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Abstract

We present the one-year claims development result (CDR) in the complementary

loss ratio method (CLRM). The complementary loss ratio method presented in

Dahms [3] is a stochastic claims reserving method that considers simulateneously

claims paid data and claims incurred data. In this model we study the conditional

mean square error of prediction (MSEP) for the one-year claims development result

uncertainty. This is an important view in all new solvency considerations and in

risk-based controlling of non-life insurance companies.
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1 INTRODUCTION

The main task of actuaries is to predict random variables and future cashflows in an ap-

propriate way. This serves as a basis for liability estimations and premium calculations.

For these cashflow predictions one often has different sources of information. A major

difficulty is to combine the knowledge from these different sources of information appro-

priately. Claims reserving is one area where one faces this task. In the present paper

we assume that we have claims incurred data (case estimates for reported claims) and

claims paid data. It is well-known that claims reserves based on claims incurred data

may substantially differ from the claims reserves based on claims paid data. Therefore we

try to combine these two sources to get a unified (and more reliable) prediction for the

outstanding loss liabilities.

Halliwell [4] is probably one of the first who has investigated this problem from a statistical

point of view. Quarg-Mack [9] proposed a successful way to combine claims incurred and

claims paid data for claims reserving. They have introduced the so-called Munich chain

ladder method which provides predictions for the outstanding loss liabilities that are based

both on claims incurred and claims paid data. However, so far, there is no appropriate way

to quantify the prediction uncertainty within the Munich chain ladder method. Recently,

Dahms [3] has given a different stochastic model that combines these two sources of

information. Dahms [3] has extended the complementary loss ratio method (CLRM) for

deriving predictions based on claims incurred and claims paid data simultaneously by

choosing the case reserves as basis for the regression. This method is successfully applied

in various non-life insurance companies that have claims incurred data with a minimal

consistency standard over time. Another major advantage of the extended CLRM method

is that allows for the derivation of a mean square error of prediction (MSEP) estimate.

We revisit Dahms’ method [3] within a solvency framework.

In most solvency considerations one is interested into the changes and uncertainties over

a one-year time horizon. That is, one predicts the outstanding loss liabilities today and

in one year with the new information available in one year. The difference between these
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two successive predictions is the so-called claims development result (CDR). The CDR

is of central interest in every solvency consideration because it corresponds to a profit

& loss statement position that directly influences the financial strength of an insurance

company. This one-year view and the derivation of the CDR has therefore attracted a

lot of attention in recent research, for instance, Merz-Wüthrich [7] analyze the CDR for

the distribution-free chain ladder model of Mack [5] or Bühlmann et al. [2] analyze the

CDR within the credibility chain ladder model. In the present paper we consider the

CDR for the CLRM presented in Dahms [3]. This way, we solve several problems at the

same time. Namely, we consider the CDR for solvency purposes in a model where one is

able to combine the information from claims incurred and claims paid data. Moreover,

the present model gives the predicted cashflow pattern in a natural way, i.e. this model

also allows for market-consistent valuation of the liability cashflows if one applies an

appropriate deflator or discount function (time values of cashflows).

2 NOTATION AND MODEL DEFINITION

Usually, claims reserving data are studied in so-called claims development triangles (see

Figure 1). For accident years we use the index i ∈ {0, . . . , I} and for development years

we use the index j ∈ {0, . . . , J}. For simplicity, we assume I = J . Then we introduce the

following notation:

• CPa
i,j denotes cumulative payments for all claims with accident year i up to develop-

ment year j.

• CIn
i,j denotes claims incurred (case estimates) for all claims with accident year i

reported by the end of development year j.

• XPa
i,j = CPa

i,j − CPa
i,j−1 denotes incremental payments within development year j for

all claims with accident year i (set CPa
i,−1 = 0, i.e. XPa

i,0 = CPa
i,0 ).

• XIn
i,j = CIn

i,j − CIn
i,j−1 denotes the change in claims incurred (case estimates) within
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accident development year j

year i 0 . . . j . . . J

0
... CPa

i,j

I − J (observed)
...

