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Abstract: 

The pricing of today's long-term care insurance products relies on simple models 

where dependency is considered as a single homogeneous state. Because of aging 

population and rapid evolution in the field of medicine, it becomes paramount to get a 

clearer picture of the underlying risk. We believe it may only be achieved by taking into 

account several levels of dependency. A semi-Markov process is a multi-state process 

whose transition probabilities not only depend on the current state but also on the time 

spent in this state. This process has proven more flexible than the simple Markov process, 

and is core to numerous publications in the field of epidemiology. However its use in 

relation with long-term care insurance has remained mostly theoretical, mainly because of 

the lack of data available to insurers. 
The present article aims at introducing the construction process of a semi-Markov 

model with 4 levels of dependency. This work is based on data from the French long-term 

care public aid: the "Allocation Personnalisée d'Autonomie" (APA). Firstly, we introduce 

the parameters used to model transitions between states. We then proceed to the calibration 

of those parameters, using a likelihood maximization method, while taking into account the 

peculiarities of the APA data set. Finally, we apply this model to the pricing of a fictive 

long-term care insurance product, using a Monte Carlo method.  
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Résumé : 

La tarification des produits d'assurance dépendance se base aujourd'hui sur des 

modèles simples, où la dépendance est considérée comme un état unique et homogène. En 

raison du vieillissement de la population et des progrès rapides de la médecine, il est 

primordial d'acquérir une vision plus claire de ce risque, aujourd'hui très peu maîtrisé. Nous 

pensons que cet objectif ne peut être atteint qu'en prenant en compte plusieurs niveaux de 

dépendance. Un processus multi-états est dit semi-markovien lorsque les probabilités de 

transition du processus dépendent à la fois de l'état actuel et du temps passé dans cet état. 

De tels processus s'avèrent plus flexibles que les processus markoviens simples, et ont fait 

l'objet de nombreuses publications dans le domaine de l'épidémiologie. Cependant, leur 

application à l'assurance dépendance est restée principalement théorique, en raison 

notamment du manque de données accessibles aux assureurs. 
Cet article a pour but de présenter la démarche de construction d'un modèle semi-

markovien considérant 4 niveaux de dépendance. Ce travail s'appuie sur des données 

recueillies dans le cadre de l'Allocation Personnalisée d'Autonomie (APA). Tout d'abord, 

nous introduisons les paramètres intervenant dans la modélisation des transitions entre les 

états. Nous procédons ensuite à l'estimation de ces paramètres par la méthode du maximum 

de vraisemblance, en tenant compte des spécificités liées aux données APA. Enfin, nous 

proposons une application du modèle à la tarification d'un produit d'assurance dépendance 

fictif, à l'aide d'une méthode de type Monte Carlo.  

 

Keywords: Long-Term Care Insurance, semi-Markov process, APA, right 

censoring, Weibull law, semi-proportional hazard, static frailty, maximum likelihood, 

Monte Carlo. 
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1. INTRODUCTION 

In developed countries, since the beginning of the 20th century, there has been a 

steady increase in life expectancy at birth of around one quarter every year, as a result of 

the rapid evolution in medical techniques. This, along with the aging of the baby-boomer 

generations has resulted in the expectation that the number of French people aged 65 or 

more will double by 2060 (Blanplain and Chardon, 2010). Among other consequences, it 

will cause a spike in the number of elderly dependent people (Léocrart, 2011). 
Paradoxically enough, the dependency risk can be called a young risk, because, 

while mortality and longevity have been studied for more than a century, the first long-term 

care insurance products only appeared in the mid 1980s, products covering partial 

dependency being even more recent. As all products include a maximum age of 

subscription, the number of people who reached higher ages where the incidence of 

dependency becomes significant is quite low, and so is the number of claims. Therefore, the 

amount of data available to insurers is still very limited. 
To price long-term care insurance products, most insurers use discrete time models 

with 3 states: autonomy, dependency and death (see figure 1). Most products today also 

cover partial dependency, providing a percentage of the benefit granted in total 

dependency. The pricing of such products is achieved by considering that they offer two 

distinct guarantees whose cost can be calculated using two separate 3-state models. This 

approach yields very robust results and allows the use of experience data. However, the 

underlying assumption is that partial and total dependency are two completely independent 

phenomena, with probabilities of becoming totally dependent being the same for both 

autonomous and partially dependent insured lives. 

 
Figure 1: Simple model with 3 states: autonomy, dependency and death; ݅ is the incidence 

rate and ݍ (resp. ݍ) the mortality rate for autonomous (resp. dependent) people.   
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To get a better understanding of the underlying dependency process, we believe it 

needs to be studied as a single multi-state process. The Markov process, for which 

transition probabilities only depend on the current state of the process, has already been 

used to this extent [?, ?]. However, survival times in dependency depend heavily on the age 

of the individual at entry, but also on the time already spent in dependency, as very high 

death rates are observed during the first few months after entry. To take both phenomena 

into account, a classic Markov process is not enough and therefore a more flexible process 

is needed to get a model which matches insurers experience. 
For a semi-Markov process, transition probabilities depend not only on the current 

state but also on the time spent in the current state. Such process has been extensively used 

in the field of epidemiology (Commenges, 2002) and yielded better results than Markov 

process when modeling complex phenomena like for example the evolution of HIV 

(Mathieu, 2006) or follow-up of kidney transplant (Foucher et al., 2007). For long, the 

semi-Markov process has been identified as a powerful tool for long-term care insurance as 

well, in (Haberman and Pitacco, 1998; Denuit and Robert, 2007) and more recently in 

(Christiansen, 2012) while (Janssen and Manca, 2007) discussed numerical and 

computational issues. However, to the best of our knowledge, few papers focused on 

applications based on real data, one can however refer to (Lepez, 2006) due to the 

unavailability of such data. As a consequence, issues that arise when working on censored 

data coming from longitudinal studies are rarely addressed, although developing methods to 

handle such data proves necessary to the application of semi-Markov models for insurance 

purposes. 
This paper provides an application based on data from the French public aid for 

dependent elderly people: the APA: "Allocation Personnalisée d'Autonomie". We consider 

a model with 4 different states of dependency. To define those states we rely on the 

"Autonomie Gérontologue Groupes Iso-Ressources" (AGGIR) grid. The AGGIR grid aims 

to categorize people by groups of similar needs based on their level of dependency. It is 

used in France for the attribution of the APA. This grid describes 6 levels of dependency, 

from the more severe level Gir 1 to the less severe Gir 6. However, only people in states 

Gir 1 to Gir 4 may actually benefit from the public aid, hence we only consider these 4 

levels of dependency in our model. A description for each level of dependency can be 

found in table 1. To determine to which group one belongs, the ability to perform 8 

activities of daily living is assessed, in a similar way to definition used by most insurers 
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around the world. However, in the case of the AGGIR grid, the degree of incapacity is also 

taken into account, and some activities have more weight than others. This translates into a 

complex algorithm [?, see]]Vetel1998. 

 

Gir level Associated definition 

Gir 1 People confined to bed or to a wheelchair, and whose mental 

abilities are greatly impaired, who need constant care. Also people 

at the end of their lives.  

