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Abstract (version Française) 
 

Mots-Clés: Solvabilité II, Taux de rachat, Risque de Rachat, CAA (Commissariat aux 

Assurances), CSSF (Commission de Surveillance du Secteur Financier), PVFP (Projected Value 

of Future Profits), SCR (Solvency Capital Requirement), ALM (Asset & Liability Management), 

fonction de hasard, modèle de Vasicek, modèle semi – parametrique, modèle de Cox à 

hasards proportionels, Analyse de survie, modèle parametrique, estimateur de Kaplan-

Meier, comportement de l’assuré, taux de marché, taux de rachat dynamique 

 

Directement lié aux réserves, stratégie ALM et résultats finaux de l’assureur, le rachat est un 

des risques les plus élevés auquel l’assureur doit faire face. C’est pourquoi la modélisation de ce 

risque, de la manière la plus proche possible de la réalité, de façon à l’anticiper et le comprendre, est 

essentielle. En effet, un scenario haussier ou baissier de ce taux de rachat a des conséquences 

directes sur les flux futurs, actif et passif, de l’assureur. 

Ce mémoire vise à comprendre et determiner les facteurs de rachat qui poussent les assurés 

détenteurs d’un contrat en unités de compte au sein d’une compagnie d’assurance vie 

luxembourgeoise à racheter, de manière totale ou partielle, leur police d’assurance – vie. Une 

analyse de survie sera realisé sur un portefeuille donné afin de déterminer l’impact de ces rachats 

sur la duration globale du portefeuille. Cela debouchera sur une étude approfondie de l’influence de 

chaque covariable sur le risque de rachat, ainsi que les forts débouchés aussi bien marketing que 

« risk – management »  d’une telle analyse. Enfin, nous etudierons quels sont les facteurs de rachats 

en fonction des catégories socio – professionnelles des assurés, et les possibilités de modéliser ce 

phénomène via un taux de rachat dynamique. 

Dans une première partie, nous traiterons de l’aspect réglementaire et prudentiel sur la 

place financière luxembourgeoise, tout en mentionnant ses spécificités. Nous présenterons 

également l’entreprise d’assurance – vie, NPG Wealth Management, au sein de laquelle ce mémoire 

a été réalisé. 

Dans une seconde partie, nous adapterons un modèle de survie semi – paramétrique à nos données 

de rachat, et ainsi étudier les principaux pilotes de la décision de rachat de la part de l’assuré. 

Enfin, nous nous intéresserons à l’impact des différents facteurs de rachats au sein des différentes 

catégories socio – profesionelles des assurés de l’échantillon, et à la construction d’un modèle de 

prédiciton du taux de rachat. Ce modèle sera  basé sur  un taux de rachat dynamique, qui aura pour 

but d’illustrer l’influence de l’évolution des taux de marché sur le taux de rachat observé au sein du 

portefeuille d’assurance – vie étudié. 
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Abstract (English version) 

 

Key words :Solvency II, Lapse rate, Surrender risk, CAA (Commissariat aux Assurances), CSSF 

(Commission de Surveillance du Secteur Financier),PVFP (Projected Value of Future Profits), 

SCR (Solvency Capital Requirement), ALM (Asset & Liability Management), hazard function, 

Vasicek model, Semi – parametrical model, Cox PH model (Proportional Hazards), Survival, 

parametrical model, Kaplan-Meier estimate, policyholder behaviour, market rates, dynamic 

lapse rate, contract value 

 

Directly connected to the insurer reserves, ALM strategy and performance final results, the 

surrender act is among the major risks a life insurer faces. In the actual prudential – risk approach 

regulatory framework, modeling this risk as proper as possible in order to anticipate them makes 

sense: a bullish or bearish interest rates scenario will have a direct consequence in terms of asset 

and liability management and stock of reserves. The better insurers would be able to model the 

surrender rates on their portfolios, the better they would be able to anticipate their own financial 

cashflows & liabilities. 

 

This paper aims to determine which factors incite the policyholder to surrender or not, and in 

which proportions, within a life insurance portfolio. A survival analysis will be done in order to assess 

the impact of surrenders on the global portfolio duration.  The sensitivity of each covariate on the 

surrender risk will be studied deeply afterwards. This will lead us at the end to draft a dynamic 

surrender model and describe a risk policyholder profile based on thepolicyholder job occupation. 

 

In the first place, after a presentation of the regulatory framework in Luxembourg and NPG 

Wealth Management,  we will get interested, through a survival analysis, to the variables which 

trigger the surrender decision. We will fit, to the portfolio data a semi – parametrical model – the 

Cox proportional hazards model, and determine the influent covariates. Hence, we will be able to 

determine how policyholders surrender their life insurance policy, and in which conditions.  

In the second place, we will see that, in function of the job occupation, policyholders do not react 

equally in front of the decision to surrender.  This study will indicate the type of profile which is the 

less susceptible to surrender, hence a decrease of the surrender risk for the life insurer 

Finally, we will see the large impact of the evolution of financial market rates on the decision to 

surrender. In this sense, we will build a dynamic surrender model, in order to assess a qualitative 

prediction of what the surrenders would be, on a duration basis, over the next 100 months. 
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Introduction 
 

The life insurance industry in Luxembourg is profitable business, with more than €20 billion of 

reserves as of 2013. Thanks to unique investment vehicles in Europe, this business attracts life-

insurance policyholders from all around the globe. The life insurance business benefits from an 

advantageous legal framework, which largely explains its popularity. Conversely, the insurer faces 

some risks all along the lifetime of a life –insurance policy. On one side, the market risks (bonds, 

equities, currency, real estate, counterparty ...); on the other side, human risks (mortality, surrender 

...).  

In the actual regulatory framework, insurers have to anticipate and know their risks, in order to be 

able to honor their commitments to the policyholders, remain solvent. Among these risks, the 

surrender risk is one of the biggest the life insurer has to face. 

Several things might induce people to surrender their own life insurance portfolio. The first one, 

more financial, is depending on the gap between the benchmark market rate and the credited rate 

on the insurance product via a double S-curve. The second one is more “human”, depending on 

macro-economic variables. The “human” aspect of the structural rate (e.g. the investors’ 

irrationality) makes this rate difficult to model, predict and assess.  

Others surrendering factors are harder to assess, mainly because of a lack of data: For instance, 

since the 2008 sub primes crisis, more and more governments are hunting down tax evasion and tax 

heavens. The recent declarations (in March 2013) of Luxembourg to think about more transparency 

frightened some investors, who surrendered their portfolios in order to not be caught by their 

countries’ authorities.  

Modeling the conjectural surrender is not completely related to the world financial situation. In 

2009-2010, life insurance investors did not surrender massively their portfolios, while bankruptcies 

and saving plans headlined. Conversely, it has been observed that investors become more attentive 

as soon as their portfolio’s performances are compromised. Besides, hypothesis regarding surrender 

rates can have a huge impact on insurance company’s results if they’re not correct: Anti-selection, 

randomness, rate risk (when the insurer has to borrow money to reimburse the surrender value to 

the investor) … are among the surrender risks the insurer has to model and anticipate.  

After the sub-primes crisis, European authorities set up a new regulatory framework, Solvency II. 

This new directive compelled life insurers to have a very clear idea of the risks they are facing and 

how sensitive they are towards them. The lapse risk is complex, by its dependence to both market 

risk (equity, bonds, counterparty ...) and human (death, age, job occupation ...), which makes its 

modelling essential for the life insurer. With this manner, by apprehending the policyholder 

behaviour, the life insurer will be not only able to model and predict the lapse rate he can expect. He 

will also be able to direct a marketing strategy to target some policyholders with the lowest 

surrender-risk profiles.  
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1. The Luxembourg Framework 
 

1.1. The life insurance industry in Luxembourg 

1.1.1. Overview 

For several years now there has been a noticeable rise of interest in the life insurance 

products offered in Luxembourg, often considered as profitable investment vehicles. In an attractive 

framework, more and more people across Europe are choosing these products as a mean of placing 

their assets, structuring their wealth, and planning transmission of their wealth. This interest is 

backed up by the figures. The Luxembourg insurance supervisory authority, confirms it: After the 

2011 drop for total premiums, the Luxembourg life insurance business succeeded to bounce, unlike 

others countries in the European Union in the same industry. As a consequence, the Luxembourg life 

insurance business represents 62% of the total insurance premiums in 2012 in the Grand-Duché.  

The total amount of premiums for Luxembourg life insurers soared by 43.09%, which contrasts with 

the average around 0 predicted by the EIOPA for the Eurozone.  With more than 20.5 million 

premiums in 2012 (22 million in 2012, and 14.5 million in 2011), the Luxembourg life insurance 

business in Luxembourg keeps being attractive aboard: the percentile of foreign investors grows up 

every year (Premiums coming from the French market grew up by 111.09% in 2012). The 

Luxembourg market does not escape to this rule, with an increase of premiums of 32.29%.[1] 

Following the financial crisis, the wealthiest people have been looking for ways to protect their 

assets.  

The interest in these products is first and foremost linked to the regulatory provisions put in 

place to regulate the business. At the heart of these provisions is the system known as the “security 

triangle” which guarantees an optimal security to the policyholder. The cornerstone of this system 

relies on the legal obligation that all the assets representing the client’s savings are deposited within 

a depositary bank approved by Luxembourg’s national control authority. The whole mechanism is 

regulated by an agreement between the insurance company, the depositary bank and the CAA. 

Indeed, the regulation of life insurance products in Luxembourg offers a framework that is both safe 

and flexible, a unique situation in Europe: the policyholder benefits from the “super-benefits” 

system: all the underlying assets the life insurance product will be, in the case of a very unlikely 

problem with the insurance company, swiftly returned to the policyholder. 

This regulatory framework has been created in 1991, but it has taken on a new meaning since the 

financial crisis of 2008. Moreover, the life insurance contract proved its status of very popular 

vehicle these last few years, as being particularly suitable: by choosing these products, policyholders 

can optimize the structuring of their wealth and prepare their succession in an optimal tax 

framework and all this while keeping the same bank as well as the same asset manager – both CAA 

compliant. The asset manager will, for the largest accounts, be able to create a dedicated fund in 

which the registered assets will be managed. 

Besides the guarantee of security, life insurance in Luxembourg offers other attractions. To 

begin with there is the flexibility offered by these policies with a view to making the most of the 

policyholder’s investments. Luxembourg offers great flexibility for life insurance-linked investment 
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policies as well as a large number of eligible assets, regulated or otherwise (unlike France, for 

instance, where a life insurance contract one can only invest in conventional funds, as OPCVM). 

Based on the invested capital and the extent of the policyholder’s wealth, investments can also be 

exploited through bonds, stocks, international funds or even structured products such as hedge 

funds or private equity funds.  

On top of all that, Luxembourg is unanimously recognized for its financial expertise. Here, investors 

can find the right solutions for getting the most out of their investments in the way they want. Life 

insurance products allow them to benefit from specially adapted solutions.  

In tax terms, life insurance is a neutral product with the advantage to avoid frictions 

between Luxembourg and the country of residence of the policyholder. It is not about tax avoidance 

here, no one in other European countries is pointing the finger at Luxembourg in this regard (until 

recently, with the tax evasion issue in France, subject then raised in the European parliament). Life 

insurance products are offered with the greatest respect for tax law, as established by the country of 

residence of the policyholder, and in many other countries, life insurance products are recognized 

and allow holders to benefit from tax exemptions. On top of this, the fact that the European savings 

directive, regulating tax on savings, has not yet been extended to life insurance products constitutes 

another attraction. 

 

1.1.2. Luxembourg specificities 

The “Commissariat aux Assurances” (CAA) is the legal and official entity to monitor the whole 

insurance industry in Luxembourg. The CAA has a range of missions, as, for instance, the ability to 

deliver the required accreditation to an insurance company (life, non-life, reinsurance, brokers …) or 

a prudential and frequent monitoring …The entity has to assist to international meetings in order to 

develop mutual standards inside the EU (as Solvency II), and submit deadlines to insurance 

companies to deliver prudential and EU frameworks reports and figures. 

It is a public institution under the authority of the Minister of Treasury and Budget, endowed with 

legal personality separated the state and enjoying financial independence. However, even if the CAA 

has a legal entity separated from the state, the government still keeps some power inside the 

institution. Besides nominating and repealing its members, it gives its approvals regarding the 

accounts, the budgets and the accreditations. Whenever prudential reasons require collaborations, 

the CAA works with others supervisory authorities, national or foreign. 

The CAA is composed of two distinct authorities:  

- The Directive board is the highest executive authority of the CAA. It is composed of a 

chairman (In 2013, Mr. Victor ROD) and two other members, named by the government. 

The Management is responsible of all matters not specifically reserved –according to the 

law- to the Minister or the Council.  

 

- The Council is a five government-members board, competent to fix the financial framework 

in which the Commissioner activity can be expanded. It is responsible to adopt the annual 
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budget and accounts of the entity, and has also the right to give its opinion on the policy 

pursued by the management. 

The CAA has the charge of all fees itneeds to operate. These fees are fully supported by taxes on 

companies and offices under the CAA supervision. 

The monitoring is carried out in accordance with international and European standards. 

- Before issuing an insurance license, the Commissioner instructed a particular case on the 

quality of the shareholders, professional integrity and morality of the officers, the future 

business plans sustainability and the invested capital adequacy. 

 

- During the insurance activity, the Commission is regularly asking for and issuing on the 

activities of the companies, their assets, liabilities as well as their solvency margin. Most of 

the companies’ statements must be certified by internal or external auditors, and/or by 

actuaries. 

 

- The Office carries out regularly controls. It is entitled and allowed to be issued any useful 

document or information explaining the figures sent by the insurers. The Commissioner is 

also legally authorized to use a whole range of measures and/or sanctions to bring 

companies in failure or in difficulty to comply and reconcile with legal and regulatory 

statements. These measures may lead to a withdrawal of the accreditation in case of 

severe cases. 

 

- After the cassation of the insurance operations (bankruptcy, failure, fraud …), the CAA 

remains able to supervise the conduct of the insurance business liquidation, in order to 

safeguard the interests of the policyholders. 

 

1.1.3. Luxembourg insurance framework 

Luxembourg established, in the 90’s, a strict regulatory framework designed to provide an 

optimal protection for individual investors’ savings and interests, using life insurance contracts as 

investments tools. The life insurance business is governed by prudential rules providing a safety 

reference model unique in Europe; thanks to a triple-protection system, detailed a few lines below. 

The insurance sector is monitored by the CAA.  

Luxembourg-based life insurance policies are submitted to a triple protection thanks to the special 

and prudential Luxembourg regulatory framework: 

- Quarterly CAA checks on balances between technical provisions and underlying (regulated) 

assets. 

 

- Underlying (asset) securities are deposited within an approved bank in accordance with 

CAA’s terms and conditions.  The law stipulates that assets matching the insurer’s liabilities 

must be deposited with a bank approved by the insurance industry regulatory authority, 

the Commissariat aux Assurances (CAA). Each life insurance company is required to sign a 

depositary agreement with a custodian bank and have this agreement approved by the 
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CAA. A difference is made between regulated assets and others assets belonging to the 

company (unregulated assets). If a life insurance company cannot face its engagements, 

the CAA can freeze its accounts to protect policyholders’ savings. 

In case of a company’s default, Luxembourgish policyholders are first rank creditors for regulated 
assets: The law of 6th December 1991, as modified, grants subscribers to a Luxembourg life 
insurance contract the status of first ranking creditors on all assets in the technical reserves. This 
privilege, known as the "super privilege", takes precedence over all other creditors, whoever they 
are, granting contract holders priority in the recovery of credit related.  This rule does not work in 
France, where the provided protection to a life insurance policyholder is capped to an amount of 
€70,000. Naturally, this high – level policyholder protection is one the advantages making the 
Luxembourg competitive for the life insurance business. 

This mechanism, known as the "triangle of security", ensures that assets matching the insurer’s 
liabilities are clearly separated from the company’s other assets and lodged in a separate bank 
account. Client assets are thus legally separated from those of the insurance company’s 
shareholders and creditors (meaning creditors are not allowed to seize a dime of the savings). 
Furthermore, the custodian bank itself is required to segregate assets and protect the interests of 
subscribers to a life assurance contract. 

Other interests lure investors to bring their savings in the Grand Duché:  

- Tax efficiency: all interests, dividends and capitals gains earned in a Luxembourgish life 
insurance contract are reinvested free of taxes (e.g. subject to the application of the 
international tax treaties). 

- Competitive investment options: The CAA set up some investment restrictions to protect 
investors but also to provide them a wide range of investment solutions (linked to the 
amount invested and the investible wealth of each investor). 

- Luxembourg products are various, with a high-technical level and a high-savings 
component.  

Another part makes theLuxembourg financial centre attractive for the life insurance business : its 
particular asset management rules: A life insurance policyholder can invest, starting to a minimum 
of€ 250,000, in a wide range of assets which cannot be found somewhere else in Europe under the 
life insurance framework : securities, bonds, hedge funds, real estate, unlisted property … More than 
90% of life insurance vehicles are unit – linked solutions within the Luxembourg life insurance 
market. 
The 10% remaining are, for most of them, supporting the euro.  This type of investment, eventually 
denominated in other currencies (USD, GBP, NOK, DKK ...) interest expatriate policyholders who do 
not wish to undergo exchange risk with regard to their country of residence mainly. Besides, these 
investments are less profitable because of the cost of reinsurance and the responsibility of the 
insurer towards the currency.  

Capital management can be done with in-house mutual funds, owned by the insurer (generally a few 
funds offering hundreds of different fund managers) and / or within one or more funds managed 
by a private banker or asset manager CAA – compliant. The insured may split the management of its 
contract with several bankers or asset managers. The triangle does not guarantee safety to 
subscribers for recovering all their assets (excluding cash) in the presence of an insurer that does not 
market risk – e.g. offer only internal funds (dedicated or group).  
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In other cases (for example, in the presence of a Euro), there is pooling of assets and liabilities. On a 
starting point of€2.5 million, theLuxembourg life insurance framework – established in the Circular 
Letter (No. 08 / 1) of the CAA’s January 2, 2008 – allow a high flexibility and investment, including 
without limitation issuer and / or asset class. 

 

1.2. The Life insurance regulatory Framework: Solvency II 

1.2.1. Solvency II 

The solvency II directive is a new regulatory framework for the European insurance industry, 

that adopts a more risk-based approach (market consistent values), and implements a non-zero 

failure regime: The insurance company must be able to honor its own engagements with a 

probability of 99.5% (=0.5% probability of failure). [2] 

 

1.2.2. Solvency II goals 

Weaknesses, in the Solvency I directive were observed during the crisis. Even if AIG is not 

concerned by the European directive, its failure during the 2008 financial crisis made Europeans 

regulators realize that they needed a more advanced risk-thorough directive, in order to prevent 

European insurers, life and non-life, from bankrupting. 

Luxembourg also experienced directly the impact of the 2008 financial crisis and the necessity to 

migrate their insurance company to the Solvency II framework as soon as possible: Excell Life 

International was a life insurance and Luxembourg-based company. In 2010 and 2011, the 

Luxembourg insurance regulator noticed irregularities in the accounts, a lot of non-respects to 

Luxembourg legal insurance framework, and the marketing of life-insurance policies fused to non-

compliant investments, as for instance, in the Lehman Brothers fund “Orelius Golden Invest”. The 17 

February 2012, the insurance agreement was removed to this company, which was placed in 

liquidation. The “Commissariat aux Assurances” published a note on its website to summarize the 

weaknesses and irregularities listed [Annex 1]. 

While the former directive was aimed at revising and refreshing the solvency regime in use, the 

essence of the Directive is to require insurers to provide transparency over their risk and the levels 

of capital held to cover that risk. Insurers are required to demonstrate that they have fully defined, 

assessed, governed, quality tested and (where necessary) remediated the data that is material to 

Solvency II.  

Solvency II has also created new requirements for the provision of asset data in the form of new 

data fields, new data coding conventions, greater granularity of data and increased frequency of 

reporting. 
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The Solvency Capital Requirement, developed in Solvency II, aims to: 

- Reduce the risk than an insurer would be unable to meet claims 

- Reduce losses suffered by policyholders in the event that a firm is unable to meet all claims 

fully 

- Provide early warning to supervisors so that they can intervene promptly if capital falls 

below the required level 

- Promote confidence in the financial stability of the insurance sector 

One of the main goals of the directive is to contribute to the objectives of the European Union 

Financial Services Action Plan ( EU FSAP), by encouraging the insurance sector to work and use with 

a single license/method throughout member countries. Indeed, the introduction of a unified legal 

framework for prudential regulation will help to maximize harmonization through the Eurozone, and 

be consistent with the principles used in banking supervision.  

One of the main differences with the former directive, Solvency I, is the market consistent approach: 

this new approach is based on economic principles that measures assets and liabilities in order to 

align the insurers’ risks with the capital they detain to safeguard policyholders’ savings. Similar to the 

reasoning behind Basel II for the banking sector, and due to the weaknesses the 2008 financial crisis 

highlighted, the directive aims to modernize insurance standards and improve risk management 

techniques: establishment of a new set of capital requirements, valuation techniques, governance 

and reporting standards, and harmonization of the regulation all across the EU. 