I − j
... CPa

i,j

I (to be predicted)

accident development year j

year i 0 . . . j . . . J

0
... CIn

i,j

I − J (observed)
...

I − j
... CIn

i,j

I (to be predicted)

Figure 1: Claims development triangles for cumulative payments and claims incurred.

development year j for all claims with accident year i (set CIn
i,−1 = 0, i.e. XIn

i,0 = CIn
i,0).

• Finally, the case reserves for accident year i at the end of development year j are

given by

Ri,j = CIn
i,j − CPa

i,j . (1)

The following recursive formula for case reserves is straightforward

Ri,j = Ri,j−1 +XIn
i,j −XPa

i,j , for j = 0, . . . , J, (2)

with Ri,−1 = 0. We define the two dimensional random vectors

Ci,j =
(
CPa
i,j , C

In
i,j

)′
and Xi,j =

(
XPa
i,j , X

In
i,j

)′
. (3)

After accounting year I we have observations in the upper triangle (see Figure 1)

DI = {Ci,j; 0 ≤ i ≤ I, 0 ≤ j ≤ J, i+ j ≤ I} , (4)

and after accounting year I + 1 we have observations in the trapezoid

DI+1 = {Ci,j; 0 ≤ i ≤ I, 0 ≤ j ≤ J, i+ j ≤ I + 1} (5)

= DI ∪ {Ci,j; 0 ≤ i ≤ I, 0 ≤ j ≤ J, i+ j = I + 1} ,
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that is, the update DI 7→ DI+1 adds a new diagonal to the observations available at time

I. Based on these observations we need to predict the ultimate claims Ci,J at time I and

I+1, respectively. We define the set of observations up to development year k ∈ {0, . . . , J}

by

Bk = {Ci,j; 0 ≤ i ≤ I, 0 ≤ j ≤ k} . (6)

Model Assumptions 2.1 (Extended Complementary Loss Ratio Method)

We assume that the random vectors (Ci,j)0≤j≤J are independent for different accident

years i. There exists deterministic factors fj, gj and positive definit 2 × 2 covariance

matrices Σj, j = 0, . . . , J − 1, such that

E [Xi,j+1| Bj] = (Ri,j fj , Ri,j gj)
′ , (7)

Cov (Xi,j+1,Xi,j+1| Bj) = Ri,j Σj. (8)

Moreover, we assume that Ri,J = 0, P -a.s.

2

Remarks 2.2

• Dahms [3] has extended the complementary loss ratio method (see Mack [6]) by

choosing the outstanding case reserves as the appropriate underlying risk exposure.

Nevertheless, we call Dahms’ extension CLRM.

• Under Model Assumptions 2.1 the next incremental claims Xi,j+1 are regressed from

the last case reserves Ri,j. This is a very common model in practice, especially in

liability lines of business. Of course, this requires that the claims incurred estimation

is done consistently over time otherwise the model assumptions are not fulfilled (see

also last bullet point of these remarks).

• For cumulative claims we obtain

E [Ci,j+1| Bj] =
(
CPa
i,j +Ri,jfj, C

In
i,j +Ri,jgj

)′
(9)

=
(
fjC

In
i,j + (1− fj) CPa

i,j , (1 + gj) C
In
i,j − gjCPa

i,j

)′
.
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From this we see that both claims incurred and claims paid are simultaneously

regressed from the last incurred and paid observation. This is different from the

classical one-dimensional distribution-free chain ladder model (see Mack [5]) where

only one source of information is considered.

• From Corollary 2.2 in Dahms [3] one sees that the case reserves satisfy a chain ladder

like assumption, i.e.

E [Ri,j+1| Bj] = Ri,j (1 + gj − fj), (10)

Var (Ri,j+1| Bj) = Ri,j

(
σ1,1
j − 2σ1,2

j + σ2,2
j

)
, (11)

where Σj = (σm,nj )m,n=1,2. We define the chain ladder factor for the case reserves by

hj = 1 + gj − fj. (12)

• Ri,J = 0 means that CIn
i,J = CPa

i,J which we associate with the fact that J is the

final development year where every claim is finally settled and closed, and that

there is no claims development beyond development year J . This implies that

hJ−1 = 1 + gJ−1 − fJ−1 = 0.

