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Abstract: 

Insurance reserving is a key topic for both actuaries and academics. In this paper, we 

present an efficient way to compute all the key indicators in a unified approach of the ruin 

theory and claim reserving methods. The proposed framework allows to derive closed-form 

formulas for both ruin theory and claim reserves indicators. A numerical illustration of 

these indicators is carried out on a real dataset from a private insurer.  
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Résumé : 
Le provisionnement en assurance non-vie est un sujet clé pour les actuaires et les 

académiques. Dans cet article, nous présentons une méthode efficace pour calculer les 

indicateurs par une approche unifiée de la théorie de la ruine et du provisionnement non-

vie. Le cadre proposé permet de déduire des formules fermées pour les indicateurs de 

provisionnement et de ruine. Une illustration de ces indicateurs est réalisée sur un jeu de 

données réellles.  
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1. INTRODUCTION 

Insurance reserving is a well-known topic for both actuaries and academics, whereas 

the ruin theory remains mainly the field of academics. The computation of insurance 

reserves being mandatory whereas ruin-related indicators are not is one of the main reasons 

to explain why practitioners neglect the use of ruin theory in their daily business. 

Nevertheless, with the upcoming risk-based regulatory requirements, the computation of 

solvency probabilities at different levels and different time horizons is increasingly popular 

in the past ten years. In the present paper, we propose a new efficient way to compute 

numerous key indicators in a unified approach of ruin theory and claim reserving. 
Another important factor explaining the disaffection of practitioners for ruin theory 

when assessing reserves is the type of data to be used: the data granularity for classic 

reserving methods is line-of-business aggregated datasets whereas in ruin theory, individual 

loss level is needed, see Asmussen and Albrecher (2010) and the references therein. 

Reserving methods are in fact mainly for aggregated data triangles, see Wuethrich and 

Merz (2008) and the references therein. As pointed out by Wuethrich and Merz (2008), 

“most of the classical claims reserving methods do not distinguish reported claims from 

not-reported claims.” However, there is a growing literature for micro-level or individual 

claim-level reserving methods. 

 
Figure 1: Claim development process (IBNR: incurred but not reported, RBNP: reported 

but not paid, RBNS: reported but not settled) 

Reserving in a continuous time perspective dates back to pioneer works of Karlsson 

(1976), Jewell (1989) and Arjas (1989). Few years after these papers, Norberg (1993) first 

formulates the reserving problem in a continuous time probabilistic setting by considering 

marked Poisson processes, see e.g. subsequent extensions Haastrup and Arjas (1996). That 

is, the full claim process described in Figure 1 is considered. The time between occurrence 
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and notification corresponds to the reporting delay (IBNR in Figure 1) by the policyholder 

and is assumed to equal zero in this study. 
The i th claim is characterized by a 4-tuple [0, ]( , , , ( ) )i i i i v Vi

T V Y Y v′ ∈  where iT  denotes the 

occurrence time, iV  the settlement time, iY  the total claim amount and (.)iY ′  the payment 

process. The time between notification and closure (i.e. [ , )i i it T T V∈ + ) corresponds to the 

settlement time, which can be further subdivided into the waiting time of first payment 

(RBNP in Figure 1) and the payment process (RBNS in Figure 1). The claim process 

1 2( , , )T T   is governed by a non-homogeneous Poisson process ( , 0)tN t ≥ . Other recent 

papers in that direction are Larsen (2007), Antoniot and Plat (2014) for continuous time 

setting and Pigeon et al. (2013), Drieskens et al. (2012) for discrete time setting which 

provide estimation procedures with explanatory variables. 
Currently, there exists almost only one alternative to marked Poisson processes in 

the actuarial literature: the Poisson shot noise processes of Klueppelberg and Mikosh 

(1995), further developed in Matsui and Mikosch (2010) and Matsui (2015, 2014). They 

consider that the i th claim is a couple ( , (.))i iT L  where iL  may represent the loss process, 

typically independent Lévy processes. 

In this paper, we follow the probabilistic framework of Norberg (1993), which is an 

extension of the classical Cramér-Lundberg ruin model by considering settlement times and 

reporting delays. The paper is structured as follows. Section 2 presents our unified-

approach extended framework used in the subsequent sections. Section 3 focuses on the 

(un)conditional moments of the aggregate claim process and examples of settlement times. 

Section 4 follows with unified-approach indicators of reserving and ruin topics. Finally, 

Section 5 illustrates the ruin and reserving indicators on a real insurance dataset, before 

Section 6 concludes. 

2. AN EXTENDED CRAMÉR-LUNDBERG FRAMEWORK 

In this section, we consider a process closed to the marked Poisson process of 

Norberg (1993). Indeed, we introduce an extension of the classical Cramér-Lundberg 

framework (e.g. Asmussen and Albrecher (2010)) and state the model assumptions. 

2.1 Notation 

The surplus of an insurance company at time t  is represented by the risk process 

=t tR u ct S+ − , where tS  denotes the aggregate claim amount, u  is the initial surplus, c  is 
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the premium rate. Traditionally, the aggregate claim amount tS  is the sum of claim 

amounts 1 2, ,X X   arrived before time t , i.e. 
=1

=
Nt

t ii
S X . By considering settlement times 

and reporting delays, we assume that  

 [ , ) [ , )
=1

= ( ),with ( ) = ( )1 ( ) 1 ( ),
Nt

i
t i i i T T V i T Vi i i i i

i i

X
S Z t Z t t T t X t

V + + ∞− +  

where ,i iV T  denote respectively the settlement time and the occurence of the i th claim. 
In other words, ( )iZ t  corresponds to the claim amount paid at time t  and ( )i iX Z t−  

is the outstanding claim amount. As the i th claim is represented by ( , , )i i iT V X  and the 

implicit assumption that the payment process is an affine function of time t , we have a 

simplified version of Norberg’s model. 
Comparing risk process tR  and the no-delay-no-settlement risk process  

 
=1

= ,
Nt

t i
i

R u ct X+ −  

we remark that t tR R≥   a.s.. Therefore, the corresponding ruin probability of the considered 

model is always lower than the classical setting. 
For the following study, we introduce the settlement function  

 [ , ) [ , )( , , ) = 1 ( ) 1 ( ).w w v w v

t w
g t w v t t

v + + ∞
− +  (1) 

representing the percentage of the claim paid at time t . Thus, we have ( ) = ( , , )i i i iZ t X g t T V . 