Finally, new capital requirements have been designed for providing a better reflexing about the 

insurer’s individual risk, and giving, for small insurance companies, a formula to determinate their 

Solvency Capital Requirement. This is likely to lead to a supervisory need for companies to show 

greater competency in risk assessment, and an easier way to audit companies, thanks to a more 

unified approach for evaluating technical provisions.  

To sum it all up, Solvency II intends to provide: 
 

- An alignment of economic and regulatory capital  

- Freedom for companies to choose their own risk profile and match it with the appropriate 

level of capital 

- An active and market consistent capital management to have a risk prudential approach 

- Encouraging improvements by identifying risks and their matching mitigation. 

- Streamlining the way that insurance groups supervise and recognize their economic reality 

 

1.2.3. Solvency II organization 

 

As mentioned before, Solvency II is structurally speaking similar to Basel II regulation. Both are based 

on three pillars including quantitative and qualitative requirements, market discipline, and specific 

figures (capital, risk, supervision and disclosure).However, Basel II applies separate models for 

investment credit and operational risks, while Solvency II focuses on a risk-based portfolio analysis, 
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considering dependencies between risk categories [3]. Besides, Basel II concentrates on the asset 

side while Solvency II assessment of capital adequacy applies economic principles on the total 

balance sheet (both assets and liabilities).  

- Pillar 1 deals with all the quantitative requirements. It ensures firms are capitalized 

enough, with an adequately risk-based capital. All valuations are done here with a 

prudential and market consistent methodology. Companies are free to use either the 

standard formula detailed in the directive (EIOPA), or an internal model approach. The use 

of internal models is subject to stringent standards and company needs. 

 

- Pillar 2 imposes high level standards regarding risk management and governance. It also 

gives to supervisors a greater power to challenge their firms on risk management issues 

(ORSA: Own Risk and Solvency Assessment). As a consequence, every insurance company 

has to undertake its own forward-looking assessment of its own risks, e.g. capital 

requirement plus adequacy of capital resources. 

 

- Pillar 3 insists on greater levels of transparency regarding both supervisors and the public. 

On a quarterly or annually basis, firms have to provide a report regarding both about their 

solvency and financial conditions. This ensures that a firm’s overall financial position is 

better represented and included more up-to-date information.   

 

1.2.4. Solvency II in Luxembourg 

 

Originally, Solvency II wassupposed to be implemented in2012 but the complexity of the directive 

and the need to achieve Europe-wide consensus between regulators has seen the implementation 

date pushed back not once but twice, and is now expected to be January 2015. 

In Luxembourg, insurers are more in advance on this subject than other countries, mainly for two 

reasons: 

- The small size of the country: rules are easier and quicker to apply; The CAA and the 

government both work to implement EU directives promptly and adapt local legislation to 

support and develop cross-border life insurance business 

 

-  A hard-to-please regulator, the CAA, which kept another deadline imposed by the 

European Parliament, in 2012 as a limit for companies for the upgrade 

However, some parts still need to be thought by the insurers: for instance, providing data for each 

asset held on a security-by-security basis is very complicated to do, and, in July 2014, most of 

Luxembourgish insurers use the block of business basis, easier to set up.  

Since year-end 2009, the CAA asks to every insurance company based in Luxembourg to produce and 

send to them a list of reporting files to ensure transparency and solvency in the Grand-Duché. They 

send quarterly excel spreadsheets specific to every insurance company they have to fill with their 
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key figures: CAA Database, CAA Declaration 9, CAA stress-tests figures on guaranteed-rate portfolios, 

Annex D … [Annex 2]. 

 

1.3. NPGWM, New PEL Group Wealth Management 

 

NPG Wealth Management, formerly PanEuro Life, is a life insurance holding,founded in 1991, and 

bought in 2006 by J.C. Flowers (found in 2001 by James Christopher Flowers, a former Goldman 

Sachs partner[4]), a leading private equity investment firm focused on investments in the financial 

services sector, which owns since 99.5% of the insurance holding.  

All the insurance companies of the group (Private Estate Life, Altraplan Luxembourg, Altraplan 

Bermuda, Vestalife, Augura Life) are held by the Luxembourg-based holding, NPG Wealth 

Management. The firm offers wealth management solutions, private placement and unit-linked life 

insurance products. Operations are based in Luxembourg, Ireland, Gibraltar and Bermuda. At the 31 

December 2013, NPG Wealth Management managed 6 billion assets under management. NPGWM 

workers, at the same date, are split as presented below: 
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 NPGWM mostly targets wealthy clients all over Europe, reached through intermediaries as brokers, 

investment advisors or private banks. It offers a diversified panel of life insurance investment 

supports, separated in three main classes: internal funds, external funds and dedicated funds. 

Regarding internal funds, two categories of investment support exist: unit-linked investment or 

guaranteed-rate ones. 

- Guaranteed rate solutions: Premiums are invested and managed by the company 

(the insurance company acts as a fund house); the funds are currency-labeled, and 

represent 10% of the total PEL contracts. 

- Unit-linked investments (90% of PEL contracts are unit-linked): Usually composed of 

bonds, equities, and sometimes private estates values, unit-linked accounts follow 

the evolution of financial markets; it can provide higher gains, but also losses, 

according to the prevailing market conditions and the supported undertakings risks. 

 

1.3.1. NPG Wealth Management funds 

1.3.1.1. Internal funds 

These funds are developed and managed, as guaranteed rate portfolios, by the insurance company 

herself. They can be compared, from a functional point of view, as undertakings for collective 

investment in transferable securities (UCITS). Collective internal funds are available to all the insurer 

customers.  

NPGWM has 45 internal funds, for a global Assets Under Management” value of € 587 million, e.g. 

averagely speaking € 13 million per fund. More than 99% of internal funds belongs to PEL. 

PEL has, in its internal funds both investment supports, on one hand, portfolios with a guaranteed 

rate, and on the other hand, unit-linked portfolios.  On the € 586 million of internal funds, € 162 

million belong to PEL guaranteed-rate funds (8 funds, in Euros except three in Dollars). 
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1.3.1.2. External funds 

 It concerns mutual funds and funds managed by fund houses. Luxembourg-based life insurance 

contracts particularly enjoy, unlike other countries in Europe, a wide range of funds. These fund 

houses are subject to an approval procedure and prudential monitoring from the Luxembourg 

supervisory authority, the CAA and the ASSF. 

NPG WM has 382 external funds only composed of mutual funds, for instance JP Morgan Japan 

Equity.The global Assets Under Management value is equal to € 2,3 billion, e.g. averagely speaking € 

6 million/fund. On PEL’s side, there are 247 external funds, for a global AUM value equal to €2 

billion. 

52 fund houses are represented; the top three is composed of Carmignac Patrimoine, Dexia Money 

Market, and Carmignac Securities). It is usually very hard to negotiate with fund houses regarding 

their funds commissions. NPGWM chose to be, for internal fund an important client of the 

Carmignac fund house in order to be able to negotiate these: In total, 16 Carmignac funds are 

registered in PEL external funds, for a global assets under management value of € 725 million, e.g. 

37%. For no dedicated funds, the CAA forbids investing more than 2.5% of the portfolio in private 

equity funds, hedge funds … For convenient reasons, NPGWM chose to invest only in mutual funds. 

1.3.1.3. Structured products 

In order to diversify its investment solutions, and to propose alternative products rather than bonds 

and equities, banks developed financial products, built with a bond and an option (call, put … on the 

relative index) 

In NPGWM, structured products represent 975 funds, for a global AUM value of €618 million.In PEL, 

structured products represent 63 funds for a global amount of € 386 million.  

The main structure designer is SociétéGénérale Investment Services, which designs more than 90% 

of broadcast structured products. However, Société Générale does not emit all of them, PEL counts 

15 structured products broadcasters.  The two broadcasters completing the podium are Barclays and 

Mediobanca. 

1.3.1.4. Dedicated funds 

With a premium of min €250,000, the investor can have access to a dedicated internal fund. The 

more money the investor brings, the more investment options he has. The policyholder has the 

liberty to choose the funds in its portfolio and fund houses. 

The value of NPG Dedicated funds is € 1.3 billion, and around €400 million for PEL. The following 

table summarizes the financial supports the policyholder is able to invest in according to its savings. 
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Investment 
category 

Investment Personal wealth Investment rules 

A  € 250,000  € 250,000 Unlisted securities forbidden 

B  € 250,000  € 500,000 All except assets with 
discretionary management 

C  € 250,000  € 2,500,000 All assets and discretionary 
management 

D  € 2,500,000  € 2,500,000 Every financial asset existing 

 

1.3.2. NPG wealth Management Counterparties and Incomes 

As detailed above, NPGWM life insurance products cover various asset classes. In counterparty, 

these products are structured as single premium policies or regular premiums ones. Policies can 

include death cover, a range of options (partial or full surrenders in case of specific events, top-ups, 

switches …) to adapt the contract to the client investment will, needs and/or strategy. As we saw, 

dedicated funds policyholders define themselves their own investment policy and assets classes. 

Regarding the diversity of investment supports offered by the Luxembourg place, we easily 

understand that unit-linked contracts are more popular than guaranteed rate ones. In NPGWM, the 

proportion is 90%-10%. Indeed, investors are looking, besides safety, more freedom regarding their 

investments wills. However, they can find guaranteed-rate investments in their native country. Life-

insurance contracts do not have a predefined maturity, the contracts ending with the policyholder’s 

death. A surrender option exist for the majority of life-insurance policies: Clients can withdraw their 

assets in cash, fully or partially.  

NPGWM income comes from various fees, from contract management to distribution, services 

and so on : 

- Fees and charges are determined according to the policyholder fund value 

- Fund house pay to the different companies rebates coming from assets and funds 

commissions 

- Commissions are paid to brokers for their clients portfolio’s management and for every 

new client they bring back 

- Charges are received by the company in case of death, surrender, or any event defined in 

advance in the contract 
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1.3.3. The Camelea portfolio 

 

The Camelea porfolio is one portfolio of Private Estate Life. It represents the PEL biggest portolio. At 

the end of December 2013, this portfolio is characterised by: 

Portfolio Date 31 December 2013 

Portfolio in EUR 
                                  

1,260,434,666  

Number of Clients 
                                                  

8,495  

Number of contracts 
                                                  

9,735  

Average client Age 
                                                        

56  

% Belgium portfolio 99.60% 

 

All the survival analysis and further studies presented below will be on this portolio.  

 

1.4. NPGWM Solvency II outputs 

1.4.1. Solvency Capital Requirement 

 

According to the article 101of the Solvency II directive, the SCR shall correspond to the value at Risk 

of the basic own funds of an insurance or reinsurance undertaking, subject to a minimum legal level 

of 99.5% over a one-year period: The citation 64 of the same directive goes deeper: The SCR should 

be determined as the economic capital to be held by insurance undertakings in order to ensure that 

those undertakings will still be in a position with a probability of at least 99.5%, to meet with their 

obligations to policy holders and beneficiaries over the following 12 months. This amount of capital’s 

requirement is defined on Pillar I, and can be interpreted as the level of capital allowing insurers to 

absorb significant losses while giving guarantees to policyholders those payments will be honor as 

planned.  

The SCR can be determined with two methods: equivalent or modular 

- Equivalent approach: instantaneous shocks all made at the same time 

- Modular: calculation per type of risks; for each type of risk, an SCR of each one is 

determined. 

A portion of the risk is absorbed through both future discretionary bonuses and risk diversification 

effect. The aggregation of the individual SCR module is done by a correlation matrix provided by the 

EIOPA. [5] 
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Source: Deloitte 

The final SCR as defined in the SII framework can be developed as follows: 
 

                                       
 

- BSCR: Basic SCR; composed of 5 risks modules: non-life underwriting, life underwriting, 
health underwriting, market and counterparty risks. 

- SCRoperational: the charge of capital for operational risk 
 
BSCR Calculation:  

      √                     
 
Where: 

-          denotes the entries of the correlation matrix (e.g. correlation parameters). 
-      (Resp j) the SCR for the risk i (resp. j), with i and j run over all of the component risks. 

 
SCR operational: 

It represents the risk of a change in value caused by the fact that actual losses, incurred for 
inadequate or failed internal processes, people and systems, or from external events (including legal 
risk), differ from the expected losses.  
It excluded however strategic decisions, reputation … risks. 
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1.4.2. Solvency Margin 

 

The insurance business requires, each year, to determinate the risk margin, which corresponds to 

the cost of immobilization of an amount equal to the solvency capital requirement: The value of 

technical provisions shall correspond to the current amount insurance and reinsurance undertakings 

would have to pay if they had to transfer their insurance and reinsurance obligations immediately to 

another insurance or reinsurance undertaking. It effectively means that if an insurer was, as a result 

of a shock, to use up all its free surplus and capital, then it would still have sufficient assets to safely 

wind-up and transfer its obligations to a third party. 

Twelve pages of the EIOPA report [5 bis]are describing the definition of this technical item and the 

general methodology for the risk margin calculation. It also gives the cost of capital rate to apply in 

the risk margin calculations, the level of granularity and the simplifications made and applied to the 

risk margin.  

The risk margin should be calculated per line of business. A straight forward way to determine the 

margin per line of business is as follows. The calculation of the risk margin is based on a SCR 

projection scenario in the time. 

 

       ∑      
 

        
   

 

   
 

 
 
Where: 
 

-     is the SCR for year t and the corresponding undertaking 
-      is the risk free rate for the maturity t+1 (no illiquidity premium included) 
-    is the cost of capital: Because the investors demand a certain return higher than the risk 

free rate on all capital, the company is making a cost by holding the extra amount of capital. 
Under the SII directive, this Cost of Capital is defined as equal to 6%. 

However, the final risk margin must be free of market risk: indeed, according to QIS 5 requirements 

[6], the risk margin has been designed to guarantee that sufficient technical provisions are available 

even in case of a stressed scenario. 

We determine the 2013 market risk tanks to the shock, considering  

                                                                    

The risk margin has to be calculated with: 

- amounts net of reinsurance 

- a projection of obligations until extinction 

- an appropriate allocation for each line of business 

- an allowance for diversification between lines of business 
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1.4.3. CAA Excel spreadsheet 

 

The insurance industry Luxembourg supervisor, the CAA imposed a migration to the Solvency II 

framework starting year-end 2011. Since then, annually, insurance companies have to report their 

Solvency II figures to CAA experts. To do so, the CAA sends to every insurance company, a secured 

reporting sheet (Annex 3), where insurers have to write down their shocks figures. 

Nine tabs constitute the reporting sheet: 

- Validations: Eventual messages if incoherencies noticed 

- Questionnaire: The CAA asks methodology and assumptions questions that the company 

has to respond in a standard way (yes no, in which proportion). For instance, the CAA asks if 

simplifications have been made on a specific shock 

- Données: Technical provisions analysis (only concerns guaranteed-rate portfolios for PEL) 

- BilanSolvabilité 2: The Basis for the Solvency II balance sheet is the signed accounts. The 

CAA specifies the specific adjustments, which explanations can be found in Annex. 

- SCR: it represents the solvency capital required to ensure that the insurance company will 

be able to meet its obligations over the next 12 months with a probability of at least 99.5% 

The CAA Excel spread sheets already include correlation matrixes between the different risks 

in order to model correctly the diversification effect and to consider the correlation between 

all the risks. The correlation matrixes in use are the ones defined in the EIOPA report. 

Insurers are free to change the correlation parameters if they have internal models or 

calculations to justify the changes. Here, we kept the original CAA correlation values. 

- To calculate the SCR, we report the variation values coming from the shocks in the CAA 

spread sheet.  

The market risk (“Risque de marché”), is calculated as the sum of the interest rate risk, the 

equity risk, the real estate risk (we do not have real estate investments in NPGWM), the 

spread risk, the currency risk, and the concentration risk. 

- MCR: The minimum capital requirement represents the threshold below which the 

supervisor, the CAA, would intervene. The MCR is intended to correspond to an 85% 

probability of adequacy over a one year period and is bounded between 25% and 45% of the 

SCR. As a consequence, the Best Estimate in use to calculate the MCR has to be free of 

insurance.Best Estimate values free of reinsurance are used to determine the MCR and the 

under risk capital and the importance/impact of the profit sharing.  

- Fondspropres 

- Best Estimate: Best Estimate value including reinsurance, Risk margin, reinsurance 

participation … 

 

 

 

 

 



25/119 Memoire IA – Zacharie Guibert – ISFA 2010 

 

1.4.4. PEL Lapse risk in the SCR estimation 

 

On the 2013 Solvency II reporting, the PEL Best Estimate for was equal to €3,039 million. The PEL 
SCR 2013 for the lapse risk is equal to €45 million, on a total SII 2013 SCR of €135 million. The lapse 
risk consequently represents more than 33% of the total SCR. This highlights the importance for the 
life insurer to model and estimate lapse rates. With the equity risk, this is the biggest risk the life 
insurer carries. 
 

1.4.5. Duration 

 

Once the solvency II calculation is done, we are able to propose a precise estimation of each 

portfolio/ company duration: The duration represents the change in the value of a fixed income 

security that will result from a 1% change in interest rates. Duration is stated in years. For example, a 

5-year-durationmeans the bond will decrease in value by 5% if interest rates rise by 1% and increase 

in value by 5% if interest rates fall by 1%. Duration is a weighted measure of the length of time the 

bond will pay out. Unlike maturity, duration takes into account interest payments that occur 

throughout the course of holding the bond. Basically, duration is a weighted average of the maturity 

of all the income streams from a bond or portfolio of bonds. 

As an example, for the Private Estate Life company, as of end of December 2012. 

 

However, this duration is highly affected by partial and full surrenders within the different NPGWM 

investment products. Indeed,a surrender affects the reserves, and consequently has a direct impact 

the duration. 
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1.5. The surrender risk 

1.5.1. Overview of the surrender risk 

 

From the reserves and the duration raises a new problem: The lapse modeling. Indeed, the lapse 

rate is directly connected to the insurer reserves and ALM strategy.  

Indeed, a bullish or bearish interest rates scenario will have a direct consequence in terms of asset 

and liability management and in stock of reserves. These consequences may even become critical in 

case of large surrender (bullish scenario) or no surrender at all (bearish scenario), complying the 

insurer to pay a guaranteed rate as planned in its guarantees higher than its own assets’ yield. Thus, 

The CAA request, regarding the transmission of the stress-tests results on guaranteed rate portfolios 

makes completely sense: the insurer and the regulator have to know the risk they can face and their 

ability to face it. And this goes through an anticipation of the lapse rate and an interest rate 

variation. 

Lapses impact the duration of the portfolio in a significant way. Their surrender modeling is crucial 

and strategic for the insurer.  

The surrender phenomenon is very important in the life insurance business: The better insurers 

would be able to model the surrender rates on their portfolios; the better they would be able to 

anticipate their own financial flows/ liabilities (costs – management underlies abetter asset-liability 

management) and satisfy their clients’ requirements. 

Several things might induce people to surrender their own life insurance portfolio. The first one, 

more financial, is depending on the gap between the benchmark market rate and the credited rate 

on the insurance product via a double S-curve: 

-  if the gap stays between two boundaries, deterministic surrenders are not modified 

- If the gap is beyond these two limits, surrenders increase or decrease till a min or max 

The second one is more “human”, depending on macro-economic variables. Thanks to a lot of 

macro–economic data (stock exchange market rates, unemployment ...), these surrenders can be 

determined statistically. However, others risks, belonging to this category cannot be determined like 

this, for lack of data: For instance, since the 2008 sub primes crisis, more and more governments are 

hunting down tax evasion and tax heavens. The recent declarations (in March 2013) of Luxembourg 

to think about more transparency frightened some investors, who surrendered their portfolios in 

order to not be caught by their countries’ authorities. 

Nethertheless, modeling the conjectural surrender is not completely related to the world 

financial situation. In 2009-2010, life insurance investors did not surrender massively their portfolios, 

while bankruptcies and saving plans headlined. Conversely,it has been observed that investors 

become more attentive as soon as their portfolio’s performances are compromised (lower than 

another company for instance).  
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Surrenders focus the insurer’s attention and researches since the 90’s, for two reasons; a 

good understanding of investor’s global behavior, and more generally, surrenders and explanatory 

factors allows to: 

- Adapt new contracts’ clauses and characteristics which purpose would be clients’ retention 

(keep clients longer with stricter surrender conditions) for instance. 

- Improve strategies regarding the Asset-Liability Management, EV calculations … 

 
Hypothesis regarding surrender rates can have a huge impact on insurance company’s results if 
they’re not correct: Anti-selection, randomness, rate risk (when the insurer has to borrow money to 
reimburse the surrender value to the investor) … are among the surrender risks the insurer has to 
model and anticipate.  
 
Three rules (IFRS, Solvency II, and the MCEV method (CFO Forum)) integrate the surrender risk in an 

international level, each one proposing methods to assess it: 

- IFRS: (IFRS2 in particular), require to evaluate the insurance company’s liabilities, and 

include the cost caused by lapses of options and guarantees. 