• Note that implicitly we assume that Ri,j ≥ 0, P -a.s., otherwise the covariance

assumptions in Model Assumptions 2.1 are not meaningful. This implies that CIn
i,j ≥

CPa
i,j , P -a.s., and that 1 + gj − fj ≥ 0.

• Note that the claims reserving method presented here also applies if we have in-

complete triangles. This means that this method can also be used if, for example,

we do not have the entire history of all claims or if the claims estimation guidelines

(for the estimation of claims incurred) has changed at some stage in the past. For

the handling of such incomplete triangles we refer to Dahms [3].
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R. DAHMS - M. MERZ - M.V. WÜTHRICH 11

3 ULTIMATE CLAIMS PREDICTION AND CDR

3.1 Ultimate Claims Prediction at Time I

In this subsection we assume that we are at time I. We have observations DI and we need

to predict the ultimate claims Ci,J under Model Assumptions 2.1. Since the parameters

fj, gj and hj are, in general, not known they need to be estimated from the data:

f̂ Ij =

∑I−j−1
i=0 XPa

i,j+1∑I−j−1
i=0 Ri,j

and ĝIj =

∑I−j−1
i=0 XIn

i,j+1∑I−j−1
i=0 Ri,j

, (13)

moreover we set ĥIj = 1 + ĝIj − f̂ Ij .

Note that f̂ Ij , ĝIj and ĥIj are conditionally, given Bj, unbiased estimators for fj, gj and hj,

respectively. Moreover, they are uncorrelated for different indices j (see Proposition 3.1

in Dahms [3]) and they satisfy an optimality condition for the second moment similar to

Lemma 3.3 in Wüthrich-Merz [10].

Using (10) and (7) and (2) this motivates the following predictors for i+ j > I (an empty

product is set to 1):

R̂I
i,j = Ri,I−i

j−1∏
k=I−i

ĥIk, (14)

(X̂Pa
i,j )I = Ri,I−i

j−2∏
k=I−i

ĥIk f̂
I
j−1, (15)

(X̂In
i,j )I = Ri,I−i

j−2∏
k=I−i

ĥIk ĝ
I
j−1. (16)

These are conditionally, given BI−i, unbiased estimators for E [Ri,j| DI ], E
[
XPa
i,j

∣∣DI] and

E
[
XIn
i,j

∣∣DI], respectively (see Dahms [3], Theorem 3.2) and are therefore used to predict

the ultimate claims Ci,J at time I. Hence, at time I we set

ĈI
i,J = CIn

i,I−i +
J∑

j=I−i+1

(X̂In
i,j )I = CPa

i,I−i +
J∑

j=I−i+1

(X̂Pa
i,j )I . (17)

The last equality is a consequence of Ri,J = 0, i.e., that the final development year is J (see

Dahms [3], equality (3.10)). This implies that we get one estimate for the claims reserves
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based on claims incurred and claims paid data, simultaneously. This is different from the

Munich chain ladder method (see Quarg-Mack [9]), which reduces the gap between the

estimated claims reserves based on claims paid data and estimated claims reserves based

on claims incurred data, but still leads to two different estimates.

The variance parameters are estimated as follows (see Dahms [3] (4.3)-(4.5)), for j < I−1

σ̂1,1
j =

1

I − j − 1

I−j−1∑
i=0

Ri,j

(
XPa
i,j+1

Ri,j

− f̂ Ij

)2

, (18)

σ̂2,2
j =

1

I − j − 1

I−j−1∑
i=0

Ri,j

(
XIn
i,j+1

Ri,j

− ĝIj

)2

, (19)

σ̂1,2
j =

1

I − j − 1

I−j−1∑
i=0

Ri,j

(
XPa
i,j+1

Ri,j

− f̂ Ij

)(
XIn
i,j+1

Ri,j

− ĝIj

)
. (20)

For j = I − 1 we do not have enough observations to estimate second moments, therefore

we use Mack’s [5] estimator for the last variance parameters, see also Dahms [3] or Example

8.21 in Wüthrich-Merz [10] for the explicit formulas.