2.2 Model assumptions 

Keeping in mind that we want to derive explicit formulas, we make the following 

assumptions   
- the claim arrival process ( , 0)tN t ≥  is a homogeneous Poisson process with 

intensity λ ,  

- the settlement times are independent and identically distributed (
i.i.d.

( )i iV V ),  

- the claim amounts are independent and identically distributed (
i.i.d.

( )i iX X  

with finite variance),  
- there is independence between waiting times, settlement times and claim 

amounts ( 1i i i iT T V X−− ⊥ ⊥ ).  

Note that (A1) leads to exponential occurrence times 
i.i.d.

( ) ( )i iT λ  . 
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3. MAIN RESULTS 

In this section, we present the main results of the (un-)conditional first two moments 

of the aggregate claim process ( , 0)tS t ≥ . We will also focus on an efficient numerical 

procedure to compute these indicators in Section 5.1. Those results will then be used in the 

subsequent sections. In the sequel, we will need claim index sets defined as follows  
= { {1, , }, < }, = { {1, , }, }.ns s

t t i i i t t i ii N T t T V i N T V t∈ ≤ + ∈ + ≤    

They represent respectively not-settled claims and settled claims. These sets are a 
disjoint partition of claims occurred before time t , i.e. , {1, , }ns s

t t tN⊂   . We introduce 

filtrations depending for the claim arrival process and the knowledge up to time t   

( ) ( ),
1= ,0 , = ( ,0 ), , , ,N N V

t s t s Nt
N s t N s t V Vσ σ≤ ≤ ≤ ≤    

, , ,
1= ( ,0 ),( ) , = ( ,0 ),( ) , , , .N C N C X

t s i s t s i s Ni C i C tt t
N s t V N s t V X Xσ σ

∈ ∈

   ≤ ≤ ≤ ≤   
   

   

In the following, we suppose that at time t  the claim amount is known when 

reported. Only the time of settlement is assumed random. 

3.1 Closed-form formulas on the aggregate claim distribution 

We present here an efficient procedure to compute the (un-)conditional first two 
moments of the aggregate claim process ( , 0)tS t ≥ . 

Proposition 3.1 The conditional expectation at time t  of the aggregate claim 

amount knowing the information up to time <s t  is  

 ( ), , ( )

=1=1, =1,

| = ( , ) ( ) ( )( , ),
N Ns s

N C X t s k
t s i i i k

s ns ki i i is s

E S X X G t T E X e A G s tλ λ
∞

− −

∈ ∈

+ +  
 

  (2) 

where ( )( , )kA s t⋅  is defined as  

 
1

1 1
1

=1

( )
( )( , ) = ( , ) , = , < ,

( 1)!

jk t t jk j
k j j k ks s

j

t s
A G s t G t t dt dt t t s t

j

−
+ +

+

−
−    (3) 

and G  is the bivariate function defined as  
 ( , ) = ( ( , , )).G t w E g t w V  (4) 

Proof. Direct computation leads to  

( ), , , , , ,

=1 = 1

| = ( )| ( )|
N Ns t

N C X N C X N C X
t s i s i s

i i Ns

E S E Z t E Z t
+

  
+         

     

( ), ,

=1 = 1

= ( )| ( )| .
N Ns t

N C X
i s i s

i i Ns

E Z t E Z t N
+

 
+   

 
   
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Using = {1, , }s ns
s s sN∪    and ( ) = ( , , )i i i iZ t X g t T V , we split the first sum between 

settled and not-settled claims  
( ) ( ), , , ,( )| = ( , , ) |N C X N C X

i s i i i sE Z t X E g t T V   

 , , , ,= ( , , ) 1 | ( , , )1 |N C X N C X
i i i s s i i i ns si is s

X g t T V E X E g t T V
∈ ∈

   +   
    

   

 ( ), ,= ( , , )1 1 ( , , ) | N C X
i i i s i ns i i si is s

X g t T V X E g t T V
∈ ∈

+
 

  

 ( )= 1 1 ( , , ) | ,N
i s i ns i i si is s

X X E g t T V
∈ ∈

+
 

  

since iX , 1 si s∈
 and 1 nsi s∈

 are mesurable with respect to , ,N C X
s . Using 

( )( , , ) | = ( , )N
i i s iE g t T V G t T , we obtain  

( ), ,

= 1=1, =1,

| = ( , ) ( )| .
N N Ns s t

N C X
t s i i i i s

s ns i Ni i i i ss s

E S X X G t T E Z t N
+∈ ∈

 
+ +   

 
  

 

  

For the second term, using 1sN i+ ≤ , ( <iT t ),  

 ,

= 1 = 1

( )| = ( )| |
N Nt t

N V
i s i t s

i N i Ns s

E Z t N E E Z t N
+ +

    
            

    

 ( ) ( )
= 1

= ( , , )| , |
Nt

i i s t s
i Ns

E X E E g t T V N N N
+

 
  
 
  

 ( ) ( )
= = 1

= ( , , )| , = ( = | )i i s t t s
k i Ns

E X E g t T V N N P N N
∞

+
 




   

 ( ) ( )
=1 = 1

= ( , , )| , = ( = | )
N ks

i i s t s t s s
k i Ns

E X E g t T V N N N k P N N k N
+∞

+

− −   

 ( )( )

=1 = 1

( ( ))
= ( ) ( , , )| , = .

!

N kk s
t s

i i s t s
k i Ns

t s
E X e E g t T V N N N k

k
λλ +∞

− −

+

− −   

Denoting by kH  the distribution function of 1, ,N N ks s
T T+ +  conditionally on 

=t sN N k− , the inner sum gives  

( ) ( ) 1
= 1 = 1

( , , )| , = = ( , , ) ( , , ).
N k N ks s

i i s t s i i k N N kk s s
i N i Ns s

E g t T V N N N k E g t t V dH t t
+ +

+ +
+ +

−   


 

For a Poisson process, the conditional distribution of occurrence times is perfectly 

known to be the order statistic of k  i.i.d. uniformly distributed random variables (see e.g. 