- Solvency II: introduces a split by risk in the calculation of the solvency capital requirement, 

and a new design for the assessment of reserves. The surrender risk is the main center of 

this new European regulation [5] 

- MCEV: the reinforcement of the reference benchmark measure for the valuation of an 

insurance company emphasizes the cost of options and guarantees, and consequently, 

surrenders [7] 

The Luxembourgish position as a tax heaven (different legislation than the rest of Europe), and the 

shelter of various international funds makes the study of surrenders particularly interesting here. 

Indeed, surrenders in Luxembourg are not a reflection of the Luxembourgish surrenders, unlike, for 

instance, France, Belgium, Germany …, because, as mentioned before, 80% of the funds life 

insurance companies manage comes from abroad. Surrenders should consequently vary according 

the investors citizenship (increasing the last few months in Scandinavian and Belgium portfolios 

because of a stricter law regarding life – insurance savings abroad). 

 

For all these reasons, it is essential for the life insurer to know what factors influence the 

policyholders’ decision to surrender, in which proportions ... Beyond a ALM strategy, by 

apprehending the policyholder behaviour, the life insurer will be not only able to model and predict 

the lapse rate he can expect. He will also be able to direct a marketing strategy to target some 

policyholders with the lowest surrender-risk profiles. 
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1.5.2. NPGWM calculation lapses for Unit-Linked contracts 

1.5.2.1. Required data 

In NPGWM, lapses are calculated with a deterministic way. As for 2010, the gross amount of claims 

paid for PEL adds up to more than EUR 500 million in comparison with a total assets of more than 

EUR 3 300 Million, so that we need to consider lapses as an important item in the company. From 

that perspective we need to use a consistent method to calculate a lapse rate; moreover this lapse 

rate assumption will be used for different major matters such as the calculation of the Embedded 

value and of the Best Estimate though the projections of cash flows.  

To proceed the lapses calculation, we need the following data:  

 

 

 

 

 

 

 

 

 

 

 

 

 

The data comes from technical accounting or data extracts from BOXI, the data providing software in 

use within NPGWM. Eclipse and Navision corresponds to some companies not modeled into BOXI, 

and handled per technical accounting teams (for instance the ‘dedicated funds’ team). 

 

1.5.2.2. NPGWM deterministic methodology 

Considering the year N, we have to calculate an annual lapse rate for this year. We can consider that 

we have to calculate this rate for one contract, one product, one portfolio or one firm. In all cases, 

we can consider that the methodology remains the same. 

 

 

 

Lapse rate 

Calculation 
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Margin 
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Eclipse 

Navision 

Data 
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Full 
surrenders 

Partial 
surrenders 

Number of 
policies 
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We will calculate this lapse rate based on a three year history. We considered indeed that 3 years 

was the best choice. Less would give a greater influence on special events;more would not be 

consistent with the fact that we will use that rate for future years. 

Let’s define a few notations: 

- Reserve      is the reserve at the beginning of year i in € 

- Reserve      is the reserve at the end of year i in € 

For each year, we are performing an average of the reserve and then calculating a lapse rate. The 

final output is the lapse rate which is going to be used for the future years 

We first have to calculate the average reserves of year i: 

 

                          
                            

 
 

 

                 
                                          

                 
 

 

 For all companies the lapse rate for the three year period is the following  
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 Which is the same than the following formula : 
 

           
∑                  

   

 
 

 

  



30/119 Memoire IA – Zacharie Guibert – ISFA 2010 

 

We get, as a final extract: 

 

This calculation is done of course for all products in every company; for consistency purposes, the 

same methodology is used for all different companies. This lapse rate calculation is assumed to be 

calculated with an expert judgment analyzing the impact of the lapse rate coming from the evolution 

of the number of policies and reserves.   

 

1.5.2.3. NPGWM calculation for guaranteed-rate funds 

What we call “Minimum guaranteed-rate funds” are funds providing to the policyholders an annual 

guaranteed-rate of return on an 8-years basis. “Resetting Guaranteed-Rate funds” are funds 

providing to the policyholders an annual rate of return on a yearly basis. The guaranteed rate is 

rest/updated the 31st January of each year. I won’t detail here the setting of the guaranteed-rate for 

such funds. 

The monitoring of the surrenders rates for the guaranteed rate funds (MGR/RGR) occurs on a 

quarterly basis. At the moment, there are 4 Minimum Guaranteed Rate Funds and 2 Reset 

Guaranteed Rate Funds. 

67 MGR EUR 2.75% 

69 MGR EUR 1.50% 
77 MGR USD 1.00% 
78 MGR EUR 1.00% 
79 MGR EUR 0.25% 
73 RGR USD 
76 RGR EUR 
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The result of this study will provide PEL with an experienced surrender rate that will be used in the 

stress tests calculation. 

The calculation is also done on a 3 year-basis as presented before. 

 

1.5.2.4. Opening 

Having the surrender rate calculated on a yearly basis, based on the surrender results of the past 

three years, returns convenient results for the current year Solvency II modelling. 

However, with this methodology, we are not able to make any precice prediction. Indeed, a 

Lagrange interpolation or fitting a trend on the available yearly surrender value would be not precise 

and relevant enough to make any sigificative predicton on a monthly basis. Besides, this type of 

calculation does not bring any information on the policyholder behaviour based on his 

characteristics and external events, such as the evolution of financial markets and unemployment. 

The importance in the final 2013 SCR of the 2013 Lapse SCR, presented in section 1.4.4, shows us the 

importance to anticipate and understand this risk. 
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2. Survival analysis on the surrender rate 

2.1. Introduction 

 
The concept of the survival analysis is to study and model the failure time, which is, in our case, the 

surrender time. 

2.1.1. Survival time 

 

The survival time is defined as “a length of time that is measured from time origin to the time the 

event of interest occured”[8]. 

To determine survival time precisely, there are three requirements. A time origin must be 

unambigously defined, a scale for measuring the passage of time must be agreed uopon, and finally 

the definition of event must be entirely clear.  

The difficulty of such a study dwells into the fact that some policyholders experienced the event 

while some did not at the end of the study, which makes their actual survival curves unknown. This 

is where intervenes the censoring effect 

2.1.2. Censored Event 

 

Censoring is defined as “the time when we have some information about individual survival time, 

but we do not know the survival time exactly”. [9] 

Three types of censoring exist [10]: right censoring, left censoring, and interval censoring. 

Right censoring is said to occur if if the event occurs after the survival time.The censoring timeis the 

time beyond the studied subject cannot be observed. The observed survival time starts at time 0 and 

continues until the event   or a censoring time  , which ever comes first. 

The observed data is resumed with      , where             is the follow – up time, and 

       is an indicator for status at the end of follow – up time. 

       
                                  

                           
 

This case of censoring is particulary used when no events occured before the end of the study.  

Censoring can also occur if we observe the presence of a condition, without especially knowing 

where the condition began – left censoring. 

The interval censoring is the case of an individual known for having experienced an event within an 

interval of time, but without knowing though the acual survival time. 
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2.1.3. Survival time distribution 

 

Let T represent survival time, and regard it as a random variable with a cumulative distribution 

function              , and a probability density function       
     

  
.The more optimistic 

survival function      is the complement of the distribution function: 

                    

 

The distribution of survival times can also be represented by the hazard function, which assesses the 

instantaneous risk of demise at any time  , conditional on survival to that time: 

         
    

              |     

  
 

      
    

    
 

Models for survival data usually employ the hazard function or the log hazard. For example, 

assuming a constant hazard,        , implies an exponential distribution of survival times , with 

the density function            . Other common hazard models include                , 

leading to the Gompertz distribution of survival times.  

 

2.2. Cox regression model 

 

The not parametric method does not control covariates andrequires categorical predicators [11]. 

When there are several prognostic variables, multivariates approaches should be used. However, a 

multiple linear regression or a logisitic one cannot be used here, because they cannotdeal with 

censored observations. Another method is needed to model survival data with the presence of 

censoring. One very popular model in survival data is the Cox proportional hazards model, 

introduced by Cox in 1972[12]. 

Modeling the surrender risk with a semi-parametrical model: Survival analysis examines and models 

the time for events to occur. The prototypical such event is death, from which the name “survival 

analysis”.  

This makes this analysis especially adapted to the surrender case. Instead of modeling the death (0 

for survival, 1 for death), we model the surrender event (0 if the policyholder remains in the 

portfolio, 1 if he surrenders). 

The survival analysis focuses on the distribution of survival times. Although there are well 

known methods for estimating unconditional survival distributions, most interesting survival 

modeling examines the relationship between survival and one or more predicators, usually termed 

covariates in the survival analysis literature.  
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Survival analysis typically examines the relationship of the survival distribution of covariates. 

We are seeking, with the Cox model, to achieve to [13] 

- Incorporate continuous covariates into our survival analysis 

- Analyze the effect of covariates on survival ( and not only the presence) 

A natural first guess for a survival regression model would have been                 

There is in this case no error term, as the randmoness is implicit to the survival process. Here, the 

notation in use is        the hazard function for an individual whose “independent” variable has the 

value x, while    is abaseline hazard function (for the time being assumed constant in time  ) for 

individuals with    . 

However, this is a bad model. The range of         may extend below zero for certain values of    

or  , but the range of        must be      . 

By chance, a similar problem has arisen and been solved in generalized linear modeling. There, the 

predicators are incorporated into different distributions for the dependent variable. For a Poisson 

model, the mean must be positive, and the exponential function is used as the canonical link 

function between covariates and mean. Thus, we can suit by exponentiating the covariate terms : 

                                

In case of more than one predictor:                     

For a cohort with identical predictors  , the above form implies that lifetimes are exponential 

distributed, which we know to be unrealistic.  

This examination entails the specification of a linear-like model for the log hazard. For example, a 

parametric model based on the exponential distribution may be written as a multiplicative model for 

the hazard                                   

In this scenario,   is a suscript for observation, and the   are the covariates. The constant   in this 

model represents a kind of log baseline hazard – considering          when all the   are equal to 

zero.  

2.2.1. The Cox model 

2.2.1.1. Overview 

A Cox model is s statistical technique for exploring a relationship between the survival of a patient 

(in our case, the surrendering event) and several explanatory variables. [14] 

As for the survival analysis, it aims to study the time between the entry to the study (subscription 

time of a Camelea life-insurance policy) and the subsequent event (the surrender).  

The Cox model has the pros to provide an estimate of the surrender effect on survival after 

adjustment on the other explanatory variables. On top on that, it offers the possibility to estimate 

the hazard (or risk) of surrender for a policyholder, considering its prognostic variables. 
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The Cox model is based on a modeling approach to the analysis of the survival data. Its purpose is to 

simultaneously explore the effects of several variables and survival. The model allows isolating one 

effect from the rest of the covariates. The model can also be used to determine the covariates which 

influence the policyholder’s survival within the Camelea portfolio. 

From a set of observed survival times in a sample of policyholders, we can estimate the proportion 

of the population who would remain in the portfolio a given length of time under the same 

circumstances (fixed covariates). This is the Kaplan-Meier method, which is used for producing the 

survival function.  

The regression method introduced by Cox is used to investigate several variables at any time   – and 

is also known as the proportional hazard regression analysis.  

The procedure models and/ or regresses the survival times – the hazard function, on the explanatory 

variables.  

In order to be valid, the Cox model must be fitted before coming to a conclusion. The final model, 

coming from a Cox regression analysis, will yield an equation for the surrender risk as a function of 

several explanatory variables. 

Interpreting the Cox model involves examining the coefficients for each explanatory variable [15]: 

 A positive regression coefficient for an explanatory covariate means that the 

higher the risk is, the worst the prognostic will be – e.g. a higher surrender rate 

 A negative regression coefficient implies a lower surrender rate for policyholders 

with higher values of that variable 

 

2.2.1.2. The hazard function 

The Cox model allows defining a hazard function based of several variables. A hazard function is 

defined as the probability that an individual will experience an event (in our case, a policyholder 

facing the surrender of his policy) within a small time interval, given that the individual was alive at 

the beginning of the time interval. It can therefore be interpreted as the surrender risk at time  . 

The hazard function, generally noted      can be estimated as such: 

     

                                                 
                              

                                                   
                                           

 

 

2.2.1.3. The regression function 

The regression is a way to describe the relationship between the different variables. Let’s illustrate 

this with an example: 

We have two variables, X and Y: 
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 X, the age of the policyholders 

 Y, the respective amount of savings 

Performing a regression of Y on X comes to investigate on the relationship between the dependent 

variable Y, based on the explanatory variable X. 

When more than one explanatory variable need to be included in the regression model, the method 

is known as multiple regression (for instance, including the variable W as the sex of each 

policyholder).  

The Cox method is based on a multiple regression, except that the dependent variable Y is the 

hazard function at a given time  . If we have several explanatory variables of interest X (for example, 

for our problem, the sex, the age, the level of savings), then we can express the hazard or surrender 

risk at time   as 

                                                  

 

The quantity       is the baseline – underlying hazard – function and corresponds to the probability 

of surrendering when all the explanatory variables are set to zero. The baseline hazard function is 

analogous to the intercept in ordinary regression (due to      . 

The regression coefficients                     give the proportional changes that can be expected 

in the hazard, related to changes in the explanatory covariates. These coefficients are estimated by 

the likelihood statistical methodology (see 2.2.2.4.). 

The assumption of a constant relationship between the dependent variable and the explanatory 

ones is called proportional hazards. It means that hazard functions for any two random policyholders 

at any point in time are proportional. In other words, if a policyholder has one risk to surrender at 

some initial point that is  twice as high as that another policyholder, then at all later times, the 

surrender risk remains twice as high. This main model assumption of proportional hazards must be 

tested to validate the model. 

 

2.2.2. The Cox proportional hazards model 

2.2.2.1. Overview 

Let   be a nonnegative variable representing the failure time of an individual in the populatiopn. The 

distribution of failure time,  , can be represented in the usual manner in terms of density or 

distribution functions as well as in more specialized ways such as the hazard function. Specifically, 

the hazard function at time   among individuals with a covariate   is defined as: 

   |       
    

          |    
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which represents the risk of failure at any time  , given that individual has not failed prior to  . 

Indeed,    |   provides a convenient starting point for modeling the relationship of hazard functions 

among different covariates  . 

One such modelassumes that covariates affect the hazard functions in a multiplicative manner based 

on 

   |         
   

where   is a row vector of   unknown parameters and       is an arbitrary baseline hazard function. 

The factor     describes the risk of failure for an individual with regression variable   related to the 

factor     at a standard value     [16]. From a ratio of hazard functions corresponding to any two 

 -values not dependent on   is coming the name of “proportional hazards”.  

Let’s consider the following generalization: 

                        

where   are some parameters influencing the baseline hazard function. The hazard ratio is 

decomposed into a product of two items 

-        , a term that depends on time but not the covariates 

-         , a term that depends on the covariates but not time 

This is the COX PH model, for Cox Proportional Hazards. The specificity and the beauty of this model, 

as observed by Cox, is that if you use a model of this form, and you are interested in the effects of 

the covariates on survival, then you do not need to specify the form of        . Even though, we can 

still estimate  . The COX PHM is thus semi-parametrical, as some assumptions are made on 

        , but no form is pre-specified for the baseline hazard        . 

We are talking in this model about proportional hazards for the following reason: Consider two 

individuals with covariates    and   .  The ratio of their hazards at time   is 

 

       

       
  

                

                
 

       

       
      {       } 

This concludes that                 , e.g. hazards are proportional each other and do not depend 

on time. In particular, the hazard for the individual with the covariate    is     {       } times 

that of the individual with the covariate   . The term     {        } is called hazard ratio 

comparing    to   . 

If    , then the hazard ratio for the covariate is equal to     .This means that the very 

covariate has no impact on the survival. Thus, we can use the notion of hazard ratios to test 

ifcovariates influence survival. The hazard ratio also indicates how much more likely one individual is 
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to surrender at any particular point of time. If the hazard ratio comparing men to women was 2, this 

would mean that, at any time, men are twice as likely to surrender than women.  

However, there may be some interactions between covariates and time, in which case hazards are 

no longer proportional anymore. Similarly, there is no reason to expect the log of the hazard 

function to be linear with the covariates. At the beginning, the assumption of proportional hazards 

will be assumed and appropriate, and then verified. 

 

2.2.2.2. Survival function 

The survival fonction is expressed as such:            ∫       
 

 
).  

In our case here, our estimate of the hazard function is a discrete approximation to a continuous 

function. As the estimation of the baseline function that we will see just after, we will use the 

estimate  ̂      the estimate of the baseline function to express the estimate of the survival one.  

 

 ̂      
  

∑       ̂           

 

With : 

-    the number of surrenders at time   

-       the set of individuals that could surrender at time   

With  ̂     , we can estimate ∫        
  

    
, and follows our estimate of the baseline survival 

function  ̂         [ ∑  ̂ (  )   ]. 

Breslow (1972) provided an estimate for  ̂    , which is obtained by maximising       in which the 

parameters   are substituted by the maximum partial likelihood estimators  ̂. The estimator of the 

baseline survival function       is given by  

 ̂       ∏ (  
  

∑    {   }       

)

      

 

the estimated survival function, ̂   , as an illustration of the time until the first surrender event. The 

dashed lines are showing a point-wise 95% confidence envelope around the survival function 

 

2.2.2.3. Cumulative hazard 

The Cox PH model is a semi-parametric method of estimation. We do specify a model for the effect 

of the covariates, but anything specifically modelled on the baseline hazard function side. The 

Kaplan Meir estimator used through the R package to estimate the survival function does not 

required either to specify a model for the survival function [17] Thus, considering both hazard and 

survival functions are untimely linked, we can adapt the Kaplan-Meier method to estimate the 

baseline hazard function. 
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The estimate for the baseline hazard function at the time   of the  th event is: 

 ̂      
  

∑       ̂           

 

With : 

-    the number of surrenders at time   

-       the set of individuals that could surrender at time   

 

2.2.2.4. Partial likelihood estimate  

By fitting the Cox proportional hazards, we wish to evaluate       and  . One approach is to 

attempt to maximise the likelihood function for the observed data simultaneously with respect to 

      and  . Cox proposed an approach in which the partial likelihood function, not depending on 

      is obtained for  . The partial likelihood is a technique developed to make inferences on 

regresssion parameters, within the presence of regressison parameters (      in the Cox PH model). 

Based on the Cox proportional hazards model, the partial likelihood function is expressed as 

follows[18] 

Let            be the observed survival time for   individuals.Let the ordered surrender time of   

individuals be                  , and          the risk set of individuals who are investing in the 

Camelea portfolio and uncensored at the time just prior to     . The conditional probability that the  

    individual surrenders at       given that one individual from the risk set on          surrenders at  

     is 

    (                                 |                                  (    )       ) 

  
                                   

∑                                              
 

Taking the expression to the limit, with       , we get 

  
        

∑                  
  

               

∑                         
 

Hence a partial likelihood function for the Cox PH model given by 

     ∏
               

∑                         

 

   

 

In which         is the vector of covariate values for the policyholder   surrendering at time     . The 

general method of partial likelihood was discussed by Cox [link] 

 

However, this likelihood function is only for uncensored policyholders. Let            be the 

observed survival time for   individuals, and    be the event indicator, which is 0  if the     survival 

time is censored (e.g. no surrender), 1 otherwise. 
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This way, the log likelihood function presented above can be expressed as follows: 

     ∏[
             

∑                     
]

 

   

  

 

Where       is the risk set at   . 

 

2.2.3. Model validation 

 

2.2.3.1. Proportional hazards assumption validation 

The main assumption of the Cox proportional hazards model is precisely proportional hazards. 

Proportional hazards means that the hazard function of one individual is proportional to the hazard 

function of a second individual, e.g. a hazard ratio constant over time. There are several methods for 

verifying that a model satisfies the assumption of proportionality [13] [19]. 

2.2.3.2. Graphical method 

The Cox PH model survival function is obtained by the relationship between hazard function and 

survival function. 

            
     ∑      

 
    

Where   (          )
 
 is the values of the vector of explanatory variables for a particular 

individual. Taking the logarith twice of this expression leads to 

              ∑                    
 

   
 

Then the difference in log-log curves corresponding to two different individuals with variables  

   (             ) and                    is given by 

                                 ∑            
 

   
 

expression which does not depend on the time  . This relationship is very helpful inasmuch as it 

helps identifying situations where it may have proportional hazards. By plotting estimated 

                  versus the survival time, parrallel curves should be observed in case of 

proportional hazards.  

However, this method doesnot work well for continuous or categorical predictors having many 

levels,the graph becoming in this very case, cluttered. In addition, the curves are sparse when there 

are a few time points and it may be difficult to tell how close to paralle is close enough. 

Furthermore, looking at the Kaplan-Meier curves and                   is not enough to be 

certain of proportionality since they are univariate analysis and do not show whether hazards will be 
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still proportional when a model includes many other predictors. But they support the argument. 

