Where f;(t;) and S;(t;) are respectfully the density and survival functionsfor the ith individual at ¢;.
6; is the event indicator for the ith observation.
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The log likelyhood function can consequently be expressed as

N
InL(a,u 0) = —=8;In(ot; + 8;Inf..(z;) + (1 — ;) InS,.(2;))
D! L @)

Intj—p—ayX1;—azxzi——ApXp;

Where z; = . The maximum likelihood estimates the the unknown

g
parameters (1, 0, @y, @y, ..., &y, by maximising this function using the Newton Raphson procedure —

same methodology in use for the partial likelihood in the Cox regression model.

2.3.2.2. Weibull AFT model
Let’s assume the survival time T has W (4, y) distribution with a scale parameter A and shape
paramater y. The hazard function under the FAT model for the ith policyholder is

hi(t) = [wix)] ho [wizx)]

n0 =l o)

hi() = (

’ -1
” (x)) ()

Where w;(x) = exp(@1xy; + azxz; + -+ + a,xy; for a policyholder i with p explanatory covariates.
1
w;(x)
consequently has the Accelerated Failure Time property.

Y
So the survival time for the ith policholder is W (/1 ( ) ,y). The Weibull distribution

If T; has a Weibull distribution, then ¢; has an extreme value distribution (Gumbel distribution). The
survival function of Gumbel distribution is given by S (t) = exp(—expt)) .

The AFT representation of the survival function of the Weibull model is given by

Nt — U —axy; — ArXy; — " — ApXpi
S(£) = exp [—exp( u 1X1i 02 2i p pl)]
—U— A X1; — ApXpj — *** — Ay Xpi
S;(t) = exp [—exp( it L 2021 P pl) tl/"]

From this expression, the proportional hazards representation of the Weibull model is given by
S;(t) = exp[—exp(Byx1; + -+ + Bpxpi) AtY]

Using the two last formulas, the AFT parameters 4, y, B; in the PH model can be expressed by the

parameters u, o, @;

l=exp(—§),y=l,gj __ 9
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As a reminder, both hazard and survival functions are expressed as

_f® _ dIns@®)
TSt de

h(t)

t
S(t) =exp [—f h(u)du]
0

Hence the AFT representation of the Weibull hazard function:

1 1 —U = AXqp — ApXpp — 0 — UpXy;
hi(t) =—to lexp( : . : P pl)
o

The approximate variance of a function of two parameters 6, et 0,is given by

dg 2 dg 2 dg dg
— V(él) + | == V(éz) +2|——— COU(él, 92)
06, a6, 06, 006,

The standard error of BJ- is expressed as

2 .\ 2 A
V() =(-3) v(@)+ (“—;) v@ +2(-3) (%) Cov (a;,5)

g

2.3.2.3.  Log-logistic AFT model
The Weibull hazard function has one limit, which is a monotonic function of time. However, the
hazard can change of directions and vary over time in some situations.

Log-logistic survival and hazard function are given by

1 e9ktk-1

5@ = 1+efck and h(t) = 1+efck

Where 6 and k, k > 0, are unknown parameters.

- When k < 1, the hazard rate decreases monotonically
- Whenk > 1, it increases from zero to a maximum and then decreases to zero.

Assuming the survival times have a log-logistic distribution with parameter 8 and k, the hazard
function under the AFT model for the ith policyholder is

hi(t) = (wl) o (wi)

hi(t) = =

w; (1 +ef (wil)k>
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eB—klnwi k tk

hi(t) = 1+ ef-klnw;tk

Thus, the survival time for the ith policyholder has a log-logistic distribution with parameter
0 — k1n w; and k. As a consequence, the log — logistic distribution has the Accelerated Failure Time
property.

. ) L 1 ) .
If the baseline survival function is Sy (t) = TR with 8 and k unknown parameters, the baseline

odds of surviving beyond time t are given by

SO(t) . —0,-
Toso-¢

The survival time for the ith policyholder also has a log-logistic destribution, which is

1

Si(t) = 14 ef-klnw;tk

The odds for the ith policyholder surviving beyond time t is then

Si(t) So(1)
150 exp(Brxyi + -+ + BpXpi) 1_0—50(0

The logarith of the ith policyholder surviving beyond time t returns

S;(t
L—ﬂxi—e—klnt

=5

Where x; is the censor variable, taking the value 1 in case of event, and 0 otherwise (censor). A plot

of In (15(;()”) versus In t should be linear of the log — logistic distribution is appropriate.

If T; has a log — logistic distribution, then &; has a logistic distribution. The survival function of a

logistic distribution is

Se.(t) =——
a() 1+expt

The expression of the survival function of a log — logistic model becomes

—y — - L e — 11
H = 01Xq; — ApXp apxpl)]

S;(t) = [1 + tl/"exp( >

The two expressions of S;(t) leads to the expressions of

According to the relationship between survival and hazard function, the hazard function for the
ith policyholder is

hi(t) = %{1 +trexp (_“ — 1% T “Zaxzi — “pxpi)}
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2.3.2.4. Log - normal AFT model
The assumption of having survival times following a log — normal distribution leads to an expression
of the baseline survival and hazards functionswritten below:

o(2)
o (=)

Where u and o are parameters, @ (x) is the probability density function and @(x) is the cumulative

Sa(0) = 1— 0 () ot =

density function of the standard normal distribution. The survival function fot the ith policyholder is

The log — survival time for the ith policyholder has normal (u + a’x;, ). The log — normal
distribution has the Accelerated Failure Time property.

It comes, in a two —groups study, with x; the censor covariate (1 in case of event, 0 otherwise —
censor), the relation

P (1-51)) = %(ln t—a'x; — p)

The plot of =% (1 — S(¢)) versus Int will be linear if the log — normal distribution is adequate.

2.3.2.5. Gamma AFT model

The (generalized) gamma model is described by a probability density function of three parameters,
A>0,a>0andy >0

ay

al
vt >0,f(t) = ‘)

Where v is the shape parameter of the distribution. Both survival and hazard functions do not have a

t% 1 exp[—(1£)%]

closed form for the generalized gamma distribution. Exponential, Weibull and log — normal models
are all special cases of the gamma model. In case of

- Y =a =1, the generalized gamma distribution becomes the exponential distribution
-y =1, the generalized gamma distribution becomes the Weibull distribution
-y — oo, the generalized gamma distribution becomes the log — normal distribution

This highlights the fact that the generalized gamma model can have a wide variety of shapes, except
for any of the special cases.
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2.3.3. Checks on models

2.3.3.1. Graphical
Graphical methods can be used in the first place to check if the paramteric distribution fits the

observed data. As we saw before, we have:

- If the survival time follows an exponential distribution, the plot of In[—In S(t)] versus In t
should yield a straight line with slope of 1

- If the plots are parallel but not straight, then the proportional hazards assumption is valid,
but not the Weibull model. If the lines for two groups are straight but not parallel, the

Weibull model assumption is supported, but both PH and AFT assumptions are violated.
1-5(t)
s(t)
distribution of survival function is log — logistic then the result plot should be a straight line.

- For the log — normal distribution, a plot of @1 (1 - S(t)) versus In t should be linear

- The log —logistic assumption can be checked by plotting In ( ) versus In t. If the

However, all these plots are based on the underlying assumption that the data sample on where the
model is fitted is drawn from an homogeneous population — implying then that no covariates are
taken into account. This consequently makes this graphical checking method not very reliable in
practice.

2.3.3.2. Quantile - quantile plot
One method for assessing the potential of an AFT model is to produce the quantile — quantile plot.
For any value of p within the interval [0;100], the pth percentile is

100 —p)

tp) = 5_1( 100

Let’s consider ty(p) and t; (p) the pth percentiles estilmated from the survival functions of two
groups of survival data. The percentiles for the two groups may be expressed as

. /100—p _, /100 —p
o) =507 (Fpa ) to®) = 817 (o)

Where S,(t) et S;(t) are the survival functions for the two groups. Hence,

S1[t1 ()] = Solto(@)]

Under the AFT model,

510 =5 (=)

Z
So as a deduction

to(p) = w 't;(p)
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The percentiles of the survival distributions for the two groups can be estimated with the Kaplan —
Meier estimator. A plot of percentiles of the Kaplan — Meier estimated survival function from one
group against another should give an approximate straight line through the origin if the Accelerated
Failure Time model is appropriated. The slope of this line will be an estimate of the acceleration

factor w™1.

2.3.3.3. Statistical criterias

AFT models can be compared between them with statistical tests. Nested models, as Exponential,
Weibull and log-normal — nested within the gamma model, can be compared using the likelihood
ratio test.

Otherwise, for nested and non — nested models, the Akaike Information Criterion (AIC) can be used.
This statistical criteria is defined as

AIC = =21+ 2(k + ¢)

Where [ is the log — likelihood, k the number of covariates within the model, and ¢ the number of
model specific parameters. The lowest the AIC value is, the better the model is.

However, one difficulty remains by using the AIC; there are no other statistical equivalent tests to
compare the AIC with. This makes the choice between two models with close AIC values difficult.

2.4. Fit a survival model

Based on what has been presented on this chapter, we decide here to fit a Cox PH model deeply on
our data set [Annex 4, R code]. The reason of this decision is the convenience of this model, e.g. not
making any assumption on the distribution times distribution, particularly because of the high
number of failures (surrenders).

Indeed, the main drawback of a parameterical model is its potential for arbitrary decisions regarding
the nature of the baseline hazard rate. On the other hand, the relationship between covariates and
the hazard rate in the Cox model can be estimated without having to make any assumptions about
the nature and shape of the baseline hazard rate.

In this sense, the less assumptions we are making on the data, the better. That why the semi —
parametrical model is studied deeper here. However, in order to compare both models, we will
make a short parametric study at the end and compare the two survival times, in order to validate
our choice.
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2.4.1. Data

2.4.1.1. Data presentation

The file “Data.csv” gathers all the surrender data of the Camelea portfolio. More exactly, we are
talking here of 9 159 policyholders, allowed to surrender their life insurance policies at any time.
There were 8,495 policyholders as of 31th of December, 2013. The 664 remaining to reach 9,159 are
policyholders who fully surrendered their life insurance policy before end of December 2013.

This data has been, on one part, generated by BOXI, a business object interface in use within
NPGWM. A second part comes from Bloomberg

It is based on this data set that all the results from the various studies which will be detailed below
will come from.

2.4.1.2. BOXI Data

e Duration: The duration corresponds to the time the policyholder remains in the
portfolio until the 31th of December, 2013.

e Event: censor indicator; it is equal to 1 if the policyholder surrenders at least
once his portfolio — partially and/or fully, 0 otherwise — right censored data

e Still: Indicates if the policyholder surrendered his policy partially or fully. If the
covariate is equal to 1, it’s a full surrender and the policyholder is no longer
within the Camelea portfolio. If the covariate is equal to 0, then the policyholder
is still in the Camelea portfolio as of 31th of December, 2013; he could have
surrendered his policy, but only partially.

e Savings: Amount of savings of each policyholder, on a €100,000 basis

e Age: the policyholder age as of the time he fully surrendered his policy, and as of
the 31th of December 2013 otherwise.

e Gender: 0 for male, 1 for female

e Job: the job occupation for each policyholder

Job occupation Job occupation code

UNEMPLOYED

STUDENT

STATE EMPLOYEE (PUBLIC SECTOR)
SELF-EMPLOYED/SHOPKEEPER (LEGAL ENTITY)
SELF-EMPLOYED/SHOPKEEPER (INDIVIDUAL)
RETIRED

PRIVATE/INDEPENDENT PRACTICE

OTHER

EXECUTIVE

EMPLOYEE (PRIVATE SECTOR)

COMPANY DIRECTOR

OO NOULDS WN -

[
~ O

56/119 | Memoire IA — Zacharie Guibert — ISFA 2010



e Gender:0 for male, 1 for female

e Risk: The NPGWM compliance department set up some items to define a low (covariate
coded 0) or high (covariate coded 1) risk policyholder profile.
Are defined as high risk profile

Individuals who hold or have been entrusted with prominent public functions:
Heads of State, heads of government, ministers, ambassadors, members of
supreme courts, political parties’ responsible persons ...

Immediate family members: spouse, husband, partners, children, parents...
Known associates: any natural person who is known to have joint beneficial
ownership of legal entities or legal arrangements, or any other close business
relations, with a person holding or entrusted with prominent public functions

Additionally, enhanced due diligence measures are taken for each new policyholder.
NPGWM mustestablish the source of wealth and funds involved in the business relationship
or transaction with great care and details.

2.4.1.3. Bloomberg data

Unemployment:This covariate is the difference of Belgium unemployment rate
between the time the policyholder suscribes his life insurance policy, and the
time he surrenders. If the policyholder did not surrender, the covariate is the
difference between the suscription time and and Belgium unemployment rate as
of 31th of December, 2013. The purpose of this index is to notice if policyholders
are surrendering because they are facing unemployment

SX5T: This covariate is the difference of the European MSCI equity market rates
between two dates, the suscription time and the surrender time (31/12/2013
value if the policyholder did not surrender before this date). | chose this index,
which | think is quite well representative of the equity market all around the
world. The purpose of taking an european equity index is to see if policyholders
are surrendering for investing in more profitable markets or not.