Kingman (1992)), i.e. the density is 1 { < < < < }1

!
( , , ) = 1 .

( )k k s t t tk N N ks s

k
h t t

t s + +− 
   Then,  
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 ( )
= 1

( , , )| , =
N ks

i i s t s
i Ns

E g t T V N N N k
+

+

−  

 ( ) { < < < < } 11
= 1

!
= ( , , ) 1

( )

N ks

i i s t t t N N kkk N N k s ss si Ns

k
E g t t V dt dt

t s

+

+ ++ +
+−   


 

 ( ) { < < < < } 11
=1

!
= ( , , ) 1 ,

( )

k

i s t t t kkk k
i

k
E g t t V dt dt

t s−   


 

with 1 =kt t+ . Using Appendix 9.1, the previous sum is ( )( , )kA G s t . Hence,  

 ( )

= 1 =1

( )| = ( ) ( )( , ).
Nt

t s k
i s k

i N ks

E Z t N E X e A G s tλ λ
∞

− −

+

 
  
 
   (5) 

Proposition 3.2  The conditional second-order moment at time t  of the aggregate 

claim amount knowing the information up to time <s t  is  

( )2 , ,

, ,
=1 =1 =1 =1

| = 1 2 ( , )1
N N N Ns s s s

N C X
t s i j s i j i ns si j i js s si j i j

E S X X X X G t T
∈ ∈ ∈

+   
  

 
,

=1 =1

( , ) ( , )1
N Ns s

i j i j nsi j si j

X X G t T G t T
∈

+ 
 

 ( )

=1 =1

2 ( ) ( )( , ) 1 1 ( , )
Ns

t s k
k i s i ns ii is sk i

E X e A G s t X X G t Tλ λ
∞

− −

∈ ∈

 + + 
    

 

 ( )( ) 2 2 *
2

=1

( ) ( )( , ) 2 ( ) (G)( , ) ,t s k
k k

k

e E X A G s t E X A s tλ λ
∞

− −+ +  

where ( , ) = ( ( , , ))G t w E g t w V , 2
2 ( , ) = ( ( , , ) )G t w E g t w V . Here ( )kA ⋅  is defined in (3) and 

*( )( , )kA s t⋅  is  

 
11

1 1* ,
1

=1

( )
(G)( , ) = ( , , , ) = , < ,

( 1)!

ik t tk i i ki
k i k i k ks s

i

t s
A s t G t t t dt dt t t s t

i

−−
+ +

+
−
−     (6) 

with 1, ,G = ( , , )k k kG G  and ,

= 1

( , ,.., ) = ( , ) ( , ).
k

i k
i k i m

m i

G t w w G t w G t w
+
   

It is worth emphasizing that ( )( , )kA G s t  defined in (3) is only a particular case of the 

operator *(G)( , )kA s t  with a family of bivariate functions, namely 
1, ,

1G = G = ( , , ) = ( ( , ), , ( , ))k k k
bi bi bi kG G G t t G t t  . From the first two moments, the computation of 

the conditional variance is immediate:  
 ( ) ( ) ( )2, , 2 , , , ,| = ( ) | | .N C X N C X N C X

t s t s t sVar S E S E S−    

Proof. Direct computation leads to  
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( )2 , , , , , ,

=1 =1 = 1 =1

( ) | = ( ) ( )| ( ) ( )|
N N N Ns s t s

N C X N C X N C X
t s i j s i j s

i j i N js

E S E Z t Z t E Z t Z t
+

  
+         

      

 , , , ,

=1 = 1 = 1 = 1

( ) ( )| ( ) ( )|
N N N Ns t t t

N C X N C X
i j s i j s

i j N i N j Ns s s

E Z t Z t E Z t Z t
+ + +

   
+   +     

   
      

 ( ), , , ,

=1 =1 =1 = 1

= ( ) ( )| 2 ( ) ( )|
N N N Ns s s t

N C X N C X
i j s i j s

i j j i Ns

E Z t Z t E Z t Z t
+

 
+   

 
     

 
= 1 = 1

( ) ( )| .
N Nt t

i j s
i N j Ns s

E Z t Z t N
+ +

 
+   

 
   

Using = {1, , }s ns
s s sN∪    and ( ) = 1 ( , , )1 ,i i s i i i nsi is s

Z t X X g t T V
∈ ∈

+
 

 we split the first 

three sums. The first sum simplifies to  

( ), ,

=1 =1

( ) ( )|
N Ns s

N C X
i j s

i j

E Z t Z t   

, , ,
=1 =1 =1 =1 =1 =1

= 1 2 ( , )1 ( , ) ( , )1 ,
N N N N N Ns s s s s s

i j s i j i ns s i j i j nsi j i j i js s s si j i j i j

X X X X G t T X X G t T G t T
∈ ∈ ∈ ∈

+ +     
 

since ( ) ( ) ( ), , , , , ,( , , ) ( , , )| = ( , , )| ( , , )|N C X N C X N C X
i i j j s i i s j j sE g t T V g t T V E g t T V E g t T V    with 

1 , si j N≤ ≤ . 
Since for > si N , ( ) = ( , , )i i i iZ t X g t T V  while for sj N≤ , claims are reported (yet 

settled or not) ( ) = 1 ( , , )1j j s j j j nsj js s
Z t X X g t T V

∈ ∈
+

 
, the second sum simplifies to  

 , ,

=1 = 1

( ) ( )|
N Ns t

N C X
i j s

j i Ns

E Z t Z t
+

 
  
 

    

, ,

=1 = 1

= ( , , ) 1 ( , , ) ( , , )1 |
N Ns t

N C X
i i i j s i i i j j j ns sj js sj i Ns

E X g t T V X X g t T V X g t T V
∈ ∈

+

 
 +  
 

   
  

, , , ,

=1 = 1 =1 = 1

= 1 ( , , )| 1 ( , , ) ( , , )| .
N N N Ns t s t

N C X N C X
j s i i i s j ns i i i j j sj js sj i N j i Ns s

X E X g t T V X E X g t T V g t T V
∈ ∈

+ +

   
  +     
   

    
 

The first term ( ), ,

= 1
( , , )|

N N C Xt
i i i si Ns

E X g t T V
+   corresponds to the last term of Equation (5). 