Some other statistical methods should be used for checking more precisely the proportionality. 

2.2.3.3. Adding time –dependent covariates in the Cox model 

The aim is to create time-dependent variables by creating interactions between predictors and a 

function of survival time, in order to inlude them in the model at the end [20]. 

Let’s call a predictor of interest   . We can create a time dependent covariate               , 

with      a function of time, for instance   or      . The model assessing the proportional hazards 

assumption for    adjusted with the other covariates is 

 (      )          (                                ) 

where      (               )   is the values of the vector of explanatory variables for a 

particular individual. The null hypothesis to check proportionality is the condition    . The statistic 

test can be carried out using either Wald or likelihood tests. 

In the Wald test, the test is   (
 ̂

     ̂
)
 

 

The likelihood ratio test calculates the likelihood under the null hypothesis,   , and the likelihood 

under an alternative hypothesis,   . The likelihood ratio statistic LR is then 

       (
  

  
)            

where    and    are log-likelihood under two hypothesis respectively. 

Both statistics have a   distribution with one degree of freedom under the null hypothesis. If 

thetime – dependent covariate is significant (e.g. null hypothesis rejected), then the predictor is not 

proportional.  

Note: Similarly, the PH assumption for several predictors can be assessed simultaneously 

 

2.2.3.4. Tests based on the Schoenfeld residuals 

Another statistical test for checking the proportional hazard assumption is based on the Schoenfeld 

residuals. If the PH assumption holds for a due covariate, then the Schoenfeld residuals for that 

covariate will not be related to survival time. So this test is successful by finding the correlation 

between the Schoenfeld residuals for a particular covariate and the ranking of survival times. The 

null hypothesis is that correlation between the Schoenfeld residuals and the ranked survival times is 

zero. The rejection fo the null hypothesis can be summarized by the violation of the PH assumption. 

 

2.2.4. Cox proportional hazards diagnostics 

2.2.4.1. Schoenfeld residuals 

Once the model has been fitted, the adequacy of the fitted model needs to be assessed. The model 

checking procedures below are based on residuals.  
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Unlike Cox Snell residuals and deviance results, the Schoenfels residuals are covariate-wise residuals. 

They were at the origin called partial residuals because the Schoenfeld residuals for the  th 

individual on the  th explanatory variable    is an estimate of the  th component of the first 

derivative of the logarith and the partial likelihood function with respect to   . Taking the logarith of 

the partial likelihood drives to 

       

   
  ∑            

 

   
 

Where     is the value of the  th explanatory variable           for the  th individual, and 

                                 
∑       (    )       

∑                 
 

The Schoenfled residual for  th individual on    is given by     
   {       }. The Schoenfeld 

residuals sum to zero. 

2.2.4.2. Model Schoenfeld residuals 

In order to validate the model and its assumptions, we need to plot the Schoenfeld residuals for 

each covariate in order to check the proportional hazards assumption over time. Indeed, this 

assumption is the main one for keeping the Cox PH model valid and draw conclusions; The Cox PH 

model is valid only if the surrrender effect is not a function of time.  

The Schoenfeld test allows to validate the hypothesis.  The mathematical formulation of the 

surrender risk of a policyholder   in the Cox model can be expressed as 

             
             

 If      , the risks are proportional, and the surrender risk can be expressed as detailed in 

the Cox model. 

 If   is not constant, the impact of one or several covariates changes over time 

For the covariate  , plotting the function       is a way to analyze the risk variations over time. If the 

proportional hazards assumption is validated, residuals have in theory an aspect completely 

randomize, and the avergae evolution of the covariate over time is a horizontal line. 

 

2.2.5. Solving the Proportional hazards assumption 

Let’s suppose now that statistic tests or other diagnostic techniques gave strong evidence of non 

proportionality for one or more covariates. In order to face and solve this problem, two solutions 

can be proposed [20]: 

 Stratified Cox model 

 Cox regression model with time-dependent variables 
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2.2.5.1. Stratified Cox model 

2.2.5.1.1. Principle 

An alternative for dealing with non proportional hazards is to stratify over the covariates not 

satisfying the proportional hazards assumption. In essence, stratification involves fitting a model that 

has a different baseline hazard in each stratum.  

The advantage of this model is that it doesn’t involve worrying about a (subjective)  functional form 

assumed for the time interaction.However, the disadvantages are: 

- The baseline hazards are estimated with in strata only, meaning that there is more 

uncertainty in their estimates as information is not pooled over strata as in the Cox 

extended model 

- By stratifying over the covariate  , we lose ability to quantify its effect 

- Continuous covariates have to be arbitrarily categories 

Nonetheless, stratification is a solution for solving the issue of PHA violation. 

2.2.5.1.2. Formulation 

The stratifed Cox model stratifies the predictors not satisfying the proportional hazards assumption. 

Data is stratified into subgroups and the model is applied for each stratum. The model is given by 

                (     ), where   represents the stratum. 

It is remarquable in this situation that the hazards are not proportional because the baseline hazard 

can be different between strata. The coeffcients   are assumed to  be the same for each stratum  . 

The partial likelihood function is here the product of the partial likelihood in each stratum. A 

drawback of this approach is that we cannot identify the effect of this stratified predictor. This 

technique is most useful when the covariate with non-proportionality is categorical and not of direct 

interest. 

 

2.2.5.2. Cox regression model with time-dependent covariates 

2.2.5.2.1. Principle 

Until now, we have assumed that the values of all the covariates did not change over the period of 

observations. However, the values of covariates can change over time  . Such a covariate is called a 

time-dependent covariate. The second method to consider is to model non-proportionality by time-

dependent covariates [21]. The violation of the proportional hazards assumption is equivalent to 

interactions between covariates and time. That is, the PH model assumes that the effect of each 

covariate is the same in all points in time. If the effect of a covariate varies over time, the 

proportional hazards assumption is violated for this very covariate. 

2.2.5.2.2. Formulation 

In order to model a time-dependent effect, an option is creating a time – dependent covariate     , 

where               .      is a function of time, such as        The choice of time-dependent 

covariates may be based on theoretical considerations and strong clinical evidences. 
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The Cox regression model, with both time dependent covariates       and time – independent 

predictors    can be rewritten as 

   |              [∑     

  

   
 ∑        

  

   
] 

The hazard ratio at time   for the two individuals with two different covariates   and    is given by  

  ̂       [∑  ̂    
     

  

   
 ∑  ̂    

           
  

   
] 

In the hazard ratio formula, the coefficient  ̂  is not time – dependent.  ̂  represents the over all 

effect of      . Conversely, the hazard ratio is a function of time  . This means that the hazards of an 

event occuring at time   is no longer proportional, and the model is no longer a proportional hazard 

model. 

In addition to considering time-dependent variables for analyzing a time – dependent variable not 

satisfying the PH assumption, there are variables that are inherently defined as time – dependent 

variables. 

Indeed, time – dependent variables have been lately  classified as internal and external.  

- An internal time – dependent variable is defined as a covariate which changes over time, 

based on the characteristics or behavior of the policyholder (age, job occupation ...) 

 

- An external time-dependent variable is defined as a covariate whose value changes because 

of characteristics external to the policyholders (stock exchange market rates, unemployment 

...) 

 

2.2.5.3. Fitting a Cox regression model with time – dependent covariates 

The coxph function handles time – dependent covariates by requiring that each time period for an 

individual appear as a separate observation – that is, as a separate row or record, in the data set. 

The extended Cox model reflects an interaction between the covariates and time, e.g. a change in 

the effect of covariates. The model can also be extended to reflect dynamic changes in the 

covariates [20]. 

By dynamically changing covariates, we mean here covariates that actually change with time, rather 

than just their effect changing with time. To incorporate such time – varying covariates, we need to 

use the extended Cox model. For instance, the hazard function for a model with one constant 

covariate    and one time – varying covariate       can be written: 

 (          )          {            } 

The approach to deal with time – varying data is splitting individual at risk at the time of any change 

in any individual’s covariate: The aim is to segment, for every policyholder, his policy lifetime within 

regular time intervals, indicating for each interval all the covariates’ parameters. The first thing to do 

is here to create a new data set, with start and end times at periodic (here, monthly) intervals and a 

single covariate indicating the surrender status each month. There will be recorded per policyholder 
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per month spent as an investor within the portfolio. Each record will also be containing the relevant 

covariates selected in the previous Cox model. The covariate Event is here as an indicator variable, 

mentioning if the policyholder was surrendering during the studied interval of time, or censored. 

- In case of surrendering during the studied monthly period, we study a new policyholder 

profile, starting to zero and studying each month of his policy lifetime.  

- In case of no surrender during the studied monthly period –indicator censored, all the 

policyholder covariates will be replaced for the next month, identical to all respects expect 

with a new value of surrender status, and market rate 

 

 

2.3. Parametric model 

 

The Cox PH model described earlier is the most common way for analyzing prognostic factors on 

survival data. This is probably due to the fact that this model allows to estimate parameters without 

assuming any distribution on the survival time.  

However, when the proportional hazards method is challenged and/or not acceptable, these models 

are not suitable anymore.  

This section aims to present both  parametric proportional hazards and accelerated failure time 

models [22]. 

 

2.3.1. Parametric proportional hazards model 

 

The parametric proportional hazards model is the parametric version of the Cox PH model, and is 

consequently expressed with a similar form. The hazard function at time   for a policyholder 

characterized by a set of   covariates              can be expressed as such: 

   |           (                )                

The essential difference between these two kinds of models is that the baseline hazard function is 

assumed to be a specific distribution when a fully parametric PH model fits to the data, whereas the 

Cox PH one has no such constraint. These coefficients are estimated by full likelihood – while partial 

in the Cox PH model. Otherwise, these two models are similar, hazards ratios have the same 

interpratation and proportionality of hazards is still assumed. These models are usually suitable in 

the case of exponential , Weibull, or Gompertz models.  

2.3.1.1. Weibull PH model 

Let’s assume that the survival time   follows a Weibull law,                , with a probability 

function                     , with     and    . 

The hazard function is given by             
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  is called the shape parameter; 

- If    , the hazard increases 

- If    , the hazard is constant (exponential model scenario) 

- If    , the hazard decreases 

As particularities, the Weibull function has its            function linear with the time logarithm; 

indeed,  

 

              

   (    )       

                                

This property allows a graphical evaluation of the appropriateness of a Weibull model by plotting  

       ̂      vs      , where  ̂    is the Kaplan-Meier estimate. 

 

We consider here, in addition of all presented before, a survival time function. This “time to event” 

function is the time until a policyholder surrenders , or not. 

The parameter    consequently needs to be reparametrized as such:                  , with 

      if the policyholder surrendered his policy, 0 otherwise. 

The hazard ratio “surrendering versus not surrendering” can be written as: 

   
                    

            
          

This expression indicates that the proportional hazards assumption is satisfied. 

However, this expression depends on   having the same value in case of surrender or not 

(otherwise, the time would not cancel out). 

More generally, under the Weibull PH model, the hazard function of a particular patient with 

covariates              is given by 

   |              (                )                   

The survival timeof this patient has the Weibull distribution with scale parameter           and 

shape parameter  . Therefore, the Weibull family with fixed  has the proportional hazards property. 

This highlights that the effect of the explanatory variables within the model alters the scale 

parameter of the distribution, while the shape parameter remains constant.  
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The survival function can be expressed as such 

   |      {            } 

After a transformation of the survival function based on the property just seen earlier 

  {       }           

Its plot should return approximately a straight line if the Weibull distribution is reasonable.The 

intercept and slope of the line will be rough estimates of     and   respectfully. If the two lines for 

two groups are essential parralel, this means that the proportional hazards model is valid.  

Another approach to assess the suitability of a parametric model is to estimate the hazard function 

using the non – parametric method. If the hazard function increased or decreased monotically with 

increasing survival time, a Weibull distribution might be considered.  

2.3.1.2. Exponential PH model 

The exponential model is a special case of the Weibull one, with    . The hazard function under 

this model is assumed constant over time. Both survival and hazard functions are written as  

                         

Under the exponential PH model, the hazard function can consequently be given by  

   |       (                )            

In the line, the Weibull density function, expressed as                       , becomes, for 

   : 

                

Its plot should return approximately a straight line if the exponential distribution is reasonable: if the 

straight line has a slope nearly one, and goes through the origin,  the exponential distribution can be 

assumed. Besides, if the hazard function is reasonably constant over time, this would suggest an 

exponential distribution. 

2.3.1.3. Gompertz PH model 

Both survival and hazard functions of a Gompertz distribution are given by  

          
 

 
          

              

for     and      . 

In this case, the Gompertz distribution,          is linear with  . The parameter   determines the 

shape of the hazard function. When    , the survival time has an exponential distribution. And 

like the Weibull hazard function, the Gompertz hazard increases or decreases monotically. 

As the two previous cases, the hazard function for a particular patient is expressed as 
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   |                (                )                   

Altough it is straight forward to see that the Gompertz distribution has the proportional hazards 

property, this model is rarely used in practice. Moreover, most computer softwares for fitting 

exponential and Weibull models use a different form, the Accelerated Failure Time (AFT) model. 

 

2.3.2. Accelerated Failure Time model 

 

Although parametric PH models are very applicable to analyze survival data, there are relatively a 

few probability distribution for the survival time which can be used with these models. To face this 

issue, the AFT model is an interesting alternative to the proportional hazards model for the analysis 

of survival time data. This is measuring the direct effect of the explanatory variables on the survival 

time instead of hazard – as done in the PH model. It allows then an easier interpratation of the 

results, because the parameters measure the effect of the corresponding covariate on the average 

survival time. On a similar way to the PH model, the AFT model describes the relationship between 

survival probabilities and a set of covariates.    

 

For convenience reasons,   is to be refered to the regression coefficients and   to the accelerating 

ones.The usual distributions specified for   in the accelerated model are: Weibull (if shape=1, 

exponential), log normal and log logisitic.The corresponding distributions for   are : minimum 

extreme value, normal, logistic [23]. 

Under an AFT model, the covariate effect are assumed to be constant and multiplicative on the time 

scale – e.g. the covariate impacts on survival by a constant factor (accelerator factor). 

Based on the relationship between between both survival and hazard functions, the hazard function 

for a policyholder with covariates              is 

   |   (
 

    
)   (

 

    
) 

The associated log – linear form, in respect to survival time is 

                                 

-   is the intercept 

-   is the scale parameter 

-     a random variable  

This expression assumes to have a particular distribution. It is this type of form for the AFT model 

whichis adopted by most software packages for the AFT model. 
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The survival function of   can be expressed by the survival function of   .  

              

                       

                                      

       (   
        

 
) 

         
(
        

 
) 

For each distribution of   , there is a matching distribution of  . Generally, AFT models are named 

for the distribution of   rather than the distribution of    or    . The distributions of    and the 

associated distributions of    are summarized below 

 

T ln (T) 

Exponential Extreme value 

Weibull Extreme value 

Log-logisitc Logistic 

Lognormal Normal 

Log-gamma Gamma 

 

The effect size for the AFT model is the time ratio. This time ratio, comparing two levels of covariates  

   (     versus     ), after controling all the other covariates is         . This expression is the 

intrepretation of the estimated ratio of the expected survival times for two groups.  

A time ratio above 1 for the covariate implies that this covariate prolongs the time to event, while a 

time ratio below 1 indicates that an earlier event is more likely. Therefore, the AFT model can be 

intreprated in terms of the speed of progression of the event/ censor within the data. The effect of a 

covariate in an AFT model is to change the scale, and not the location of the baseline distribution of 

survival times. 

2.3.2.1. Estimation of AFT model 

AFT models are fitted using the maximum likelihood method. The likelihood of the   observed 

survival times            is given by 

         ∏{      }
  {      }

    

 

   

 

Where        and        are respectfully the density and survival functionsfor the     individual at   . 

   is the event indicator for the     observation.  
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The log likelyhood function can consequently be expressed as 

           ∑ {                 
                

     }
 

   
 

Where    
                          

 
. The maximum likelihood estimates the the unknown 

parameters               , by maximising this function using the Newton Raphson procedure – 

same methodology in use for the partial likelihood in the Cox regression model. 

2.3.2.2. Weibull AFT model 

Let’s assume the survival time   has        distribution with a scale parameter   and shape 

paramater  . The hazard function under the FAT model for the     policyholder is  

      [
 

     
]   [

 

     
] 

      [
 

     
]   (

 

     
)
   

 

      (
 

     
)
 

         

Where                               for a policyholder   with   explanatory covariates. 

So the survival time for the     policholder is  ( (
 

     
)
 
  ). The Weibull distribution 

consequently has the Accelerated Failure Time property. 

If    has a Weibull distribution, then    has an extreme value distribution (Gumbel distribution). The 

survival function of Gumbel distribution is given by    
                . 

The AFT representation of the survival function of the Weibull model is given by 

         [    (
                         

 
)] 

         [    (
                      

 
)     ] 

From this expression, the proportional hazards representation of the Weibull model is given by  

         [    (             )    ] 

Using the two last formulas, the AFT parameters        in the PH model can be expressed by the 

parameters        

     ( 
 

 
)    
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As a reminder, both hazard and survival functions are expressed as 

     
    

    
  

       

  
 

        [ ∫       
 

 

] 

Hence the AFT representation of the Weibull hazard function: 

      
 

 
 

 

 
     (

                      

 
) 

The approximate variance of a function of two parameters   et   is given by 

(
  

  ̂ 

)

 

 ( ̂ )  (
  

  ̂ 

)

 

 ( ̂ )   (
  

  ̂ 

  

  ̂ 

)     ̂   ̂   

 

The standard error of  ̂  is expressed as  

 ( ̂ )  ( 
 

 ̂
)
 

 ( ̂ )  (
 ̂ 

 ̂ )

 

   ̂   ( 
 

 ̂
) (

 ̂ 

 ̂ )    ( ̂   ̂) 

2.3.2.3. Log-logistic AFT model 

The Weibull hazard function has one limit, which is a monotonic function of time. However, the 

hazard can change of directions and vary over time in some situations. 

Log-logistic survival and hazard function are given by  

     
 

       and      
       

       

Where   and  ,    , are unknown parameters. 

- When    , the hazard rate decreases monotonically  

- When   , it increases from zero to a maximum and then decreases to zero. 

Assuming the survival times have a log-logistic distribution with parameter   and  , the hazard 

function under the AFT model for the     policyholder is  

      (
 

  
)   (

 

  
) 

       
   (

 

  
)
   

  (    (
 

  
)
 
)
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Thus, the survival time for the     policyholder has a log-logistic distribution with parameter 

        and  . As a consequence, the log – logistic distribution has the Accelerated Failure Time 

property. 

If the baseline survival function is       
 

      , with   and   unknown parameters, the baseline 

odds of surviving beyond time   are given by  

     

       
        

The survival time for the     policyholder also has a log-logistic destribution, which is  

      
 

            
 

The odds for the     policyholder surviving beyond time   is then 

     

       
                   

     

       
 

The logarith of the     policyholder surviving beyond time   returns  

  
     

       
             

Where    is the censor variable, taking the value 1 in case of event, and 0 otherwise (censor). A plot 

of   (
    

      
) versus     should be linear of the log – logistic distribution is appropriate.  

If    has a log – logistic distribution, then    has a logistic distribution. The survival function of a 

logistic distribution is 

   
    

 

      
 

The expression of the survival function of a log – logistic model becomes  

      [         (
                      

 
)]

  

 

The two expressions of       leads to the expressions of  

   
 

 
   

 

 
 

According to the relationship between survival and hazard function, the hazard function for the 

    policyholder is 

      
 

  
{    

 

    (
                      

 
)}
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2.3.2.4. Log – normal AFT model 

The assumption of having survival times following a log – normal distribution leads to an expression 

of the baseline survival and hazards functionswritten below: 

          (
     

 
)        

 (
   

 
)

    (
   

 
)  

 

Where   and   are parameters,      is the probability density function and      is the cumulative 

density function of the standard normal distribution. The survival function fot the     policyholder is 

        (
 

  
)      (

          

 
) 

The log – survival time for the     policyholder has normal           . The log – normal 

distribution has the Accelerated Failure Time property. 

 

It comes, in a two –groups study, with    the censor covariate (1 in case of event, 0 otherwise – 

censor), the relation 

    (      )  
 

 
             

The plot of     (      ) versus     will be linear if the log – normal distribution is adequate.  

2.3.2.5. Gamma AFT model 

The (generalized) gamma model is described by a probability density function of three parameters, 

        and     

          
    

    
                 

Where   is the shape parameter of the distribution. Both survival and hazard functions do not have a 

closed form for the generalized gamma distribution. Exponential, Weibull and log – normal models 

are all special cases of the gamma model. In case of  

-      , the generalized gamma distribution becomes the exponential distribution 

-      the generalized gamma distribution becomes the Weibull distribution 

-    , the generalized gamma distribution becomes the log – normal distribution 

This highlights the fact that the generalized gamma model can have a wide variety of shapes, except 

for any of the special cases. 
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2.3.3. Checks on models 

2.3.3.1. Graphical  

Graphical methods can be used in the first place to check if the paramteric distribution fits the 

observed data. As we saw before, we have: 

- If the survival time follows an exponential distribution, the plot of             versus     

should yield a straight line with slope of 1 

- If the plots are parallel but not straight, then the proportional hazards assumption is valid, 

but not the Weibull model.  If the lines for two groups are straight but not parallel, the 

Weibull model assumption is supported, but both PH and AFT assumptions are violated.  