The data is summarized and consequently presented as such on the R software
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Ji= R Console [E=R[EcR <= -

A
> summary (dat)

Policy Duration Event S5cill Portfolio
Min. : 1 Min. :0.00274 Min. :0.0000 Min. :0.0000 Min. : 0.0031
1st Qu.:2230 1st Qu.:1.00000 1st Qu.:0.0000 1=t Qu.:0.0000 1st Qum.: 0.2238
Median :4580 Median :1.76712 Median :0.0000 Median :0.0000 Median 0.535385
Mean 14580 Mean :1.91889 Mean :0.3731 Mean :0.1856 Mean : 1.3827
3rd Qu.:6870 3rd Qu.:2.78356 3rd Qu.:1.0000 3rd Qu.:0.0000 3rd Qu.: 1.4724
Max. 181589 Max. :5.06575 Max. :1.0000 Max. :1.0000 Max. :94.4380

Surrender Deltal Unpmt Deltas SXET
Min. :0.0000 Min. :-1.3000 Min. :7.100 Min. :-13.917 Min. 127.72
1=t Qu.:0.0000 1=t Qu.: 0.0000 1=t Qu.:7.400 1t Qu.: 2.268 1=t Qu.:42.22
Median :0.0000 Median 0.3000 Median :8.000 Median 8.850 Median :45.21
Mean :0.2596 Mean : 0.3287 Mean :T.883 Mean : T7.642 Mean 44 57
3rd Qu.:0.4348% 3rd Qu.: 0.8000 3rd Qu.:8.400 3rd Qu.: 12.278 3rd Qu.:47.09
Max. :1.0000 Max. : 1.4000 Max. :8.500 Max. 28.534 Max. :56.30

Bge Risk Job Gender
Min. : 6.00 Min. :0.00000 Min. : 1.000 Min. :0.0000
1st Qu.:46.00 1st Qu.:0.00000 1st Qu.: 5.000 1st Qu.:0.0000
Median :57.00 Median :0.00000 Median &.000 Median :0.0000
Mean 156.55 Mean :0.02238 Mean : B8.385 Mean :0.27396
Srd Qu.:67.00 Srd Qu.:0.00000 Srd Qu.: 9.000 3rd Qu.:1.0000
Max. 196.00 Max. :1.00000 Max. :11.000 Max. :1.0000
HA's 1
> | .

R R Console =)

~
> dat[200:205,1:14]
Policy Duration Ewvent S5till Portfolio Surrender Deltal Unpmt Deltal 5¥5T Age Risk Job Gender
200 200 0.0904109& 4] 0 0.5027238 0.0000000 4] 8.4 0.3505 55.9032 59 4] 7 4]
201 201 0.0904109& 4] 0 0.7578059 0.0000000 4] 8.4 0.3505 55.9032 79 4] 1 1
202 202 0.09041096 4] 0 2.5121156 0.0000000 o} 8.4 0.3505 55.%9032 30 0 10 1
203 210 0.09315068 1 0 9.2911198 0.1076297 a 8.4 3.6380 45.7201 T4 0 a8 a
204 203 0.09315068 0 0 0.1005767 0.0000000 Q 8.4 0.5336 55.7201 78 0 & 1
205 204 0.09315068 0 0 0.1329600 0.0000000 a 8.4 0.5336 55.7201 37 0 10 a
v

2.4.1.4. Correlation between covariates
The first step to do with this data set is studying the dependence between covariates. Having a quick
look on the correlation gives us a first idea of how covariates are linked to each other
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R R Console =R EEN 5

> cor(dat[,4:14]) .
5till Portfolio Surrender Deltal Unpmt Deltal
5till 1.000000000 -0.008939408 0.852941754 -0.20408765 0.007392209 -0.38028082
Portfolioc -0.00893%9408 1.000000000 -0.00387&6404 -0.0430488 0.027755254 -0.03007817
Surrender 0.852941754 -0.003876404 1.000000000 -0.319%2796 0.010591803 -0.52682738
Deltal -0.204087646 -0.043048855 -0.319927%962 1.00000000 -D.776832690 0.57834652
Unpmt 0.0073%220% 0.027755254 0.010591803 -0.7768326% 1.000000000 -0.22085870
Deltal -0.380280816 -0.0300781le6 -0.526827380 0.5783469%92 -0.220858699 1.00000000
SXE5T -0.066182949 -0.026113995 -0.105033516 -0.20113263 (©0.346959459 -0.52076528
REge 0.08054241% 0.030240863 0.103174415 -0.11233402 0.055785316 -0.10680439
Risk WA HA WA HA HA WA
Job -0.028533789 -0.040187239 -0.043725842 0.04984010 -0.042634256 0.03898858
Gender -0.284914465 0.009104108 -0.226413009 0.01052709 0.0266946590 0.05395001
S¥ET ALge Rizk Job Gender
5till -0.06618295 0.08054242 HA -0.02B53379 -0.284914465
Portfolio -0.026113%99 0.03024086 NA -0.04018724 0.009104108
Surrender -0.10503352 0.10317442 HA -0.04372584 -0.226413009
Deltal -0.20113263 -0.11233402 NA 0.04%84010 0.010527082
Unpmt 0.34695%46 0.05578532 NA -0.04263426 0.026694690
Deltas -0.52076528 -0.10680439 NA 0.038B988%98 0.053950010
SXE5T 1.00000000 -0.02352910 HA 0.00190440 0.036631185
REge -0.02352910 1.00000000 HA -0.11324816 -0.032905080
Risk HA HA 1 HA HA
Job 0.001590440 -0.11324816 NA 1.00000000 -0.082351084
Gender 0.03663120 -0.03280508 NA -0.08235108 1.000000000
>
W

In statistics, dependence is any statistical relationship between two random variables or two sets of
data. Correlation refers to any of a broad class of statistical relationships involving dependence.
Correlations are useful because they can indicate a predictive relationship that can be exploited in
practice. Formally, dependence refers to any situation in which random variables do not satisfy a
mathematical condition of probabilistic independence.

Among others, some observations from the output:

e Market and unemployment rates are strongly linked
e Thereis a link between the proportion to surrender, market rates and gender
e Minor correlations between covariates otherwise

2.4.2. Cox Proportional hazards model

In R, the Cox PHM can fit the data with the adequate packages. This requires a formula object whose
form is Surv()~covariates, named coxph, from the survival package.

2.4.2.1. Adjustement of a Cox PH Model
The code for adjusting a Cox model with R is as follows:

Call:
coxph (formula =
Surv(Duration, Event)~ Portfolio + Still + SXST + DeltaU + DeltaS + Age + Risk + Job + Gender
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The adjusted model is as follows:

h(duration)

— ho (duration)expﬁlPortfolio+ B, Still+B3DeltaU+f4DeltaS+LsAge+BegRisk+[7]ob+BgGender

The R output gives:

R R Console (=] O] Sl
-~

> MD <- coxph(Surv(Duration, Event)~Portfolio+3till+DeltalU+DeltaS+Age+Risk+Job+Gender,data=dat)

> MO

Call:

coxph (formula = Surv(Duration, Ewvent) ~ Portfolio + 5till + Deltal +

Delta5 + Age + Risk + Job + Gender, data = dat)

coef exp(coef) se(coef) z o
Portfolic 0.01718 1.017 0.004098 3.451 0.00056
Still 0.68476 1.983 0.04064 16.851 0.00000
Deltal -0.01206 0.988 0.03273 -0.368 0.71000
Deltal -0.16391 0.849 0.00341 -48.004 0.00000
Age 0.00244 1.002 0.00114 2.131 0.03300
Risk -0.01221 0.988 0.11228 -0.109 0.91000
Jok -0.00288 0.997 0.00680 -0.423 0.67000
Gender 0.18456 1.203 0.04808 3.839 0.00012

Likelihood ratio test=5038 on 8 df, p=0 n= 9158, number of events= 3417

The R output on the Cox model summarizes, forallj =1, ..., 7:

- coef; = B} the parameter for each covariate
- exp(coef;) = eP

- The main hypothesis to testis Hy : f; = 0,e.9.p; = ... = B; = 0,withz; =
Wald statistical value

- Finally, p; = P(U > z), the p-value for each covariate — with U ~ X(0,1)

- The likelihood ratio is the statistical value of the maximum likelihood test

- df is the abbreviation od degree of freedom, which corresponds here to the number of
covariates

- pisthe p-value of the global test, n the total number of individuals, and the number of

events corresponds here to the total number of surrenders within the data sample
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R R Console |||
~
coef exp(coef) ze (coef) Z Prix|z|)
Portfolico ©0.017183 1.017332 0.00497%9 3.451 0.,000558 =*¥
5till 0.684763 1.983302 0.040636 16.851 <« Z2e-1g =*¥
Deltal -0.012056 ©.988016 0.032733 -0.368 0.712643
Deltals -0.163907 ©0.848821 0.003414 -48.004 <« 2Ze-1lg **%
REisk -0.012209 ©0.987865 0.112282 -0.109 0.913414
Job -0.002878 0.997126 0.006802 -0.423 0.672188
Bge 0.002439 1.002442 0.001144 2.131 0.033078 =
Gender 0.184557 1.202685 0.048078 3.839 0.00012gq #**%
SBignif. codes: O Yw®#%fr 0 QQ1 Y*%f 0 Q1 *r Q.05 *.F 0.1 * " 1
exp (coef) exp(-coef) lower .95 upper .95
Portfolio 1.0173 0.9830 1.0075 1.0273
Btill 1.9833 0.5042 1.8315 2.1477
Deltal 0.988 1.0121 0.9266 1.0535
Deltal 0.8488 1.1781 0.8432 0.8545
REisk 0.9879 1.0123 0.,7827 1.2310
Job 0.95971 1.0029 00,9839 1.010%5
BLge 1.0024 0.997& 1.0002 1.0047
Gender 1.2027 0.8315 1.0945 1.3215
Concordance= 0.822 [se = 0.006 )
Ezquare= 0.423 [max possible= 0.9938 )
Likelihood ratio test= 5038 on 8 4f, =0
Wald test = 4360 on 8 df, =0
Score (logrank) test = 5605 on 8 4f, =0
> |
W

The summary of the coxph function returns the values of three statistical tests (Likelihood ratio,
Wald and Logrank) for the test of Hy : ; = 0,e.g.f; = ... = B7 = 0, with the corresponding
degrees of freedom (df = 7) and p values (p= ...) for the statistical maximal law under the test H,.

2.4.2.2.  Interpretation of the outputs

The three p-values calculated by R (Wald, Log — Rank, Likelihood) are all inferior to 5%:
Consequently, it does exist at least one covariate which has an impact on the surrender rate. The
adjustment of a Cox PH model with a 5% threshold is, as a conclusion, coherent!

2.4.2.3. Interpetation of the results on a covariate basis

2.4.2.3.1. Relevant covariates
Based on the summary results of the coxph test, we have to investigate on the covariates which
impact significantly the surrender rate (p-value < 5%)).
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The Wald test is testing each covariate while including all the others into the model. If the test is not

significant, e.g. a p-value largely higher than 5%, it means that the test would not be significant

either with a model built with this covariate only.

(p-value p < 5%)

Wald tests for the covariates Portfolio, Still, DeltaS and Gender are highly significant,
and have a large impact on the surrender rate (p-value << 5%)

Age has a marginal impact, much lower than the four previous covariates

Conversely, covariatesDeltaU, Risk and Job do not impact at all the surrender rate

(p-valuep > 5%). These covariates have no impact on the surrender rate when the

other covariates are included in the model.

The amount of savings (Portfolio), being for a long time within the portfolio (Still), the evolution of

financial markets on the stock exchanges (DeltaS) and the sex of the policyholder (Gender) have a

significant impact on the duration until surrendering. Conversely, the age (Age) has a marginal effect
on the duration. The unemployment (DeltaU), the job occupation (Job) and the risk profile (Risk) do
not impact significantly the duration when the other covariates are already within the model.

2.4.2.3.2.

Covariates’ interaction

The exponential of the coefficients measures the multiplicative effect of a one-unit increase of the

covariate on the surrender rate, the other covariates remaining unchanged, constant.

IR

Portfolio
5till
Deltal
Deltas
Risk

Job

Lge
Gender

[ Sl el T e T e Y e Y S

exp (coef)

1.
.9833
. 9880
.B488
.38748
.9971
.0024

L2027

0173

[ I R S SR S RO

F. Console

exp [-coef)
0.
. 5042
L0121
L1781
L0123
.0029
.9976
. 8315

9830

lowe

1.

[l el = - I T e R

r .95 upper
1.
L1477
.0535
. 8545
L2310
L0105
. 0047
L3215

0075
. 8315
32886
. 8432
. 7827
. 9839
L0002
. 0945

N =R

.85
0273

RSN Hol =58

]

This output summarizes the exponential of the coefficient for each variabe, and the 95% confidence

interval linked to it:

IC]-95% = [lower.95, upper.95] = eﬁj_l'%\lv(ﬁj); ijH'%VV(Bj)

These confidence intervals are built on the R software based on the fact that

B;=B;

- RX(0,1).
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2.4.2.3.3.

2.4.2.4.
Based on

Interpretation of the first results
The richer the policyholder is, the soonest he surrenders: Assuming all other covariates
remaining constant, wealth has a negative impact on the duration until surrendering. The
marginal effect of an increase of 100,000€ of savings increases the annual lapse rate with
an average factor of e9173, e.g. by (101,7-100)% = 1.7%
The older the policyholder is, the more he surrenders: Assuming all covariates remaining
constant, age has a negative impact on the duration on the Camelea portfolio until
surrendering. The marginal effect of an increase of one year old increases the annual lapse
rate with an average factor of e%9%24 e g. by (100.2-100) = 0.2%
The more volatile financial markets are, the less the policyholder surrenders: Assuming all
covariates remaining constant, market movements have a positive impact on the duration
until surrendering. The marginal effect of an increase of 100 basis points on European
financial markets decreases the annual lapse rate with an average factor of e 701039 e g.
by (100-84.9)% = 15.1%
The gender has an impact on the annual lapse rate. Women are more likely to surrender
their policies of (120.3 — 100)% = 20.3% that men. However, this result should be
pondered. Men represent more than 66% of the Camelea portfolio
The Still covariate returns a coherent result; if the covarate becomes 1 instead of 0, it
means that the policyholder fully surrendered his life insurance policy. It consequently
increases his surrender risk to 100%. Based on the Cox PH model results, this increase is
shlightly lower 100%: (198.33 — 100)% =98.33% — the 1.77% difference coming from the
model approximations.

Selection of significant covariates
what has been presented before, what we have to do now is selecting the right significant

covariates, by removing from the model the covariates for which the p-value is higher than 5%.