3.2 Ultimate Claims Prediction at Time I + 1 and the Observable Claims

Development Result

Now, we assume that we are at time I + 1 and that we have observations DI+1. The

parameters are then estimated by

f̂ I+1
j =

∑I−j
i=0 X

Pa
i,j+1∑I−j

i=0 Ri,j

and ĝI+1
j =

∑I−j
i=0 X

In
i,j+1∑I−j

i=0 Ri,j

, (21)

moreover we set ĥI+1
j = 1 + ĝI+1

j − f̂ I+1
j . Henceforth, at time I + 1 we have the predictors

R̂I+1
i,j = Ri,I−i+1

j−1∏
k=I−i+1

ĥI+1
k , (22)

(X̂Pa
i,j )I+1 = Ri,I−i+1

j−2∏
k=I−i+1

ĥI+1
k f̂ I+1

j−1 , (23)

(X̂In
i,j )I+1 = Ri,I−i+1

j−2∏
k=I−i+1

ĥI+1
k ĝI+1

j−1 . (24)
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Therefore, we set at time I + 1

ĈI+1
i,J = CIn

i,I−i+1 +
J∑

j=I−i+2

(X̂In
i,j )I+1 = CPa

i,I−i+1 +
J∑

j=I−i+2

(X̂Pa
i,j )I+1, (25)

which is now a DI+1-measurable random variable.

The observable claims development result (CDR) at time I + 1 for accident year i is then

given by

ĈDRi(I + 1) = ĈI
i,J − ĈI+1

i,J . (26)

This is exactly the position that is observed in the position “claims experience prior

accident years” in the profit & loss statement. Therefore, we need to study its uncertainty

for solvency purposes. For an extended discussion on the CDR we refer to Ohlsson-

Lauzeningks [8] and Merz-Wüthrich [7].

4 MEAN SQUARE ERROR OF PREDICTION OF THE CDR

4.1 Single Accident Years

The uncertainty in the prediction of the outstanding loss liabilities is often studied in

terms of the conditional mean square error of prediction (MSEP), see Section 3.1 in

Wüthrich-Merz [10]. Since in the budget statement the CDR is usually predicted by 0,

we study the uncertainty of this prediction. The conditional MSEP is then defined by

msep
ĈDRi(I+1)|DI

(0) = E

[(
ĈDRi(I + 1)− 0

)2∣∣∣∣DI] . (27)

Pluging in the definition (26) of the observable CDR we obtain

msep
ĈDRi(I+1)|DI

(0) = E

[(
ĈI
i,J − ĈI+1

i,J

)2∣∣∣∣DI] , (28)

that means we need to study the fluctuations of successive ultimate claims predictions.

Similar as in Merz-Wüthrich [7] we split the MSEP into process variance term and pa-

rameter estimation error term:

msep
ĈDRi(I+1)|DI

(0) = Var
(

ĈDRi(I + 1)
∣∣∣DI)+ E

[
ĈDRi(I + 1)

∣∣∣DI]2 . (29)
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R. DAHMS - M. MERZ - M.V. WÜTHRICH 14

Note that we could also have other splits as the Bayesian model considered in Bühlmann

et al. [2] indicates. The first term on the right-hand side (29) corresponds to the process

variance and the second term to the parameter estimation error term. Let us briefly

discuss the parameter estimation error term. Note that due to the DI-measurability of

ĈI
i,J the parameter estimation error term is given by

E
[
ĈDRi(I + 1)

∣∣∣DI]2 =
(
ĈI
i,J − E

[
ĈI+1
i,J

∣∣∣DI])2 def.
= R2

i,I−i ∆i. (30)

We use (30) as definition for ∆i. With Corollary 4.1 below it becomes clear that the last

observation on the diagonal R2
i,I−i is the correct scaling for the parameter estimation error

term (see also (66) below). Observe that on the one hand we have the predictor given at

time I

ĈI
i,J = CPa

i,I−i +Ri,I−i

J∑
j=I−i+1

j−2∏
k=I−i

ĥIk f̂ Ij−1, (31)

and on the other hand we need to compare this to

E
[
ĈI+1
i,J

∣∣∣DI] = E

[
CPa
i,I−i+1 +Ri,I−i+1

J∑
j=I−i+2

j−2∏
k=I−i+1

ĥI+1
k f̂ I+1

j−1

∣∣∣∣∣DI
]
. (32)