- The log –logistic assumption can be checked by plotting   (
      

    
) versus    . If the 

distribution of survival function is log – logistic then the result plot should be a straight line.  

- For the log – normal distribution, a plot of     (      ) versus     should be linear 

However, all these plots are based on the underlying assumption that the data sample on where the 

model is fitted is drawn from an homogeneous population – implying then that no covariates are 

taken into account. This consequently makes this graphical checking method not very reliable in 

practice.  

 

 

2.3.3.2. Quantile – quantile plot 

One method for assessing the potential of an AFT model is to produce the quantile – quantile plot. 

For any value of   within the interval [0;100], the     percentile is 

        (
     

   
) 

Let’s consider       and       the     percentiles estilmated from the survival functions of two 

groups of survival data. The percentiles for the two groups may be expressed as  

        
  (

     

   
)          

  (
     

   
) 

 

Where       et       are the survival functions for the two groups. Hence,  

                    

Under the AFT model,  

        (
 

 
) 

So as a deduction 
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The percentiles of the survival distributions for the two groups can be estimated with the Kaplan – 

Meier estimator. A plot of percentiles of the Kaplan – Meier estimated survival function from one 

group against another  should give an approximate straight line through the origin if the Accelerated 

Failure Time model is appropriated. The slope of this line will be an estimate of the acceleration 

factor    . 

2.3.3.3. Statistical criterias 

AFT models can be compared between them with statistical tests. Nested models, as Exponential, 

Weibull and log-normal – nested within the gamma model, can be compared using the likelihood 

ratio test. 

Otherwise, for nested and non – nested models, the Akaike Information Criterion (AIC) can be used. 

This statistical criteria is defined as 

               

Where   is the log – likelihood,   the number of covariates within the model, and   the number of 

model specific parameters. The lowest the AIC value is, the better the model is. 

However, one difficulty remains by using the AIC; there are no other statistical equivalent tests to 

compare the AIC with. This makes the choice between two models with close AIC values difficult.  

 

2.4. Fit a survival model 

 

Based on what has been presented on this chapter, we decide here to fit a Cox PH model deeply on 

our data set [Annex 4, R code]. The reason of this decision is the convenience of this model, e.g. not 

making any assumption on the distribution times distribution, particularly because of the high 

number of failures (surrenders). 

Indeed, the main drawback of a parameterical model is its potential for arbitrary decisions regarding 

the nature of the baseline hazard rate.  On the other hand, the relationship between covariates and 

the hazard rate in the Cox model can be estimated without having to make any assumptions about 

the nature and shape of the baseline hazard rate. 

In this sense, the less assumptions we are making on the data, the better. That why the semi – 

parametrical model is studied deeper here. However, in order to compare both models, we will 

make a short parametric study at the end and compare the two survival times, in order to validate 

our choice.  
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2.4.1. Data 

2.4.1.1. Data presentation 

The file “Data.csv” gathers  all the surrender data of the Camelea portfolio. More exactly, we are 

talking here of 9 159 policyholders, allowed to surrender their life insurance policies at any time. 

There were 8,495 policyholders as of 31th of December, 2013. The 664 remaining to reach 9,159 are 

policyholders who fully surrendered their life insurance policy before end of December 2013. 

This data has been, on one part, generated by BOXI, a business object interface in use within 

NPGWM. A second part comes from Bloomberg 

It is based on this data set that all the results from the various studies which will be detailed below 

will come from. 

2.4.1.2. BOXI Data 

 Duration: The duration corresponds to the time the policyholder remains in the 

portfolio until the 31th of December, 2013.  

 Event: censor indicator; it is equal to 1 if the policyholder surrenders at least 

once his portfolio – partially and/or fully, 0 otherwise – right censored data 

 Still: Indicates if the policyholder surrendered his policy partially or fully. If the 

covariate is equal to 1, it’s a full surrender and the policyholder is no longer 

within the Camelea portfolio. If the covariate is equal to 0, then the policyholder 

is still in the Camelea portfolio as of 31th of December, 2013; he could have 

surrendered his policy, but only partially. 

 Savings: Amount of savings of each policyholder, on a €100,000 basis  

 

 Age: the policyholder age as of the time he fully surrendered his policy, and as of 

the 31th of December 2013 otherwise. 

 Gender: 0 for male, 1 for female 

 Job: the job occupation for each policyholder 

 

Job occupation Job occupation code 
UNEMPLOYED                               1 
STUDENT                                  2 
STATE EMPLOYEE (PUBLIC SECTOR)           3 
SELF-EMPLOYED/SHOPKEEPER (LEGAL ENTITY)  4 
SELF-EMPLOYED/SHOPKEEPER (INDIVIDUAL)    5 
RETIRED                                  6 
PRIVATE/INDEPENDENT PRACTICE             7 
OTHER                                    8 
EXECUTIVE                                9 
EMPLOYEE (PRIVATE SECTOR)                10 
COMPANY DIRECTOR                         11 
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 Gender:0 for male, 1 for female 

 Risk: The NPGWM compliance department set up some items to define a low (covariate 

coded 0) or high (covariate coded 1) risk policyholder profile. 

Are defined as high risk profile 

- Individuals who hold or have been entrusted with prominent public functions: 

Heads of State, heads of government, ministers, ambassadors, members of 

supreme courts, political parties’ responsible persons ... 

- Immediate family members: spouse, husband, partners, children, parents... 

- Known associates: any natural person who is known to have joint beneficial 

ownership of legal entities or legal arrangements, or any other close business 

relations, with a person holding or entrusted with prominent public functions 

 

Additionally, enhanced due diligence measures are taken for each new policyholder. 

NPGWM mustestablish the source of wealth and funds involved in the business relationship 

or transaction with great care and details. 

 

2.4.1.3. Bloomberg data 

 Unemployment:This covariate is the difference of Belgium unemployment rate 

between the time the policyholder suscribes his life insurance policy, and the 

time he surrenders. If the policyholder did not surrender, the covariate is the 

difference between the suscription time and and Belgium unemployment rate as 

of 31th of December, 2013. The purpose of this index is to notice if policyholders 

are surrendering because they are facing unemployment 

 SX5T: This covariate is the difference of the European MSCI equity market rates 

between two dates, the suscription time and the surrender time (31/12/2013 

value if the policyholder did not surrender before this date). I chose this index, 

which I think is quite well representative of the equity market all around the 

world. The purpose of taking an european equity index is to see if policyholders 

are surrendering for investing in more profitable markets or not. 

 

 

The data is summarized and consequently presented as such on the R software 
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2.4.1.4. Correlation between covariates 

The first step to do with this data set is studying the dependence between covariates. Having a quick 

look on the correlation gives us a first idea of how covariates are linked to each other 
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In statistics, dependence is any statistical relationship between two random variables or two sets of 

data. Correlation refers to any of a broad class of statistical relationships involving dependence. 

Correlations are useful because they can indicate a predictive relationship that can be exploited in 

practice. Formally, dependence refers to any situation in which random variables do not satisfy a 

mathematical condition of probabilistic independence. 

Among others, some observations from the output: 

 Market and unemployment rates are strongly linked 

 There is a link between the proportion to surrender, market rates and gender 

 Minor correlations between covariates otherwise 

2.4.2. Cox Proportional hazards model 

 

In R, the Cox PHM can fit the data with the adequate packages. This requires a formula object whose 

form is                   , named coxph, from the survival package. 

2.4.2.1. Adjustement of a Cox PH Model 

The code for adjusting a Cox model with R is as follows:  
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The adjusted model is as follows: 

           

                                                                                   

The R output gives: 

 

The R output on the Cox model summarizes, for all        : 

-          ̂ the parameter for each covariate 

-    (     )     ̂ 

- The main hypothesis to test is                          ,with     
√   ̂

√ ̂   ̂ 

 the 

Wald statistical value 

- Finally,           , the p-value for each covariate – with            

- The likelihood ratio is the statistical value of the maximum likelihood test 

-    is the abbreviation od degree of freedom, which corresponds here to the number of 

covariates 

-   is the   -value of the global test,   the total number of individuals, and the number of 

events corresponds here to the total number of surrenders within the data sample 
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The summary of the coxph function returns the values of three statistical tests (Likelihood ratio, 

Wald and Logrank) for the test of                         , with the corresponding 

degrees of freedom (df = 7) and p values (p= ...) for the statistical maximal law under the test    . 

 

2.4.2.2. Interpretation of the outputs 

The three p-values calculated by R (Wald, Log – Rank, Likelihood) are all inferior to 5%: 

Consequently, it does exist at least one covariate which has an impact on the surrender rate. The 

adjustment of a Cox PH model with a 5% threshold is, as a conclusion, coherent! 

 

2.4.2.3. Interpetation of the results on a covariate basis 

2.4.2.3.1. Relevant covariates 

Based on the summary results of the coxph test, we have to investigate on the covariates which 

impact significantly the surrender rate ( -value < 5%)). 
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The Wald test is testing each covariate while including all the others into the model. If the test is not 

significant, e.g. a  -value largely higher than 5%, it means that the test would not be significant 

either with a model built with this covariate only. 

 Wald tests for the covariates Portfolio, Still, DeltaS and Gender are highly significant, 

and have a large impact on the surrender rate ( -value << 5%) 

 Age has a marginal impact, much lower than the four previous covariates 

 ( -value    5%) 

 Conversely, covariatesDeltaU, Risk and Job do not impact at all the surrender rate 

( -value   5%). These covariates have no impact on the surrender rate when the 

other covariates are included in the model.  

The amount of savings (Portfolio), being for a long time within the portfolio (Still), the evolution of 

financial markets on the stock exchanges (DeltaS) and the sex of the policyholder (Gender) have a 

significant impact on the duration until surrendering. Conversely, the age (Age) has a marginal effect 

on the duration. The unemployment (DeltaU), the job occupation (Job) and the risk profile (Risk) do 

not impact significantly the duration when the other covariates are already within the model. 

2.4.2.3.2. Covariates’ interaction 

The exponential of the coefficients measures the multiplicative effect of a one-unit increase of the 

covariate on the surrender rate, the other covariates remaining unchanged, constant. 

 

This output summarizes the exponential of the coefficient for each variabe, and the 95% confidence 

interval linked to it: 

   
                        [ 

 ̂      √ ̂( ̂ )
   

 ̂      √ ̂( ̂ )
] 

These confidence intervals are built on the R software based on the fact that 

  ̂   

√ ̂   ̂ 

       . 
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2.4.2.3.3. Interpretation of the first results 

 The richer the policyholder is, the soonest he surrenders: Assuming all other covariates 

remaining constant, wealth has a negative impact on the duration until surrendering. The 

marginal effect of an increase of 100,000€ of savings increases the annual lapse rate with 

an average factor of        , e.g. by (101,7-100)% = 1.7%  

 The older the policyholder is, the more he surrenders: Assuming all covariates remaining 

constant, age has a negative impact on the duration on the Camelea portfolio until 

surrendering. The marginal effect of an increase of one year old increases the annual lapse 

rate with an average factor of        , e.g. by (100.2-100) = 0.2% 

 The more volatile financial markets are, the less the policyholder surrenders:  Assuming all 

covariates remaining constant, market movements have a positive impact on the duration 

until surrendering. The marginal effect of an increase of 100 basis points on European 

financial markets decreases the annual lapse rate with an average factor of         , e.g. 

by (100-84.9)% = 15.1% 

 The gender has an impact on the annual lapse rate. Women are more likely to surrender 

their policies of (120.3 – 100)% = 20.3% that men. However, this result should be 

pondered. Men represent more than 66% of the Camelea portfolio 

 The Still covariate returns a coherent result; if the covarate becomes 1 instead of 0, it 

means that the policyholder fully surrendered his life insurance policy. It consequently 

increases his surrender risk to 100%. Based on the Cox PH model results, this increase is 

shlightly lower 100%: (198.33 – 100)% =98.33% – the 1.77% difference coming from the 

model approximations. 

 

 

2.4.2.4. Selection of significant covariates 

Based on what has been presented before, what we have to do now is selecting the right significant 

covariates, by removing from the model the covariates for which the  -value is higher than 5%.  

We  get a second model, cleaned of all non-significant covariates:  
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2.4.2.5. Survival function 

Once all covariates are significant, we get interested on the survival function of the Cox regression 

on time until surrendering, based on all the valid (e.g. significant for the model) covariates.  

Indeed, having a Cox model fit to the data is generally in the purpose to examine the estimated 

distribution of survival times.  

To do so, we use the R survfit function, which estimates the survival one with taking by default the 

mean values of the covariates. 

For a policyholder  , the survival function is as such: 

  ̂     ̂                                                                          

We can also get interested in the surival functions, considering the split between full and partial 

surrenders. Plotting the three curves leads to  
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- In green is the survival function, including both and partial surrenders 

- In blue, the survival function for full surrenders 

- In red, the survival function taking into account partial surrenders only, e.g. it represents 

the survival for the policyholders still in the Camelea portfolio 

 

The estimation method used here is the Kaplan-Meier one. 95% confidence intervals is 

asymptotically normal. 

The study of the survival function with R uses the Kaplan-Meier estimate as mentioned above. The 

plot of the Kaplan-Meier estimate of the survival function (confer graph below) is a step function in 

which the estimated survival probabilities are constant between adjacent surrender times and only 

decrease at each surrender. 

 

2.4.2.6. Baseline hazard function 

In R, the baseline hazard function gives us, for a policyholder  ,  

 ̂      ̂                                                                          
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In dark black is the estimate baseline hazard function, based on the observations [24]. The other 

curves are representing the baseline hazard function conditionally to one covariate. 

What we do observe here is in line with what we saw earlier. 

- Portfolio (red) and Age (blue) do not impact a lot the surrender risk. Indeed, they are 

very close to the (black) baseline hazard line. The Portolio covariate increases slightly the 

risk, while the age decreases it 

- The market rate covariate, DeltaS, impacts significantly and positively the surrender risk. 

Rising markets make the surrender risk becoming lower 

- The gender covariate has a significant impact on the surrender risk. Women are more 

likely to surrender than men 

 

2.4.2.7. Model schoenfeld residuals 

Significant covariates for the Cox PH model have been all selected. What we have to do now is 

checking that the proportional hazards assumption is valid within the model we just built. 

Let’s look first the plot of Schoenfeld residuals. Every deviation from the horizontal is an indication 

of a time-dependent covariate. 
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We can estimate from these plots that both Still and DeltaS covariates are time –dependent.  

Indeed, we can observe for the two covariates a rising trend. A statistical Schoenfeld test should go 

in this way. 

In practice, these results are coherent. Life insurance policies are considered as popular investment 

vehicles, generally tax – exempted, hence their popularity. In this way, the longer policyholders 

invest in their portfolios, the richer they are. Consequently, they surrender once they saved enough 

money in order to finance a project ... The time –dependence for market movements is not 

surprising either, inasmuch as financial market volatility and variations over the past few years.  

The statisical proportionality test based on Schoenfled results leads to 

 

“rho” is the Pearson correlation coeffcient between Schoenfled residuals and time for each 

covariate. 
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The test comparing to zero the regression straight returns p-values varying from 0 to0.31 . the first 

conclusion to this test is: 

 The portfolio covariate appears to be as not time –dependent ( -value   5%), e.g. the 

condition of proportional hazards is respected 

 Age and Gender covariates is marginally time-dependent, e.g. a  -value    5%), e.g. they do 

not respect entirely the proportional hazards assumption 

 deltaS and Still covariates are completely time –dependent.  

Mainly due to the DeltaS covariate, and marginally with the Portfolio and Still ones, the proportional 

hazards assumption of our Cox model is not verified. The global validation test of the PH assumption, 

           versus          , conducts to reject it, because of time – dependent covariates. 

2.4.2.8. Martingale residuals 

The Covariate linked to financial market is strongly time-dependent, meaning there is a link between 

the covariate with time. The martingale residuals will test the link form, allowing us to assess the 

type of dependence between the covariate and time. 

We plot the martingale residuals versus the time-dependent covariates. We smooth the curves with 

local polynomes with only one degree of freedom to highlight any trend [25]. 

In case of an exponential link function, the rate logarithm will be a linear function of the covariates. 

Plotting the estimated link function with the  martingale residuals versus the covariates will highlight 

the form of the link function.  A fast growth of the curve will suggest a power transformation, with 

   . On the opposite, a slow growth will suggest a logarithm/ square transformation (    . 

The plot in the first time of the martingale residuals, and in a second time, of the estimated link 

function + martingale residuals led to: 
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These two plots clearly indicate an exponential link between time and the MSCI european equity 

rate. 

 

2.4.2.9. Influence of observations 

We need to perform one last check : verifying that the model coeffcients are not defined only from a 

small number of observations but represent the entire population of the data set. Comparing orders 

of magnitude of the DfBeta residuals with the coefficients will indicate  us the significance of the 

coefficients.  

The plot of the DfBetas coefficients leads to 
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Respectively, coefficients for the Cox model covariates are: 0.01736, 0.6852, -0.1645, 0.00252, 

0.18732. Comparing the orders of magnitude of both DfBetas observations with the last Cox model 

coefficients (confer section 2.4.2.4.) draws to the conclusion: 

DfBeta residuals are small comparing to their respective coefficient values. Hence no anormally 

influent observations on the Cox model. 

 

2.4.2.10. Time dependent covariates – fixing the issue 

2.4.2.10.1. New data frame 

Time –dependent covariates is not suitable for the Cox PH model. In order to solve the issue, we 

built, on a monthly basis, a new data set based on what we already presented before, which is 

presented as follows:  

 

The surrender data has been separated on a monthly basis for each policyholder. At the surrender 

time – or at the end of the study, we indicate the value of the DeltaU (unemployment) and DeltaS 

(market rates). 
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We can see in this case, that the policy n° 194, has a total duration of 0.090 year within the Camelea 

portfolio (e.g. 33 days), which was fully surrendered (Event = 1), has a portfolio value equal to 

€201,338.61. The policyholder was at the surrender time, 37 years old, male. When he surrendered, 

unemployment and financial markets both increased of 0.1%. 

 

2.4.2.10.2. Fitting  Cox model 

We can now fit the Cox model. Commands and outputs are 

 



72/119 Memoire IA – Zacharie Guibert – ISFA 2010 

 

 

As the previous model, all the covariates are remaining significant in this model with this new data 

(  value results all below 5%). 

Before interpreting the results, let’s validate both Schoenfeld and DfBeta residuals.  

2.4.2.10.3. New Cox model residuals 

2.4.2.10.3.1. Schoenfeld residuals 

 

We observe now that, by splitting our data in monthly intervals, the Portfolio covariate became time 

– dependent. This observation makes sense. Policyholders investing in a life insurance policy can add 

some extra money to their first investment all over their policy lifetime (what is usually called in the 

life insurance business, a top-up). As much as a policyholder is allowed to surrender his policy, he’s 

also allowed to reinvest in it.  It is consequently normal to see a policyholder reinvests in his 

portfolio all over the policy lifetime. The longest the policyholder invests, the richer he becomes. 
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2.4.2.10.3.2. DfBetas residuals 

Plotting the DfBetas residuals leads to  

 

Respectively, Cox regression coefficients for this new CoxPH model are: 0.01428, -0.71797, 

0.008477, -0.31406. 

All DfBeta’s are gathered around 0 homogeneously, with very low level of variations 

(around         , e.g. much more lower than the fitted Cox regression model coefficients).  We 

can then deduce than there are no abnormally influent observations on the model. 

Even though the DfBeta residuals led to conclusive result, the Schoenfeld test failed. Considering the 

data has already been processed in order to solve time – dependence issues on the market rate 

covariate mainly, we must look towards another solution. 

 

2.4.2.11. Fitting the Portfolio covariate 

Looking on the portfolio data, we realize that, for each policyholder, there is a specific amount of 

savings, e.g. 9,159 different figures. We decide to recode the portfolio covariate into several classes 

in order to have a more significant model covariate, more representative of the level of wealth of 

each policyholder, as of the time of surrender or end of December 2013. The portfolio covariate is so 

recoded by quartile, as such  
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Portfolio From  To  Observations 

1 0,000 0,230 From 0 to the 1st quartile 

2 0,230 0,559 From the 1st to the 2nd quartile 

3 0,559 1,472 From the 2nd to the 3rd Quartile 

4 1,472 94,439 From the 3rd quartile to the maximum value 

    Splitting the policyholders into four classes of wealth allows seeing how policyholders react in 

function of the level of wealth they are belonging to. 

Once re-treated, the data is presented as follows: 

 

The interpretation remains the same as the one in paragraph 2.4.2.10.1.The policyholder n°194 

belongs to the highest portfolio class, 4, while the policyholder 195 belongs to the lowest one, 1. 