For the second term, since ns
sj ∈ , we obtain  

 , ,

= 1

( , , ) ( , , )|
Nt

N C X
i i i j j s

i Ns

E X g t T V g t T V
+

 
  
 
   

, ,

= 1

= ( , , ) ( , , )| |
Nt

N V N C
i i i j j t s

i Ns

E E X g t T V g t T V
+

  
      

    

( ), ,

= 1

= ( , , ) ( , , ) | |
Nt

N V N C
i i j j i t s

i Ns

E g t T V g t T V E X
+

 
  
 
    
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,

= 1 = 1

= ( ) ( , , ) ( , , )| , = ( = | )N C
i i j j s t t s

N i Ns s

E X E g t T V g t T V N P N N
∞

+ +

 
  
 

 



   

( ),

= 1 = 1

= ( ) ( , , ) ( , , )| , = ( = | ).N C
i i j j s t t s

N i Ns s

E X E g t T V g t T V N P N N
∞

+ +
 




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However  
( ) ( ) ( ), ,( , , ) ( , , )| , = = ( , , )| , = ( , , )N C N C

i i j j s t i i s t j jE g t T V g t T V N E g t T V N E g t T V    

  ( ) ( )= ( , , )| , = ( , , ) .N
i i s t jE g t T V N E g t T V  

This yields  
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The inner term has been already computed in the proof of Proposition 3.1.  
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= 1
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Finally, the second sum is  
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Using Appendices 9.2 and 9.3, the third sum is  

( )( ) 2 2 *
2

= 1 = 1 =1

( ) ( )| = ( ) ( )( , ) 2 ( ) (G)( , ) ,
N Nt t

k t s
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where 1, ,G = ( , , )k k kG G  and ,

= 1
( , ,.., ) = ( , , )

ki k
i k i mm i

G t w w G t w w
+ . Here  

( )( , , ) = ( , , ) ( , , ) = ( ( , , )) ( ( , , )) = ( , ) ( , ).i m i i k m i i k m i mG t w w E g t w V g t w V E g t w V E g t w V G t w G t w  

From the conditional moments, the corresponding unconditional moments can be 

derived. From the first two moments, the computation of the unconditional variance is also 

immediate:  
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 ( ) ( ) ( )22= ( ) .t t tVar S E S E S−  

Proposition 3.3 The expectation of the aggregate claim amount is  

 ( )
=1

= ( ) ( )(0, ),t k
t k

k

E S E X e A G tλ λ
∞

−   (7) 

where ( )(0, )kA G t  is kA  is defined in (3) and G  is the bivariate function defined as 

( , ) = ( ( , , )).G t w E g t w V    

Proposition 3.4 The second-order moment of the aggregate claim amount is  

 ( )( )2 2 2 *
2

=1

( ) = ( ) ( )(0, ) 2 ( ) G (0, ) ,t k
t k k

k

E S e E X A G t E X A tλ λ
∞

− +  

where kA , *
kA  are defined in (3) and (6) respectively and 2G  is previously defined.   

Proof. The proof of Propositions 3.3 and 3.4 are obtained by setting = 0s  (i.e. 

= =s ns
s s ∅  ) in Propositions 3.1 and 3.2 respectively.  

3.2 Relevant examples of settlement-linked functions 

In this subsection, we present two examples of settlement functions g . Direct 

computation of (4) leads to  
( )

( , ) = ( ( , , )) = ( ) ( ),V
Vt w

dF x
G t w E g t w V t w F t w

x

∞

−
− + −  

for 0t w≥ ≥ . In order to compute the second order moment, similar computations lead to  
2 2

2 2
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The i th component of 1, ,G = ( , , )k k kG G  consists in summing G  functions, namely  
,

= 1

( , ,.., ) = ( , ) ( , ).
k

i k
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m i
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Let us start with the usual case of immediate settlement. If = 0V  a.s., then 

{ }( , ) = 1 w tG t w ≤ , leading to ( )( ) = / ( 1)!k
kA G t t k − . Therefore, Proposition 3.3 gets back to a 

well known result ( ) = ( )tE S t E Xλ . Consequently, we also have 2 { }( , ) = 1 w tG t w ≤ . Then, 

2( )( ) = / ( 1)!k
kA G t t k − . Furthermore,  
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Thus Proposition 3.4 gives another well-known result of a compound Poisson 

process  2 2 2
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Short-tailed business (such as material damages for motor and household insurance 

with settlement generally within four or five years) corresponds to line of business where 

the settlement time is either quick or immediate. As the opposite, long-tailed business such 

as third-party liability (especially medical malpractice or liability for lawyers) experiences 

very long development of claims (generally more than to 20 years, see e.g. Partrat et al. 

(2008)). Hence, modeling the settlement process depends heavily on the studied guarantee. 

This paper first attempt to model such a process using the zero-inflated exponential 

distribution. In the numerical section, we will split the dataset between long and short tailed 

guarantees leading to distinct values of parameters of the two situations. We postpone the 

use of more complex distributions (such as Gamma or Weibull and their zero-inflated 

version) to future research. 
Considering a zero-inflated exponential distribution for V  (i.e. a mixture of a 

geometric distribution and a Dirac distribution at 0) yields to  
[0, )( ) = ( (1 )(1 ))1 ( ).x

ZIEF x p p e xμ−
+∞+ − −  

In other words with probability p , the claim is settled immediately, otherwise (with 

probability 1-p) the settlement time is strictly positive. Hence, for >t w ,  

( , ) = (1 )( ) (1 )(1 exp( ( )))
x

ZIE t w

e
G t w p p t w dx p t w

x

μμ μ
−∞

−
+ − − + − − − −  

   1= 1 (1 )exp( ( )) (1 ) ( ) ( ( )),p t w p t w E t wμ μ μ− − − − + − − −  
where 1E  denotes the exponential integral, see e.g. (Olver et al. 2010, Chap. 6).  