We define

δj =
RI−j,j∑I−j
i=0 Ri,j

∈ [0, 1]. (33)

Note that δj is DI-measurable, i.e. observable at time I and it denotes the contribution of

the last observed case estimate for a fixed development year j. Lemma 6.1, below, implies

for the observable CDR the following corollary.

Corollary 4.1 Under Model Assumptions 2.1 we have

E
[
ĈDRi(I + 1)

∣∣∣DI] = Ri,I−i

(
f̂ II−i − fI−i

)
+Ri,I−i

J∑
j=I−i+2

[
j−2∏
k=I−i

ĥIk f̂ Ij−1

−hI−i
j−2∏

k=I−i+1

(
(1− δk) ĥIk + δk hk

)(
(1− δj−1) f̂ Ij−1 + δj−1 fj−1

)]
.
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Corollary 4.1 is a crucial result for the understanding of successive predictions and the

observable CDR. Note that in general the parameter estimators deviate from the true

parameter values. This shows that the expected observable CDR is in general different

from zero and one loses the martingale property. However, the expected observable CDR is

predicted by zero in the budget statement. Henceforth, the consideration of the parameter

estimation error (last term in (29)) exactly quantifies this deviation and requires some

care, as will be seen below.

Note that Corollary 4.1 and Lemma 6.1, below, also hold true if we replace all variables

that correspond to claims payments by the parameters that correspond to claims incurred.

As in Dahms [3], (4.7), we define

α̂j,m,k =


σ̂1,1
k /

(
f̂ Ik

)2
for m = j = k + 1,

(σ̂1,2
k − σ̂

1,1
k ) / (f̂ Ik ĥ

I
k) for m > j = k + 1 or j > m = k + 1,(

σ̂1,1
k − 2σ̂1,2

k + σ̂2,2
k

)
/
(
ĥIk

)2
for m ≥ j > k + 1 or j ≥ m > k + 1.

(34)

Then, from formula (58) in the appendix we obtain the following estimator:

Result 4.2 (Process variance term for a single accident year) For i ∈ {1, . . . , I}

we obtain the following estimator for the first term on the right-hand side of (29)

V̂ar
(

ĈDRi(I + 1)
∣∣∣DI) =

I∑
j,m=I−i+1

(X̂Pa
i,j )I(X̂Pa

i,m)I

 α̂j,m,I−iRi,I−i
+

min{j,m}−1∑
k=I−i+1

δ2k
α̂j,m,k
RI−k,k

 ,

(35)

where an empty sum is set to zero.

There remains the study of the parameter estimation error term, that is, we would like

to know, how much R2
i,I−i∆i deviates from zero (see Corollary 4.1). We study these

deviations with the help of the conditional resampling approach described in Wüthrich-

Merz [10], Section 3.2.3. In (73), below, we derive the following result:

Result 4.3 (Parameter Estimation Error for a single accident year) For accident
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year i ∈ {1, . . . , I} we obtain the estimator

R2
i,I−i ∆̂i =

J∑
j,m=I−i+1

(X̂Pa
i,j )I(X̂Pa

i,m)I

 α̂j,m,I−i∑i−1
n=0Rn,I−i

+

min{j,m}−1∑
k=I−i+1

δ2k
α̂j,m,k∑I−k−1
n=0 Rn,k

 , (36)

where an empty sum is set to zero.

Results 4.2 and 4.3 imply the following estimator for the conditional MSEP of the ob-

servable CDR:

Result 4.4 (Conditional MSEP for single accident years) For accident year i ∈

{1, . . . , I} we obtain the following estimator for (29)

m̂sep
ĈDRi(I+1)|DI

(0) = V̂ar
(

ĈDRi(I + 1)
∣∣∣DI)+R2

i,I−i ∆̂i (37)

=
J∑

j,m=I−i+1

(X̂Pa
i,j )I(X̂Pa

i,m)I

 δ−1I−i α̂j,m,I−i∑i−1
n=0Rn,I−i

+

min{j,m}−1∑
k=I−i+1

δk α̂j,m,k∑I−k−1
n=0 Rn,k

 ,
where an empty sum is set to zero.