2.4.2.11.1. Cox model validation 

The new Cox model returns  

 

The Wald test on the covariates indicates that all of them are significant for the model. More 

detailed, the new Cox model has as characteristics 
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2.4.2.11.2. Model residuals 

2.4.2.11.2.1. Schoenfeld residuals 

 

All covariates are time –independent. The proportional hazards assumption is consequently 

validated, thanks to the separation on four different classes of wealth of the portfolio covariate. 
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2.4.2.11.2.2. DfBetas residuals 

The study of the DfBeta residuals leads to  

 

Respectively, Cox PH regression coefficients are equal to: -0.07979, -0.71884, 0.00895, -

0.31264.Residuals all very close and centre homogeneously on 0. We can deduct no abnormally 

influent observations. 

 

2.4.3. Final Cox Proportional Hazards Model 

 

We managed to fit a Cox proportional hazards model on our surrender rate. After facing the 

violation of the main model assumption, the proportional hazards one, we succeeded fitting this 

model and respecting its assumptions.  

The Wald test on all the covariates showed which covariates were significant in the first place, which 

allowed us to select these very ones. Tests on residuals (Schoenfeld, DfBetas and martingale) where 

definitely helpful to validate the Cox model assumptions 

With the last data set, the final Cox model is now written as follows:  
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In R, commands and outputs are 

 

Studying all covariates on a monthly basis allow us to get interested on the impact of each of them 

every month, until the policyholder decision to surrender. 

 

Calibrating a Cox PH model on our data finally highlights the following policyholder behaviour:  

The richer a policyholder is, the less he surrenders. The wealth of the policyholder affects his will to 

surrender. All covariates remaining constant, stepping from level 1 of savings to level 2 in a month 

reduces the annual surrender rate by                   .  

The more financial markets grow, the less the policyholder surrenders. This result makes sense. As 

we saw earlier in section 1.3.1, the Camelea portfolio offers a large range of investment solutions 

and should as such reflect financial market movements – up to a factor. The more the market grows, 

the more profitable it is to invest within. All covariates remaining constant, the increase of 1% of the 

MSCI European equity market reduces the annual surrender rate by                   .  

The older a policyholder is, the more he surrenders. Indeed, getting one more years old makes the 

policyholder surrendering                     faster. 

Men surrender                     more than women – however, they are over represented 

in the Camelea portfolio. More than 72% of Camelea policyholders are men. 
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2.4.4. Parametric model 

2.4.4.1. Parametric model selection 

We are looking to fit a parametric model on the original data set. Seven models are tested: 

- Log – normal 

- Weibull 

- Log – logistic 

- Gaussian 

- Exponential 

- t 

- Extreme 

They are selected with the AIC criteria. The R command returns 

 

From this test, we can deduce that, based on the AIC criteria, the Weibull distribution is the one 

which fits best the survival time [26].  

 

2.4.4.2. Interest functions 
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These three plots all conduct to the same conclusions than the Cox PH model. The portfolio and the 

age do not impact a lot the decision to surrender. Increasing financial markets impact positively and 

reduce the surrender risk significantly. On the other hand, being a women has a large impact on the 

surrender rate. 

 

2.4.4.3. Model comparisons 

The plot of both (Kaplan- Meier) Cox and Weibull models shows clearly that the Weibull model is 

making too much assumptions on the survival times distributions. Indeed,  
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Proportionally, the parametric survival function is making too many assumptions on the survival 

times distributions and decreases toofast to reflect the portfolio. 

The Cox PH model seems so, in our case, much more appropriate. 

 

2.4.5. Conclusion 

 

The Cox PH model has the disadvantage of having its distribution of survival times unknown. Indeed, 

any assumption is made on the baseline hazard function      , which makes this model non – 

parametric. Another disadvantage which might be cited here is that its survival function is less 

consistent with a theoretical one. The Cox PH survival function is typically a step function, got with 

the plot of the Kaplan – Meier estimate. 

However, two essential advantages for the semi – parametrical model. The main one is that the 

model does not rely on distribution assumptions. The second is that the baseline hazard is not 

necessary for ratio use, hence no assumption of the distribution of survival times. 

Even though a parametric model would have completely specify the hazard  function       and the 

survival function      – without mentionning the fact of being more consitent with the theoretical 

function, the major issue here would have been making an assumption of the underlying 

distribution.  This would have been problematic, inasmuch as a wrong fit of the survival times 

distribution would have made the final parametric model completely wrong.  

The Cox PH model returns some interesting results, illustrating the covariates which will increase or 

decrease the policyholder motivation to surrender. As instance; a female policyholder in portolio 

class 2 of 70 has less chances to surrender than a male in portfolio class 3 of 60. 

As we saw earlier, calibrating a semi – parametrical survival model highlighted the global behaviour 

of the policyholders within the Camelea portfolio. The next section will look deeper in these 

bahaviours, in order to define a sales and marketing strategy for lowering the surrender risk, by 

chosing the policyholders in function of several criterias. 
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3. Surrender factors 

3.1. Influence of the Job occupation 

 

All policyholders of the data sample are classified by job occupation. The interest is here to study the 

reaction of one class compared to another based on the global final Cox model we build.  

Results are summarized below 
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MODEL N P covariates coef exp(coef) p rho p

9159 3417 Portfolio -0.07797 0.925 0 0.013 0.44

DeltaS -0.71884 0.487 0 -0.002 0.90

Age 0.00895 1.009 0 -0.015 0.35

Gender -0.31264 0.732 0 0.015 0.37

UNEMPLOYED                              524 229 DeltaS -0.557 0.573 0 0.008 0.91

209 56 Gender -1.184 0.306 0.0055 0.073 0.56

DeltaS -0.839 0.432 0.0027 0.007 0.95

620 225 Portfolio -0.139 0.870 0.035 0.016 0.80

DeltaS -1.12 0.326 0 -0.149 0.08

SELF-EMPLOYED/SHOPKEEPER (LEGAL ENTITY) 649 202 Portfolio -0.102 0.903 0.01 0.123 0.08

922 365 Portfolio -0.105 0.900 0.03 0.051 0.32

Gender -0.307 0.736 0.029 -0.026 0.62

2806 1200 Delta S -0.6122 0.542 0 0.005 0.87

Age 0.0092 1.009 0.0006 0.015 0.59

Gender -0.2897 0.748 0 -0.001 0.97

PRIVATE/INDEPENDENT PRACTICE            616 187 DeltaS -0.841 0.431 0 0.001 0.99

314 100 DeltaS -0.8779 0.416 0 0.030 0.76

Age 0.0206 1.021 0.021 -0.105 0.24

309 93 DeltaS -0.9866 0.373 0 -0.019 0.84

Age 0.0203 1.021 0.049 0.039 0.73

1968 670 Portfolio -0.1426 0.867 0 0.043 0.25

DeltaS -0.7472 0.474 0 -0.014 0.71

Age 0.0108 1.011 0.00073 0.033 0.40

Gender -0.3705 0.690 0 0.061 0.11

COMPANY DIRECTOR                        222 90 DeltaS -0.527 0.590 0 0.000 0.89

EXECUTIVE                               

EMPLOYEE (PRIVATE SECTOR)               

GLOBAL

STUDENT                                 

STATE EMPLOYEE (PUBLIC SECTOR)          

SELF-EMPLOYED/SHOPKEEPER (INDIVIDUAL)   

RETIRED                                 

OTHER                                   
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- From the global model, we can deduce: 

 

 An increase from 1 class to another reduces the surrender risk by 7.5% 

 An increase of 1% of financial markets has a large impact on the surrender risk, decreasing it 

by 52.3%.  

 An increase of 1 year old on a policyholder increases by 0.9% the chances to surrender 

 Being a women impacts positively the surrender rate by decreasing it of 26.8%. 

 

- Unemployed persons have a large surrender rate. Indeed, 229 policyholders on a total of 

524, e.g. 44% already surrendered at least once, fully or partially their life insurance 

policy. Their decision to surrender is mainly driven, in our model, the evolution of 

financial markets. However, the need of liquidities is hard to model in this case. Indeed, 

in practise, unemployed people are surrendering their life insurance policies in order to 

face unemployment and survive.  

It could be intresting in this very case to include the unemployment data to see the its 

impact on the surrender rate. Indeed, even though the unemployment rate was not 

significant on our global model basis, it would make sense it has a more significant 

impact here. 

 

- 27% of students already surrendered once their life insurance policy. If they are on 

average as reactive to surrender or not  as other policyholders within the global model 

in case of financial markets movements, men are surrendering a lot more than women. 

Indeed, women woud surrender until 70.4% less than men. 

 

- State employees from the public sector are reactive to both financial markets 

movements and their level of wealth. The richer they are, the less they surrender (-23% 

of chances to surrender from one class of wealth to another) 

 

- Self – employed and shopkeeper, legal entity or individual, are both sensitive in the 

same way to their level of wealth. The richer they are, the less the surrender (-10% of 

chances to surrender).  For idividuals, the gender also has an impact. In this category, 

men are more likely to surrender by 27.4% 

 

- Retired policyholders are the most numerous within Camelea. They are sensitive to the 

market rates, the age and the gender. The older the policyholder is, the more he 

surrenders (+0.9% for one year older). As usual in the study, men surrender 25.2% more 

than women. 

 

- “Other” and excutive job occupations are very sensitive to the market risk. An increase 

of 1% of financial markets will reduce their will to surrender by respectively 59.4%  and 

67.3%. The age also drives their decision to surrender. Getting one year older increases 

their decision to surrender by 2.1%. 
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- Employees from the private sector are senitive to the four covariates of the global 

model. The richer they are the less the surrender (-13.3%). An increase of 1% of financial 

market reduces their will to surrender by 52.6%, while getting one year older increases 

their chances to surrender by 1.1%  

 

- The decision to surrender for company directors is driven by the evolution of financial 

markets. An increase of 1% of those will reduce the surrrender risk by 41%. 

 

Whatever the job occupation, most of policyholders manage their policies and their decision 

to surrender based on the financial markets movements. Increasing markets will make them 

confident and reinvest within their policies while decreasing markets will frighten them and make 

them surrender sooner or later.  

Job occupations “executive”, “student”, “other”, “state employee (public sector)”, “employee 

(private sector)” are the most reactive towards this risk.  

Gender has the biggest impact for “student” policyholders, where men surrender a lot more than 

women. It is the same conclusion, but in lower proportions, for retired policyholders and employees 

from the private sector. 

Age has essentially an impact on the willingness to surrender on retired policyholders and 

employees from the private sector. 

The level of wealth of the portfolio has an impact on the decision to surrender for shop-keeper, legal 

and individual, and employees from the private sector. 

 

 This highlights that the life insurer has to manage carefully the interest rate he is offering to 

its clients. Indeed, market yields impact a lot the policyholder’s decision to surrender or not his 

policy. 

Conversely, it might worth to target wealthy policyholders, the study showing that the wealthier 

they are, the less they surrender. Age does not impact significantly, but marginally the surrender 

risk. It makes sense that the older the policyholder gets, the more he retired – especially after 60, 

the average age for retirement.  We have the same conclusion than the one in 2.4.5. regarding the 

gender: Female policyholders surrender less than male policyholders. 
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3.2. Influence of financial markets  

3.2.1. Camelea historical lapse rate 

3.2.1.1. On a monthly basis 

The Camelea lapse rate since December 2008 evolved as follows:  

 

 

We can notice on this chart two significant high points, one in early 2009, and another one early 

2012. Besides, we can also notice that, starting 2010, the monthly lapse rate osciallate around an 

average value of 0.50%. 

Let’s have a look now on the market returns at these specific periods of time: We chose here four 

MSCI indexes to represent the market (MSCI Equity Europe; MSCI Equity international with Emerging 

Markets; MSCI Corporate bonds 7-10 years; MSCI Sovereign bonds 7-10 years). In market values:  
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We can notice on the chart two main results 

- The market drop resulting of both subprime (circled in red) and debt crisis (circled in black).   

- The rising trend of bonds’ investments  

This additonal observation highlights what as been previsously shown while fitting the Cox PH 

model: Financial markets have a large influence on the lapse rate, and its evolution over time is  one 

of the main driver of the surrender risk. In case of rising markets, policyholders are more motivated 

to remain investing. Conversely, falling markets make them frightened about the future and more 

prompt to surrender in order to protect their savings. 

Modelling this risk with classical method, as time series or Cox-Ingersol Ross ones, seems not 

appropriate here.  Indeed, we only have a data set on a monthly basis, which makes the number of 

observations to maximum 62 points of observation. There is not enough data to properly calibrate 

one of these models on such a few points[27] [28], without speaking of having a projection distored 

and biaised. Besides, the subprime crisis and the debt one completely changed the investor’s 

behavior: the policyholder became much risk-averse, which makes him surrendering his policy faster 

than 2008, in case of a market rate decline higher than usual [29].  

3.2.1.2. On a duration basis 

The plot of theCamelea lapse rate on a duration basis leads to: 

 

We observe a linear trend, which is interesting. Policyholders surrender in proportion to the time 

they remain within the Camelea investment product. After four years, the drop is mainly due to the 

few numbers of observations we have at our disposal. Indeed, between a 4 and 5 – years duration, 

there are only a few contracts within the Camelea portfolio, just launched on the life insurance 

market. 

This observation is acceptable. Let’s have two policyholders having a life insurance contracts for two 

purposes and investing in the same proportions each month. The first wants to buy a car, the second 

a house. Respectively,  the first policyholder will have enough money to buy his car than the second, 

who still need to wait to buy his house.  

Based on these two observations, the idea is now to build a surrender model which will depends on 

the market rates, and which will return an average lapse rate on a monthly basis for the next 100 

months. 
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3.3. Modeling a dynamic lapse rate 

 

We would like to model two portfolios, one offering a guatanteed – rate to its policyholders (confer 

section 1.5.2.3), and one unit – linked, e.g. with a non guatanteed rate – as the Camelea portfolio. 

In order to model the conjectural lapse rate – e.g, as a reminder, the one depending of the market 

rates, we use the recommendations from August 2010, relatively to the QIS 5 of Solvency II [6].  This 

methodology is also precognised by the French supervisor (“l’ACP, Autorité de Contrôle Prudentiel”). 

3.3.1. Model assumptions 

 

According to the preliminary studies, the model we have to build should: 

- Return a lapse rate function depending on the dynamic lapse rate. This dynamic lapse rate is 

based the difference the market rate and the interest one served within the portoflio 

- Integrate a dynamic lapse rate in the contract value, in order to have a dynamic value of the 

portfolio actualized with the lapse rates. 

Based on historical evolution, we previously noticed on the lapse rates a returning-to-average effect 

(around 0.50%). We also mention in introduction the problem of modeling the investors’ irrationality 

(more represented in the structural part), which a stochastic modeling allows to model, thanks to 

the hazard function.  

Thus, all these reasons induce us to look once again on a stochastic model.  

We model in this section the lapse rate with the Vasicek model: the non-zero probability to have 

negative lapse rate has here the main advantage to eventually, on a further study, model top-ups. 

The Vasicek model being easy to manipulate thanks to a Gaussian distribution and a short simulation 

time, we will also use it to model the market rate. 

Under the Vasicek model [30] -proposed in 1977- the only factor is the lapse rate   modeled under 

the shape of a process of Ornstein-Uhlenbeck. Under the filtration    , the probability   and the 

risk-neutral probability , follows: 

                   

        

With 

-   : lapse rate value at the dealing time t 

-  : lapse rate long-term average 

-  : returning speed average; the rate variation between   and +Δ  

-   :  - brownian motion 

Eventually, the Vasicek expression can be simplified as: 
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In case of discrete distribution, we will have instead: 

                            (      )        

A demonstration of the results which will follow can be found in the bibliography references [4] & [5] 

and will not be developed in this paper. 

For      , the expression of the lapse rate is:  

      
                       ∫            

 

 

 

The lapse rates trajectories oscillate between a long-term average, with a volatility equaled to
  

  
. To 

calibrate a model, natural estimators appear: 

 ̂                                                 

Besides, if we write the lapse rate as: 

                             

We can have an estimation of the returning speed average (e.g. the rate variation between 

        ), the empirical volatility and the average as, with r the lapse rate: 

 ̂   
           

    ̂     
 

 ̂   √  ̂       

 ̂       

The dynamic lapse rate prevents here the rates from getting too high, due to a maximal and 

minimum value set in the model.  

We get, based on the sample of Camelea historical lapses. 

-  ̂   2.13% 

-  ̂  18.96% 

-        0.012% (average squared deviation from the mean) 

-  ̂   0.68% 

3.3.2. Creation of a dynamic surrender rate 

 

In this scenario, we assume that the lapse rate only depends of the difference of the return rate 

offered by the market and the one offered by the NPGWM [36].The dynamic lapse rate reflects: 
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- The will of the policyholder to surrender his policy to reinvest in more profitable investment 

solutions because of increasing financial markets – for a guatanteed rate portfolio only; a 

non guatanteed rate portfolio, up to factor or a lag, replicates the financial market 

- The will of the policyholder to reinvest (top –ups) in his policy because of rising markets – 

however, the policyholder does not surrender to reinvest his policy somewhere else because 

of a thin difference in offered interest rates  

- The will of the policyholder to surrender because of decreasing markets rates, in order to 

protect his savings. 

Considering α,     data to determine and defined as follows, the goal is to create a function which 

will return [31]:  

- If                                              , with   to determine, e.g. if 

the rate offered by one of NPGWM products is higher than the one proposed on the  market 

(calculated with the Vasicek calculation), plus a certain quantity  , then the policyholder is 

reinvesting in his policy. This is how we will model top-ups. 

 

- If                                              , with   to determine , e.g if 

the rate offered by one of NPGWM products is lower than the one proposed on the financial 

markets plus a certain quantity  , then the policyholder will surrender –partially or fully- his 

policy. This is how we will model surrenders.  

We can thus define a dynamic model modeling both top-ups and lapses only function of the 

evolution of the difference   of the market rate and the life-insurance portfolio served rate. 

- If  < α, then                      the historical minimum lapse rate (minimum lapse <0, 

e.g. maximum top-up rate) 

- If α < <  , then                       
   

   
(top-up scenario) 

- If  < <  , then              (absence of portfolio dynamic movements) 

- If  < <  , then                       
   

   
 (surrendering scenario) 

- If  > , then                    (maximum surrender rate) 

3.3.3. Surrendering borders 

3.3.3.1. Maximum dynamic lapse rate  

Let’s define the maximum value for the lapse rate, with M: the maximum lapse rate value and α: the 

probability that the lapse rate gets higher than M. 
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In this context: 

           

 ( (  
  

  
)   )     

 (       
   
 

√  ⁄
)     

e.g.     
 

√  
  , with    of a normal distribution. 

The main advantage of such model is that we will be able to include in our parameterization the 

specifications of each insurance product. Indeed: 

                                   

Annualizing the monthly lapse rate to get the thresholds makes sense: In the insurance business, 

insurers are required to have a prudential approach on their risk; expressing the lapse rate on an 

annual basis signifies that we consider that the maximal monthly lapse rate will be the same on the 

dealing year.  

                                

 

              
  

 

√  
  

               
   

On a monthly basis, the                 over the last 12 months was 5.28%, which returns a 

dynamic maximum lapse rate at 5.604%. 

3.3.3.2. Surrendering thresholds 

Another tricky point of this modeling is the determination of the threshold representative of the 

moment when policyholders start and end surrendering their policy.  

3.3.3.2.1. Starting surrendering point 

Basically, we can define a risk premium π function of the surrender charges and the evolution of  . 

However,it has been decided that surrender fees in NPGWM are equal or closed to zero (free-

decision argument towards the policyholder). However, based on a 12 months average on historical 

data, we can reasonably assume that, in case of a   value inferior to 1.15% [29], policyholder will not 

surrender his policy. We also have to include in the expression of the threshold a stressed interest 

rate risk. If we consider    the volatility of the difference between the benchmark rate and the life 

insurance portfolio one, we can express the threshold for which policyholders will start to surrender 

his policy as, and with   a coefficient factor:  
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We will assess for now   as the quantity for which the policyholder will not invest in the market 

because of a too high volatility. We can reasonably assess for now a volatility of the market rate 

around 20% (volatility for corporate bonds around 10%, and equities around 30%[32]). Thus, (*) 

becomes:  

              

On a 1000 scenarios basis (variation of 0.10% between 750 and 3000 scenarios), we get as    

average an amount of 8.12%, which sets to         the moment when policyholders are going 

to start surrendering because of higher interest rate offered by the market. As comparison figure, 

the inflation rate in the Eurozone in December 2013 oscillates around 0.7% on an annual basis and 

around 1.6% in 2013). 

3.3.3.2.2. Ending surrendering point 

Life insurance investors have a risk-prudential approach, e.g. they won’t be lured by a high return 

with a high volatility. We assess, for now, to 10%the moment when policyholders will stop 

surrendering their policy to invest in the financial market [Annex 6]. Inasmuch as insurance products 

are supposed, proportionally, to replicate the market, the scenario where the difference between 

the market rate and the one offered by NPGWM be above 10% is highly unlikely.  