Gir 2 People confined to bed or to a wheelchair, whose mental abilities are 

not impaired, and who require care for most activities of daily living 

or people with impaired mental abilities but able to move by 

themselves, who need permanent oversight.  

Gir 3 People with mental autonomy and partial physical autonomy, who 

need help for cleaning and bathing several times a day.  

Gir 4 People who can walk inside their home but who require help for 

cleaning, clothing and possibly transfers.  

Gir 5 People who need occasional help for cleaning, cooking and 

houseclean.  

Gir 6 People still autonomous for the main activities of daily living.  

Table 1: Levels of the AGGIR grid from most severe (Gir 1) to least severe (Gir 6).  

Most insurers use their own definition of dependency, based on activities of daily 

living (ADL), in order to make it easier for insured lives to understand and not to be 

impacted by future changes in the public definition. Those definitions and the AGGIR 

definition can nevertheless be compared to some extent. In our paper, the choice of an 

AGGIR-based definition is driven by the use of data from the French public aid. This data 

is gathered over the whole population, and the number of dependent people observed this 

way outweighs most insurers portfolio's, especially at higher ages. As this data is gathered 

using a very specific observation process, we develop a specific methodology to limit the 

associated observation bias. Besides, as the data only includes information about dependent 

people, incidence rates and mortality rates for autonomous people cannot be inferred from 

it and therefore need to be obtained from another source.  
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In this work, we focus on APA data which gathers the assessments of dependency 

states on individuals. Among other features, this data is right-censored and contains missing 

values. Our main assumptions on this data are that the stock effect observed can be 

removed by left truncating of the data, and that transitions times and evaluations times can 

be assimilated (see section 2 for more details). We fit a homogeneous semi-Markov model 

with four dependency states (plus death) relying on Weibull distribution laws that integrate 

Cox proportional hazard rates.  
In the next section, we introduce the APA data and its peculiarities in terms of 

censoring and truncating. We discuss several assumptions that are necessary to process the 

data and use it in the following sections of the paper. 
The third section then provides a definition for the semi-Markov process, and 

introduces the elements of our parametric model. For every transition, the duration is 

assumed to follow a Weibull law. The impact of sex and gender is then taken into account 

through a semi-proportional hazard model. The impact of pathologies, which are not 

observed in the data, but, we believe, explain the heterogeneity between trajectories, is 

modeled through a static frailty which takes only two value. The value of frailty is 

determined at entry in dependency with a probability which depends on both the gender and 

the age of entry of the individual, through a generalized linear model with a logistic link 

function. The impact of frailty on the duration law is also modeled through a semi-

proportional hazard rate. At last, this section also provides an expression for the likelihood 

function associated with the model, which is used for the calibration of parameters. 
The penultimate section presents the parameters estimated through the maximization 

of the likelihood function. An algorithm to generate trajectories from these estimations is 

developed, and used to get descriptive statistics about the modeled dependency process. 
The last section introduces a specific methodology for the pricing of insurance 

products using the calibrated model. This method relies on Monte Carlo simulations as a 

closed formula for the premium is not available due to the complexity of the process. Using 

the Central Limit Theorem and the delta method, we then compute an upper-bound for the 

uncertainty on the estimated premium. This methodology is finally applied to the pricing of 

a fictive long-term care insurance product, with a quick analysis about reserves and 

sensitivity to different risk factors. 
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2. THE APA DATA 

2.1 Introducing the data 

The APA: "Allocation Personnalisée d'Autonomie" is the French public aid for 

elderly dependent people. It has been introduced in 2002, and is only available to people 

aged 60 and more. People who want to benefit from the aid need to have their level of 

dependency evaluated by a public service team, and be assigned to group Gir 4 or more 

severe. Then, they agree with the team on a solution to cope with their dependency, and 

part of the cost is supported by the public aid, up to a maximum amount and depending on 

the people own resources. 
The aid is managed locally by the French administrative area. Therefore each area 

gathers its own data. The data we were able to get are the same as in (Lepez, 2006). They 

have been gathered by 4 French administrative areas over the years 2002 to 2005. Only the 

individuals who have been granted the aid appear in the data. 
Content of the data includes the following information   

- The date of birth of the individual,  
- The gender of the individual,  
- The date of death of the individual, if death occurred during the 

observation period,  
- The first date of evaluation which allowed the individual to benefit 

from the aid, with the result of this evaluation,  
- Up to three subsequent evaluations with the result of those 

evaluations.  

 
Figure 2: Left: distribution of first evaluations of Gir observed; right: distribution of 

observed deaths.   
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We observe on figure 2.1 (left) that the number of first evaluations in 2002 is way 

higher than during the subsequent years. This is due to the fact that the APA was created in 

2002, hence many people had not taken any evaluation of their dependency level 

beforehand because they had no incentive to. We note that those people do not enter the 

APA all at once, but progressively, over the course of year 2002. This phenomenon is 

known as the "stock effect". On the other hand, figure 2.1 (right) shows that there is hardly 

any death observed before 2005. It appears that the information about deaths has only been 

collected from the year 2005. Consequently, deaths which occurred in 2002, 2003 or 2004 

will be missing. 

2.2 Discussion about the observation process 

Before using the data in a model, we need to make and discuss several assumptions 

on the associated observation process. First of all, we note that it only contains evaluation 

dates whereas we are looking for the exact times at which transitions between states 

occurred. When we have two consecutive evaluations giving different results, we know that 

the transition occurred between the two evaluation times. Such phenomenon is called 

interval censoring. Methods to cope with interval-censored data have been developed in 

cases where the censoring process is non-informative (Foucher et al, 2007), for example 

when we have pre-scheduled evaluations, which is not the case for our process. In the case 

of an informative observation process, we need to be able to specify a model for the 

dependency between transitions and evaluations and misspecification of the model can alter 

the results (Chen et al., 2010). 
For the APA data, however, evaluations can be requested by individuals or their 

usual doctor as they please, are free and can generally be obtained on short notice. We can 

therefore assume that, as soon as a transition occurs, the individual will request an 

evaluation, and consequently, it can be assumed that transitions can only occur at the 

evaluation times. Nevertheless, it should be noted that evaluations can still take place when 

no transitions has occurred. Besides, should the transition time and the evaluation time be 

very different, the results of the model still holds in an insurance context. Indeed, the 

relevant information in this context would be the time at which the claim is filled, and 

therefore the same delay we observed between the transition time and the evaluation time 

would still be present in this case. Hence, for the remaining of the paper, we work under the 

assumption that transition only occur at evaluation times.  
Another issue that needs to be discussed is that, at the start of the observation period, 
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some individuals are already dependent. We have seen previously that, because of the 

"stock effect", any individual who entered the APA in 2002 may have already been 

dependent for some time already. This phenomenon, known as left-truncating, cannot be 

handled easily, except in the case of simple memoryless time-homogeneous Markov 

process. Therefore, we decide to remove individuals who became dependent before year 

2003 from the data. This way, we obtain left truncated data which should not be affected by 

the "stock effect". This approach should not generate any bias, as the people who became 

dependent in 2002 should not be any different than their 2003 counterparts. However it 

reduces the number of data available, and the observation period is shortened from 4 to 3 

years. 
The same issue arises when we look at the age of the individuals at first evaluation. 