We get a second model, cleaned of all non-significant covariates:

R R Console E=RECE =
~
> MO <- coxph(Surv({Duration, Event)~Portfolioc+53till+DeltaS+Age+Gender,data=dat)
> MO
Call:
coxph (formula = Surv(Duration, Ewvent) ~ Portfolio + 5till + Deltal +
Lge + Gender, data = dat)
coef expl(coef) =e(coef) 4 2]
Portfolioc 0.01736 1.018 0.0048& 3.50 0.00047
5till 0.68527 1.984 0.04052 16.91 0.00000
Deltal -0.16457 0.848 0.002895 -55.84 0.00000
REge 0.00252 1.003 0.00113 2.24 0.02500
Gender 0.18732 1.208 0.04784 3.92 0.00009

Likelihood ratio test=5040 on 5 df, p=0 n= 9159, number of events= 3417

>
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R R Console | S

~
> gummary (MO)
Call:
coxph (formmla = Surv(Duration, Ewvent) ~ Portfolio + 5till + Delta5S +
Lge + Gender, data = dat)
n= 9159, number of events= 3417
coef exp(coef) ze (coef) z Pri>|=z])

Portfolico 0.017363 1.017515 0.004963 3.499 0.0004K7 **%
5till 0.685270 1.8984307 0.040520 16.812 <« Ze-16 **%
Deltal -0.164574 0.848255 0.0025947 -55.843 <« 2Ze-lg =**
REge 0.002524 1.002527 0.001128 2.236 0.025328 =
Gender 0.187323 1.206017 0.047842 3.915 9.02e-05 ===
Signif. codes: OQ “***f 0,001 “**r Q.01 **' Q.05 *.' 0.1 v r 1

exp (coef) exp(-coef) lower .95 upper .35
Portfolio 1.0175 0.9828 1.0077 1.0275
5till 1.9843 0.5040 1.8328 2.1483
Deltal 0.8483 1.178%9 0.8434 0.8532
Age 1.0025 0.3375 1.0003 1.0047
Gender 1.2060 0.8292 1.0981 1.3248
Concordance= 0.822 (e = 0.006 )
Rsguare= 0.423 (max possible= 0.89388 )
Likelihood ratio test= 5040 on 5 df, =0
Wald test = 4362 on 5 df, =0
Score (logrank) test = 5582 on 5 df, =0
> |

W

2.4.2.5.  Survival function

Once all covariates are significant, we get interested on the survival function of the Cox regression
on time until surrendering, based on all the valid (e.g. significant for the model) covariates.
Indeed, having a Cox model fit to the data is generally in the purpose to examine the estimated
distribution of survival times.

To do so, we use the R survfit function, which estimates the survival one with taking by default the
mean values of the covariates.

For a policyholder i, the survival function is as such:

S\l(t) — 5'0 (t)expﬁlPortfolio+ B,Still+B3DeltaU+B4DeltaS+fsAge+LgRisk+,]Job+gGender

We can also get interested in the surival functions, considering the split between full and partial
surrenders. Plotting the three curves leads to
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- Ingreen is the survival function, including both and partial surrenders

- In blue, the survival function for full surrenders

- Inred, the survival function taking into account partial surrenders only, e.g. it represents

the survival for the policyholders still in the Camelea portfolio

The estimation method used here is the Kaplan-Meier one. 95% confidence intervals is
asymptotically normal.

The study of the survival function with R uses the Kaplan-Meier estimate as mentioned above. The
plot of the Kaplan-Meier estimate of the survival function (confer graph below) is a step function in
which the estimated survival probabilities are constant between adjacent surrender times and only
decrease at each surrender.

2.4.2.6.
In R, the baseline hazard function gives us, for a policyholder i,

Baseline hazard function

ﬁi(t) — ﬁo(t)expﬁlPortfolio+ B, Still+B3DeltaU+f4DeltaS+BsAge+BegRisk+[7]ob+BgGender
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Cox PH Estimate - Cumulative hazard
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In dark black is the estimate baseline hazard function, based on the observations [24]. The other
curves are representing the baseline hazard function conditionally to one covariate.

What we do observe here is in line with what we saw earlier.

- Portfolio (red) and Age (blue) do not impact a lot the surrender risk. Indeed, they are
very close to the (black) baseline hazard line. The Portolio covariate increases slightly the
risk, while the age decreases it

- The market rate covariate, DeltaS, impacts significantly and positively the surrender risk.
Rising markets make the surrender risk becoming lower

- The gender covariate has a significant impact on the surrender risk. Women are more
likely to surrender than men

2.4.2.7. Model schoenfeld residuals
Significant covariates for the Cox PH model have been all selected. What we have to do now is
checking that the proportional hazards assumption is valid within the model we just built.

Let’s look first the plot of Schoenfeld residuals. Every deviation from the horizontal is an indication
of a time-dependent covariate.
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We can estimate from these plots that both Still and DeltaS covariates are time —dependent.
Indeed, we can observe for the two covariates a rising trend. A statistical Schoenfeld test should go

in this way.

In practice, these results are coherent. Life insurance policies are considered as popular investment
vehicles, generally tax — exempted, hence their popularity. In this way, the longer policyholders
invest in their portfolios, the richer they are. Consequently, they surrender once they saved enough
money in order to finance a project ... The time —dependence for market movements is not

surprising either, inasmuch as financial market volatility and variations over the past few years.

The statisical proportionality test based on Schoenfled results leads to

R

> cox.zph (MO)

Fortfolio
5till
Deltas
Lge
Gender
GLOBAL

>

-0.
0.
-0.
0.
0.

rho
0332
1300
2696
03351
0365
HA

R Console

chi=sg

3.

-

306.

a0a.

52

.64

ad

.62
.51

08

O WO ko

E

.D6e-02
22e-16
.00e+00
. T3e-02
.3T7e-02
.00e+00

Lo )

L]

“rho” is the Pearson correlation coeffcient between Schoenfled residuals and time for each

covariate.
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The test comparing to zero the regression straight returns p-values varying from 0 t00.31 . the first
conclusion to this test is:

e The portfolio covariate appears to be as not time —dependent (p-value p >5%), e.g. the
condition of proportional hazards is respected

e Age and Gender covariates is marginally time-dependent, e.g. a p-value p~ 5%), e.g. they do
not respect entirely the proportional hazards assumption

e deltaS and Still covariates are completely time —dependent.

Mainly due to the DeltaS covariate, and marginally with the Portfolio and Still ones, the proportional
hazards assumption of our Cox model is not verified. The global validation test of the PH assumption,
Hy: B(t) = B versus Hy: B(t) # B, conducts to reject it, because of time — dependent covariates.

2.4.2.8. Martingale residuals

The Covariate linked to financial market is strongly time-dependent, meaning there is a link between
the covariate with time. The martingale residuals will test the link form, allowing us to assess the
type of dependence between the covariate and time.

We plot the martingale residuals versus the time-dependent covariates. We smooth the curves with
local polynomes with only one degree of freedom to highlight any trend [25].

In case of an exponential link function, the rate logarithm will be a linear function of the covariates.
Plotting the estimated link function with the martingale residuals versus the covariates will highlight
the form of the link function. A fast growth of the curve will suggest a power transformation, with

p > 1. On the opposite, a slow growth will suggest a logarithm/ square transformation (p < 1).

The plot in the first time of the martingale residuals, and in a second time, of the estimated link
function + martingale residuals led to:

Martingale residuals

residuals

Market rate movements
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These two plots clearly indicate an exponential link between time and the MSCI european equity

rate.

2.4.2.9. Influence of observations

We need to perform one last check : verifying that the model coeffcients are not defined only from a

small number of observations but represent the entire population of the data set. Comparing orders
of magnitude of the DfBeta residuals with the coefficients will indicate us the significance of the

coefficients.

The plot of the DfBetas coefficients leads to
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Respectively, coefficients for the Cox model covariates are: 0.01736, 0.6852, -0.1645, 0.00252,
0.18732. Comparing the orders of magnitude of both DfBetas observations with the last Cox model
coefficients (confer section 2.4.2.4.) draws to the conclusion:

DfBeta residuals are small comparing to their respective coefficient values. Hence no anormally
influent observations on the Cox model.

2.4.2.10. Time dependent covariates - fixing the issue

2.4.2.10.1. New data frame

Time —dependent covariates is not suitable for the Cox PH model. In order to solve the issue, we
built, on a monthly basis, a new data set based on what we already presented before, which is
presented as follows:

R R Console E=8 Hoh ==

A
> summary (dat)
Policy Duration start stop
Min. : 1 Min. :0.00274 Min. :0.000 Min. 0.00274
1st Qu.:4567 1=t Qu.:1.76438 1=t Qu.:0.500 1=t Qu.:0.58333
Median :&6564 Median :2.65753 Median :1.083 Median :1.1&6667
Mean 16130 Mean t2.606786 Mean t1.283 Mean 1.36444
3rd Qu.:8028 3rd Qu.:3.49041 3rd Qu.:1.917 3rd Qu.:2.00000
Max. 19158 Max. :5.06575 Max. 5.000 Max. 5.06575
Ewvent 5till Portfolio Deltal
Min. :0.00000 Min. :0.000000 Min. : 0.0031 Min. 1=1.30
1=t Qu.:0.00000 1=t Qu.:0.000000 1=t Qu.: 0.2315 1st Qu.: 0.00
Median :0.00000 Median :0.000000 Median 0.5447 Median 0.30
Mean :0.01585 Mean :0.007886 Mean : 1.3436 Mean 0.33
3rd Qu.:0.00000 3rd Qu.:0.000000 3rd Qu.: 1.4301 3rd Qu.: 0.8
Max. :1.00000 Max. :1.000000 Max. :94.,4380 Max. : 1.40
HL's 206426
Deltal Lge Gender
Min. :—-1.30 Min. : 6.00 Min. 10,0000
1=t Qu 0.00 I1st Qu.:47.00 l1st Qu.:0.0000
Median 0.30 Median :57.00 Median :0.0000
Mean 0.33 Mean t57.05 Mean t0.2697
3rd Qu.: 0.8 3rd Qu.:68.00 3rd Qu.:1.0000
Max : 1.40 Max. :96.00 Max. 11,0000
HL's 1206426
> |
W

The surrender data has been separated on a monthly basis for each policyholder. At the surrender
time — or at the end of the study, we indicate the value of the DeltaU (unemployment) and DeltaS
(market rates).
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R

> dat[200:205,1:11]

Policy
200 1383
201 1394
202 194
203 185
204 1385
205 1396

0.08767123
0.090410%96
0.09041056
a.

0.09041036
0.09041036

Duration

05041086

(= I s = =

start

.08333333
. 00000000
08333333
.00000000
.08333333
. 00000000

R Console

stop Event 5till

.08767123
.08333333
.09041096
.08333333
.09041096
08333333

[ I s e e o

Q

Lo Il I s S s |

E
1
P
2.
aQ
a
0

o oo oo

ortfolio
.8983571
.0133861

0133861

.1001548
.1001948
1224317

DeltalU Delta5 Age Gender

0.0 0.0 71 a
Jury HR 37 a
0.1 0.1 37 1]
HA U a
0.0 0.0 &2 a
HA N& 73 Q

We can see in this case, that the policy n® 194, has a total duration of 0.090 year within the Camelea
portfolio (e.g. 33 days), which was fully surrendered (Event = 1), has a portfolio value equal to
€201,338.61. The policyholder was at the surrender time, 37 years old, male. When he surrendered,

unemployment and financial markets both increased of 0.1%.

2.4.2.10.2.

Fitting Cox model
We can now fit the Cox model. Commands and outputs are

= R Console
= MO
Call:
coxph (formula = Surv(start, stop, Event)

Age + (Gender,

Portfolio

Deltals
Age
Gender

Likelihood ratio test=996
(206426 observations deleted

> |

data

dat)

coef exp(coef) =e(coef)
014 ©0.00449

0.01428
-0.71787
0.00847
-0.31406

1.

0.
1.
0.

88 0.02581
00% ©0.00120
T30 0.04307

on 4 df, p=0

=)

~ Portfolio + DeltaS +

=
.18
.04
.05
.23

n=

1.5e-

E
03

0.0e+00

1.4e-
3.1e-

3153,

12
13

nunmker of events= 3417

due to missingness)
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R R Console |- S

~
coef exp(coef) se (coef) z Pri>|z|)

Portfolio 0.014281 1.014384 0.004489 3.182 0.00148 **
Deltal -0.717968 0.487742 0.025607 -28.038 <« Z2e-lg ***
Bge 0.00846% 1.008505 0.001185 T7.086 1.38e-12 ##*
Gender -0.314063 0.730473 0.043071 -7.292 3.06e-13 #***
Signif. codes: O “#%%f Q.001 *#**’ Q0.01 **f Q.05 *.f 0.1 * * 1

exp (coef) exp(-coef) lower .95 upper .55
Portfolio 1.0144 0.9858 1.0055 1.0233
DeltaSs 0.4877 2.0503 0.4639 0.5128
REge 1.0085 0.9916 1.0061 1.0109
Gender 0.7305 1.3630 0.6713 0.7948
Concordance= 0.633 (se = 0.006 )
E=sguare= 0.103 ([max possible= 0.959 )
Likelihood ratio test= 9%9.1 on 4 df, p=0
Wald test = 9592.9 on 4 df, =0
Score (logrank) test = 1093 on 4 df, =0
> |

W

As the previous model, all the covariates are remaining significant in this model with this new data
(p —value results all below 5%).

Before interpreting the results, let’s validate both Schoenfeld and DfBeta residuals.
2.4.2.10.3. New Cox model residuals

2.4.2.10.3.1. Schoenfeld residuals

R R Console RSN HON 555

P
> CcOX.zph (HMO)

rho chi=g |
Portfolio ©0.20418 112.347 0.000
Deltal 0.00554 0.117 0.732
Age -0.02247 1.845 0.174
Gender 0.01309 0.5%96 0.440
GLOBAL HNA 114.&87 0.000
>

W

We observe now that, by splitting our data in monthly intervals, the Portfolio covariate became time
— dependent. This observation makes sense. Policyholders investing in a life insurance policy can add
some extra money to their first investment all over their policy lifetime (what is usually called in the
life insurance business, a top-up). As much as a policyholder is allowed to surrender his policy, he’s
also allowed to reinvest in it. It is consequently normal to see a policyholder reinvests in his
portfolio all over the policy lifetime. The longest the policyholder invests, the richer he becomes.
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2.4.2.10.3.2. DfBetas residuals
Plotting the DfBetas residuals leads to

DfBeta residuals DfBeta residuals
m
o
=1
(=]
2 8 0
g =] $3
s & o
-
=] -
= [=]
S Lo 2
I I I I I Q
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Index Index
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] ooo ° 5o °
o A @,
(=] Q
s S 5 8
< e 5 °
[U]
= . g
g ) =
= T T T T
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Index Index

Respectively, Cox regression coefficients for this new CoxPH model are: 0.01428, -0.71797,
0.008477, -0.31406.