2
,2 2

( , ) = (1 )( ) (1 )(1 exp( ( )))
x

ZIE t w

e dx
G t w p p t w p t w

x

μμ μ
−∞

−
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 2= 1 (1 )exp( ( )) (1 ) ( ) ( ( )),p t w p t w E t wμ μ μ− − − − + − − −  
where 2E  denotes the generalized exponential integral, see e.g. (Olver et al. 2010, Chap. 

8). Finally,  
, ,

= 1

( , ,.., ) = ( , ) ( , ).
k

i k
ZIE i k ZIE i ZIE m

m i

G t w w G t w G t wΣ

+
  

Of course, the case of the exponential distribution is obtained by setting = 0p  in the 

previous expressions of ZIEG  and ,2ZIEG . 
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4. COMPUTING CLASSIC ACTUARIAL INDICATORS 

In this section, we present different indicators starting with insurance reserving and 

then ruin theory. 

4.1 Reserving topics 

From a reserving perspective, we now ignore the initial capital u  and the premium 

rate c  and focus on the aggregate claim amount tS  at time t . Classical methods for claim 

reserving are designed for aggregated data for which claim amounts are aggregated per 

accident year and per development year, see e.g. Wuethrich and Merz (2008). Therefore, 

claims are sorted per accident year and cumulated per development year to get a so-called 

claims development triangle. 
At individual claim level, the accident year k  of a claim occurred at time T  is the 

year of occurrence, i.e. =k T   (where .   denotes the integer part). The j th development 

year of a claim occurred at time T  corresponds to payments done in interval 

( 1, )T j T j  + −   + . Let = 0, ,k K  be an accident year and = 0, ,j J  a development year. 

As before, we want to deal with reserving topics, and we introduce the claim set of accident 

year k  reported at time t   
, = { {1, , }, = }.t k t ii N k T∈    

Note that the current time is 1k j+ +  since both k  and j  starts from 0. Let us define the 

aggregate (paid) claim amount for accident year k  and development year j   
1

, 1,
=11,

= ( 1) = ( 1)1 .
N j k

k j i i i k j k
i ik j k

S Z j k Z j k
+ +

∈ + +
∈ + +

+ + + +  


 

The sum can be expressed as in the previous subsection using ( ) = ( , , )i i i iZ t X g t T V   
1

, { < 1}
=1

= ( 1, , )1 .
N j k

k j i i i k T ki
i

S X g j k T V
+ +

≤ ++ +  

Denoting { < 1}( , , ) = ( , , )1k k t kg y t v g y t v ≤ + , we get back to a sum similar the aggregate claim tS  

at time = 1t j k+ +  with a new settlement function ( , , )kg y t v . This leads to the following 

property. 
In order to deal with conditional expectation, we split the claim set into two subsets  

, 1= { {1, , }, = , < },ns
t k j k i i i ii N k T T t T V+ +∈   ≤ +  

, 1= { {1, , }, = , }.s
t k j k i i ii N k T T V t+ +∈   + ≤  

They represent claims of accident year k  not-settled and settled at time t . 
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Let us define the aggregate (paid) claim amount for accident year k  and 

development year j m+  given that the current time is 1k j+ +   
1

, { < 1}
=1

= ( 1, , )1 .
N j k

k j m i i i k T ki
i

S X g j m k T V
+ +

+ ≤ ++ + +  

Corollary 4.1 The conditional expectation of the aggregate claim after j m+  

development years amount knowing the information up to time = 1s k j+ +  is  

 ( )
1 1

, ,
,

=1, =1,, ,

| = ( , )
N Nk j k j

N C X
k j m s i i k i

s nsi i i is k s k

E S X X G s m T
+ + + +

+
∈ ∈

+ +  
 

  (8) 

where ( ){ < 1}( , ) = ( , , )1 .k k t kG t u E g y t V ≤ +
   

Proof. Immediate by taking = 1s j k+ + , = 1 =t j k m s m+ + + +  and g  in 

Proposition 3.1 in which the term ( )( , )n kA G s s m+  cancels.  

Within this notation, a reserving triangle looks like (for = 3s )  

 
Corollary 4.2 The conditional second-order moment of the aggregate claim after 

j m+  development years amount knowing the information up to time = 1s k j+ +  is  

( )2 , ,
, , ,, , ,=1 =1

| = ( 1 2 ( , )1 )
N Ns s

N C X
k j m s i j s i j k i ns si j i js k s k s ki j

E S X X X X G s m T+ ∈ ∈ ∈
+ + 

  
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, ,=1 =1

( , ) ( , )1 ,
N Ns s

i j k i k j nsi j s ki j

X X G s m T G s m T
∈

+ + +  


 (9) 

where ( ){ < 1}( , ) = ( , , )1k k t kG t u E g y t V ≤ +
 .  

Proof. Immediate by taking = 1s j k+ + , = 1 =t j k m s m+ + + +  and g  in 

Proposition 3.2 in which the terms ( )( , )n kA G s s m+ , 2,( )( , )n kA G s s m+ , * (G )( , )m kA s s m+  

cancel.  

4.2 Ruin topics 

Within regulatory frameworks, the computation of solvency probabilities for 

different line of business and different time horizons are increasingly studied. Generally, 

the solvency probability at time t  is defined as  
0( ) = ( > 0 | = ).t tu P R R uφ  
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This quantity depends on the initial capital u , the premium rate c  and the 

probability law of tR . This indicator allows to calibrate the premium rate c  for a risk 

management perspective. 
The computation of the solvency or equivalently of the ruin probability has been 

studied for decades in the literature, see Asmussen and Albrecher (2010). In the case of 

independence between claim arrivals and claim amounts, there are mainly two cases to 

distinguish depending on the tail heaviness of the claim distribution. In the light-tailed case, 

exact formulas are available when the claim distribution is an exponential distribution or a 

phase-type distribution (which includes the Erlang distribution and mixtures of Erlang 

distributions), see e.g. Asmussen and Rolski (1991). In the heavy-tailed case, exact 

formulas are rare and we must rely on integrated tail approximation or bounds of the ruin 

probability. Furthermore in the light-tailed case, the solvency probability can be 

approximated by a normal distribution (Asmussen and Albrecher, 2010, Chap. 16) or a 

translated gamma distribution (Dickson, 2005, Chap. 4) based on two or more moments of 

the claim distribution. 
In this paper, we simply use the two-moment normal approximation of the 

distribution of the risk process tR  at time t . That is, the solvency probability is 

approximating only through the mean 0(  | = )tE R R u  and the variance 0(  | = )tVar R R u . 