The APA is only granted to people aged 60 and more. Hence, for individuals entering the 

APA at 60, we don't know exactly for how long they have been dependent. Hence, we 

decide to remove individuals who were less than 61 at first evaluation from the data. As 

dependency before 60 is quite rare, the impact is very limited in this case.  
In the case where there are more than 4 evaluations for an individual, the subsequent 

evaluations are not recorded. This is actually a form of censoring because the only event 

that can be observed past the fourth evaluation is death. Information about death (resp. 

survival) of the individual after this point could still be taken into account, but we would 

not know the state of dependency of the individual at the moment of death (resp. at the end 

of the observation period). We consider instead that the observation period ends with the 

fourth evaluation. This could induce bias in the observation, but there are only few 

individuals for which 4 evaluations were observed, which may explain why this number 

was picked in the first place.  
At the end of the observation period, due to the fact that death is not observed until 

2005, we have several possible configurations:   
- If death of the individual has been observed, then we have a full trajectory.  
- If death of the individual has not been observed, and the last observed 

evaluation occurred in 2005, then we know that the individual is alive at the 

end of the observation period, because otherwise his death would have been 

recorded. The trajectory is then right censored, and the information about 

survival of the individual between his last observation and the end of the 

observation period should be taken into account through a term in the 
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likelihood function.  
- If death of the individual has not been observed, and the last observed 

evaluation occurred before year 2005, then the individual has either died 

before 2005, or he is still alive at the end of the observation period, because 

otherwise death during year 2005 would have been recorded. In both cases, 

as no new evaluation has been made, we know that no other transition may 

have happened. We call this phenomenon partial censoring, as only the 

death of the individual is actually censored. This last configuration may 

seem quite complex, but its probability can actually be expressed quite 

easily in terms of likelihood, as we will see in next section.  

Finally, let's note that in the data, there are cases where the dependency level of the 

individual improves between two consecutive evaluations. According to the definition used 

by French insurers, dependency is considered to be a consolidated and irreversible state. A 

temporary disability is not considered as dependency. Those improvements should thus be 

considered as errors in the evaluation diagnosis. Indeed, elderly people can have good days 

or bad days, which may cause the result of the evaluations to vary from one visit to another. 

Considering dependency as an irreversible process makes the estimation of the model much 

easier. Besides, from an insurance point of view, it is safer to consider there is no 

improvement, as an insured life will not be eager to declare any improvement in his health 

status that means no more benefit from the insurance. Unfortunately, the insurer has no way 

to detect such improvements as the cost of periodic controls would be way over their 

potential benefits. Consequently, in case of improvements, we consider that the state of 

dependency of the individual remains the same. Figure 3 provides an example of different 

kind of trajectories encountered and previously described. 
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1: Fully observed trajectory, from the entry into dependency to the moment of death.  
2: Discarded trajectory, since the entry into dependency occurs during year 2002.  
3: Right-censored trajectory, with no missing information.  
4: Partially censored trajectory, as death may have occurred but not been observed.  
5: Frequency-censored trajectory, the observation stops after the fourth evaluation.  

 

Figure 3: Evaluation process for the APA data: examples of trajectories. Plain (resp. 
dashed/dotted) lines correspond to observed (resp. censored/removed) parts of the 

trajectories in dependency.   

Features of the observation process can be summarized as follows:   
- It is left-truncated, according to both the calendar year and the age. People 

who are already dependent or dead on the 1st of January 2003, or are 

already dependent or dead at the age of 61 do not appear in the data.  
- It is right-truncated. Only people who become dependent before the 31st of 

December 2005 appear in the data.  
- It is partially censored. Death is not observed until the 1st of January 2005.  
- It is frequency censored. The observation period ends after the 4th 

evaluation.  
- It is right-censored. The observation period ends at the 31st of December 

2005.  
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After processing the data, we have information about 31,731 dependent individuals, 

but only 9,270 observed transitions. 

3. DESCRIPTION OF THE MODEL 

3.1 Introduction of the model 

The model we present (see Figure 3.1) has 6 states: autonomy, death, and 4 different 

levels of dependency, Gir 1 being the most severe and Gir 4 the least severe (refer to table 1 

for the description of those levels). Numbers will be associated with states: 5 for autonomy, 

4 to 1 for Gir 4 to Gir 1 respectively and 0 for death. The model is unidirectional: 

transitions can only occur toward a more severe state of dependency or death. The 

dependency incidence rate ݅(ݏ) as well as the autonomous mortality rate ݍ(ݏ), where ݏ is 

the age of the individual, cannot be estimated from the APA data and we use exogenous 

information for those laws. In addition to the incidence rates, we also need to determine the 

distribution of the initial state of dependency, which will be estimated later in this section. 

This leaves us with 10 transitions for which we provide a semi-Markov model. 

 
Figure 4: Semi-Markov model with 4 states of dependency. Transitions probabilities 
originating from dependency states are defined using their semi-Markov kernel ܳ,.   
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3.2 Elements of semi-Markov theory 

Definition: Let ܻ = ( ௧ܻ)௧ஹ be a right-continuous process which takes its values in 

a finite set of states ܧ ⊂ ℕ. Let ܺ = (ܺ)∈ℕ be the sequence of consecutive states visited 

by the process and ܶ = ( ܶ)∈ℕ the sequence of consecutive times at which changes in the 

value of ܻ occur. ܻ is called a semi-Markov process if (ܺ, ܶ) is a multidimensional Markov 

process, or more formally, for all ݊ ∈ ℕ, ݔ > 0 and ݆ ∈ ାଵܺ)ܲ  ܧ = ݆, ܶାଵ − ܶ ≤ ,ܺ		|		ݔ ܶ, … , ܺ, ܶ) = ܲ(ܺାଵ = ݆,ܶାଵ − ܶ ≤ ,ܺ		|		ݔ ܶ). 
Furthermore, if those probabilities do not depend on ܶ, then ܻ is called a time-

homogeneous semi-Markov process.  
The semi-Markov process keeps a memory of how long it has been in the current 

state. Nevertheless, similarly to the classical Markov process, it does not keep any memory 

about the previously visited states or transition times. 
Definition: Let ܻ be a time-homogeneous semi-Markov process, ܺ (resp. ܶ) the 

sequence of visited states (resp. transition times) associated with ܻ. We define   
- The semi-Markov kernel  ∀݅, ݆ ∈ ,ܧ ∀		0 ≤ (ݔ),ܳ				,ݔ = ܲ(ܺାଵ = ݆, ܶାଵ − ܶ ≤ ܺ		|		ݔ = ݅). 
- The jump probabilities  ∀݅, ݆ ∈ ,ܧ ,				 , = ܲ(ܺାଵ = ݆|ܺ = ݅) = lim௫→ା∞ܳ,(ݔ). 
- The duration laws  ∀݅, ݆ ∈ ,ܧ ݔ		∀ ≥ (ݔ),ܨ				,0 = ܲ( ܶାଵ − ܶ ≤ ܺ		|		ݔ = ݅, ܺାଵ = ݆) = ቌܳ,(ݔ), if, > 0,0 otherwise. 