All DfBeta’s are gathered around 0 homogeneously, with very low level of variations
(around1073,107%, e.g. much more lower than the fitted Cox regression model coefficients). We
can then deduce than there are no abnormally influent observations on the model.

Even though the DfBeta residuals led to conclusive result, the Schoenfeld test failed. Considering the
data has already been processed in order to solve time — dependence issues on the market rate
covariate mainly, we must look towards another solution.

2.4.2.11. Fitting the Portfolio covariate

Looking on the portfolio data, we realize that, for each policyholder, there is a specific amount of
savings, e.g. 9,159 different figures. We decide to recode the portfolio covariate into several classes
in order to have a more significant model covariate, more representative of the level of wealth of
each policyholder, as of the time of surrender or end of December 2013. The portfolio covariate is so
recoded by quartile, as such
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Portfolio

1
2
3
4

From

0,000
0,230
0,559
1,472

To

Observations

0,230 From 0 to the 1st quartile
0,559 From the 1st to the 2nd quartile
1,472 From the 2nd to the 3rd Quartile
94,439 From the 3rd quartile to the maximum value

Splitting the policyholders into four classes of wealth allows seeing how policyholders react in
function of the level of wealth they are belonging to.

Once re-treated, the data is presented as follows:

Duration
08767123
.090410%96
.090410%96
.090410%6
.090410%6

R
> dat[200:205,1:11]
Policy
0 193 0
201 1384 0
202 134 0
203 185 0
204 185 0
205 196 0

.09041036

08333333
.00000000
08333333
. 00000000
08333333
.00000000

start

R Console

=& =]

stop Event 5till Portfolic Deltal DeltaS Age Gender

.08767123
.08333333
.090410896
.08333333
.090410828
08333333

o]

[ e T e I E i

Q

00O O

4

[ R Y

Q.0 .0 71 Q
MR HR 37 a
0.1 0.1 37 4]
HR HER &2 4]
0.0 0.0 82 4]
HR HL 73 Q

The interpretation remains the same as the one in paragraph 2.4.2.10.1.The policyholder n°194

belongs to the highest portfolio class, 4, while the policyholder 195 belongs to the lowest one, 1.

2.4.2.11.1.

Cox model validation

The new Cox model returns

R

> MO <- coxph(Surv(start,stop,

> MO
Call:

coxph (formula = Survi(start,
Lge + Gender,

coef exp(coef)

Porcfolio -0.07787

Deltal -0.7188
hge 0.00895
Gender -0.31264

R Console

stop, Event)
data = dat)

se (coef)
0.925 0.0157 -
0.487 0.0258 -2i
1.009 0.0012
0.732 0.0431 -
4 df, p=0

Likelihood ratio test=1012 on
(206426 okservations deleted due to miszsingness)

o &S]
~
Event) ~Portfolio+DeltaS+Age+Gender, data=dat)
~ Portfolioc + DeltasS +
Z I
& 6.5e-07
.09 0.0e400
.47 B.3e-14
.26 3.9e-13
n= 29159, number of events= 3417
W

The Wald test on the covariates indicates that all of them are significant for the model. More

detailed, the new Cox model has as characteristics
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R R Console E=8 Eol =<7

-
coef exp(coef) se (coef) z Pr(x|=z])

Portfolioc -0.077967 0.924995 0.015668 -4.976 6.48e-07 #*#**%

Deltas -0.718836 0.48731% 0.025585 -28.092 <« 2Ze-lg ***

Bge 0.008948 1.008988 0.00119% T.466 B.2Be-14 =&#

Gender -0.312638 0.731515 0.043088 -T7.2590 3.80e-13 **%*

Signif. codes: O “#*#%%F J_001 “#*%r p_Q01 *** §.05 *." 0.1 * " 1

exp(coef) exp(-coef) lower .95 upper .83

Portfolio 0.9250 1.0811 0.8370 0.9538

Deltas 0.4873 2.0520 0.4635 0.5124

Rge 1.0030 0.9911 1.0066 1.0114

Gender 0.7315 1.3670 0.6723 0.7959

Concordance= 0.637 (se = 0.006

R=zguare= 0.105 (max posszikle= 0.950

Likelihood ratio test= 1012 on 4 df, =0

Wald test = 1008 on 4 d4df, =0

Score |(logrank) test = 1107 on 4 df, p=0

> |
W

2.4.2.11.2. Model residuals
2.42.11.2.1. Schoenfeld residuals
R R Console E=R(E=R ==

» MO <- coxph(Surv(=start,=stop,

> cox.zph (M0)

rho chi=sg
Portfolio 0.01274 0.6035 0
Deltas -0.00204 0.0158 0
Lge -0.01537 0.8604 0O
Gender 0.01515% 0.7985 0O
GLOBLL H& 2.1655 0O
>

=

437
. 500
. 354
372

. T05

Event) ~Portfolio+DeltaS+Age+Gender, data=dat)

All covariates are time —independent. The proportional hazards assumption is consequently
validated, thanks to the separation on four different classes of wealth of the portfolio covariate.
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2.4.2.11.2.2. DfBetas residuals
The study of the DfBeta residuals leads to

DfBeta residuals DfBeta residuals
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Respectively, Cox PH regression coefficients are equal to: -0.07979, -0.71884, 0.00895, -
0.31264.Residuals all very close and centre homogeneously on 0. We can deduct no abnormally
influent observations.

2.4.3. Final Cox Proportional Hazards Model

We managed to fit a Cox proportional hazards model on our surrender rate. After facing the
violation of the main model assumption, the proportional hazards one, we succeeded fitting this
model and respecting its assumptions.

The Wald test on all the covariates showed which covariates were significant in the first place, which
allowed us to select these very ones. Tests on residuals (Schoenfeld, DfBetas and martingale) where
definitely helpful to validate the Cox model assumptions

With the last data set, the final Cox model is now written as follows:

h(duration) = hy(duration) exp(B,Portfolio + [,DeltaS + 3Age + [,Gender)
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In R, commands and outputs are

R R Console o[- B (S|
~

|> MO <- coxph(Surv(start,=stop, Event)~Portfolio+DeltaS+Age+Gender,data=dat)

> MO

Call:

coxph (formula = Surv(start, stop, Event) =~ Portfolioc + Deltal +

Age + Gender, data = dat)

coef exp(coef) =ze(coef) z 2]
Portfolio -0.07797 0.925 0.0157 -4.98 6.53=-07
Deltal -0.71884 0.487 0.0256 -28.09 0.0e+00
Bge 0.00895 1.0089 0.0012 7.47 B.3e-14
Fender -0.31264 0.732 0.0431 -7.26 3.8e-13

Likelihood ratio test=1012 on 4 df, p=0 n= 9159, number of events= 3417

Studying all covariates on a monthly basis allow us to get interested on the impact of each of them
every month, until the policyholder decision to surrender.

Calibrating a Cox PH model on our data finally highlights the following policyholder behaviour:

The richer a policyholder is, the less he surrenders. The wealth of the policyholder affects his will to
surrender. All covariates remaining constant, stepping from level 1 of savings to level 2 in a month
reduces the annual surrender rate by(100 — 92,5) % = 7,5% .

The more financial markets grow, the less the policyholder surrenders. This result makes sense. As
we saw earlier in section 1.3.1, the Camelea portfolio offers a large range of investment solutions
and should as such reflect financial market movements — up to a factor. The more the market grows,
the more profitable it is to invest within. All covariates remaining constant, the increase of 1% of the
MSCI European equity market reduces the annual surrender rate by(100 — 48,7) % = 51,3%.

The older a policyholder is, the more he surrenders. Indeed, getting one more years old makes the
policyholder surrendering (100,9 — 100) % = 0,9% faster.

Men surrender (100 — 73,2) % = 26,8% more than women — however, they are over represented
in the Camelea portfolio. More than 72% of Camelea policyholders are men.
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2.4.4. Parametric model

2.4.4.1. Parametric model selection
We are looking to fit a parametric model on the original data set. Seven models are tested:

- Log—normal
- Weibull

- Log - logistic
- Gaussian

- Exponential
-t

- Extreme

They are selected with the AIC criteria. The R command returns

R R Console | S|

~

> anova (AFTO_1,AFIC 2,ARFTO_3,AFTO_4,AFIO_5, AFIO &, AFTO_T)

Terms Resid. Df -2*#LL Test Df Deviance Pr(>Chi)
1 Portfolio + 5till + Delta3 + RAge + Gender 9152 13526.44 H& H& oy
2 Portfolio + 5till + Delta5 + Age + Gender 9152 12007.34 = 0 1519.09498 Jory
3 Portfolio + 5till + DeltaS + Age + Gender 9152 128897.82 = 0 -890.5813%9 HR
4 Portfolio + 5till + Delta3 + RAge + Gender 9152 12929.85 = 0 -31.92676 HE
5 Portfolio + 5till + Delta5 + Age + Gender 9153 14409.29%9 = -1 -1479.44515 9.881313e-324
& Portfolio + 5till + Delta3 + ALge + Gender 9152 12885.72 = 1 1513.57574 0.000000e+00
7 Portfolio + 5till + Delta5 + RAge + Gender 9152 12322.45 = 0 573.26568 HE

From this test, we can deduce that, based on the AIC criteria, the Weibull distribution is the one
which fits best the survival time [26].

2.4.4.2.  Interest functions

Survival function
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These three plots all conduct to the same conclusions than the Cox PH model. The portfolio and the
age do not impact a lot the decision to surrender. Increasing financial markets impact positively and
reduce the surrender risk significantly. On the other hand, being a women has a large impact on the
surrender rate.

2.4.4.3.  Model comparisons
The plot of both (Kaplan- Meier) Cox and Weibull models shows clearly that the Weibull model is
making too much assumptions on the survival times distributions. Indeed,
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Comparison CoxPH and Weibull models
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Proportionally, the parametric survival function is making too many assumptions on the survival
times distributions and decreases toofast to reflect the portfolio.
The Cox PH model seems so, in our case, much more appropriate.

2.4.5. Conclusion

The Cox PH model has the disadvantage of having its distribution of survival times unknown. Indeed,
any assumption is made on the baseline hazard function h(t), which makes this model non —
parametric. Another disadvantage which might be cited here is that its survival function is less
consistent with a theoretical one. The Cox PH survival function is typically a step function, got with
the plot of the Kaplan — Meier estimate.

However, two essential advantages for the semi — parametrical model. The main one is that the
model does not rely on distribution assumptions. The second is that the baseline hazard is not
necessary for ratio use, hence no assumption of the distribution of survival times.

Even though a parametric model would have completely specify the hazard function h(t) and the
survival function S(t) — without mentionning the fact of being more consitent with the theoretical
function, the major issue here would have been making an assumption of the underlying
distribution. This would have been problematic, inasmuch as a wrong fit of the survival times
distribution would have made the final parametric model completely wrong.

The Cox PH model returns some interesting results, illustrating the covariates which will increase or
decrease the policyholder motivation to surrender. As instance; a female policyholder in portolio
class 2 of 70 has less chances to surrender than a male in portfolio class 3 of 60.

As we saw earlier, calibrating a semi — parametrical survival model highlighted the global behaviour
of the policyholders within the Camelea portfolio. The next section will look deeper in these
bahaviours, in order to define a sales and marketing strategy for lowering the surrender risk, by
chosing the policyholders in function of several criterias.
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3. Surrender factors

3.1. Influence of the Job occupation

All policyholders of the data sample are classified by job occupation. The interest is here to study the
reaction of one class compared to another based on the global final Cox model we build.

Results are summarized below
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MODEL covariates coef exp(coef) p rho
9159 3417|Portfolio -0.07797 0.925 0 0.013 0.44
DeltaS -0.71884 0.487 0 -0.002 0.90
GLOBAL
Age 0.00895 1.009 0 -0.015 0.35
Gender -0.31264 0.732 0 0.015 0.37
UNEMPLOYED 524 229|DeltaS -0.557 0.573 0 0.008 0.91
STUDENT 209 56|Gender -1.184 0.306 0.0055 0.073 0.56
DeltaS -0.839 0.432 0.0027 0.007 0.95
STATE EMPLOYEE (PUBLIC SECTOR) 620 225|Portfolio -0.139 0.870 0.035 0.016 0.80
DeltaS -1.12 0.326 0 -0.149 0.08
SELF-EMPLOYED/SHOPKEEPER (LEGAL ENTITY) 649 202|Portfolio -0.102 0.903 0.01 0.123 0.08
SELF-EMPLOYED/SHOPKEEPER (INDIVIDUAL) 922 365(Portfolio -0.105 0.900 0.03 0.051 0.32
Gender -0.307 0.736 0.029 -0.026 0.62
2806 1200| Delta S -0.6122 0.542 0 0.005 0.87
RETIRED Age 0.0092 1.009 0.0006 0.015 0.59
Gender -0.2897 0.748 0 -0.001 0.97
PRIVATE/INDEPENDENT PRACTICE 616 187|DeltaS -0.841 0.431 0 0.001 0.9
OTHER 314 100| DeltaS -0.8779 0.416 0 0.030 0.76
Age 0.0206 1.021 0.021 -0.105 0.24
EXECUTIVE 309 93| DeltaS -0.9866 0.373 0 -0.019 0.84
Age 0.0203 1.021 0.049 0.039 0.73
1968 670|Portfolio -0.1426 0.867 0 0.043 0.25
EMPLOYEE (PRIVATE SECTOR) DeltaS -0.7472 0.474 0 -0.014 0.71
Age 0.0108 1.011 0.00073 0.033 0.40
Gender -0.3705 0.690 0 0.061 0.11]
COMPANY DIRECTOR 222 90| DeltaS -0.527 0.590 0 0.000 0.89
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- From the global model, we can deduce:

An increase from 1 class to another reduces the surrender risk by 7.5%

An increase of 1% of financial markets has a large impact on the surrender risk, decreasing it
by 52.3%.