These previous characteristics can be computed in our model via Propositions 3.3 and 3.4. 

Indeed,  
0 0(  | = ) = ( ), (  | = ) = ( ).t t t tE R R u u ct E S Var R R u Var S+ −  

In this context, the solvency probability can be expressed as  

 
0 ( ( ))

( ) 1 ,
( )

t
t

t

u ct E S
u

Var S
φ

 − + −≈ − Φ  
 

 (10) 

where Φ  denotes the cumulative distribution function of the standard Gaussian 

distribution. 

5. NUMERICAL ILLUSTRATIONS 

In this section, we will present the numerical illustrations of the previous results and 

we compare them with the classical ruin theory model and chain-ladder method for claim 

reserving. On a real dataset, we show the numerical computation of the ruin probability and 

claim reserving. In this example, we choose to model settlement times with zero-inflated 

exponential distribution of parameter p  and μ . 
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We consider an actuarial dataset from an unknown private insurer on a portfolio of 

general third-party liability policies for private individuals. 332,892 claims were reported 

between January 1990 and December 1999, which are all closed on December 31 2008. We 

distinguish two types of claims: material damage (material) and bodily injuries (injury). We 

randomly select 6000 claims in the previous dataset. Then, we prepare the training set with 

claims reported before December 1997. 
Parameters of the model are calibrated with classical statistical methods. We 

estimate the parameters λ , = ( )E Xν , p  and μ  with the estimators  = sN

s
λ , 

=1

1
=

n

ii
X

n
ν  , 


{ =0}=1

1
= 1

N

Vi i
p

n
  and  

1

=1

1
= (1 )

n

ii
V p

n
μ

−
  − 
 
  respectively. p , μ  are maximum likelihood 

estimators, whereas λ  and ν  are moment-based estimators. 
 

 ν  λ  p μ (1 ) /p μ−  
material   1178   498.6   0.032   0.269   3.606  

body   21520   105.5   0.004   0.233   4.272  

Table 1: Fitted parameters of the training set 

In Table 1, we can observe the key characteristics of each type of claims. The mean 

value of the claim amount is much bigger for bodily injuries ( >injury materialν ν ). On this 

dataset, material damages are more frequent than bodily injuries ( >material injuryλ λ ). 

Furthermore with our model, we can see that bodily injuries are rarely paid immediately 

compared to material damages, since injuryp  is much smaller than materialp . By direct 

computation (using  (1 ) /p μ− ), the expected settlement time of bodily injuries is bigger 

than for material damages (see corresponding column in Table 1). 
In Figure 2, we plot the distribution function (both the empirical and the fitted 

functions respectively in solid and dashed lines) for the two claim types (left for material 

and right for injury). We also observe that the zero-inflated exponential distribution, 

considered in our model (see section 3.2), fits reasonably well the settlement times, yet 

distributions with more parameters will better fit the empirical distribution. 
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Figure  2: Settlement delays ( )i iV  (left for material and right for injury) 

5.1 Computational aspects 

In this numerical section, we use the statistical software R (R Core Team (2016)), a 

personal library of dedicated functions hosted on a git repository at 

https://portail.math.cnrs.fr/, the ChainLadder and the fitdistrplus packages (see 

Gesmann et al. (2015) and Delignette-Muller and Dutang (2015)). We use numerical and/or 

Monte-Carlo approaches in order to compute the key indicators previously presented in 

Sections 3 and 4. 
Firstly, for the numerical approach we fully used the efficient formulation of 

indicators. In fact, those formulations of the indicators rely on the inversion of sums and 

multiple integrals which simplifies the computation (see Appendices 9.1, 9.2 and 9.3). 

These multiple integrals can be approximated via the rectangle rule, see Appendix 9.4 for 

details. Benchmarks of the computation of theses indicators have been carried out in the 

case of immediate settlement (that is { }( , ) = 1 w tG t w ≤ ). 
Secondly, the Monte-Carlo approach consists in simulating both the claim occurence 

times ( iT ) and the settlement time ( iV ), then mean and variance are replaced by their 

empirical versions. There is no issue to simulate iT  as they are i.i.d. uniformly distributed 

between [ , ]s t  knowing tN  and to simulate iV  since they are zero-inflated exponentially 

distributed. In the following subsections, we choose a number of simulations equals to 

1000. 
For large values of tλ , we prefer the Monte-Carlo approach because the numerical 

approach needs a sharp discretization grid in time combined with a dedicated library. 

Indeed, computing large binomial sums needs the use high precision floating-point 

arithmetic libraries such as the GMP library of Grandlund Torbjoern & the GMP Devel. 
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Team (2015), or the MPFR library of Fousse et al. (2007). These libraries are available 

thanks to the R package Rmpfr of Maechler (2016). This makes the numerical approach 

slow even with parallel computations. 

5.2 Reserving 

For illustration purposes, the reserving triangles (with cumulative incurred amounts) 

are displayed in Tables 5 and 6 in Appendix 9.5. The predicted claim charge has been 

computed by the numerical approach using Equation (8) in Table 2 for damage cover and 

Table 3 for bodily injury cover. Each table contains the latest known value in the first 

column, the predicted claim charge by the numerical approach and the Chain Ladder 

method (see e.g. Wuethrich and Merz (2008)) in the second and third columns, the claim 

reserves denoted by IBNR corresponding to the numerical approach and the Chain Ladder 

method in the fourth and fifth columns. 
  

Accident 
year 

Latest Ultimate CL Ultimate New IBNR CL IBNR New 

1990  602 261  602 261  602 261  0  0 
1991  774 350  800 779  861 315  26 429  86 965 
1992  580 910  648 991  593 044  68 081  12 134 
1993  419 019  519 118  484 517  100 099  65 498 
1994  568 651  840 366  642 925  271 715  74 274 
1995  285 542  529 908  348 506  244 366  62 964 
1996  331 037  866 481  644 304  535 444  313 267 
1997  93 018  499 976  427 523  406 958  334 507 
Total  3 654 788  5 307 880  4 604 394  1 653 091  949 609 

Table 2: Results for damage cover 

 

In Table 2, we observe that the numerical approach proposed in this paper mostly 

underestimate the ultimate predicted claim charge for both guarantees for all accident year 

(except for 1991). This leads to an underestimation of the total claim charge (5 307 880 vs. 