A semi-Markov process is entirely determined by its semi-Markov kernel and the 

initial states distribution. Besides, it can be noted that ܺ is a discrete time Markov chain 

with values in ܧ, whose transition probabilities are precisely the jump probabilities ,. 
We have the fundamental relation: ܳ,(ݔ) = , × -To fully describe a semi .(ݔ),ܨ

Markov process, we therefore need to model both the jump probabilities and the duration 

laws. 

3.3 Model 

3.3.1 Jump process 

According to the previous definition, jump probabilities are indeed probabilities 

constrained by the following relations  



54 G. BIESSY  

 

ቐ∀݅ ≠ ݆ ∈ ,ܧ 0 ≤ , ≤ 1,∀݅ ∈ ,ܧ  ஷ ,		 = 1.  

Those probabilities will be estimated later alongside other parameters of the model.  
For sake of clarity, we omit indexes of parameters corresponding to transitions ݅ → ݆ 

in the remain of this section. 

3.3.2 Base duration laws 

The base element of our model for duration law is the Weibull distribution. The 

hazard rate associated with this distribution is a single factor polynom, which degree 

depends on the shape parameters, which makes it very flexible. Besides, the distribution 

only consists of two parameters, and the survival function can easily be inverted, making it 

an excellent choice for optimization purposes. This distribution is commonly used in 

reliability theory, one can refer to Jiang and Murphy (1997) or Bucar et al. (2004), and was 

applied to model the dependency process by Lepez (2006). 
The Weibull distribution can be described using either of those functions   

- Survival function ܵ(ݔ) = ݁ିఙ௫ഌ,  
- Density probability ݂(ݔ) = −ୢௌబ(௫)ୢ௫ =   ,ఔିଵ݁ିఙ௫ഌݔߥߪ
- Hazard rate ℎ(ݔ) = బ(௫)ௌబ(௫) =   ,ఔିଵݔߥߪ

with ߪ, ߥ > 0. 
The case ߥ = 1 corresponds to an exponential distribution with constant hazard rate 

which brings us back to a time-homogeneous Markov model. 
3.3.3 Integration of covariates 

To take the covariates into account in the model, we make the assumption of 

proportional hazard rates, which was introduced by Cox, see for example (Cox and Oakes, 

1984), and has since been used in a lot of publications. Our model will only consider two 

covariates: gender and age of entry in dependency. Gender is a binary covariate, so we only 

need to introduce a single parameter ߙ for each transition in the model to account for its 

effect on hazard rates. On the other hand, age at entry in dependency can vary on a 

continuous scale. Nevertheless, we still decide to use a single parameter ߚ so that if ݏ is the 

age of entry in dependency, the hazard rate is multiplied by a factor ݁ఉ௦. In this case, the 

choice of the exponential function is no longer neutral, the underlying assumption is that 

being one year older will have the same multiplicative effect on the hazard rate, regardless 

of the age ݏ. 
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Finally, we have, for ݔ > 0, ݃ ∈ {1; 2}, ݏ > 0  ℎଵ(ݔ|݃, (ݏ = ℎ(ݔ)݁ఈାఉ௦ ଵܵ(ݔ|݃, (ݏ = ܵ(ݔ)ୣ୶୮(ఈାఉ௦) 
where ߙ, ߚ ∈ ℝ. 
The proportional hazard model is widespread in survival data analysis, it is very 

simple to implement and requires few additional parameters. As we have proportional 

hazard for every transition in the process, our model is said to have semi-proportional 

hazard. It means that the propotional hazard assumption is less restrictive in our case that it 

would be otherwise. 

3.3.4 Introduction of a transverse static frailty 

While the previously introduced covariates should explain part of the heterogeneity 

in the trajectories, we believe that the pathologies, which are unobserved in the data, remain 

the main source of heterogeneity. A rough categorization of pathologies causing 

dependency would give us two groups, with on one hand, cancer, strokes and some other 

cardiovascular diseases, on the other hand, dementia, which is mainly caused by 

Alzheimer's disease, neurological diseases and arthrosis. The first group of diseases is 

associated with quick trajectories, while the second group goes in pair with a slower 

degenerative process which results in longer trajectories. 
To take this heterogeneity into account, we introduce a transverse static frailty in the 

model. Frailty can be seen as an additional covariate whose value has an impact on the 

trajectory but the variable itself cannot be observed. We consider that each individual has 

its own frailty, which does not vary over time and impacts every transition the individual 

will undergo. Hence, it is both static and transverse. One of the main limitations of the 

semi-Markov model is that no information can be carried over to the next transition, and 

therefore the duration of transitions are uncorrelated. The introduction of frailty allows us 

to bypass this limitation. Instead of a propotional hazard through frailty, we could consider 

a hidden mixture model which is a more general case, but it would require additional 

parameters. 
We assume that frailty ݑ is distributed according to a Bernouilli law with parameter ߟ(݃, (ݏ ∈]0; 1[ where ݃ is the gender and ݏ the age of entry in dependency. Furthermore, 

we use a generalized linear model with a logit link function to express the impact of ݃ and ݏ on ߟ(݃,   (ݏ
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log ൬ 1ߟ − ൰ߟ = ߟ + ଵߟ × ݃ + ଶߟ ×  .ݏ
For each transition, the impact of frailty will be modeled by a single parameter ߛ 

through a proportional hazard rate ݁ఊ, so this impact may be different for each transition. 

The conditional laws associated with this frailty ݑ are  ℎ(ݔ|݃, ,ݏ (ݑ = ݁ఊ௨ℎଵ(ݔ|݃, (ݏ = ൜ℎଵ(ݔ|݃, (ݏ ifݑ = 0,݁ఊℎଵ(ݔ|݃, (ݏ ifݑ = ,݃|ݔ)ܵ ,1 ,ݏ (ݑ = ଵܵ(ݔ|݃, ,݃|ݔ)݂ ୶୮(ఊ௨)ୣ(ݏ ,ݏ (ݑ = ℎ(ݔ|݃, ,ݏ (ݑ × ,݃|ݔ)ܵ ,ݏ (ݑ = ݁ఊ௨ℎଵ(ݔ|݃, (ݏ ଵܵ(ݔ|݃,  ,୶୮(ఊ௨)ୣ(ݏ
with ߛ > 0 to guarantee the identifiability of the model. 