If we compare the conditional MSEP for the observable CDR to the conditional MSEP of

the ultimate claim (Estimator 4.1 in Dahms [3]) we observe that for the payout Xi,I−i+1

in the next accounting year they coincide and for all the future accounting years they are

scaled by δ2k. This is analogous to the findings in Bühlmann et al. [2].

Of course exactly the same result holds true on claims incurred basis. All claims paid

figures need to be replaced by claims incurred figures and α̂j,m,k needs to be replaced by

β̂j,m,k =


σ̂2,2
k /

(
ĝIk
)2

for m = j = k + 1,

(σ̂2,2
k − σ̂

1,2
k )/(ĝIkĥ

I
k) for m > j = k + 1 or j > m = k + 1,(

σ̂1,1
k − 2σ̂1,2

k + σ̂2,2
k

)
/
(
ĥIk

)2
for m ≥ j > k + 1 or j ≥ m > k + 1.

(38)
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4.2 Aggregated Accident Years

For aggregated accident years we need to study the conditional MSEP

msep∑I
i=1 ĈDRi(I+1)|DI

(0) = E

( I∑
i=1

ĈDRi(I + 1)− 0

)2
∣∣∣∣∣∣DI

 (39)

= E

( I∑
i=1

ĈI
i,J −

I∑
i=1

ĈI+1
i,J

)2
∣∣∣∣∣∣DI

 .
We split the conditional MSEP again into process variance term and parameter estimation

error term

msep∑I
i=1 ĈDRi(I+1)|DI

(0) = Var

(
I∑
i=1

ĈDRi(I + 1)

∣∣∣∣∣DI
)

+ E

[
I∑
i=1

ĈDRi(I + 1)

∣∣∣∣∣DI
]2
.

(40)

Hence we again need to study these two terms. For the process variance term we obtain

Var

(
I∑
i=1

ĈDRi(I + 1)

∣∣∣∣∣DI
)

=
I∑

i,l=1

Cov
(

ĈDRi(I + 1) , ĈDRl(I + 1)
∣∣∣DI) . (41)

Using the result for single accident years and formula (65) below this allows for the

following estimator:

Result 4.5 (Process variance for aggregated accident years) The process variance

term is estimated by

V̂ar

(
I∑
i=1

ĈDRi(I + 1)

∣∣∣∣∣DI
)

=
I∑
i=1

V̂ar
(

ĈDRi(I + 1)
∣∣∣DI) (42)

+2
∑

1≤i<n≤I

I∑
j,m=I−i+1

(X̂Pa
i,j )I(X̂Pa

n,m)I

δI−i α̂j,m,I−iRi,I−i
+

min{j,m}−1∑
k=I−i+1

δ2k
α̂j,m,k
RI−k,k

 ,

where an empty sum is set to zero.

Hence, there remains the study of the parameter estimation error for aggregated accident

years which is given by

E

[
I∑
i=1

ĈDRi(I + 1)

∣∣∣∣∣DI
]2

=

(
I∑
i=1

ĈI
i,J −

I∑
i=1

E
[
ĈI+1
i,J

∣∣∣DI])2

def.
= ∆. (43)
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This term is derived and estimated in (76) which leads to the following estimator (∆i,n is

defined in (74) below).