An increase of 1 year old on a policyholder increases by 0.9% the chances to surrender
Being a women impacts positively the surrender rate by decreasing it of 26.8%.

- Unemployed persons have a large surrender rate. Indeed, 229 policyholders on a total of
524, e.g. 44% already surrendered at least once, fully or partially their life insurance
policy. Their decision to surrender is mainly driven, in our model, the evolution of
financial markets. However, the need of liquidities is hard to model in this case. Indeed,
in practise, unemployed people are surrendering their life insurance policies in order to
face unemployment and survive.

It could be intresting in this very case to include the unemployment data to see the its
impact on the surrender rate. Indeed, even though the unemployment rate was not
significant on our global model basis, it would make sense it has a more significant
impact here.

- 27% of students already surrendered once their life insurance policy. If they are on
average as reactive to surrender or not as other policyholders within the global model
in case of financial markets movements, men are surrendering a lot more than women.
Indeed, women woud surrender until 70.4% less than men.

- State employees from the public sector are reactive to both financial markets
movements and their level of wealth. The richer they are, the less they surrender (-23%
of chances to surrender from one class of wealth to another)

- Self — employed and shopkeeper, legal entity or individual, are both sensitive in the
same way to their level of wealth. The richer they are, the less the surrender (-10% of
chances to surrender). For idividuals, the gender also has an impact. In this category,
men are more likely to surrender by 27.4%

- Retired policyholders are the most numerous within Camelea. They are sensitive to the
market rates, the age and the gender. The older the policyholder is, the more he
surrenders (+0.9% for one year older). As usual in the study, men surrender 25.2% more
than women.

- “Other” and excutive job occupations are very sensitive to the market risk. An increase
of 1% of financial markets will reduce their will to surrender by respectively 59.4% and
67.3%. The age also drives their decision to surrender. Getting one year older increases
their decision to surrender by 2.1%.
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- Employees from the private sector are senitive to the four covariates of the global
model. The richer they are the less the surrender (-13.3%). An increase of 1% of financial
market reduces their will to surrender by 52.6%, while getting one year older increases
their chances to surrender by 1.1%

- The decision to surrender for company directors is driven by the evolution of financial
markets. An increase of 1% of those will reduce the surrrender risk by 41%.

Whatever the job occupation, most of policyholders manage their policies and their decision
to surrender based on the financial markets movements. Increasing markets will make them
confident and reinvest within their policies while decreasing markets will frighten them and make
them surrender sooner or later.

Job occupations “executive”, “student”, “other”, “state employee (public sector)”, “employee
(private sector)” are the most reactive towards this risk.

Gender has the biggest impact for “student” policyholders, where men surrender a lot more than
women. It is the same conclusion, but in lower proportions, for retired policyholders and employees
from the private sector.

Age has essentially an impact on the willingness to surrender on retired policyholders and
employees from the private sector.

The level of wealth of the portfolio has an impact on the decision to surrender for shop-keeper, legal
and individual, and employees from the private sector.

This highlights that the life insurer has to manage carefully the interest rate he is offering to
its clients. Indeed, market yields impact a lot the policyholder’s decision to surrender or not his
policy.

Conversely, it might worth to target wealthy policyholders, the study showing that the wealthier
they are, the less they surrender. Age does not impact significantly, but marginally the surrender
risk. It makes sense that the older the policyholder gets, the more he retired — especially after 60,
the average age for retirement. We have the same conclusion than the one in 2.4.5. regarding the
gender: Female policyholders surrender less than male policyholders.
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3.2. Influence of financial markets

3.2.1. Camelea historical lapse rate

3.2.1.1. On a monthly basis

The Camelea lapse rate since December 2008 evolved as follows:

Camelea surrender rate
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We can notice on this chart two significant high points, one in early 2009, and another one early
2012. Besides, we can also notice that, starting 2010, the monthly lapse rate osciallate around an

average value of 0.50%.

Let’s have a look now on the market returns at these specific periods of time: We chose here four
MSCI indexes to represent the market (MSCI Equity Europe; MSCI Equity international with Emerging
Markets; MSCI Corporate bonds 7-10 years; MSCI Sovereign bonds 7-10 years). In market values:
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We can notice on the chart two main results

- The market drop resulting of both subprime (circled in red) and debt crisis (circled in black).
- Therising trend of bonds’ investments

This additonal observation highlights what as been previsously shown while fitting the Cox PH
model: Financial markets have a large influence on the lapse rate, and its evolution over time is one
of the main driver of the surrender risk. In case of rising markets, policyholders are more motivated
to remain investing. Conversely, falling markets make them frightened about the future and more
prompt to surrender in order to protect their savings.

Modelling this risk with classical method, as time series or Cox-Ingersol Ross ones, seems not
appropriate here. Indeed, we only have a data set on a monthly basis, which makes the number of
observations to maximum 62 points of observation. There is not enough data to properly calibrate
one of these models on such a few points[27] [28], without speaking of having a projection distored
and biaised. Besides, the subprime crisis and the debt one completely changed the investor’s
behavior: the policyholder became much risk-averse, which makes him surrendering his policy faster
than 2008, in case of a market rate decline higher than usual [29].

3.2.1.2. On a duration basis
The plot of theCamelea lapse rate on a duration basis leads to:

Lapse rate - Duration basis
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We observe a linear trend, which is interesting. Policyholders surrender in proportion to the time
they remain within the Camelea investment product. After four years, the drop is mainly due to the
few numbers of observations we have at our disposal. Indeed, between a 4 and 5 — years duration,
there are only a few contracts within the Camelea portfolio, just launched on the life insurance
market.

This observation is acceptable. Let’s have two policyholders having a life insurance contracts for two
purposes and investing in the same proportions each month. The first wants to buy a car, the second
a house. Respectively, the first policyholder will have enough money to buy his car than the second,
who still need to wait to buy his house.

Based on these two observations, the idea is now to build a surrender model which will depends on
the market rates, and which will return an average lapse rate on a monthly basis for the next 100
months.
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3.3. Modeling a dynamic lapse rate

We would like to model two portfolios, one offering a guatanteed — rate to its policyholders (confer
section 1.5.2.3), and one unit — linked, e.g. with a non guatanteed rate — as the Camelea portfolio.

In order to model the conjectural lapse rate — e.g, as a reminder, the one depending of the market
rates, we use the recommendations from August 2010, relatively to the QIS 5 of Solvency Il [6]. This
methodology is also precognised by the French supervisor (“I’ACP, Autorité de Controle Prudentiel”).

3.3.1. Model assumptions

According to the preliminary studies, the model we have to build should:

- Return a lapse rate function depending on the dynamic lapse rate. This dynamic lapse rate is
based the difference the market rate and the interest one served within the portoflio

- Integrate a dynamic lapse rate in the contract value, in order to have a dynamic value of the
portfolio actualized with the lapse rates.

Based on historical evolution, we previously noticed on the lapse rates a returning-to-average effect
(around 0.50%). We also mention in introduction the problem of modeling the investors’ irrationality
(more represented in the structural part), which a stochastic modeling allows to model, thanks to
the hazard function.

Thus, all these reasons induce us to look once again on a stochastic model.

We model in this section the lapse rate with the Vasicek model: the non-zero probability to have
negative lapse rate has here the main advantage to eventually, on a further study, model top-ups.
The Vasicek model being easy to manipulate thanks to a Gaussian distribution and a short simulation
time, we will also use it to model the market rate.

Under the Vasicek model [30] -proposed in 1977- the only factor is the lapse rate rmodeled under
the shape of a process of Ornstein-Uhlenbeck. Under the filtration(F;), the probability P and the
risk-neutral probabilityQ, follows:

dT‘t = a(b - Tt)dt + O-th

o =1(0)

With

- 13 lapse rate value at the dealing time t

b: lapse rate long-term average
- a:returning speed average; the rate variation between t andt+At
- W;: Q- brownian motion

Eventually, the Vasicek expression can be simplified as:

dr(t) = udt + adW;
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In case of discrete distribution, we will have instead:
r(t+ At) = r(t) + Ar(t + At) = r(t) + a(b — r(t))At + g AW,

A demonstration of the results which will follow can be found in the bibliography references [4] & [5]
and will not be developed in this paper.

For 0 < s < t, the expression of the lapse rate is:
t

7 = 1,65 4 p(1 — e~4E=9)) + af e~ at=Wayy,

N

2
The lapse rates trajectories oscillate between a long-term average, with a volatility equaled tog—a. To

calibrate a model, natural estimators appear:

~

b = average estimator of the historical lapse rate
Besides, if we write the lapse rate as:
rt+At - Tt = a(b - rt)At + JN(O, At)

We can have an estimation of the returning speed average (e.g. the rate variation between
[t; t + At]), the empirical volatility and the average as, with r the lapse rate:

E(resas — 5}

a= =
6 = y/2aVar[r]
b = E[r]

The dynamic lapse rate prevents here the rates from getting too high, due to a maximal and
minimum value set in the model.

We get, based on the sample of Camelea historical lapses.

~

- b=213%
- a=18.96%
- Var[r] =0.012% (average squared deviation from the mean)
- 0=0.68%

3.3.2. Creation of a dynamic surrender rate

In this scenario, we assume that the lapse rate only depends of the difference of the return rate
offered by the market and the one offered by the NPGWM [36].The dynamic lapse rate reflects:
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The will of the policyholder to surrender his policy to reinvest in more profitable investment
solutions because of increasing financial markets — for a guatanteed rate portfolio only; a
non guatanteed rate portfolio, up to factor or a lag, replicates the financial market

The will of the policyholder to reinvest (top —ups) in his policy because of rising markets —
however, the policyholder does not surrender to reinvest his policy somewhere else because
of a thin difference in offered interest rates

The will of the policyholder to surrender because of decreasing markets rates, in order to
protect his savings.

Considering a,y, 6, pdata to determine and defined as follows, the goal is to create a function which
will return [31]:

If A = Benchmark market rate — NPGWM Served rate < y, with y to determine, e.g. if
the rate offered by one of NPGWM products is higher than the one proposed on the market
(calculated with the Vasicek calculation), plus a certain quantity y, then the policyholder is
reinvesting in his policy. This is how we will model top-ups.

If A = Benchmark market rate — NPGWM Served rate > 6, with 8 to determine, e.g if
the rate offered by one of NPGWM products is lower than the one proposed on the financial
markets plus a certain quantity 8, then the policyholder will surrender —partially or fully- his
policy. This is how we will model surrenders.

We can thus define a dynamic model modeling both top-ups and lapses only function of the

evolution of the difference A of the market rate and the life-insurance portfolio served rate.

3.3.3.

3.3.3.1.

If A< a, then lapse,qte = lapsen,in the historical minimum lapse rate (minimum lapse <0,
e.g. maximum top-up rate)

If a <A<y, then lapse,qte = lapsenin X ﬁ_;Z(top—up scenario)
If y<A< 0, then lapse, .. = 0 (absence of portfolio dynamic movements)
If <A< @, then lapse,qie = lapsemgy X 2:—2 (surrendering scenario)

If A>p, then lapse,qte = lapsenyq, (Mmaximum surrender rate)
Surrendering borders

Maximum dynamic lapse rate

Let’s define the maximum value for the lapse rate, with M: the maximum lapse rate value and a: the

probability that the lapse rate gets higher than M.
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In this context:

P(ry>M)=«a
o2
p(x(b3;)>m)=a
2a
M —
P(ROD)>77—|=«a
/\/Za
eg M=>b+ \/%qa, with g, of a normal distribution.

The main advantage of such model is that we will be able to include in our parameterization the
specifications of each insurance product. Indeed:

Dynamic;g = Historical;z X (1 + dynamic)

Annualizing the monthly lapse rate to get the thresholds makes sense: In the insurance business,
insurers are required to have a prudential approach on their risk; expressing the lapse rate on an
annual basis signifies that we consider that the maximal monthly lapse rate will be the same on the
dealing year.

12M = Historical; g X (1 + dynamic,,qy)

o
b+\/7_aqa

. - -1
Historical; pmax

dynamicyg, = 12 X

On a monthly basis, the Historical;gma, Over the last 12 months was 5.28%, which returns a
dynamic maximum lapse rate at 5.604%.

3.3.3.2.  Surrendering thresholds
Another tricky point of this modeling is the determination of the threshold representative of the
moment when policyholders start and end surrendering their policy.

3.3.3.2.1. Starting surrendering point

Basically, we can define a risk premium mt function of the surrender charges and the evolution of A.
However, it has been decided that surrender fees in NPGWM are equal or closed to zero (free-
decision argument towards the policyholder). However, based on a 12 months average on historical
data, we can reasonably assume that, in case of a A value inferior to 1.15% [29], policyholder will not
surrender his policy. We also have to include in the expression of the threshold a stressed interest
rate risk. If we consider g, the volatility of the difference between the benchmark rate and the life
insurance portfolio one, we can express the threshold for which policyholders will start to surrender
his policy as, and with w a coefficient factor:

T = MotivatioNg,rrender + @ X Op (%)

90/119 I Memoire |A — Zacharie Guibert — ISFA 2010



We will assess for now w as the quantity for which the policyholder will not invest in the market

because of a too high volatility. We can reasonably assess for now a volatility of the market rate
around 20% (volatility for corporate bonds around 10%, and equities around 30%[32]). Thus, (*)

becomes:

m=1154+0.2X g,

On a 1000 scenarios basis (variation of 0.10% between 750 and 3000 scenarios), we get as g,
average an amount of 8.12%, which sets to m = 2.774%the moment when policyholders are going
to start surrendering because of higher interest rate offered by the market. As comparison figure,
the inflation rate in the Eurozone in December 2013 oscillates around 0.7% on an annual basis and
around 1.6% in 2013).

3.3.3.2.2.

Ending surrendering point
Life insurance investors have a risk-prudential approach, e.g. they won’t be lured by a high return

with a high volatility. We assess, for now, to 10%the moment when policyholders will stop

surrendering their policy to invest in the financial market [Annex 6]. Inasmuch as insurance products

are supposed, proportionally, to replicate the market, the scenario where the difference between
the market rate and the one offered by NPGWM be above 10% is highly unlikely.