3.3.5 Summary of the model 

Finally, our duration model is characterized by the following laws  ݑ~ℬ ቆ ݁ఎబାఎభ×ାఎమ×௦1 + ݁ఎబାఎభ×ାఎమ×௦ቇ, ߣ(݃, ,ݏ (ݑ = ,݃|ݔ)ఈାఉ௦ାఊ௨, ℎ݁ߪ ,ݏ (ݑ = ,݃)ߣߥ ,ݏ ,݃|ݔ)ܵ ,ఔିଵݔ(ݑ ,ݏ (ݑ = exp(−ߣ(݃, ,ݏ ,݃|ݔ)݂ ,(ఔݔ(ݑ ,ݏ (ݑ = ,݃)ߣߥ ,ݏ ,݃)ߣ−)ఔିଵexpݔ(ݑ ,ݏ  ,(ఔݔ(ݑ
where   

- ݃ the gender and ݏ the age of entry in dependency,  
,ߪ - ,ߥ ,ߙ ,ߚ ,ߛ  are parameters defined for each transition whose domains of ߟ

definition are summarized in Table 2,  
,ߟ - ,ଵߟ   .ଶ are the parameters of the frailty, defined globallyߟ

With the jump probabilities, we have a total of 59 parameters that need to be 

estimated. Figure 3.3 illustrates the roles the different parameters play in the determination 

of the duration law, and Table 2 their domain of definition and short descriptions as a 

reminder. 
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Figure 5: Role of parameters in the determination of the duration law ܺ.   

 
Parameter Count Domain of definition Description , 6 0 ≤ , ≤ 1,ஷ , = 1 jump probabilities σ, 10 σ,> 0 scale parameters of Weibull 

laws ν, 10 ν,> 0  shape parameters of Weibull 
laws α, 10 α, ∈ ℝ  
 

impact of gender β, 10 β, ߳ ℝ impact of age of entry in 
dependency γ, 10 γ,> 0 impact of frailty 0ߟ, ,1ߟ 2ߟ ,0ߟ) 3  ,1ߟ ℝ ∋ (2ߟ 3 distribution of frailty 

Table 2: Summary of the different parameters used in the model.   

3.4 Likelihood function 

We denote by ଵܶ (resp. ଶܶ) the beginning of the death observation period (resp. the 

end of the observation period). We recall that in our data, ଵܶ is the 1 of January 2005 and ଶܶ 

the 31 of December 2005. In addition, for each individual , we introduce   
- ݊ the number of observed transitions,  
- ܺ = (ܺ)ଵஸஸ the sequence of visited states,  
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ݐ - = ଵஸஸ(ݐ)  the sequence of transition times,  
- indexes (ߜଵ,  ଶ) indicating if the trajectory is right censored or partiallyߜ

censored, where  (ߜଵ, (ଶߜ = ቀI[ܺ ≠ 0, ଵܶ ≤ ݐ < ଶܶ], I[ܺ ≠ 0, ݐ < ଵܶ]ቁ, 
- a vector of covariates ܼ = (݃,   the ageݏ ) where ݃ is the gender andݏ

of entry in dependency.  

The log-likelihood function has the following expression  ݈ =  ୀଵ
ே 		log൫ߟ(݃, (ݏ × ݈ଵ + (1 − ,݃)ߟ ((ݏ × ݈൯, 

! ݈௨ = ቌෑ  ୀଵ
ିଵ		ܥೖ,ೖశభ ାଵݐ) − ,|݃ݐ ,ݏ ୲୰ୟ୬ୱ୧୲୧୭୬	ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ୭ୠୱୣ୰୴ୣୢ(ݑ ቍ × ଵܥ ( ଶܶ − ݐ |݃, ,ݏ ×ୡୣ୬ୱ୭୰୧୬	ఋభᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ୰୧୦୲(ݑ ଶܥ ( ଵܶ − ݐ , ଶܶ − ݐ |݃, ,ݏ ୡୣ୬ୱ୭୰୧୬	ఋమᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ୮ୟ୰୲୧ୟ୪(ݑ  

where, for ݅, ݆ ∈ ݔ ,ܧ > 0, ଵݔ ≥ ଶݔ > 0, ݃ ∈ {1,2}, ݏ > 0, ݑ ∈ {0,1}, ܰ is the number of 

observed individuals and   
,݃|ݔ),ܥ - ,ݏ (ݑ = , × ݂,(ݔ|݃, ,ݏ  is a term associated with an observed (ݑ

transition. First term , gives the probability of observing the transition ݅ → ݆ and ݂,(ݔ|݃, ,ݏ  the conditional probability of this transition (ݑ

happening precisely after a duration ݔ has passed,  
,݃|ݔ)ଵܥ - ,ݏ (ݑ = ∑ 	ழ ,		 × ܵ,(ݔ|݃, ,ݏ  is a right-censoring term, whose (ݑ

value is the probability of remaining in state ݅ for a duration ݔ,  
,ଵݔ)ଶܥ - ,݃|ଶݔ ,ݏ (ݑ = , × ൫1 − ܵ,(ݔଵ|݃, ,ݏ ൯(ݑ + ∑ 	ழ ,		 × ܵ,(ݔଶ|݃, ,ݏ   (ݑ

is a composed censoring term. First term , × ൫1 − ܵ,(ݔଵ|݃, ,ݏ  ൯ is the(ݑ

probability of dying before a time ݔଵ has passed, and second term ∑ 	ழ ,		 × ܵ,(ݔଶ|݃, ,ݏ  the probability of remaining in state ݅ for a (ݑ

duration ݔଶ. As ݔଵ <  ଶ, both events are exclusive and their sum gives theݔ

likelihood associated with individuals for which death may have happened 

before ଵܶ and has not been observed.  
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4. RESULTS AND TRAJECTORIES 

In this section, we present results of the model described in the previous section. 

4.1.1 Estimation of parameters 

We need to estimate 59 parameters by maximizing a likelihood function gathering 

information about the 31,731 trajectories we extracted from the APA data. We use the 

Nelder-Mead algorithm (Nelder and Mead, 1965) to maximize the likelihood function. This 

algorithm is based on successive evaluations of the optimization function on the vertices of 

a simplex which evolves in accordance with the results of those evaluations. Geometrical 

transformations like reduction, extension, or reflection are applied to the simplex in order to 

explore the most promising parts of the solution space. This algorithm offers a very 

powerful alternative to the Newton-Raphson algorithm when the computation of derivatives 

is not possible, and the solution space too large to use evolutionary algorithms. An 

implementation of the Nedler-Mead algorithm is provided in the programming language R 

(R Core Team, 2014) trough the function constrOptim(), which allows for linearly 

constrained optimization. 
 

Transitions , σ, ν, α, β, γ, 4 2ߟ 1ߟ 0ߟ →3 0.27 0.0107 1.43 -0.23 0.044 0.13  0.93   -0.06   -0.04  4 →2 0.34 0.0043 1.43 -0.15 0.046 0.62       4 → 1 0.03 0.0005 1.65 -0.11 0.070 1.17       4 →0 0.37 0.0413 1.39 -0.90 0.039 3.09       3 →2 0.43 0.0375 1.43 -0.12 0.029 0.57       3 → 1 0.05 0.0136 1.59 -0.22 0.044 0.22       3 →0 0.52 0.0439 1.23 -0.73 0.037 2.95       2 →1 0.13 0.1279 1.49 0.06 0.008 0.21       2 →0 0.87 0.0515 1.23 -0.82 0.037 3.38       1 →0 1.00 0.0711 1.14 -0.61 0.036 3.64       

Table 3: Estimated values of parameters in the final model. 