Result 4.6 (Parameter Estimation Error for aggregated accident years) The pa-

rameter estimation error term is estimated by

∆̂ =
I∑
i=1

R2
i,I−i ∆̂i + 2

∑
1≤i<n≤I

Ri,I−i Rn,I−n ∆̂i,n

=
I∑
i=1

R2
i,I−i ∆̂i (44)

+2
∑

1≤i<n≤I

J∑
j,m=I−i+1

(X̂Pa
i,j )I(X̂Pa

n,m)I

δI−i α̂j,m,I−i∑i−1
l=0 Rl,I−i

+

min{j,m}−1∑
k=I−i+1

δ2k
α̂j,m,k∑I−k−1
l=0 Rl,k

 .
Results 4.2-4.6 lead to the following estimator for the conditional MSEP for the observable

CDR that is predicted by zero:

Result 4.7 (Conditional MSEP for aggregated accident years) The MSEP is es-

timated by

m̂sep∑I
i=1 ĈDRi(I+1)|DI

(0) =
I∑
i=1

m̂sep
ĈDRi(I+1)|DI

(0) (45)

+2
∑

1≤i<n≤I

J∑
j,m=I−i+1

(X̂Pa
i,j )I(X̂Pa

n,m)I

 α̂j,m,I−i∑i−1
l=0 Rl,I−i

+

min{j,m}−1∑
k=I−i+1

δk
α̂j,m,k∑I−k−1
l=0 Rl,k

 .
Comparing this to Estimator 4.3 in Dahms [3] we obtain the same picture as for single

accident years, namely that for the payouts in the next accounting year we face the

full uncertainty whereas for later payouts the uncertainties are scaled by δk. For claims

incurred figures we need to replace α̂j,m,k by β̂j,m,k.

5 EXAMPLE

We revisit Example 1 given in Dahms [3]. The data is given in Tables 4 and 5 in Dahms

[3] and we choose the parameter estimators f̂ Ij , ĝIj , ĥ
I
j and σ̂m,nj provided in Tables 1-

3 in Dahms [3] (see also Appendix 11 below). In Figure 2 we give the claims reserves
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for the outstanding loss liabilities. This is done with the distribution-free chain ladder

(CL) method (see Mack [5]) for claims paid (CL Paid) and claims incurred (CL Incurred)

data, the complementary loss ratio method (CLRM) and the Munich chain ladder (MCL)

method (see Quarg-Mack [9]) for claims paid (MCL Paid) and claims incurred (MCL

Incurred) data. We see that the difference between CL Paid reserves and CL Incurred

accident reserves reserves reserves reserves reserves

year CL Paid CL Incurred CLRM MCL Paid MCL Incurred

1 114’086 337’984 314’902 104’606 338’200

2 394’121 31’884 66’994 457’484 30’850

3 608’749 331’436 359’384 664’871 330’205

4 697’742 1’018’350 981’883 615’436 1’021’361

5 1’234’157 1’103’928 1’115’768 1’271’110 1’102’396

6 1’138’623 1’868’664 1’786’947 919’102 1’894’861

7 1’638’793 1’997’651 1’942’518 1’498’163 2’020’310

8 2’359’939 1’418’779 1’569’657 3’181’319 1’320’492

9 1’979’401 2’556’612 2’590’718 1’602’089 2’703’242

Total 10’165’612 10’665’287 10’728’771 10’314’181 10’761’918

Figure 2: Claims reserves from the distribution-free chain ladder (CL) method, the com-

plementary loss ratio method (CLRM) and the Munich chain ladder (MCL) method for

claims paid and claims incurred data.

reserves is about 5%. This gap is slightly smaller if we use the MCL method. The CLRM

gives one estimate that is based on both sources of data. In our case the CLRM estimate

is higher than both CL estimates but inbetween the two MCL estimates. Probably the

payment based reserves underestimate the outstanding loss liabilities. Note also that the

fluctuation between different accident years is rather high, especially for payment based

methods.

The next Figure 3 provides the conditional MSEP estimator, when the ultimate claim
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accident MSEP1/2 MSEP1/2 MSEP1/2 MSEP1/2

year ultimate ĈI
i,J ultimate ĈI

i,J ultimate ĈI
i,J ultimate ĈI

i,J

CL Paid CL Incurred CLRM Paid CLRM Incurred

1 89’423 2’553 194 14’639

2 234’652 5’186 4’557 5’538

3 255’590 9’264 10’541 12’566

4 261’272 10’874 36’792 38’250

5 323’859 33’243 43’940 44’835

6 274’914 55’884 65’055 65’909

7 373’587 165’086 176’706 176’977

8 492’815 209’162 197’781 197’917

9 468’074 321’560 322’900 323’049

Total 1’517’480 455’794 467’814 471’873

Figure 3: MSEP for the ultimate claim prediction ĈI
i,J for Ci,J from the distribution-free

chain ladder (CL) method and the complementary loss ratio method (CLRM) for claims

paid and claims incurred data.