3.3.3.3.

Top-ups borders

Unfortunately, time was too short to model on a properly basis the top-ups. Assuming that top-ups
react as lapse rates is a strong assumption. Indeed, “Loss aversion implies that one who loses $100
will lose more satisfaction than another person will gain satisfaction from a $100 windfall _ Daniel

Kahnemann” [35] [Annex 5]

3.3.3.4. Dynamic lapse rate output
Dynamyj¢ Lapse Rate
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The NPGWM'’s life insurance business offer two types of investments: a guaranteed one and a no

guaranteed one. Besides, a NPGWM product, Camelea, is provided with a stop-loss option in case of
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an excessive fall in the financial market. On a monthly basis, we assume in the modeling that the
policyholder will surrender or reinvest in his policy in the same month.

- If the difference between the benchmark market rate (MSCI) and NPGWM served rate
remains between -2.77% and 2.77%, the conjectural lapse rate is equal to 0.

- If the difference between the benchmark market rate (MSCI) and NPGWM served rate is
equal to 6%, the estimated lapse rate is around 2%

- Conversely, if the difference between the benchmark market rate (MSCI) and NPGWM
served rate is equal to -4%, policyholders will be reinvesting in their life insurance policies by
1.2%. In this scenario, the life insurance policy offers a more profitable return of investment

than the financial markets.
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3.4. Simulation of a Non-guaranteed rate portfolio

Lapse rates do not require a daily modeling, unlike the short term interest rate. Modeling it on a
monthly basis seemed me accurate, implying a discrete version of the Vasicek model. The non-
guaranteed rate model replicates the market (Reasonable assumption: Camelea investors are mainly
investing in a mix between equities (60%), bonds and bond funds (40%)). The lapse rate models here
the policyholder decision to switch his savings from his portfolio to a money-market fund (e.g. a
closed-to-zero guaranteed rate fund).

3.4.1. Assumptions

7,5% Annual average of the market performance

20,0% Annual volatility of the market

0,0833 Pro-rata monthly basis

_ Risk-free rate (in this case, money market fund
Cash Rendement 0,00% returning rate, closed to zero)

P 1000%  Dynamic

RN 277%  Dynamic

FIREN  277%  Dynamic

e 10,00% Dynamic

5,60% Maximum lapse rate value

-5,60% Minimum lapse rate value

1000 Number of simulated scenarios

Historical returns, from 1926 to 2010, for major asset classes in the United States[Annex 6] shows an
average yield for bonds around 6% and 12% for equities, for a standard deviation of 20%.
Considering that European historical returns were slightly under the US ones, assessing an annual
drift of 7.5% with a standard deviation of 20% seems accurate and representative of the actual
market trend.

The cash return for a money-market fund is, as we saw above, closed to zero: in case of a rallying
financial market, the investor reinvests in his portfolio; in case of the opposite scenario, he
surrenders his savings to switch them in a money market fund(e.g. with a cash return equal to zero
to avoid losing more money).

The others values used have been all determined above. However, we won’t present and model in
this note a special scenario for top-ups. We will assume that they act as lapses in case of rising yields
on financial markets.
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3.4.2. Scenario
We express the market return as follows:

Market_returny = In(1 + m) + sd X VdT x dW;

No guaranteed rate simplifies theA expression, which only depends of the market
rateMarket_returnr.

We do have an expression of the dynamic lapse rate based on the formula defined above, which
gives us as a lapse-rate actualized contract value:

Contract_valuer = Contract_valuer_, x elmarketreturnr+In(i+dynamic)]

3.4.3. Non-guaranteed rate scenario outputs
We get as first output the distribution of a discrete Brownian motion, in order to check that it
follows correctly a normal law

Standard deviation distribution

0.16 -
0.14 -
0.12 -
0.10 -
0.08 -
0.06 -
0.04 -
0.02 -
0.00 "
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For this simulated contract, when the market value (in red) increases, policyholders reinvest in their
policy (top-ups); conversely, when it drops, they surrender, in order to protect their savings.

However, this only generates one sample of a contract value. With a VBA code [Annex 8], we
generate 1,000 simulations in order to have averagely a contract value for varying levels of drift and
volatility. We draw below an average contract value based on a sample of 20 contract simulations
for a fixed drift and volatility.

Simulated Paths
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The scenario presented here is extracted for the more likely-scenario on financial markets [Annex 7]:
a drift equaled to 5% with a volatility of 20% [34]. The black line constitutes the average scenario.

We have an average summary of the evolution of the contract value actualized with the dynamic
lapse rate and function of the monthly drift and the standard deviation of the market.
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The output summary is as follows:

WEBS SIMRULATIOMN

Mionthly wWol, Annualized (SDr)

H

RN

0%

— 9,1 a,6 a,a 7.6
= 15,6
= 25,8
— a1,6
= 65,2
=< 100,0
B 150,2
= 221,3
= 20,5
= a456,9
642,41

In dark blue, the more likely scenarios

We do have here a tool to predict the evolution of the contract value according to the monthly
market return and the monthly volatility. Cells in dark blue represent the more likely scenarios
[Annex 5]; the figure colored in white represents the scenario drawn at the top of the page.

The table summarizes an average of the 1,000 contract values simulations, actualized with lapses,
top-ups and market drift function of varying levels of market drift and volatility, after 100 months
(=~ 8 years).

3.4.4. Projection of the lapse rate

Estimated Lapse Rate

60.00%
40.00%
20.00%
0.00%
-20.00%
-40.00%
-60.00%
-80.00%
-100.00%

-120.00% T T T T T T T T T T T T T T T T T T T 1
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Period (Month)

Estimuated Lapse Rate

For the same more likely scenario (1=5% and sd =20%), we observe a decreasing lapse rate,
which is in line with our assumptions. We modeled a rising economic trend of the financial markets.
In this scenario, a negative lapse rate value reflects a top-up. As a consequence, the decreasing
curve signifies an evolution of top-ups over the simulation period. In presence of financial markets
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keeping rising over time, investors do not surrender their policies; at the contrary, thanks to an
economic rising trend, they reinvest in it.

In case of a modelling of decreasing market rates, we would have had an increasing curve,
e.g. an increase of the lapse rate over time.

Note: In the simulation, we notice that a scenario is under -100% (circled in blue). It does not
correspond to a full surrender, but to a top-up, where the policyholder was reinvested, 90 and 95
months after subscribing his policy, more than 100% of his original premium.
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3.5. Simulation of a guaranteed rate portfolio

3.5.1. Scenario

The structure is the same as the one presented above, except for the cash returned: We have here
as main assumptions a guaranteed rate of a certain amount (set it by default for model testing at
5%).

. Risk-free rate (in this case, NPGWM
RendementGaranti 5,00% )
portfolio guaranteed rate)

Every month, when the market rises, the policyholder can surrender5.60% in his contract; when it
decreases, he can reinvest maximum 5.60% of its contract.

Ahas a new expression which also depends of the guaranteed return rate:
Market_returny = In(1 + m) X dT + sd X VdT X dW;
Portfolio_returny = In(1 + guaranteed rate) X dT

A= Market_returny — Portfolio_returny

3.5.2. Outputs

We use the same methodology for the guaranteed-rate outputs as the one previously presented
above (red: market value; blue: contract value).
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Results are not presented as the previous scenario: p=-25% and sd= 0% represents a decreasing yield
trend, implying a scenario with a lot of top-ups, the portfolio guaranteed rate being much more
interesting than the market return . Conversely, for u= 25% and sd= 30%, the market yield is much
more interesting than the guaranteed portfolio return, implying a high lapse rate.

3.5.3. Projection of the lapse rate

We simulated here a contract value actualized with the lapse rate function of the market return
evolution. We calculate the contract value free of lapse rate (e.g. only function of the guaranteed
rate) over the simulation period.

We can now express, for each simulated scenario, the expected lapse rate over time in function of
the both contract value as, for the month n.

Contract value with surrender

LapseRate,,,, i =1-
p projected Contract value without surrender

The black lines represents the average lapse rate of the 20 scenarios dawned.
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Estimated Lapse Rate
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Projected lapse rate for a market return of 5% and a volatility of 20%

The evolution of the lapse rate makes sense considering our assumptions. Indeed, we presumed an
annual return of 5% per year, e.g. a rising trend. Logically, from a rising trend of the market trend
results a rising lapses trend. People are in this scenario surrendering their guatanteed — rate policy
because of more profitable investment solutions offered on financial markets (rising economic
trend). A fixed served rate in an increasing market rates period increases the lapse rate on a
guatanteed rate portfolios, more profitable investments being available on the financial markets.

3.6. Dynamic modelling, Advantages and limits

3.6.1. Advantages

The contract value is only a function of the market rate and requires only a few historical data
(market drift and market volatility, but also lapse rate volatility and drift are necessary to model the
dynamic lapse rate) and attached parameters. The approach is different from an historical one here.
According to the market evolution, we predict what the lapse rate is going to be (indirectly, through
the contract value), while the historical approach assumes investors are always go to act as they
used to do in the past. We have now to calibrate the model with the company data to assess the
lapse rate what the contract actualized with the lapse rate value will be in the future. Thus, the
conjectural lapse rate is distinctly defined.

Moreover, we do not use historical data to draw an assumption on the average lapse rate (e.g. by
default, we do not assume that people surrender or reinvest in their policy for no reasons, because it
does not make economic sense —for instance, assuming an average lapse rate over the whole
simulation period signifies that the product is meant to disappear over time). Instead, we use
historical data to model relationships between lapse rates and market returns.
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3.6.2. Limits

In the model, the policyholder surrenders or reinvests in his policy simultaneously with the market,
which constitutes a strong assumption (policyholders are not all finance-aware for most of them; In
NPGWM, dedicated funds do not represent a large part of the company business). Besides, it
supposes that policyholders surrender in one time its policy, but do not surrenders the month after
in case of a continuous fall of its portfolio. We may need to insert a lag between the time the market
evolution and the insured will to surrender or reinvest in his policy (e.g. look deeper in the investor
behavior [33]).

3.6.3. Conclusion

Our survival analysis showed us that the evolution of financial markets was one of the main driver
regarding the policyholder decision to surrender. Besides, we noticed afterwards a correlation
between market returns (European MSCI market rate) and the Camelea historical surrender rate.
When the difference of both rates is higher than a certain threshold, policyholders start surrendering
(lapses) invest their savings in financial markets (higher yield)in case of rising market or protect them
in case of falling ones.Conversely, when the same difference is lower than another threshold, the
policyholder reinvest in its policy (top-ups) — scenario when the Camelea portfolio offers a higher
investment return than the market or more security (less volatile market).
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4. Conclusion

With the Solvency Il directive, life insurers are compelled to work with a prudential — risk approach.
Under this regulatory framework, they must have a precise mapping of their risks.

The 2013 laspse SCR of PEL highlighted the fact that the lapse rate was one the biggest risks the life
insurer faces. This ranking makes its modelling and understanding essential.

A survival analysis on the Camelea surrender data determined which factors are determinant in the
policyholder decision to surrender or not: While the market rates, the age, the gender, or again the
wealth of a policyholder directly impact the surrender risk, unemployment rate, risk profile ... have
no impact.

Fitting a semi — parametrical model, the Cox Proportional Hazards model, introduced by Cox in 1972,
gave us some interesting results regarding the ability for each job occupation to face the surrender
risk. The study highlighted that the life insurer has to manage carefully the interest rate he is offering
to its clients. Indeed, market yields impact a lot the policyholder’s decision to surrender or not his
policy.

Conversely, it might worth to target wealthy policyholders, the study showing that the wealthier
they are, the less they surrender. Age does not impact significantly, but marginally the surrender
risk. It makes sense that the older the policyholder gets, the more he retired — especially after 60,
the average age for retirement. Finally, Female policyholders surrender less than male policyholders.

Being aware of all these behaviours regarding the surrender risk is an important information for the
life insurer. Indeed, this one will be aware, starting today, and for any new policyholder investing
within the Camelea portfolio, of its tendency to surrender his life insurance portfolio.

A correlation between equity market rates and surrender rates was a motivation to set a model
predicting the surrender rate based on a dynamic lapse rate, function of the company interest
served rate and the market one.

This type of modeling based on a dynamic scenario offers a lot of advantages. Firstly, investors do
not surrender their contract for no reasons based on a scenario with a regular average lapse rate
(underlying economically speaking that the portfolio is meant to disappear over time); they
surrender in reaction of a higher yield on financial markets. Secondly, we do not use historical data
to make an assumption on the average lapse rate but to model a relationship between lapse rates
and market returns. Finally, we can estimate an average lapse trend over a 100 months period based
on the market evolutions.

However, this model also shows its limits. We did not take into account macro data to define an
investor profile as reference, and shock the dynamic lapse rate to model different classes of
investors. Indeed, as we could have seen at the beginning of this chapter, policyholders do not react
similarly in front of the surrender decision, and their socio — professional category has a large impact
on this decision.