As the optimization algorithm can converge toward a local optimum of the likelihood 

function, we perform 100 iterations of the algorithm with randomly generated values for the 

initial parameters, and keep the best solution found at the end. The likelihood of the 
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solution can vary a lot between two iterations, which prevents the use of tests based on 

likelihood. However, it seems to always converge toward one of a few local optima. With 

100 iterations, relative stability of the result is achieved, with the best five solutions 

yielding similar parameters results. The estimated parameters can be found in Table 3. We 

note that gender has a significant impact on the duration laws. Women (g = 2) have lower 

hazard rates than men (g = 1) for every transition, especially the transitions that lead to 

death. For example the hazard rate for the transition 4 → 0 is 2.5 times higher for men than 

for women. Consequently women survive longer than men in dependency. Besides, hazard 

rates also increase with age, for every transition. The hazard rate for transition 4 → 2 is 4 

times higher for someone aged 95 than for someone aged 65. 

Estimated probability of frailty can be found in Figure 6. The probability of having a 

positive frailty decreases with age, from 25 % at 50 to 5 % at 100. This probability is very 

close for men and women. The impact of frailty is directly related to the severity of the 

transition. Indeed, frailty has very high impact on transitions toward death or a non-

consecutive state, increasing hazard rate by up to 3700 % in the case of transition 1 → 0 but 

a lower impact on transitions between consecutive states, with only a 14 % increase for 

transition 4 → 3.  

  

Figure 6: Estimated probability of frailty with respect to gender and age of entry.   
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Figure 7: Duration law for the transition from Gir 4 to death; Grayed areas represent the 

associated density for people with and without frailty. Plain (resp. dashed/dotted) lines 

represent the hazard rate for the general population (resp. for people with/without frailty).   

Figure 7 shows the duration law we obtain for the transition from Gir 4 to death. The 

individuals with frailty have very high hazard rates, and therefore they also die very 

quickly. This results in high hazard rates for the general population over the first year of 

dependency, with a decrease as the individuals with frailty die. 
In addition, we also need to determine the distribution of the initial state of 

dependency. For an individual of gender ݃ who becomes dependent at age ݏ, we want to 

estimate the probability for the initial state of dependency to be Gir ݅ for ݅ ∈ {1; 2; 3; 4}. 
For each gender and each age of entry in dependency between 65 and 95, we look at 

the state of entry in dependency for the people who became dependent at that age. It can be 

seen as a sample of a multinomial distribution of parameters the probabilities of entries in 

dependency at that age. We use empirical estimators to determine those probabilities. 

Furthermore, as we have at least 5 entries in dependency for each age and each state of 
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dependency, the Fischer condition is met and it makes sense to compute normal confidence 

intervals for those rates. 
For each state of dependency, we then perform smoothing of the empirical 

probabilities by age of entry using the unidimensional Whittaker-Henderson method, as 

described in Planchet and Thérond (2006), with parameters ℎ = 3 and ݖ = 2, and the 

weight of each probability being equal to the number of entries in dependency at that age. 

This choice of weights ensures that for each age, the sum of the smoothed probabilities for 

the different states of entry is still equal to 1, while this result would not hold for other 

types of interpolation as for example a generalized linear model. For an individual of 

gender ݃ and age of entry in dependency ݏ, the state of entry is determined using the 

estimated probabilities that we note (݁(݃,  ∈{ଵ,ସ} and which will be used latter for the((ݏ

simulation of trajectories. 

Figure 8: Distribution of initial states of dependency. Empirical probabilities (circles for 

men, triangles for women) with associated normal 95 % confidence intervals , and results 

of Whittaker-Henderson smoothing (plain line for men, dashed line for women).   
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Figure 8 highlights a significant difference between men and women. At age 65, 

men are more likely than women to directly enter a severe state of dependency. However, 

this trend shifts over time and the situation is reversed for ages over 90. This phenomenon 

can be interpreted by considering the underlying pathologies. On one hand, we know that 

men are more subject to cancers, which result in very severe dependency very quickly, and 

the incidence rate for dependency caused by cancer becomes lower with age. On the other 

hand, women are more affected by dementia, which become more frequent at higher ages. 

Early states of dementia are not recognized by the AGGIR grid as dependency as long as 

they are not associated with functional limitations. When those limitations occur, the 

dependency state may already be very severe. 

4.2 Simulation of trajectories 

In order to generate trajectories, in an algorithmically efficient way, we need to 

define several quantities, for individuals of gender ݃ ∈ {1; 2}. Note that incidence rate and 

autonomous mortality rate are defined so that every year ݅ is applied first and ݍ is applied 

on the remaining autonomous people.   
,ݏ) - ݏ to become dependent at age ݏ the probability at age (ݔ +   ,ݔ
,ݏ) - ݏ to die at age ݏ the probability at age (ݔ +  without ever becoming ݔ

dependent,  
  ,to become dependent one day ݏ the probability at age (ݏ) -
  ,to die without ever becoming dependent ݏ the probability at age (ݏ) -
,ݏ)| -  knowing one will become dependent ,ݏ the probability at age (ݔ

before dying, that the entry in dependency occurs at age ݏ +   ,ݔ
,ݏ)| -  knowing one will die without ever ,ݏ the probability at age (ݔ

becoming dependent, that the death occurs at age ݏ +   ,ݔ
where ݏ, ݔ ∈ ℕ. We note that (ݏ) + (ݏ) = 1 for every ݏ ∈ ℕ. 

Those quantities can be linked to the incidence and mortality rates  (ݏ, (ݔ = ൭ෑ  ୀ
௫ିଵ (1 − ݅(ݏ + ݇))(1 − ݏ)ݍ + ݇))൱ ݅(ݏ +  ,(ݔ

,ݏ) (ݔ = ൭ෑ  ୀ
௫ିଵ (1 − ݅(ݏ + ݇))(1 − ݏ)ݍ + ݇))൱ (1 − ݅(ݏ + ((ݔ × ݏ)ݍ +  ,(ݔ

(ݏ) =  ௫ୀ
ஶ ,ݏ)  ,(ݔ
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(ݏ) =  ௫ୀ
ஶ ,ݏ)  ,(ݔ

,ݏ)| (ݔ = ,ݏ) (ݏ)(ݔ | , ,ݏ) (ݔ = ,ݏ) (ݏ)(ݔ , 
where ݏ, ݔ ∈ ℕ. 

4.2.1 Simulation algorithm 

The trajectory of an individual  characterized by his gender ݃ and his age ݏ at the 

start of the simulation consists of   
- the number of visited states: ݊. As our dependency process is assumed to 

be unidirectional, and we have 4 states of dependency and death as a 

terminal state, we have 2 ≤ ݊ ≤ 6,  
- a set of visited states: ܺ = (ܺ)ଵஸஸ,  
- a set of transition times: ݐ =   ,ଵஸஸ(ݐ)

where ݐ is the time at which the simulation starts, and ଵܺ = 5, as we only consider 

individuals who are autonomous at the start of the simulation. 