 

 

3.3.3.3. Top-ups borders 

Unfortunately, time was too short to model on a properly basis the top-ups. Assuming that top-ups 

react as lapse rates is a strong assumption. Indeed, “Loss aversion implies that one who loses $100 

will lose more satisfaction than another person will gain satisfaction from a $100 windfall _ Daniel 

Kahnemann” [35] [Annex 5] 

3.3.3.4. Dynamic lapse rate output 

 

 

The NPGWM’s life insurance business offer two types of investments: a guaranteed one and a no 

guaranteed one. Besides, a NPGWM product, Camelea, is provided with a stop-loss option in case of 
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an excessive fall in the financial market. On a monthly basis, we assume in the modeling that the 

policyholder will surrender or reinvest in his policy in the same month. 

- If the difference between the benchmark market rate (MSCI) and NPGWM served rate 

remains between -2.77% and 2.77%, the conjectural lapse rate is equal to 0. 

- If the difference between the benchmark market rate (MSCI) and NPGWM served rate is 

equal to 6%, the estimated lapse rate is around 2% 

- Conversely, if the difference between the benchmark market rate (MSCI) and NPGWM 

served rate is equal to -4%, policyholders will be reinvesting in their life insurance policies by 

1.2%. In this scenario, the life insurance policy offers a more profitable return of investment 

than the financial markets. 
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3.4. Simulation of a Non-guaranteed rate portfolio 

 

Lapse rates do not require a daily modeling, unlike the short term interest rate. Modeling it on a 

monthly basis seemed me accurate, implying a discrete version of the Vasicek model. The non-

guaranteed rate model replicates the market (Reasonable assumption: Camelea investors are mainly 

investing in a mix between equities (60%), bonds and bond funds (40%)). The lapse rate models here 

the policyholder decision to switch his savings from his portfolio to a money-market fund (e.g. a 

closed-to-zero guaranteed rate fund).  

3.4.1. Assumptions 

 

Ann. Drift (m) 7,5% Annual average of the market performance  

Ann. Vol (sd) 20,0% Annual volatility of the market 

Timestep (dT) 0,0833  Pro-rata monthly basis  

Cash Rendement 0,00% 
Risk-free rate (in this case, money market fund 
returning rate, closed to zero) 

a -10,00% Dynamic 

b -2,77% Dynamic 

g 2,77% Dynamic 

d 10,00% Dynamic 

MvMax 5,60% Maximum lapse rate value 

MvMin -5,60% Minimum lapse rate value 

NumRuns 1 000 Number of simulated scenarios 

 

Historical returns, from 1926 to 2010, for major asset classes in the United States[Annex 6] shows an 

average yield for bonds around 6% and 12% for equities, for a standard deviation of 20%. 

Considering that European historical returns were slightly under the US ones, assessing an annual 

drift of 7.5% with a standard deviation of 20% seems accurate and representative of the actual 

market trend. 

The cash return for a money-market fund is, as we saw above, closed to zero: in case of a rallying 

financial market, the investor reinvests in his portfolio; in case of the opposite scenario, he 

surrenders his savings to switch them in a money market fund(e.g. with a cash return equal to zero 

to avoid losing more money).  

The others values used have been all determined above. However, we won’t present and model in 

this note a special scenario for top-ups. We will assume that they act as lapses in case of rising yields 

on financial markets. 
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3.4.2. Scenario 

We express the market return as follows: 

                          √       

No guaranteed rate simplifies the  expression, which only depends of the market 

rate              . 

We do have an expression of the dynamic lapse rate based on the formula defined above, which 

gives us as a lapse-rate actualized contract value:  

                                                                     

3.4.3. Non-guaranteed rate scenario outputs 

We get as first output the distribution of a discrete Brownian motion, in order to check that it 

follows correctly a normal law 
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For this simulated contract, when the market value (in red) increases, policyholders reinvest in their 

policy (top-ups); conversely, when it drops, they surrender, in order to protect their savings.  

However, this only generates one sample of a contract value. With a VBA code [Annex 8], we 

generate 1,000 simulations in order to have averagely a contract value for varying levels of drift and 

volatility. We draw below an average contract value based on a sample of 20 contract simulations 

for a fixed drift and volatility. 

 

The scenario presented here is extracted for the more likely-scenario on financial markets [Annex 7]: 

a drift equaled to 5% with a volatility of 20% [34]. The black line constitutes the average scenario. 

We have an average summary of the evolution of the contract value actualized with the dynamic 

lapse rate and function of the monthly drift and the standard deviation of the market.  
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The output summary is as follows:  

 

In dark blue, the more likely scenarios 

We do have here a tool to predict the evolution of the contract value according to the monthly 

market return and the monthly volatility. Cells in dark blue represent the more likely scenarios 

[Annex 5]; the figure colored in white represents the scenario drawn at the top of the page. 

The table summarizes an average of the 1,000 contract values simulations, actualized with lapses, 

top-ups and market drift function of varying levels of market drift and volatility, after 100 months  

(  8 years). 

3.4.4. Projection of the lapse rate 

 

 

For the same more likely scenario (µ=5% and sd =20%), we observe a decreasing lapse rate, 

which is in line with our assumptions. We modeled a rising economic trend of the financial markets. 

In this scenario, a negative lapse rate value reflects a top-up. As a consequence, the decreasing 

curve signifies an evolution of top-ups over the simulation period. In presence of financial markets 
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keeping rising over time, investors do not surrender their policies; at the contrary, thanks to an 

economic rising trend, they reinvest in it. 

In case of a modelling of decreasing market rates, we would have had an increasing curve, 

e.g. an increase of the lapse rate over time. 

Note: In the simulation, we notice that a scenario is under -100% (circled in blue). It does not 

correspond to a full surrender, but to a top-up, where the policyholder was reinvested, 90 and 95 

months after subscribing his policy, more than 100% of his original premium. 
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3.5. Simulation of a guaranteed rate portfolio 

3.5.1. Scenario 

The structure is the same as the one presented above, except for the cash returned: We have here 

as main assumptions a guaranteed rate of a certain amount (set it by default for model testing at 

5%). 

RendementGaranti 5,00% 
Risk-free rate (in this case, NPGWM  

portfolio guaranteed rate) 

 

Every month, when the market rises, the policyholder can surrender5.60% in his contract; when it 

decreases, he can reinvest maximum 5.60% of its contract. 

 has a new expression which also depends of the guaranteed return rate:  

                             √       

                                           

                                      

 

3.5.2. Outputs 

 

We use the same methodology for the guaranteed-rate outputs as the one previously presented 

above (red: market value; blue: contract value). 
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Average scenario in black 

 

Results are not presented as the previous scenario: µ=-25% and sd= 0% represents a decreasing yield 

trend, implying a scenario with a lot of top-ups, the portfolio guaranteed rate being much more 

interesting than the market return . Conversely, for µ= 25% and sd= 30%, the market yield is much 

more interesting than the guaranteed portfolio return, implying a high lapse rate. 

3.5.3. Projection of the lapse rate 

 

We simulated here a contract value actualized with the lapse rate function of the market return 

evolution. We calculate the contract value free of lapse rate (e.g. only function of the guaranteed 

rate) over the simulation period.  

We can now express, for each simulated scenario, the expected lapse rate over time in function of 

the both contract value as, for the month n. 

                      
                             

                                
 

The black lines represents the average lapse rate of the 20 scenarios dawned. 
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Projected lapse rate for a market return of 5% and a volatility of 20% 

The evolution of the lapse rate makes sense considering our assumptions. Indeed, we presumed an 

annual return of 5% per year, e.g. a rising trend. Logically, from a rising trend of the market trend 

results a rising lapses trend. People are in this scenario surrendering their guatanteed – rate policy 

because of more profitable investment solutions offered on financial markets (rising economic 

trend). A fixed served rate in an increasing market rates period increases the  lapse rate on a 

guatanteed rate portfolios, more profitable investments being available on the financial markets. 

 

3.6. Dynamic modelling, Advantages and limits 

3.6.1. Advantages 

 

The contract value is only a function of the market rate and requires only a few historical data 

(market drift and market volatility, but also lapse rate volatility and drift are necessary to model the 

dynamic lapse rate) and attached parameters. The approach is different from an historical one here. 

According to the market evolution, we predict what the lapse rate is going to be (indirectly, through 

the contract value), while the historical approach assumes investors are always go to act as they 

used to do in the past. We have now to calibrate the model with the company data to assess the 

lapse rate what the contract actualized with the lapse rate value will be in the future. Thus, the 

conjectural lapse rate is distinctly defined. 

Moreover, we do not use historical data to draw an assumption on the average lapse rate (e.g. by 

default, we do not assume that people surrender or reinvest in their policy for no reasons, because it 

does not make economic sense –for instance, assuming an average lapse rate over the whole 

simulation period signifies that the product is meant to disappear over time). Instead, we use 

historical data to model relationships between lapse rates and market returns. 
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3.6.2. Limits 

 

In the model, the policyholder surrenders or reinvests in his policy simultaneously with the market, 

which constitutes a strong assumption (policyholders are not all finance-aware for most of them; In 

NPGWM, dedicated funds do not represent a large part of the company business). Besides, it 

supposes that policyholders surrender in one time its policy, but do not surrenders the month after 

in case of a continuous fall of its portfolio. We may need to insert a lag between the time the market 

evolution and the insured will to surrender or reinvest in his policy (e.g. look deeper in the investor 

behavior [33]). 

 

3.6.3. Conclusion 

 

Our survival analysis showed us that the evolution of financial markets was one of the main driver 

regarding the policyholder decision to surrender. Besides, we noticed afterwards a correlation 

between market returns (European MSCI market rate) and the Camelea historical surrender rate. 

When the difference of both rates is higher than a certain threshold, policyholders start surrendering 

(lapses) invest their savings in financial markets (higher yield)in case of rising market or protect them 

in case of falling ones.Conversely, when the same difference is lower than another threshold, the 

policyholder reinvest in its policy (top-ups) – scenario when the Camelea portfolio offers a higher 

investment return than the market or more security (less volatile market). 
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4. Conclusion 
 

With the Solvency II directive, life insurers are compelled to work with a prudential – risk approach.  

Under this regulatory framework, they must have a precise mapping of their risks.  

The 2013 laspse SCR of PEL highlighted the fact that the lapse rate was one the biggest risks the life 

insurer faces. This ranking makes its modelling and understanding essential. 

A survival analysis on the Camelea surrender data determined which factors are determinant in the 

policyholder decision to surrender or not: While the market rates, the age, the gender, or again the 

wealth of a policyholder directly impact the surrender risk, unemployment rate, risk profile ... have 

no impact. 

Fitting a semi – parametrical model, the Cox Proportional Hazards model, introduced by Cox in 1972, 

gave us some interesting results regarding the ability for each job occupation to face the surrender 

risk. The study highlighted that the life insurer has to manage carefully the interest rate he is offering 

to its clients. Indeed, market yields impact a lot the policyholder’s decision to surrender or not his 

policy. 

Conversely, it might worth to target wealthy policyholders, the study showing that the wealthier 

they are, the less they surrender. Age does not impact significantly, but marginally the surrender 

risk. It makes sense that the older the policyholder gets, the more he retired – especially after 60, 

the average age for retirement. Finally, Female policyholders surrender less than male policyholders. 

Being aware of all these behaviours regarding the surrender risk is an important information for the 

life insurer. Indeed, this one will be aware, starting today, and for any new policyholder investing 

within the Camelea portfolio, of its tendency to surrender his life insurance portfolio. 

A correlation between equity market rates and surrender rates was a motivation to set a model 

predicting the surrender rate based on a dynamic lapse rate, function of the company interest 

served rate and the market one. 

This type of modeling based on a dynamic scenario offers a lot of advantages. Firstly, investors do 

not surrender their contract for no reasons based on a scenario with a regular average lapse rate 

(underlying economically speaking that the portfolio is meant to disappear over time); they 

surrender in reaction of a higher yield on financial markets. Secondly, we do not use historical data 

to make an assumption on the average lapse rate but to model a relationship between lapse rates 

and market returns. Finally, we can estimate an average lapse trend over a 100 months period based 

on the market evolutions. 

However, this model also shows its limits. We did not take into account macro data to define an 

investor profile as reference, and shock the dynamic lapse rate to model different classes of 

investors. Indeed, as we could have seen at the beginning of this chapter, policyholders do not react 

similarly in front of the surrender decision, and their socio – professional category has a large impact 

on this decision. 

Besides, we do not model either the difference between arbitration and lapse decision, the political 

or Luxembourg legal hazard on the life insurance rules. These will constitutes the improvements to 

bring on the model. 
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6. Annexes 

6.1. Annex 1 : Excell Life irregularities 
 

http://www.commassu.lu/FR/documents/excell-life-international.asp 
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6.2. Annex 2: CAA quarterly request ; asset classification on guaranteed-

rate portfolios 

Nom du groupe contrepartie Type de contrepartie Exposition brute directe 

      

BEI - EIB émetteur public 1 

Communauté Européenne émetteur public 2 

Autriche émetteur public 3 

Pologne émetteur public 4 

Pays-Bas émetteur public 5 

Danemark émetteur public 6 

Finlande émetteur public 7 

Luxembourg émetteur public 8 

France émetteur public 9 

Etats-Unis émetteur public 10 

Groupe dont fait partie PRIVATE ESTATE LIFE S.A. émetteurs intragroupe            

Nykredit groupe bancaire/conglomérat financier 1 

DNB ASA groupe bancaire/conglomérat financier 2 

RBC groupe bancaire/conglomérat financier 3 

Nordea groupe bancaire/conglomérat financier 4 

Danske Bank groupe bancaire/conglomérat financier 5 

Dexia groupe bancaire/conglomérat financier 6 

GE CAPITAL EURO FUNDING _ Autre groupe bancaire groupe bancaire/conglomérat financier 7 

ING groupe bancaire/conglomérat financier 8 

SWEDBANK HYPOTEK AB _ Autre groupe bancaire groupe bancaire/conglomérat financier 9 

L-BANK BW FOERDERBANK _ Autre groupe bancaire groupe bancaire/conglomérat financier 10 

  groupe de (ré)assurances   

  groupe de (ré)assurances   

  groupe de (ré)assurances   

  groupe de (ré)assurances   

  groupe de (ré)assurances   

  groupe de (ré)assurances   

  groupe de (ré)assurances   

  groupe de (ré)assurances   

  groupe de (ré)assurances   

  groupe de (ré)assurances   

Autobahn Schnell AG autres 1 

Volkswagen autres 2 

TDC AS autres 3 

Carlsberg Breweries autres 4 

Glaxosmithkline Capital autres 5 

Asfinag autres 6 

Total Capital SA autres 7 

NV Nederlandse Gasunie autres 8 

Mondelez International autres 9 

RWE Finance BV autres 10 

 

Exposition figures have been changed 
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6.3. Annex 3: CAA Solvency II reporting spreadsheet 
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6.4. Annex 4: Survival model, R code 

 
 

############################ 

############Survival Analysis 

################################### 

#################################### 

#### 1 st Data set #### 

dat <-

read.csv("C:/Users/Zachou/Desktop/FINAL/

New/COXF3.csv",header=T, sep=";") 

summary(dat) 

#library(simPH) 

library(survival) 

library(KMsurv) 

 

## Data illustration 

dat[200:205,1:14] 

##correlation 

cor(dat[,4:14]) 

 

######### Fitting a Cox model ######### 

##Cox model 

N <- 9159 

M0 <- coxph(Surv(Duration, 

Event)~Portfolio+Still+DeltaU+DeltaS+Risk+J

ob+Age+Gender,data=dat) 

M0 

summary(M0) 

##Cox model with significant covariates 

M0 <- coxph(Surv(Duration, 

Event)~Portfolio+Still+DeltaS+Age+Gender,d

ata=dat) 

M0 

summary(M0) 

 

#### Survival & cumulative hazard #### 

 

##survival function _ Kaplan -Meier 

estimate 

EM0 <- survfit(M0) 

quantile(EM0, probs=c(0.25,0.5,0.75), 

conf.int=FALSE) 

#pseudo-observation 

plot(EM0,main="Survival function within 

the Camelea protfolio", xlab="Time (in 

years)", ylab="Survival", lwd=2, col="green") 

 

## Impact of surrenders ## 

#Partial surrenders 

Data_Still <- subset(dat,Still==0) 

survie_ptf <- 

Surv(Data_Still$Duration,Data_Still$Event) 

M0_Still <- 

coxph(survie_ptf~Portfolio+DeltaS+Age+Ge

nder, data=Data_Still) 

M0_Still 

EMO_Still <- survfit(M0_Still) 

#Full surrenders 

Data_Not <- subset(dat,Still==1) 

not_ptf <- 

Surv(Data_Not$Duration,Data_Not$Event) 

M0_Not <- 

coxph(not_ptf~Portfolio+DeltaS+Age+Gend

er, data=Data_Not) 

M0_Not 

EM0_Not <- survfit(M0_Not) 

# Survival plot 

plot(EM0,main="Survival function: Impact of 

surrenders", xlab="Time (in years)", 

ylab="Survival", lwd=2, col="green") 

lines(EMO_Still, col="red2") 

lines(EM0_Not, col="blue2") 

legend (x="bottomleft", lwd=2, 

col=c("green","red","blue"), 

legend=c("Global Survival 

function","Survival - Partial surrenders 

only","Survival - Full surrenders only")) 

 

## Cumulative hazard 

#Cumulative bazeline hazard 

expcoef <- exp(coef(M0)) 

Lambda1 <-basehaz(M0, centered = FALSE) 

summary(Lambda1) 

Lambda1A <- expcoef[1]*Lambda1$hazard 

#savings 

Lambda1B <- expcoef[3]*Lambda1$hazard 

#SX5T 

Lambda1C <- expcoef[4]*Lambda1$hazard 

#Age 

Lambda1D <- expcoef[5]*Lambda1$hazard 

#Gender 

plot(hazard ~ time, main = "Cox PH Estimate 

- Cumulative hazard", type="s", 

xlab="Duration", ylab="Cumulative hazard", 

ylim=c(0,10),lwd=4, data=Lambda1) 

lines(Lambda1$time, Lambda1A, lwd=2, 

col="red") 

lines(Lambda1$time, Lambda1B, lwd=2, 

col="green") 

lines(Lambda1$time, Lambda1C, lwd=2, 

col="blue") 

lines(Lambda1$time, Lambda1D, lwd=2, 

col="orange") 

legend (x="topleft", lwd=2, 

col=c("black","red","green","blue", 

"orange"), legend=c("pseudo-

observation","Portfolio","DeltaS","Age","Ge

nder")) 

 

######## Checking COX PH model 

assumptions ######## 

# Schoenfeld residuals 

coxres <- cox.zph(M0) 

par(mfrow=c(3,2)) 

plot(coxres, main="Shoenfeld residuals") 

cox.zph(M0) 

 

##martingale residuals vs non-dichotomic 

covariates 

res.m <- residuals(M0,type="martingale") 

res.m 

par(mfrow=c(1,1)) 

X <-as.matrix(dat[,c("Still","DeltaS")]) 
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for (j in 1:2) { 

plot(X[,j],res.m,xlab=c("Still","Market rate 

movements")[j],ylab="residuals", 

main="Martingale residuals") 

abline(h=0,lty=2,col="red") 

lines(lowess(X[,j],res.m,iter=0), 

col="green2", lwd=2)} 

# Partial residuals 

b <- coef(M0)[c(2,3)] 

par(mfrow=c(1,1)) 

for (j in 1:2) { 

plot(X[,j], b[j]*X[,j]+res.m, main="Link: 

exponential test", xlab=c("Still","Market 

rate movements")[j], 

ylab="component+residuals") 

abline(lm(b[j]*X[,j]+res.m~X[,j]), lty=2, 

col="red2") 

lines(lowess(X[,j],b[j]*X[,j]+res.m,iter=0), 

col="green2", lwd=2)} 

 

 

#DfBeta 

DFM0 <- residuals(M0, type='dfbeta') 

par (mfrow=c(2,3)) 

for (j in 1:5) { 

plot(DFM0[,j], ylab=names(coef(M0))[j]) 

abline(h=0,lty=2, lwd=2,col="red2")} 

 

################################ 

Time dependent covariates 

####################################

#################################### 

###### 2 st Data set ###### 

dat <-

read.csv("C:/Users/Zachou/Desktop/FINAL/

New/COXT1.csv",header=T, sep=";") 

summary(dat) 

library(survival) 

dat[200:205,1:11] 

## fitting a Cox model ## 

M0 <- coxph(Surv(start,stop, 

Event)~Portfolio+DeltaS+Age+Gender,data=

dat) 

M0 

summary(M0) 

 

## Check CoxPH assumptions ## 

#Schoenfeld residuals 

cox.zph(M0) 

#Obs# Too many classes in Savings => need 

to redefine the covariate 

 