Besides, we do not model either the difference between arbitration and lapse decision, the political
or Luxembourg legal hazard on the life insurance rules. These will constitutes the improvements to
bring on the model.
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6. Annexes

6.1. Annex 1: Excell Life irregularities

http://www.commassu.lu/FR/documents/excell-life-international.asp
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16/02/2011  Mesures prises 3 'égard d'EXCELL LIFE INTERNATIONAL S.A (15 février 2011)

19/04/2011  Mon renouvellement des mesures de restriction & l'égard dEXCELL LIFE INTERNATIONAL S A (19 avril
2011)

171112011 Sanctions prises a l'égard d'EXCELL LIFE INTERMATIOMNAL S.A4.(17 novembre 2011)

05/06/2012  Arrété ministériel du 05.06.2012 portant retrait de I'agrément de Excell Lifs International S.A
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6.2. Annex 2: CAA quarterly request ; asset classification on guaranteed-

rate portfolios

Nom du groupe contrepartie

Type de contrepartie

Exposition brute directe

BEI - EIB émetteur public 1
Communauté Européenne émetteur public 2
Autriche émetteur public 3
Pologne émetteur public 4
Pays-Bas émetteur public 5
Danemark émetteur public 6
Finlande émetteur public 7
Luxembourg émetteur public 8
France émetteur public 9
Etats-Unis émetteur public 10
Groupe dont fait partie PRIVATE ESTATE LIFE S.A. émetteurs intragroupe
Nykredit groupe bancaire/conglomérat financier 1
DNB ASA groupe bancaire/conglomérat financier 2
RBC groupe bancaire/conglomérat financier 3
Nordea groupe bancaire/conglomérat financier 4
Danske Bank groupe bancaire/conglomérat financier 5
Dexia groupe bancaire/conglomérat financier 6
GE CAPITAL EURO FUNDING _ Autre groupe bancaire groupe bancaire/conglomérat financier 7
ING groupe bancaire/conglomérat financier 8
SWEDBANK HYPOTEK AB _ Autre groupe bancaire groupe bancaire/conglomérat financier 9
L-BANK BW FOERDERBANK _ Autre groupe bancaire groupe bancaire/conglomérat financier 10

groupe de (ré)assurances

groupe de (ré)assurances

groupe de (ré)assurances

groupe de (ré)assurances

groupe de (ré)assurances

groupe de (ré)assurances

groupe de (ré)assurances

groupe de (ré)assurances

groupe de (ré)assurances

groupe de (ré)assurances
Autobahn Schnell AG autres 1
Volkswagen autres 2
TDC AS autres 3
Carlsberg Breweries autres 4
Glaxosmithkline Capital autres 5
Asfinag autres 6
Total Capital SA autres 7
NV Nederlandse Gasunie autres 8
Mondelez International autres 9
RWE Finance BV autres 10

Exposition figures have been changed
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6.3. Annex 3: CAA Solvency Il reporting spreadsheet
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6.4. Annex 4: Survival model, R code

Hit#HH#H##H#HSurvival Analysis

#i### 1 st Data set ####

dat <-
read.csv("C:/Users/Zachou/Desktop/FINAL/
New/COXF3.csv",header=T, sep=";")
summary(dat)

#library(simPH)

library(survival)

library(KMsurv)

## Data illustration

dat[200:205,1:14]

#itcorrelation

cor(dat[,4:14])

HitHHHHH Fitting a Cox model #itH##H#H#
##Cox model

N <- 9159

MO <- coxph(Surv(Duration,
Event)~Portfolio+Still+DeltaU+DeltaS+Risk+J
ob+Age+Gender,data=dat)

MO

summary(MO0)

##Cox model with significant covariates

MO <- coxph(Surv(Duration,
Event)~Portfolio+Still+DeltaS+Age+Gender,d
ata=dat)

MO

summary(MO0)

#itt Survival & cumulative hazard ####

#itsurvival function _ Kaplan -Meier
estimate

EMO <- survfit(MO)

quantile(EMO, probs=c(0.25,0.5,0.75),
conf.int=FALSE)

#pseudo-observation
plot(EMO,main="Survival function within

the Camelea protfolio", xlab="Time (in
years)", ylab="Survival", lwd=2, col="green")

## Impact of surrenders ##

#Partial surrenders

Data_Still <- subset(dat,Still==0)

survie_ptf <-
Surv(Data_StillSDuration,Data_StillSEvent)

MO_Still <-
coxph(survie_ptf~Portfolio+DeltaS+Age+Ge
nder, data=Data_Still)

MO_Still

EMO_Still <- survfit(MO_Still)

#Full surrenders

Data_Not <- subset(dat,Still==1)

not_ptf <-
Surv(Data_NotS$Duration,Data_NotSEvent)

MO_Not <-
coxph(not_ptf~Portfolio+DeltaS+Age+Gend
er, data=Data_Not)

MO_Not

EMO_Not <- survfit(MO_Not)

# Survival plot

plot(EMO,main="Survival function: Impact of
surrenders", xlab="Time (in years)",
ylab="Survival", lIwd=2, col="green")
lines(EMO_Still, col="red2")

lines(EMO_Not, col="blue2")

legend (x="bottomleft", lwd=2,
col=c("green","red","blue"),
legend=c("Global Survival

function","Survival - Partial surrenders
only","Survival - Full surrenders only"))

## Cumulative hazard

#Cumulative bazeline hazard

expcoef <- exp(coef(MO0))

Lambdal <-basehaz(MO, centered = FALSE)

summary(Lambdal)

LambdalA <- expcoef[1]*LambdalShazard
#savings

LambdalB <- expcoef[3]*LambdalS$hazard
#SXS5T

LambdalC <- expcoef[4]*Lambdal$hazard
#Age

LambdalD <- expcoef[5]*Lambdal$hazard
#Gender

plot(hazard ~ time, main = "Cox PH Estimate

- Cumulative hazard", type="s",
xlab="Duration", ylab="Cumulative hazard",
ylim=¢(0,10),lwd=4, data=Lambda1l)

lines(LambdalStime, LambdalA, lwd=2,
col="red")

lines(Lambda1$time, LambdalB, Iwd=2,
col="green")

lines(LambdalStime, Lambda1lC, Iwd=2,
col="blue")

lines(LambdalStime, Lambda1lD, lwd=2,
col="orange")

legend (x="topleft", Iwd=2,
col=c("black","red","green","blue",
"orange"), legend=c("pseudo-

observation","Portfolio","DeltaS","Age","Ge
nder"))

H#iHH#HH# Checking COX PH model
assumptions #iH#H#H#

# Schoenfeld residuals

coxres <- cox.zph(MO0)

par(mfrow=c(3,2))

plot(coxres, main="Shoenfeld residuals")

cox.zph(MO0)

##martingale residuals vs non-dichotomic
covariates

res.m <- residuals(MO,type="martingale")

res.m

par(mfrow=c(1,1))

X <-as.matrix(dat[,c("Still","Deltas")])
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for (jin 1:2) {
plot(X[,j],res.m,xlab=c("Still","Market rate
movements")[j],ylab="residuals",
main="Martingale residuals")

abline(h=0,lty=2,col="red")

lines(lowess(X[,j],res.m,iter=0),
col="green2", lwd=2)}

# Partial residuals

b <- coef(MO0)[c(2,3)]

par(mfrow=c(1,1))

for (jin 1:2) {

plot(X[,jl, b[j1*X[,j]+res.m, main="Link:
exponential test", xlab=c("Still","Market
rate movements")[j],

ylab="component+residuals")

abline(Im(b[j]*X[,jl+res.m~X[,jl), Ity=2,
col="red2")

lines(lowess(X[,j],b[j1*X[,j]+res.m,iter=0),
col="green2", Iwd=2)}

#DfBeta

DFMO <- residuals(MO, type='dfbeta’)

par (mfrow=c(2,3))

for (jin 1:5) {

plot(DFMO(,j], ylab=names(coef(M0))[j])

abline(h=0,Ity=2, lwd=2,col="red2")}

Time dependent covariates

HitHH#H## 2 st Data set ####H#H#

dat <-
read.csv("C:/Users/Zachou/Desktop/FINAL/
New/COXT1.csv",header=T, sep=";")
summary(dat)

library(survival)

dat[200:205,1:11]

## fitting a Cox model ##

MO <- coxph(Surv(start,stop,

Event)~Portfolio+DeltaS+Age+Gender,data=
dat)

MO

summary(MO0)

## Check CoxPH assumptions ##

#Schoenfeld residuals

cox.zph(MO)

#Obs# Too many classes in Savings => need
to redefine the covariate

#DfBeta residuals

DFMO <- residuals(MO, type='dfbeta')

par (mfrow=c(2,2))

for (jin 1:4) {

plot(DFMO],j], ylab=names(coef(MO0))[j],
main="DfBeta residuals")

abline(h=0,Ity=2, lwd=2,col="red2")}

HiHHHHHE 3 rd Data set #it###H##H

## Recoded Portfolio covariates into 4
classes

dat <-
read.csv("C:/Users/Zachou/Desktop/FINAL/
New/COXT2.csv",header=T, sep=";")

summary(dat)

library(survival)

## Fitting a Cox model ##

MO <- coxph(Surv(start,stop,
Event)~Portfolio+DeltaS+Age+Gender,data=
dat)

MO

summary(MO0)

## Checking assumptions ##

#Schoenfeld residuals

cox.zph(MO)

#good results: no time dependent
covariates: HP verified

#DfBeta residuals

DFMO <- residuals(MO, type='dfbeta’)

par (mfrow=c(2,2))

for (jin 1:4) {

plot(DFMOL,j], ylab=names(coef(MO0))[j],
main="DfBeta residuals")

abline(h=0,Ity=2, lwd=2,col="red2")}

#i##### Study on Jobs

###)OB1

datl <-
read.csv("C:/Users/Zachou/Desktop/FINAL/
New/JobA/Jobl.csv",header=T, sep=";")
M1 <- coxph(Surv(start,stop,
Event)~Portfolio+Still+DeltaS+Age+Gender,
data=dat1)

M1

summary(M1)

#0UT

M1 <- coxph(Surv(start,stop, Event)~Delta$,
data=datl)

M1

cox.zph(M1)

###)0B2

dat2 <-
read.csv("C:/Users/Zachou/Desktop/FINAL/
New/JobA/Job2.csv",header=T, sep=";")
M2 <- coxph(Surv(start,stop,
Event)~Portfolio+Still+DeltaS+Age+Gender,
data=dat2)

M2

summary(M2)

#OUT

M2 <- coxph(Surv(start,stop,
Event)~Gender+DeltaS, data=dat2)

M2

cox.zph(M2)
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###)0B3

dat3 <-
read.csv("C:/Users/Zachou/Desktop/FINAL/
New/JobA/Job3.csv", header=T, sep=";")
M3 <- coxph(Surv(start,stop,
Event)~Portfolio+Still+DeltaS+Age+Gender,
data=dat3)

M3

#OUT

M3 <- coxph(Surv(Duration,
Event)~Portfolio+DeltaS, data=dat3)

M3
summary(M3)

cox.zph(M3)

###)0B4

dat4 <-
read.csv("C:/Users/Zachou/Desktop/FINAL/
New/JobA/Job4.csv",header=T, sep=";")
M4 <- coxph(Surv(start,stop,
Event)~Portfolio+Still+DeltaS+Age+Gender,
data=dat4)

e

#OUT

M4 <- coxph(Surv(Duration,
Event)~Portfolio, data=dat4)

M4
summary(M4)

cox.zph(M4)

###)OB5

dat5 <-
read.csv("C:/Users/Zachou/Desktop/FINAL/
New/JobA/Job5.csv", header=T, sep=";")
M5 <- coxph(Surv(start,stop,
Event)~Portfolio+Still+DeltaS+Age+Gender,
data=dat5)

M5

#OUT

M5 <- coxph(Surv(Duration,
Event)~Portfolio+Gender, data=dat5)

M5

summary(M5)

cox.zph(M5)

###)0B6

dat6 <-
read.csv("C:/Users/Zachou/Desktop/FINAL/
New/JobA/Job6.csv",header=T, sep=";")
M6 <- coxph(Surv(start,stop,
Event)~Portfolio+Still+DeltaS+Age+Gender,
data=dat6)

M6

#OUT

M6 <- coxph(Surv(start,stop,
Event)~DeltaS+Age+Gender, data=dat6)

Mé

cox.zph(M6)

###J0B7

dat7 <-
read.csv("C:/Users/Zachou/Desktop/FINAL/
New/JobA/Job7.csv",header=T, sep=";")
M7 <- coxph(Surv(start,stop,
Event)~Portfolio+Still+DeltaS+Age+Gender,
data=dat7)

M7

#OUT

M7 <- coxph(Surv(start,stop, Event)~DeltaS,
data=dat7)

M7

cox.zph(M7)

###JOB8

dat8 <-
read.csv("C:/Users/Zachou/Desktop/FINAL/
New/JobA/Job8.csv",header=T, sep=";")
M8 <- coxph(Surv(start,stop,
Event)~Portfolio+Still+DeltaS+Age+Gender,
data=dat8)

M8

#OUT

M8 <- coxph(Surv(start,stop,
Event)~DeltaS+Age, data=dat8)

M8

summary(M8)

cox.zph(M8)

###JOB9

dat9 <-
read.csv("C:/Users/Zachou/Desktop/FINAL/
New/JobA/Job9.csv",header=T, sep=";")
M9 <- coxph(Surv(start,stop,
Event)~Portfolio+Still+DeltaS+Age+Gender,
data=dat9)

M9

#OUT

M9 <- coxph(Surv(start,stop,
Event)~DeltaS+Age, data=dat9)

M9

summary(M9)

cox.zph(M9)

###JOB10

dat10 <-
read.csv("C:/Users/Zachou/Desktop/FINAL/
New/JobA/Job10.csv",header=T, sep=";")
M10 <- coxph(Surv(start,stop,
Event)~Portfolio+Still+DeltaS+Age+Gender,
data=dat10)

M10

#OUT

M10 <- coxph(Surv(start,stop,
Event)~Portfolio+DeltaS+Age+Gender,
data=dat10)

M10

summary(M10)

cox.zph(M10)

###)OB11

dat11 <-
read.csv("C:/Users/Zachou/Desktop/FINAL/
New/JobA/Job11.csv",header=T, sep=";")
library(survival)

M11 <- coxph(Surv(start,stop,
Event)~Portfolio+Still+DeltaS+Age+Gender,
data=dat11)

M11

H#OUT

112/119 |

Memoire IA — Zacharie Guibert — ISFA 2010



M11 <- coxph(Surv(start,stop,
Event)~DeltaS, data=dat11)

M11

summary(M11)

cox.zph(M11)

#it## Fitting AFT model

HiHH#

dat <-
read.csv("C:/Users/Zachou/Desktop/FINAL/
New/COXF3.csv",header=T, sep=";")
summary(dat)

library(survival)

attach(dat)

##t#Testing parametric models over data
AFTO_1 <- survreg(Surv(Duration,
Event)~Portfolio+DeltaS+Age+Gender,
data=dat, dist="lognormal")
summary(AFT0_1)