To simulate the trajectory of an individual , we use the following algorithm   
1. We set ଵܺ = 5, and ݐଵ =   .ݏ

2. With probability (ݏ), the individual dies without becoming dependent. In 

this case, we set ܺଶ = 0 and go to step 3. Otherwise the individual becomes 

dependent and we go to step 4.  

3. The age of death is ݐଶ = ݏ + ݔ +  is distributed according to the ݔ where ݎ

probabilities |(ݏ, ݈) for ݈ ∈ ℕ and ݎ is the fractional part of the year, 

uniformly distributed on [0; 1]. The trajectory ends with the death of the 

individual and the algorithm stops, with ݊ = 2.  
4. The age of entry in dependency is ݐଶ = ݏ + ݔ +  is distributed ݔ where ݎ

according to the probabilities |(ݏ, ݈) for ݈ ∈ ℕ and ݎ is the fractional part of 

the year, uniformly distributed on [0; 1]. We note ݏ =  ଶ the age of entry inݐ

dependency and we set ݇ = 2.  

5. The probabilities (݁(݃,  ))∈{ଵ,ସ} are used to determine the state of entry inݏ

dependency ܺଶ.  
6. The frailty ݑ is set to 1 with probability ߟ(݃,   .) and to 0 otherwiseݏ
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7. - The next state ܺାଵ  is determined with respect to probabilities ೖ, for all ݆ ∈ {0,… , ܺ − 1}.  
 - To determine the time spent in state ܺ, we first draw a random variable ݔ 

distributed uniformly on [0; 1]. We then set ݐାଵ = ݐ + ݕ  is defined below ݕ where ݕ = ቈ݁ି(ఈାఉ௦ାఊ௨)ߪ ln ൬ 11 −  .൰ଵఔݔ
We deliberately omitted indexes in the previous formula for the sake of clarity. They 

should be ܺ and ܺାଵ .  
 - We increment ݇. If the individual is still alive, i.e. ܺ ≠ 0, we repeat the steps 

of 7. Otherwise, the trajectory ends with the death of the individual and ݊ = ݇.  

4.3 Statistics on simulated trajectories 

Figure 9: Left: distribution of entries in dependency by age as a percentage of total entries 
for a population of 1,000,000 at 60. Right: density for the distribution of survival time in 

dependency, computed on the same population. For both graphs, plain lines (resp. dashed 
lines) represent the mean value for men (resp. women).   

Figure 9 (left) gives the distribution of the age of entry in dependency, which only 

depends on exogenous data used for incidence and autonomous mortality rates. According 

to those laws, for a population of individuals aged 60, men become dependent at 84 on 

average and women at 87. Figure 9 (right) gives the distribution of survival time in 

dependency, regardless of age of entry. The density is very high during the first year, due to 
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frailty. Besides, women survive in average 4 years in dependency while men survive a little 

less than 3. Those results could be compared to those presented in (Debout, 2010), a study 

of the APA data performed over 300,000 trajectories over a 6 years period. Figure 9 gives 

the life expectancy in dependency and the average time spent in each state, as a function of 

the age of entry. Despite the probability of frailty being lower at higher ages of entry, the 

life expectancy decreases with age, for both men and women. 
 

 
Figure 10: Life expectancy, and its breakdown by state of dependency, with respect to the 

age of entry in dependency, for men (left) and women (right), based on 1,000,000 

simulations.   

5. APPLICATION TO PRICING 

5.1 Pricing methodology 

5.1.1 An estimator for the premium 

We consider a long-term care insurance product characterized, on one hand by a 

sequence of periodic benefit cash flows ܤ, and on the other hand by a sequence of periodic 

premium cash flows ܲ such that ܤ and ܲ have the same periodicity. We assume that 

conditions for the payment of the benefit (resp. the premium) has been set in the product 

description. For a fixed amount of benefit, we define the pricing of the product as finding 

the corresponding amount of premium so that the expectancy of the discounted cash flow of 

premium matches the expectancy of the discounted cash flows of benefit. 
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For a sequence of periodic cash flows ܨ = ߬ ∈ℕ, and a fixed actuarial rate(ܨ) ≥ 0, 

we define the associated Net Present Value (NPV)  NPV(ܨ) =  ୀ
ஶ (1ܨ + ߬). 

If we further assume that the amount of every premium cash flow is either null or 

equal to a fixed amount ∗, which covers the case of single premium and level premiums 

product, the problem becomes finding ∗ such that  ∗ = NPV(ܤ)NPV(ॴ), 
where ॴ = ∗ is the sequence of premium unit cash flows. 

Most insurance models rely on a discrete time scale model, for which a closed 

formula for the premium ∗ can be calculated. In a multi-states continuous scale model 

however, multiple integrals appear in the equivalent formula, for which an analytical 

solution does not exist. Therefore we have to rely on another method for the pricing. 
We decide to use a Monte Carlo method, which relies on the simulation of 

trajectories in order to find an estimate which converges toward the right amount of 

premium. We use the following methodology:   
- We generate ݊ trajectories using the algorithm provided in the previous 

section.  
- For each trajectory ݇ ∈ {1;… ; ݊}, we determine the NPV of both the 

benefit cash flows NPV and the premium unit cash flows NPV.  
- We use the following estimator for the amount of premium  

̂ = 1݊ 		 ∑  ୀଵ NPV1݊ 		 ∑  ୀଵ NPV. 
According to the law of large numbers, this is a consistent estimator of ∗, i.e. ̂ →→ାஶ  .almost surely ∗

5.1.2 Uncertainty on premium estimation 

For a sample of ݊ trajectories, let us denote by ߤ and ߪ  (resp. ߤ and ߪ) the 

empirical estimators of mean and variance of NPV(ܤ) (resp. NPV(ܲ)) and ߩ the empirical 

estimator of the correlation between NPV(ܤ) and NPV(ܲ). 
According to the central limit theorem, we have  
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√݊ ቈቆߤߤቇ − ቀߤߤቁ →→ஶ ࣨ(0, Σ)				whereΣ = ൬ߪଶ ߪߪߩߪߪߩ ଶߪ ൰. 
Let us denote by ݃ the function  ݃: ℝ × ℝ∗ → ℝ(ݔ, (ݕ ↦ ݕݔ . 
We have  = ,ߤ)݃ ,ݔ) ) and, forߤ (ݕ ∈ ℝ∗ × ℝ,				∇→݃(ݔ, (ݕ = ቀଵ௬ , − ௫௬మቁ. 

We have according to the Delta method  √݊[̂ − [∗ ~→ஶࣨ ቀ0, ,ߤ)݃→∇ ,ߤ)݃→∇)௧Σߤ  .)ቁߤ
with  

,ߤ)݃→∇ ,ߤ)݃→∇)௧Σߤ (ߤ = ൬ ߤ1 ଶ൰ߤߤ− ൬ߪଶ ߪߪߩߪߪߩ ଶߪ ൰ۇۉ
ଶߤߤ−ߤ1  ۊی.