4 604 394). Obviously, when subtracting the latest known claim value, the claim reserve 

(IBNR columns) are also lower for the numerical approach than for the Chain Ladder 

method. 
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Accident 
year 

Latest Ultimate CL Ultimate New IBNR CL IBNR New 

1990  4 365 142  4 365 142  4 365 142  0  0 
1991  3 466 759  3 639 763  3 518 086  173 004  51 327 
1992  2 474 422  2 779 462  2 530 368  305 040  55 946 
1993  797 925  1 007 187  906 636  209 262  108 711 
1994  1 047 918  1 608 889  1 246 146  560 972  198 228 
1995  626 053  1 269 117  995 574  643 064  369 521 
1996  819 551  2 542 603  1 764 573  1 723 052  945 021 
1997  404 867  3 045 051  1 552 357  2 640 184  1 147 490 
Total  14 002 636  20 257 213  16 878 881  6 254 577  2 876 246 

Table 3: Results for body cover 

In Table 3, we observe that this effect is even more pronounced. For the bodily 

injury cover, the ultimate predicted claim is lower with the numerical approach than with 

the Chain Ladder method for every accident year without exception. Chain Ladder 

reserve’s estimate are generally two times or three times bigger than the numerical 

approach. 
These results must be taken with care (especially for the bodily injury cover) 

because the presented estimation do not take into account development after the seventh 

year. For long-tail business such as bodily injury cover, this is not recommended to do so. 

Furthermore, the claim triangles (see Appendix 9.5) present some accident year effect 

probably due to the portfolio size under exposure: for the damage cover, accident year 

1994’s claim charges are particularly large, whereas for the bodily injury cover, accident 

years 1990-91’s claim charge are heavy. 
However, these two effects probably do not explain all differences. The remaining 

differences may be explained by two reasons: the proposed model has less parameters than 

the Chain Ladder method (2 vs. 7); the numerical approach does not take into account 

claims that are incurred but not year reported (IBNYR). 
These differences reduce when looking to a smaller time horizon. In fact using the 

1998’s claim information (for validation), we compare the claim charges observed for 

accident years 1991-1997 with the prediction by the numerical approach and the Chain 

Ladder method. For the damage cover, the numerical approach and the Chain Ladder 

method produce similar estimates: the numerical approach is even better. For the bodily 

injury cover, the predictions for the numerical approach are dubious especially for the most 

recent accident years where the uncertainty implied by IBNYR claims is prominent. This is 

logical because there are almost no IBNYR claims for the damage guarantee but many late 

IBNYR for the bodily injury guarantee. 
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Figure 3: Prediction of claim charge over one-year time horizon 

5.3 Ruin 

In this section, we consider the solvency probability approximation using Equation 

(10). As generally in numerical illustrations of ruin-related quantities, ( )t uφ  is plotted as a 

function of the initial capital u  for different time values t . On Figure 4, we plot the 

solvency probability in 8 situations by considering (i) two time horizon = 1t  and = 2t , (ii) 

two variance values for the claim distribution ( ) = 1 / 2Var X  and ( ) = 2Var X  (whereas the 

mean is ( ) = 1E X ) and (iii) two type of settlement Dirac and exponential. We do not plot 

the zero-inflated case since it is an intermediate situation between these two situations. 

Finally, the loading factor is assumed to be 1%, i.e. = ( )(1 1%)c E X + . 
For each situation, the solvency probability has an exponential convergence towards 

1 since Equation (10) use the distribution function of the standard normal distribution. As 

expected, increasing the time horizon given a value of initial capital leads to a (sharp) 

decrease of the solvency probability. Also as one would expect, increasing the variance of 

the claim amounts decrease the solvency probabilities: the slopes are flatter in the right-

hand graph. 
Furthermore, the two types of settlements either immediate with a Dirac distribution 

or gradually with an exponential distribution (of mean 1/2) have a large impact of the 

solvency probability. As the ruin process in these two situations are stochastically ordered, 

having a random settlement time leads to higher solvency probabilities. 
In Table 4, we compute the solvency capital at 99.5%  level, that is the difference 

between the quantile at 99.5%  level and the mean of the aggregate claim. Increasing the 
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time horizon leads to a larger increase of required capital when the settlement time are 

random: for the exponential distribution from 2.38 to 6.53 compared to the Dirac 

distribution from 3.14 to 7. However, the effect of random settlement times is reduced as 

the time horizon increases. 
 

 
Figure 4: Solvency probability 

 
 ( ) = 1 / 2Var X ( ) = 2Var X  

Time horizon Dirac Exp Dirac Exp 
= 1t  3.14 2.38 4.45 3.46 
= 2t  4.44 3.84 6.29 5.51 
= 3t  5.43 4.88 7.70 7.00 
= 4t  6.27 5.73 8.88 8.25 
= 5t  7.00 6.53 9.93 9.35 

Table 4: Solvency capital at 99.5%  level 

6. CONCLUSION 

We propose in this paper an efficient way to compute insurance indicators in a 

unified framework of ruin theory and claim reserving. In an extended Cramér-Lundberg 

framework, we derive efficiently computable closed-form formulas for the key indicators. 

We illustrate these methods on a real insurance dataset. This numerical application reveals 

that the proposed framework underestimates the ultimate claim charges (assuming the 

Chain-Ladder method is the most appropriate method). On a one-year time horizon, the 

backtesting procedure shows that the new method to estimate claim charges performs 
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reasonably well. Regarding ruin-theory topics, we retrieve that taking into account 

settlement times naturally increases solvency probabilities, yet this effect diminishes for 

longer time horizons. 
This extended model is relatively simple and merits further research. Multiple 

directions can be considered. The next step should attempt to take into account non-null 

reporting delays as well as random claim charge in order to better assess the reserving risk. 