#DfBeta residuals 

DFM0 <- residuals(M0, type='dfbeta') 

par (mfrow=c(2,2)) 

for (j in 1:4) { 

plot(DFM0[,j], ylab=names(coef(M0))[j], 

main="DfBeta residuals") 

abline(h=0,lty=2, lwd=2,col="red2")} 

 

####### 3 rd Data set ####### 

## Recoded Portfolio covariates into 4 

classes 

dat <-

read.csv("C:/Users/Zachou/Desktop/FINAL/

New/COXT2.csv",header=T, sep=";") 

summary(dat) 

library(survival) 

 

## Fitting a Cox model ## 

M0 <- coxph(Surv(start,stop, 

Event)~Portfolio+DeltaS+Age+Gender,data=

dat) 

M0 

summary(M0) 

 

 

## Checking assumptions ## 

#Schoenfeld residuals 

cox.zph(M0) 

#good results: no time dependent 

covariates: HP verified 

 

#DfBeta residuals 

DFM0 <- residuals(M0, type='dfbeta') 

par (mfrow=c(2,2)) 

for (j in 1:4) { 

plot(DFM0[,j], ylab=names(coef(M0))[j], 

main="DfBeta residuals") 

abline(h=0,lty=2, lwd=2,col="red2")} 

####################################

####### Study on Jobs 

############################## 

###JOB1 

dat1 <-

read.csv("C:/Users/Zachou/Desktop/FINAL/

New/JobA/Job1.csv",header=T, sep=";") 

M1 <- coxph(Surv(start,stop, 

Event)~Portfolio+Still+DeltaS+Age+Gender, 

data=dat1) 

M1 

summary(M1) 

# OUT 

M1 <- coxph(Surv(start,stop, Event)~DeltaS, 

data=dat1) 

M1 

cox.zph(M1) 

 

###JOB2 

dat2 <-

read.csv("C:/Users/Zachou/Desktop/FINAL/

New/JobA/Job2.csv",header=T, sep=";") 

M2 <- coxph(Surv(start,stop, 

Event)~Portfolio+Still+DeltaS+Age+Gender, 

data=dat2) 

M2 

summary(M2) 

#OUT 

M2 <- coxph(Surv(start,stop, 

Event)~Gender+DeltaS, data=dat2) 

M2 

cox.zph(M2) 
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###JOB3 

dat3 <-

read.csv("C:/Users/Zachou/Desktop/FINAL/

New/JobA/Job3.csv",header=T, sep=";") 

M3 <- coxph(Surv(start,stop, 

Event)~Portfolio+Still+DeltaS+Age+Gender, 

data=dat3) 

M3 

#OUT 

M3 <- coxph(Surv(Duration, 

Event)~Portfolio+DeltaS, data=dat3) 

M3 

summary(M3) 

cox.zph(M3) 

 

###JOB4 

dat4 <-

read.csv("C:/Users/Zachou/Desktop/FINAL/

New/JobA/Job4.csv",header=T, sep=";") 

M4 <- coxph(Surv(start,stop, 

Event)~Portfolio+Still+DeltaS+Age+Gender, 

data=dat4) 

M4 

#OUT 

M4 <- coxph(Surv(Duration, 

Event)~Portfolio, data=dat4) 

M4 

summary(M4) 

cox.zph(M4) 

 

###JOB5 

dat5 <-

read.csv("C:/Users/Zachou/Desktop/FINAL/

New/JobA/Job5.csv",header=T, sep=";") 

M5 <- coxph(Surv(start,stop, 

Event)~Portfolio+Still+DeltaS+Age+Gender, 

data=dat5) 

M5 

#OUT 

M5 <- coxph(Surv(Duration, 

Event)~Portfolio+Gender, data=dat5) 

M5 

summary(M5) 

cox.zph(M5) 

 

###JOB6 

dat6 <-

read.csv("C:/Users/Zachou/Desktop/FINAL/

New/JobA/Job6.csv",header=T, sep=";") 

M6 <- coxph(Surv(start,stop, 

Event)~Portfolio+Still+DeltaS+Age+Gender, 

data=dat6) 

M6 

#OUT 

M6 <- coxph(Surv(start,stop, 

Event)~DeltaS+Age+Gender, data=dat6) 

M6 

cox.zph(M6) 

 

###JOB7 

dat7 <-

read.csv("C:/Users/Zachou/Desktop/FINAL/

New/JobA/Job7.csv",header=T, sep=";") 

M7 <- coxph(Surv(start,stop, 

Event)~Portfolio+Still+DeltaS+Age+Gender, 

data=dat7) 

M7 

#OUT 

M7 <- coxph(Surv(start,stop, Event)~DeltaS, 

data=dat7) 

M7 

cox.zph(M7) 

 

###JOB8 

dat8 <-

read.csv("C:/Users/Zachou/Desktop/FINAL/

New/JobA/Job8.csv",header=T, sep=";") 

M8 <- coxph(Surv(start,stop, 

Event)~Portfolio+Still+DeltaS+Age+Gender, 

data=dat8) 

M8 

#OUT 

M8 <- coxph(Surv(start,stop, 

Event)~DeltaS+Age, data=dat8) 

M8 

summary(M8) 

cox.zph(M8) 

 

###JOB9 

dat9 <-

read.csv("C:/Users/Zachou/Desktop/FINAL/

New/JobA/Job9.csv",header=T, sep=";") 

M9 <- coxph(Surv(start,stop, 

Event)~Portfolio+Still+DeltaS+Age+Gender, 

data=dat9) 

M9 

#OUT 

M9 <- coxph(Surv(start,stop, 

Event)~DeltaS+Age, data=dat9) 

M9 

summary(M9) 

cox.zph(M9) 

 

###JOB10 

dat10 <-

read.csv("C:/Users/Zachou/Desktop/FINAL/

New/JobA/Job10.csv",header=T, sep=";") 

M10 <- coxph(Surv(start,stop, 

Event)~Portfolio+Still+DeltaS+Age+Gender, 

data=dat10) 

M10 

#OUT 

M10 <- coxph(Surv(start,stop, 

Event)~Portfolio+DeltaS+Age+Gender, 

data=dat10) 

M10 

summary(M10) 

cox.zph(M10) 

 

###JOB11 

dat11 <-

read.csv("C:/Users/Zachou/Desktop/FINAL/

New/JobA/Job11.csv",header=T, sep=";") 

library(survival) 

M11 <- coxph(Surv(start,stop, 

Event)~Portfolio+Still+DeltaS+Age+Gender, 

data=dat11) 

M11 

#OUT 
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M11 <- coxph(Surv(start,stop, 

Event)~DeltaS, data=dat11) 

M11 

summary(M11) 

cox.zph(M11) 

####################################

#### Fitting AFT model 

####################################

#### 

dat <-

read.csv("C:/Users/Zachou/Desktop/FINAL/

New/COXF3.csv",header=T, sep=";") 

summary(dat) 

library(survival) 

attach(dat) 

 

###Testing parametric models over data 

AFT0_1 <- survreg(Surv(Duration, 

Event)~Portfolio+DeltaS+Age+Gender, 

data=dat, dist="lognormal") 

summary(AFT0_1) 

AFT0_2 <- survreg(Surv(Duration, 

Event)~Portfolio+DeltaS+Age+Gender, 

data=dat, dist="weibull") 

summary(AFT0_2) 

AFT0_3 <- survreg(Surv(Duration, 

Event)~Portfolio+DeltaS+Age+Gender, 

data=dat, dist="loglogistic") 

summary(AFT0_3) 

AFT0_4 <- survreg(Surv(Duration, 

Event)~Portfolio+DeltaS+Age+Gender, 

data=dat, dist="gaussian") 

summary(AFT0_4) 

AFT0_5 <- survreg(Surv(Duration, 

Event)~Portfolio+DeltaS+Age+Gender, 

data=dat, dist="exponential") 

summary(AFT0_5) 

AFT0_6 <- survreg(Surv(Duration, 

Event)~Portfolio+DeltaS+Age+Gender, 

data=dat, dist="t") 

summary(AFT0_6) 

AFT0_7 <- survreg(Surv(Duration, 

Event)~Portfolio+DeltaS+Age+Gender, 

data=dat, dist="extreme") 

summary(AFT0_7) 

 

### Model comparison 

anova(AFT0_1,AFT0_2,AFT0_3,AFT0_4,AFT0

_5, AFT0_6, AFT0_7) 

## => model selected: weibull (AIC test; 

lowest value) 

 

####################  Parametrical 

Analysis  

####################################

################## 

## Weibull AFT model 

weibull.aft <- survreg(Surv(Duration, 

Event)~Portfolio+DeltaS+Age+Gender, 

data=dat, dist="weibull") 

summary(weibull.aft) 

 

#DfBetas 

DFM0 <- residuals(weibull.aft, 

type='dfbeta') 

par (mfrow=c(2,2)) 

for (j in 1:4) { 

plot(DFM0[,j], ylab=names(coef(M0))[j], 

main="Beta residuals") 

abline(h=0,lty=2, col="red")} 

 

 

######## Survival analysis ######## 

## Estimated Survival curves ## 

par(mfrow=c(1,1)) 

#Intercept 

curve(pweibull(x,scale=exp(coef(weibull.aft)

[1]), shape=1/weibull.aft$scale, 

lower.tail=FALSE),from=0, 

to=max(dat$Duration), col="black", lwd=5, 

main="Survival function" 

,ylab=expression(hat(S)(t)), xlab="Time(in 

years)") 

#Portfolio 

curve(pweibull(x,scale=exp(coef(weibull.aft)

[1]+coef(weibull.aft)[2]), 

shape=1/weibull.aft$scale, 

lower.tail=FALSE),from=0, 

to=max(dat$Duration), col="green2",add=T 

) 

#DeltaS 

curve(pweibull(x,scale=exp(coef(weibull.aft)

[1]+coef(weibull.aft)[4]), 

shape=1/weibull.aft$scale, 

lower.tail=FALSE),from=0, 

to=max(dat$Duration), col="blue2",add=T) 

#Age 

curve(pweibull(x,scale=exp(coef(weibull.aft)

[1]+coef(weibull.aft)[5]), 

shape=1/weibull.aft$scale, 

lower.tail=FALSE),from=0, 

to=max(dat$Duration), 

col="yellow2",add=T) 

#Gender 

curve(pweibull(x,scale=exp(coef(weibull.aft)

[1]+coef(weibull.aft)[6]), 

shape=1/weibull.aft$scale, 

lower.tail=FALSE),from=0, 

to=max(dat$Duration), col="red2",add=T) 

legend (x="bottomleft", lwd=2, 

col=c("black","green","blue","yellow", 

"red"), legend=c("pseudo-

observation","Portfolio","DeltaS","Age","Ge

nder")) 

 

 

## Plotting Estimated Weibull densities ## 

curve(dweibull(x, 

scale=exp(coef(weibull.aft)[1]),shape=1/wei

bull.aft$scale), from=0, 

to=max(dat$Duration), 

ylab="Density",ylim=c(0,0.4), 

xlab="Duration",main="Estimated Weibull 

densities",axes=F, lwd=5, col="black") 

axis(1,cex.axis=.8) 

axis(2,cex.axis=.8) 

box() 

curve(dweibull(x, 

scale=exp(coef(weibull.aft)[1]+coef(weibull.

aft)[2]),shape=1/weibull.aft$scale), from=0, 

to=max(dat$Duration), add=T, col="red2") 

curve(dweibull(x, 

scale=exp(coef(weibull.aft)[1]+coef(weibull.

aft)[4]),shape=1/weibull.aft$scale), from=0, 

to=max(dat$Duration), add=T,col="green2") 

curve(dweibull(x, 

exp(coef(weibull.aft)[1]+coef(weibull.aft)[5]

),shape=1/weibull.aft$scale), from=0, 

to=max(dat$Duration), 

add=T,col="yellow2") 

curve(dweibull(x, 

exp(coef(weibull.aft)[1]+coef(weibull.aft)[6]
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),shape=1/weibull.aft$scale), from=0, 

to=max(dat$Duration),add=T,col="blue2") 

legend (x="topleft", lwd=2, 

col=c("black","red","green","yellow", 

"blue"), legend=c("pseudo-

observation","Portfolio","DeltaS","Age","Ge

nder")) 

 

 

 

## Plotting estimated hazard function ##  

curve(dweibull(x, 

scale=exp(coef(weibull.aft)[1]),shape=1/wei

bull.aft$scale)/pweibull(x,scale=exp(coef(we

ibull.aft)[1]),shape=1/weibull.aft$scale, 

lower.tail=FALSE), from=0, 

to=max(dat$Duration), ylab="Hazard", 

xlab="Duration",main="Estimated hazard 

function",axes=F, lwd=5, col="black") 

axis(1,cex.axis=.8) 

axis(2,cex.axis=.8) 

box() 

curve(dweibull(x, 

scale=exp(coef(weibull.aft)[1]+coef(weibull.

aft)[2]),shape=1/weibull.aft$scale)/pweibull

(x,scale=exp(coef(weibull.aft)[1]+coef(weibu

ll.aft)[2]),shape=1/weibull.aft$scale, 

lower.tail=FALSE), from=0, 

to=max(dat$Duration), add=T, col="red2") 

curve(dweibull(x, 

scale=exp(coef(weibull.aft)[1]+coef(weibull.

aft)[4]),shape=1/weibull.aft$scale)/pweibull

(x,scale=exp(coef(weibull.aft)[1]+coef(weibu

ll.aft)[4]),shape=1/weibull.aft$scale, 

lower.tail=FALSE), from=0, 

to=max(dat$Duration), add=T, 

col="green2") 

curve(dweibull(x, 

scale=exp(coef(weibull.aft)[1]+coef(weibull.

aft)[5]),shape=1/weibull.aft$scale)/pweibull

(x,scale=exp(coef(weibull.aft)[1]+coef(weibu

ll.aft)[5]),shape=1/weibull.aft$scale, 

lower.tail=FALSE), from=0, 

to=max(dat$Duration), add=T, 

col="yellow2") 

curve(dweibull(x, 

scale=exp(coef(weibull.aft)[1]+coef(weibull.

aft)[6]),shape=1/weibull.aft$scale)/pweibull

(x,scale=exp(coef(weibull.aft)[1]+coef(weibu

ll.aft)[6]),shape=1/weibull.aft$scale, 

lower.tail=FALSE), from=0, 

to=max(dat$Duration), add=T, col="blue2") 

legend (x="topleft", lwd=2, 

col=c("black","red","green","yellow", 

"blue"), legend=c("pseudo-

observation","Portfolio","DeltaS","Age","Ge

nder")) 
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6.5. Annex 5: The loss aversion effect; The investor psychology 

 

 
http://en.wikipedia.org/wiki/Loss_aversion 
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6.6. Annex 6: Market evolutions (Ibbotson) 
 

 

The guaranteed rate of an insurance portfolio is averagely set on the return of sovereign bonds yield. 

This chart supports the hypothesis that the difference Δ between the benchark rate and the served 

one can not be (in average) be above 10%. 
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6.7. Annex 7: Ibbotson Index Series, historical returns 
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6.8. Annex 8: Dynamic lapse rate model, VBA Code 

6.8.1. Non guaranteed rate scenario 
 

Dim BR, FGR, a, b, g, d, MvMax, MvMin, 

Dynamic, ContractValue, 

MeanContractValue, Mu, SD, z, V1, V2 As 

Double 

Dim i, j, ColNum, RowNum, NumRunsAs 

Integer 

Worksheets("Camelea").Range("N4:Q14").Cl

earContents 

Worksheets("Camelea").Range("AD3:AW10

2").ClearContents 

NumRuns = 

Worksheets("Camelea").Range("B12").Value 

FGR = 

Worksheets("Camelea").Range("B5").Value 

FGR = Log(1 + FGR) / 12 

a = 

Worksheets("Camelea").Range("B6").Value 

b = 

Worksheets("Camelea").Range("B7").Value 

g = 

Worksheets("Camelea").Range("B8").Value 

d = 

Worksheets("Camelea").Range("B9").Value 

MvMax = 

Worksheets("Camelea").Range("B10").Value 

MvMin = 

Worksheets("Camelea").Range("B11").Value 

For RowNum = 4 To 14 

    Mu = 

Worksheets("Camelea").Cells(RowNum, 

13).Value 

    For ColNum = 14 To 17 

        SD = Worksheets("Camelea").Cells(3, 

ColNum).Value 

MeanContractValue = 0 

        For j = 1 ToNumRuns 

ContractValue = 100 

            For i = 1 To 100 

                'Generate normal random variable 

                z = 2 

                Do While z >= 1 

                V1 = 2 * Rnd - 1 

                V2 = 2 * Rnd - 1 

                z = V1 ^ 2 + V2 ^ 2 

                Loop 

z = Sqr(-2 * Log(z) / z) 

                z = V2 * z 

'Simulate Prices 

 

BR = Log(1 + Mu) / 12 + SD * Sqr(1 / 12) * z 

                If BR - FGR < a Then 

                    Dynamic = MvMax 

                Else 

                    If BR - FGR < b Then 

                        Dynamic = MvMax * (BR - FGR 

- b) / (a - b) 

                    Else 

                        If BR - FGR < g Then 

                            Dynamic = 0 

                        Else 

                            If BR - FGR < d Then 

                                Dynamic = MvMin * (BR - 

FGR - g) / (d - g) 

                            Else 

                                If BR - FGR > d Then 

                                    Dynamic = MvMin 

                                End If 

                            End If 

                        End If 

                    End If 

                End If 

                Dynamic = Dynamic * (-1) 

ContractValue = ContractValue * Exp(BR + 

Log(1 + Dynamic)) 

                    If j < 21 Then 

                        If RowNum = 10 Then 

                            If ColNum = 16 Then 

Worksheets("Camelea").Cells(i + 2, j + 

29).Value = ContractValue 

                            End If 

                        End If 

                    End If 

                Next i 

MeanContractValue = MeanContractValue + 

ContractValue 

        Next j 

 

MeanContractValue = MeanContractValue / 

NumRuns 

Worksheets("Camelea").Cells(RowNum, 

ColNum).Value = MeanContractValue 

    Next ColNum 

Next RowNum 

End Sub 
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6.8.2. Guaranteed rate scenario 
 

 

Dim BR, FGR, a, b, g, d, MvMax, MvMin, 

Dynamic, ContractValue, 

MeanContractValue, Mu, SD, z, V1, V2 As 

Double 

Dim i, j, ColNum, RowNum, NumRunsAs 

Integer 

Worksheets("Garanti").Range("N4:Q14").Cle

arContents 

Worksheets("Garanti").Range("AD3:AW102

").ClearContents 

NumRuns = 

Worksheets("Garanti").Range("B12").Value 

FGR = 

Worksheets("Garanti").Range("B5").Value 

FGR = Log(1 + FGR) / 12 

a = 

Worksheets("Garanti").Range("B6").Value 

b = 

Worksheets("Garanti").Range("B7").Value 

g = 

Worksheets("Garanti").Range("B8").Value 

d = 

Worksheets("Garanti").Range("B9").Value 

MvMax = 

Worksheets("Garanti").Range("B10").Value 

MvMin = 

Worksheets("Garanti").Range("B11").Value 

For RowNum = 4 To 14 

    Mu = 

Worksheets("Garanti").Cells(RowNum, 

13).Value 

    For ColNum = 14 To 17 

        SD = Worksheets("Garanti").Cells(3, 

ColNum).Value 

MeanContractValue = 0 

        For j = 1 ToNumRuns 

ContractValue = 100 

            For i = 1 To 100 

                'Generate normal random variable 

                z = 2 

                Do While z >= 1 

                V1 = 2 * Rnd - 1 

                V2 = 2 * Rnd - 1 

                z = V1 ^ 2 + V2 ^ 2 

                Loop 

z = Sqr(-2 * Log(z) / z) 

                z = V2 * z 

'Simulate Prices 

                BR = Log(1 + Mu) / 12 + SD * Sqr(1 / 

12) * z 

                If BR - FGR < a Then 

                    Dynamic = MvMax 

                Else 

                    If BR - FGR < b Then 

                        Dynamic = MvMax * (BR - FGR 

- b) / (a - b) 

                    Else 

                        If BR - FGR < g Then 

                            Dynamic = 0 

                        Else 

                            If BR - FGR < d Then 

                                Dynamic = MvMin * (BR - 

FGR - g) / (d - g) 

                            Else 

                                If BR - FGR > d Then 

                                    Dynamic = MvMin 

                                End If 

                            End If 

                        End If 

                    End If 

                End If 

ContractValue = ContractValue * Exp(Log(1 

+ FGR) + Log(1 + Dynamic)) 

If j < 21 Then 

                        If RowNum = 10 Then 

                            If ColNum = 16 Then 

Worksheets("Garanti").Cells(i + 2, j + 

29).Value = ContractValue 

                            End If 

                        End If 

                    End If 

 

                Next i 

MeanContractValue = MeanContractValue + 

ContractValue 

        Next j 

MeanContractValue = MeanContractValue / 

NumRuns 

Worksheets("Garanti").Cells(RowNum, 

ColNum).Value = MeanContractValue 

    Next ColNum 

Next RowNum 

End Sub 

 