= ଶߤ1 ቆߪଶ − ߩ2 ߤߤ ߪߪ + ଶߤଶߤ  .ଶቇߪ
Slutsky's theorem ensures that the former convergence still holds when we replace 

the different quantities by their empirical estimators and therefore, for ߙ ∈]0; 1[, we have 

the following asymptotic upper-bound for the distance between the premium and its 

estimator  

̂| − |∗ ≤ ඩߪଶ − ߩ2 ߤߤ ߪߪ + ଶߤଶߤ ଶߪ × Φିଵ(1 − ݊√ߤ(2ߙ , 
with an asymptotic level of confidence of 1 −  where Φ is the cumulative distribution ,ߙ

function of the standard normal law. 

5.2 Practical case 

5.2.1 Product description 

For this product, the claims are assessed using the AGGIR grid. Only states Gir 1 to 

Gir 4 are considered as dependency. A constant level premium is paid by the insured life, at 

the beginning of every month, as long as he is alive and autonomous. Should the insured 

life become dependent, the premium is no longer due, and benefit will be granted instead at 

the end of every month, while he is still alive. The amount of benefit depends on the state 

of dependency   
- Gir 1: 1,300 ,  
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- Gir 2: 1,100 ,  
- Gir 3: 800 ,  
- Gir 4: no benefit.  

An additional cash amount of 1650 € is also granted at the end of the first month of 

dependency, regardless of the dependency state. Besides, several additional features are 

added to the product. First of all, a deferral period of 3 months is fixed, so that no payment 

is made during the first three months spent in dependency, except for the 1650 €. 

Furthermore, an elimination period of 2 years is added to the product, with counter-

insurance on the premium. It means that, should the insured life become dependent during 

the two years period after subscribing, the contract would be canceled and all premium paid 

would be refunded to the insured life. Finally, a technical interest rate of 2 % will be set. 

5.2.2 Results of pricing 

We determine the price of the previous product for several ages of subscription, 

based on 1,000,000 simulations, which gives us a relative uncertainty on the premium 

lower than 0.4 %. We compute a single price for both men and women, based on 

exogenous assumptions on the gender distribution in the initial portfolio. A summary of the 

results is provided in table 4. 

 

Age of subscription 40 years 50 years 60 years 70 years 80 years 

Monthly premium 17.42 25.14 38.36 63.18 119.12 

% Confidence interval ± 0.07 ± 0.09 ± 0.14 ± 0.22 ± 0.40 

Table 4: Premium for several ages of subscription.   

5.2.3 Reserves 

In long-term care insurance, we are mostly concerned about two categories of 

technical reserves, the reserve for premium and the reserve for claim. 
On one hand, the incidence rate of dependency increases with age, and so does the 

associated risk. On the other hand, with level premiums, the amount of premium remains 

the same over the years. Therefore a reserve for premium should be constituted with 

incoming premiums to cope for this increase of the risk. The amount of reserve is defined 

as the difference between the net present value of the future benefit and the future 

payments, for insured lives who are not dependent yet. 
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Whenever a claim occurs, a reserve for claim should be constituted to account for 

the future payments of benefit associated with this claim. The amount of reserve 

corresponds to the best estimate of the net present value of the benefits. In classic long-term 

care insurance models, the amount of reserve only depends on the gender, age of entry in 

dependency and time spent in dependency. With our model, the current state of dependency 

and the time spent in this state also give additional information and therefore should be 

used to get a more accurate estimation of the required amount of reserve. 
Figure 11 provides the projected average amount of reserve required for one insured 

live aged 60 at subscription, computed at the time of subscription. 

 

Figure 11: Projected amount of reserve for one insured live aged 60 at subscription, 
computed on a portfolio of 1,000,000 insured lives. 

If the model was to be used for actual pricing, computation of actual reserves would 

need to be performed every year. A simulation method for already dependent people, 

similar to the one we introduced in the model section, should therefore be used. The only 

difference is that in this case, based on the history of the trajectory, we would first have to 

compute the probability of frailty, draw the frailty accordingly, and finally complete the 

trajectory. 
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5.2.4 Sensitivity to different risk factors 

We study the impact of several factors of risk on the premium, such as incidence 

rate, mortality rate for autonomous people, hazard rates in dependency and interest rates. 

The impact of factors of risk such as incidence rate, mortality rate for autonomous people, 

hazard rates in dependency and interest rates are given in table 5, for a population of 

1,000,000 insured lives aged 60 at subscription. It can be noted that the dependency risk 

and the longevity risks are positively correlated, as people surviving to higher ages means 

more premiums but also more people likely to become dependent, the second effect 

outweighing the first. Besides, long-term care insurance products have a very high 

sensitivity to the interest rate. 
 

Shocks Incidence rate 
Autonomous 
mortality rate 

Hazard rates in 
dependency 

Interest rate 

Value of shock  + 10 % - 10 % - 10 % - 50 bps 

Resulting 
premium (38.36  
with no shock)  

40.70 39.36 41.33 41.20 

Relative variation  + 6.1 % + 2.6 % + 7.9 % + 7.4 % 

Table 5: Sensitivity to different risk factors on the premium at 60.   

6. DISCUSSION 

In this paper, we presented the construction steps of a 4-state semi-Markov model 

for the dependency process, based on data from the French public aid, the APA: 

"Allocation Personnalisée d'Autonomie". Semi-Markov models have been widely described 

in the actuarial literature, but there are only few applications based on real long-term care 

insurance data, because the available data is very scarce. As a consequence, methods to deal 

with censored data, which is encountered in longitudinal studies, have rarely been 

described. 
The model we developed accounts for the effect of covariates like gender and age of 

entry in dependency, through semi-proportional hazard rates. Heterogeneity caused by 

underlying pathologies, which are not observed in the data, is also taken into account 

through a static frailty. Estimation of parameters was performed using the maximum 
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likelihood method, with the introduction of specific terms to deal with right censoring and 

missing dates of death in the data. We then provided an algorithm to generate trajectories as 

well as a Monte Carlo method for the pricing of long-term care insurance products. At last, 

we presented an application to a fictive product with a quick look at reserve and sensitivity 

to risk factors. 
The data at our disposal provides information about 31,731 individuals, over an 

observation period of 3 years, with only 1 year for which death was observed. Nevertheless, 

the results we obtained from the model proved quite close to those presented in Debout 

(2010), a report based on a much larger sample of the APA data, gathering trajectories 

about 300,000 individuals over a 6 years period. 
The underlying pathology is one of the main causes of heterogeneity in the 

trajectories. A study about incapacitating pathologies and their relative importance can be 

found in Monod-Zorzi et al. (2007). In our paper, those pathologies were not observed and 

we introduced a static Bernoulli frailty to account for their effect. In the future we plan on 

working on a portfolio which contains pathologies. This will allow us to get a better 

interpretation of our results, and see if it is necessary to use a more complex model for 

frailty with three or more levels. 
Besides, we mentioned that, with a multi-state semi-Markov model, the amount of 

reserve for claim should be calculated while taking into account the current state of 

dependency and the time spent in this state. This could lead to a more accurate estimation 

of reserves? However, it requires us to be able to generate trajectories for people who are 

already dependent, and specific methods need to be developed. 
At last, if we had access to more recent data from the APA, we would be able to test 

the adequacy of our model, especially for trajectories longer than 3 years which can only be 

partially observed in the current data set. 
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