By considering random reporting delays, the observed claim process is not a Poisson 

process, yet the unobserved claim settlement process and reporting process are Poisson 

processes. This latent model could be better tackled in a general renewal process for the 

claim process, see (Asmussen and Albrecher, 2010, Chap. 6) or with inhomogeneous 

Poisson process, see (Wuethrich and Merz, 2008, Chap. 10). Other directions for future 

research may include the study of more general settlement functions, uncertain claim 

charges, the dependence between claim sizes and claim inter-arrival times, claim sizes and 

settlement times, and the asymptotic behavior of the proposed estimators. 
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9. APPENDICES 

9.1 Simplification of operator ( )( , )kA G s t  

Let 1 =kt t+  and 0 <s t≤ . Iterating the following splitting procedure  
2 2

] , [ 1 1 1 1 ] , [ 2 20
=1 =2

( , )1 ( , , ) = ( , ) ( , )1 ( , , )( )
k kt t

i s t k i s t ks
i i

G t t t t dt G t t dt G t t t t t s+ −     

2
3 3 3

] , [ 2 2 2 2 2 2 ] , [ 30
=2 =3

( )
( , )1 ( , , )( ) = ( , )( ) ( , )1 ( , , ) ,

2!

k kt t

i s t k i s t ks
i i

t s
G t t t t t s dt G t t t s dt G t t t t

−− − +     

leads to  

 2
{ < < < < } 110 0 0

=1

( )( , ) = 1 ( , )
kt t tk

k s t t t i kk
i

A G s t G t t dt dt      

 1 2 1 3
1 1 2 ] , [ 2 2 20 0 0

= ( , ) ( , )1 ( , , )( )
t t t t tk k k

k s t k ks s
G t t dt dt G t t t t t s dt dt+ ++ −          

 1 4 3
] , [ 3 2 20 0 0

=3

( , )1 ( , , ) ( )
kt t t tk k

i s t k ks
i

G t t t t t s dt dt++ −       

 1 2 1 3
1 1 2 2 2= ( , ) ( , )( )

t t t tk k
k ks s s s

G t t dt dt G t t t s dt dt+ ++ −        

 
2

1 4 3
] , [ 3 20 0 0

=3

( )
( , )1 ( , , )

2!

kt t tk k
i s t k k

i

t s
G t t t t dt dt+ −+       

 
1

1 1

=1

( )
= ( , ) .

( 1)!

jk t t jk j
j j ks s

j

t s
G t t dt dt

j

−
+ + −

−    
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In other words, the operator kA  is  
1

1 1
, ,

=1

( )
( )( , ) = ( )( , )where ( )( , ) = ( , ) .

( 1)!

jk t t jk j
k j k j k j j ks s

j

t s
A G s t B G s t B G s t G t t dt dt

j

−
+ + −

−     

9.2 Computation of the second order moment 

Let us compute the following expectation which simplifies to 2( )tE S  when = 0s . 

Let ( ) = ( , , )i i iG t g t T V . Splitting the inner sum yields to  

2

= 1 = 1 = 1 = 1 = 1

( ) ( ) | = ( ) | 2 ( ) ( ) | .
N N N N Nt t t t t

i j s i s i j s
i N j N i N i N j js s s s
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    +       
     
      

The first sum can be computed as in Proposition 3.1. Consequently,  

2 2 ( )
2

= 1 =1

( ) | = ( ) ( )( , )
Nt

t s k
i s k

i N ks

E Z t N E X e A G s tλ λ
∞

− −

+

 
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 
   

with the function 2
2 : ( , ) ( ( , , ) )G t w E g t w V . With similar conditioning, the second term is  

= 1 = 1

2 ( ) ( ) | 
N Nt t

i j s
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With ( )( , , ) = ( , , ) ( , , ) = ( , ) ( , )i j i i j j i jG t t t E g t t V g t t V G t t G t t  (by assumption A3), the double sum is  
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with 1 =kt t+ . Using Appendix 9.3, we have  
1
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 leads to the desired result. 
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9.3 Simplification of operator *(G)( , )kA s t  

Still with 1 =kt t+ , we use similar reasoning as Appendix 9.1  
1 1

2 2
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The operator kA  is defined as  
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Two functions are considered. For the conditional expectation  
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For the conditional second-order moment  

1 1
=2 =2

1

1 1

( , , ) ( ( , , )) ( ( , , ))

G( , ,.., ) = = .

( , , ) ( ( , , )) ( ( , , ))

0 0

k k

j j
j j

k

k k k k

G t t t E g t t V E g t t V

t t t

G t t t E g t t V E g t t V− −

   
   
   
   
   
   
   
   

 
   

  



136 A. BROUSTE – C. DUTANG 

 

9.4 Heuristic computation for 1 1= ( ) ..
t tk j
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- general j : multiple cumulative sum approximation  
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Computing the first terms, we notice that  
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That is 1
,i nc  is the sum of 1, 2

,i nc  is the sum of integers, 3
,i nc  is the sum of square 

integers. We now use the well-known parallel summation identity 
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e.g. from Graham et al. (1994). We have 0
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This ends the recurrence. So 1
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−    can be obtained. Using 

previous approximation, we get  
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yielding to  
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The Trapezoidal rule is obtained by replacing ( )if t  by 1( ) ( )

2
i if t f t ++

. 

9.5 Claim triangles 

 
 Development year 
Accident 

year 
0 1 2 3 4 5 6 7 

1990  37482   139760   242037   344315   446593   534979   582384   602261  
1991  67954   215479   363005   510531   643364   720880   774350    
1992  114975   262831   410686   511030   566393   580910      
1993  90355   202967   302796   373944   419019        
1994  216343   442578   519775   568651          
1995  178740   242198   285542            
1996  188638   331037              
1997  93015                

Table  5: Triangle for damage cover 

 
 Development year 
Accident 

year 
0 1 2 3 4 5 6 7 

1990  1141816   1836488   2531161  3225834  3796269  4157660  4365142   4480327  
1991  1210060   1904389   2598718  3090223  3330113  3466759  3490643    
1992  874032   1368811   1841729  2227655  2474422  2527571     
1993  379682   577927   708582   797925   844412        
1994  713520   922794   1047918  1143308         
1995  409297   626053   805173            
1996  819551   1332359              
1997  915450                

Table  6: Triangle for bodily injury cover