AFTO_2 <- survreg(Surv(Duration,
Event)~Portfolio+DeltaS+Age+Gender,
data=dat, dist="weibull")
summary(AFT0_2)

AFTO_3 <- survreg(Surv(Duration,
Event)~Portfolio+DeltaS+Age+Gender,
data=dat, dist="loglogistic")
summary(AFTO0_3)

AFTO_4 <- survreg(Surv(Duration,
Event)~Portfolio+DeltaS+Age+Gender,
data=dat, dist="gaussian")
summary(AFTO0_4)

AFTO_5 <- survreg(Surv(Duration,
Event)~Portfolio+DeltaS+Age+Gender,
data=dat, dist="exponential")
summary(AFT0_5)

AFTO_6 <- survreg(Surv(Duration,
Event)~Portfolio+DeltaS+Age+Gender,
data=dat, dist="t")

summary(AFT0_6)

AFTO_7 <- survreg(Surv(Duration,
Event)~Portfolio+DeltaS+Age+Gender,

data=dat, dist="extreme")

summary(AFTO0_7)

##t# Model comparison

anova(AFTO_1,AFTO_2,AFTO_3,AFTO_4,AFTO
_5, AFTO_6, AFTO_7)

## => model selected: weibull (AIC test;
lowest value)

HUHHHHI S Parametrical
Analysis

HHHHHHHHHHHHHH

## Weibull AFT model

weibull.aft <- survreg(Surv(Duration,
Event)~Portfolio+DeltaS+Age+Gender,

data=dat, dist="weibull")

summary(weibull.aft)

#DfBetas

DFMO <- residuals(weibull.aft,
type='dfbeta’)

par (mfrow=c(2,2))

for (jin 1:4) {

plot(DFMO(,j], ylab=names(coef(MO))[j],
main="Beta residuals")

abline(h=0,lty=2, col="red")}

HitHHI#HE Survival analysis ittt

## Estimated Survival curves ##

par(mfrow=c(1,1))

#Intercept

curve(pweibull(x,scale=exp(coef(weibull.aft)
[1]), shape=1/weibull.aftSscale,
lower.tail=FALSE),from=0,
to=max(dat$SDuration), col="black", lwd=5,
main="Survival function"
,ylab=expression(hat(S)(t)), xlab="Time(in
years)")

#Portfolio

curve(pweibull(x,scale=exp(coef(weibull.aft)
[1]+coef(weibull.aft)[2]),
shape=1/weibull.aft$scale,
lower.tail=FALSE),from=0,
to=max(datS$Duration), col="green2",add=T

)

#DeltaS

curve(pweibull(x,scale=exp(coef(weibull.aft)
[1]+coef(weibull.aft)[4]),
shape=1/weibull.aft$scale,
lower.tail=FALSE),from=0,
to=max(dat$Duration), col="blue2",add=T)

#Age

curve(pweibull(x,scale=exp(coef(weibull.aft)
[1]+coef(weibull.aft)[5]),
shape=1/weibull.aft$scale,
lower.tail=FALSE),from=0,
to=max(dat$Duration),
col="yellow2",add=T)

#Gender

curve(pweibull(x,scale=exp(coef(weibull.aft)
[1]+coef(weibull.aft)[6]),
shape=1/weibull.aft$scale,
lower.tail=FALSE),from=0,
to=max(datSDuration), col="red2",add=T)

legend (x="bottomleft", lwd=2,
col=c("black","green","blue","yellow",
"red"), legend=c("pseudo-
observation","Portfolio","DeltaS","Age","Ge
nder"))

## Plotting Estimated Weibull densities ##

curve(dweibull(x,
scale=exp(coef(weibull.aft)[1]),shape=1/wei
bull.aft$scale), from=0,
to=max(datSDuration),
ylab="Density",ylim=c(0,0.4),
xlab="Duration",main="Estimated Weibull
densities",axes=F, lwd=5, col="black")

axis(1,cex.axis=.8)

axis(2,cex.axis=.8)

box()

curve(dweibull(x,
scale=exp(coef(weibull.aft)[1]+coef(weibull.
aft)[2]),shape=1/weibull.aft$scale), from=0,
to=max(dat$Duration), add=T, col="red2")

curve(dweibull(x,

scale=exp(coef(weibull.aft)[1]+coef(weibull.
aft)[4]),shape=1/weibull.aft$scale), from=0,
to=max(datS$Duration), add=T,col="green2")

curve(dweibull(x,
exp(coef(weibull.aft)[1]+coef(weibull.aft)[5]
),shape=1/weibull.aftSscale), from=0,
to=max(datSDuration),
add=T,col="yellow2")

curve(dweibull(x,
exp(coef(weibull.aft)[1]+coef(weibull.aft)[6]
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),shape=1/weibull.aftSscale), from=0,
to=max(dat$SDuration),add=T,col="blue2")

legend (x="topleft", Iwd=2,
col=c("black","red","green","yellow",
"blue"), legend=c("pseudo-

observation","Portfolio","DeltaS","Age","Ge
nder"))

## Plotting estimated hazard function ##

curve(dweibull(x,
scale=exp(coef(weibull.aft)[1]),shape=1/wei
bull.aftSscale)/pweibull(x,scale=exp(coef(we
ibull.aft)[1]),shape=1/weibull.aft$scale,
lower.tail=FALSE), from=0,
to=max(datSDuration), ylab="Hazard",
xlab="Duration",main="Estimated hazard
function",axes=F, Iwd=5, col="black")

axis(1,cex.axis=.8)
axis(2,cex.axis=.8)
box()

curve(dweibull(x,
scale=exp(coef(weibull.aft)[1]+coef(weibull.
aft)[2]),shape=1/weibull.aft$scale)/pweibull
(x,scale=exp(coef(weibull.aft)[1]+coef(weibu
Il.aft)[2]),shape=1/weibull.aftSscale,
lower.tail=FALSE), from=0,
to=max(dat$Duration), add=T, col="red2")

curve(dweibull(x,
scale=exp(coef(weibull.aft)[1]+coef(weibull.
aft)[4]),shape=1/weibull.aft$scale)/pweibull
(x,scale=exp(coef(weibull.aft)[1]+coef(weibu
Il.aft)[4]),shape=1/weibull.aftSscale,
lower.tail=FALSE), from=0,
to=max(dat$Duration), add=T,
col="green2")

curve(dweibull(x,
scale=exp(coef(weibull.aft)[1]+coef(weibull.

aft)[5]),shape=1/weibull.aft$scale)/pweibull
(x,scale=exp(coef(weibull.aft)[1]+coef(weibu
Il.aft)[5]),shape=1/weibull.aftSscale,
lower.tail=FALSE), from=0,
to=max(dat$Duration), add=T,
col="yellow2")

curve(dweibull(x,
scale=exp(coef(weibull.aft)[1]+coef(weibull.
aft)[6]),shape=1/weibull.aft$scale)/pweibull
(x,scale=exp(coef(weibull.aft)[1]+coef(weibu
Il.aft)[6]),shape=1/weibull.aftSscale,
lower.tail=FALSE), from=0,
to=max(dat$Duration), add=T, col="blue2")

legend (x="topleft", Iwd=2,
col=c("black","red","green","yellow",
"blue"), legend=c("pseudo-
observation","Portfolio","DeltaS","Age","Ge

nder"))
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6.5. Annex 5: The loss aversion effect; The investor psychology

http://en.wikipedia.org/wiki/Loss aversion
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http://en.wikipedia.org/wiki/Loss_aversion

6.6. Annex 6: Market evolutions (Ibbotson)

FIGURE 2: HISTORICAL RETURNS FROM EQUITIES ARE HIGH AND VOLATILE

Historical U.S. capital markets line
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Source: Dimson et al., Tnumph of the Optimists (2000), Ibbotson Associates (2012), PIMCO cakulations
Note: Cash equivalents = 3-month Treasury bills; Inflation = U.S. CPJ; Treasury bonds = 10-20 yrs. maturity Treasuries; Equities = S&P 500

The guaranteed rate of an insurance portfolio is averagely set on the return of sovereign bonds yield.
This chart supports the hypothesis that the difference A between the benchark rate and the served
one can not be (in average) be above 10%.
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6.7. Annex 7: Ibbotson Index Series, historical returns

Table 1. Ibbotson Index Series: Summary Statistics of Annual
Total Return, 1926-2010

Geometric  Arithmetic Standard

Series Mean Mean Deviation
Large Company Stocks 9.9% 11.9% 20.4%
Small Company Stocks 12.1 16.7 32.6
Long-Term Corporate Bonds 5.9 6.2 8.3
Long-Term Government Bonds 5.5 5.9 9.5
Intermediate-Term Government Bonds 54 5.5 5.7
U.S. Treasury Bills 3.6 3.7 3.1
Inflation 3.0 3.1 4.2

Source: Ibbotson® SBBI®, 2011 Classic Yearbook: Market Results for Stocks, Bonds, Bills,
and Inflation, 19262010 (Chicago: Morningstar, 2011).

117/119 I Memoire |A — Zacharie Guibert — ISFA 2010



6.8. Annex 8: Dynamic lapse rate model, VBA Code

6.8.1. Non guaranteed rate scenario

Dim BR, FGR, a, b, g, d, MvMax, MvMin,
Dynamic, ContractValue,
MeanContractValue, Mu, SD, z, V1, V2 As
Double

Dim i, j, ColNum, RowNum, NumRunsAs
Integer

Worksheets("Camelea").Range("N4:Q14").Cl
earContents

Worksheets("Camelea").Range("AD3:AW10
2").ClearContents

NumRuns =
Worksheets("Camelea").Range("B12").Value

FGR =
Worksheets("Camelea").Range("B5").Value

FGR = Log(1 + FGR) / 12

a=
Worksheets("Camelea").Range("B6").Value

b=
Worksheets("Camelea").Range("B7").Value

g =
Worksheets("Camelea").Range("B8").Value

d=
Worksheets("Camelea").Range("B9").Value

MvMax =
Worksheets("Camelea").Range("B10").Value

MvMin =
Worksheets("Camelea").Range("B11").Value

For RowNum =4 To 14

Mu =
Worksheets("Camelea").Cells(RowNum,
13).Value

For ColNum =14 To 17

SD = Worksheets("Camelea").Cells(3,
ColNum).Value

MeanContractValue = 0

For j=1ToNumRuns

ContractValue = 100

Fori=1To 100

'Generate normal random variable

z=2

Do Whilez>=1

V1=2*Rnd-1

V2=2*Rnd-1

z=V1r2+V212

Loop

z=5qr(-2 * Log(z) / 2)

z2=V2*z

'Simulate Prices

BR =Log(1+Mu)/12+SD *Sqr(1/12) *z

If BR - FGR < a Then

Dynamic = MvMax

Else

If BR-FGR < b Then

Dynamic = MvMax * (BR - FGR
-b)/(a-b)

Else

If BR - FGR < g Then

Dynamic=0

Else

If BR - FGR < d Then

Dynamic = MvMin * (BR -
FGR-g)/(d-g)

Else

If BR - FGR >d Then

Dynamic = MvMin

End If

End If

End If

End If

End If

Dynamic = Dynamic * (-1)

ContractValue = ContractValue * Exp(BR +
Log(1 + Dynamic))

Ifj <21 Then

If RowNum =10 Then

If ColNum = 16 Then

Worksheets("Camelea").Cells(i + 2, j +
29).Value = ContractValue

End If

End If

End If

Next i

MeanContractValue = MeanContractValue +
ContractValue

Next j

MeanContractValue = MeanContractValue /
NumRuns

Worksheets("Camelea").Cells(RowNum,
ColNum).Value = MeanContractValue

Next ColNum

Next RowNum

End Sub
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6.8.2. Guaranteed rate scenario

Dim BR, FGR, a, b, g, d, MvMax, MvMin, ContractValue = 100
Dynamic, ContractValue,
MeanContractValue, Mu, SD, z, V1, V2 As

Double

Fori=1To 100

'Generate normal random variable
Dim i, j, CoINum, RowNum, NumRunsAs

Integer z=2
Worksheets("Garanti").Range("N4:Q14").Cle Do Whilez>=1
arContents

V1=2*Rnd-1
Worksheets("Garanti").Range("AD3:AW102
").ClearContents V2=2*Rnd-1
NumRuns = z=V1A2+V212
Worksheets("Garanti").Range("B12").Value

Loop

FGR =
Worksheets("Garanti").Range("B5").Value z=5qr(-2 * Log(z) / 2)
FGR = Log(1 + FGR) / 12 z=V2*z

a= 'Simulate Prices
Worksheets("Garanti").Range("B6").Value

BR = Log(1 + Mu) /12 +SD * Sqr(1/
b= 12) *z
Worksheets("Garanti").Range("B7").Value

If BR - FGR < a Then
g=
Worksheets("Garanti").Range("B8").Value Dynamic = MvMax
d= Else
Worksheets("Garanti").Range("B9").Value

If BR - FGR < b Then

MvMax =
Worksheets("Garanti").Range("B10").Value Dynamic = MvMax * (BR - FGR
-b)/(a-b)
MvMin =
Worksheets("Garanti").Range("B11").Value Else
For RowNum =4 To 14 If BR - FGR < g Then
Mu = Dynamic =0
Worksheets("Garanti").Cells(RowNum,
13).Value Else

For ColNum =14 To 17 If BR - FGR < d Then

SD = Worksheets("Garanti").Cells(3,
ColNum).Value

Dynamic = MvMin * (BR -
FGR-g)/(d-g)

MeanContractValue = 0 Else

For j=1ToNumRuns If BR - FGR > d Then

Dynamic = MvMin

End If

End If

End If

End If

End If

ContractValue = ContractValue * Exp(Log(1
+ FGR) + Log(1 + Dynamic))

If j <21 Then

If RowNum = 10 Then

If ColNum = 16 Then

Worksheets("Garanti").Cells(i + 2, j +
29).Value = ContractValue

End If

End If

End If

Next i

MeanContractValue = MeanContractValue +
ContractValue

Next j

MeanContractValue = MeanContractValue /
NumRuns

Worksheets("Garanti").Cells(RowNum,
ColNum).Value = MeanContractValue

Next ColNum

Next RowNum

End Sub
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