Ci,J is predicted by ĈI
i,J , i.e.

msepCi,j |DI

(
ĈI
i,J

)
= E

[(
Ci,J − ĈI

i,J

)2∣∣∣∣DI] . (46)

The estimator in the distribution-free CL method is provided in Mack [5] and for the

CLRM in Dahms [3] (for the MCL method there is, so far, no MSEP formula). In

contrary to the one-year CDR view, formula (46) is a long term view that quantifies

the uncertainty over the whole runoff period. Note that CL Paid MSEP is very high,

i.e. the payment based reserves have a high uncertainty. This comes from the rather large

volatility in the payment data and also supports our findings that payment based reserves

are rather low. The remaining three MSEP estimates are close (as the underlying claims

reserves).

Figure 4 provides the conditional MSEP estimates for the CDR predictions. The formula
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accident MSEP1/2 MSEP1/2 MSEP1/2 MSEP1/2

year CDR CDR CDR CDR

CL Paid CL Incurred CLRM Paid CLRM Incurred

1 89’423 2’553 194 14’639

2 212’824 4’561 4’557 4’678

3 131’568 7’825 5’597 6’628

4 161’173 6’666 33’675 34’258

5 145’918 31’325 30’574 30’997

6 104’760 45’866 42’598 43’074

7 230’692 155’175 166’154 166’255

8 283’635 150’874 138’685 138’740

9 229’060 223’142 210’899 210’979

Total 1’004’164 347’698 346’576 350’534

Figure 4: MSEP for the CDR from the distribution-free chain ladder (CL) method and

the complementary loss ratio method (CLRM) for claims paid and claims incurred data.

in the distribution-free CL method is provided in Merz-Wüthrich [7], Result 3.5, and we

compare it to the CLRM results provided in Result 4.7 above. The CDR results provide

now the one-year solvency view. We see that the one-year CDR picture is similar to the

total runoff uncertainty picture. If we choose, for example, the CLRM results they say

that it is not unlikely that the claims development result deviates from zero by about 3%

of the total reserves. This highlights that the claims reserve development is a substantial

source of uncertainty in the earning statements of non-life insurance companies.

Finally, Figure 5 provides the ratios between the one-year CDR uncertainty from Figure

4 and the total runoff uncertainty from Figure 3. We see that the one-year uncertainty is

between 60% and 80% of the total runoff uncertainty. These findings are inline with the

field study presented in AISAM-ACME [1].
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accident MSEP1/2 MSEP1/2 MSEP1/2 MSEP1/2

year CDR/Ultimate CDR/Ultimate CDR/Ultimate CDR/Ultimate

CL Paid CL Incurred CLRM Paid CLRM Incurred

1 100.0% 100.0% 100.0% 100.0%

2 90.7% 87.9% 100.0% 84.5%

3 51.5% 84.5% 53.1% 52.7%

4 61.7% 61.3% 91.5% 89.6%

5 45.1% 94.2% 69.6% 69.1%

6 38.1% 82.1% 65.5% 65.4%

7 61.8% 94.0% 94.0% 93.9%

8 57.6% 72.1% 70.1% 70.1%

9 48.9% 69.4% 65.3% 65.3%

Total 66.2% 76.3% 74.1% 74.3%

Figure 5: MSEP CDR / MSEP Ultimate from the distribution-free chain ladder (CL)

method and the complementary loss ratio method (CLRM) for claims paid and claims

incurred data.

Conclusion. The complementary loss ratio method provides an algorithm for claims

reserving that is simultaneously based on claims paid and claims incurred data. This

is similar to the Munich chain ladder method. However, in contrary to the Munich

chain ladder method, the complementary loss ratio method also allows for the study of

the mean squarre error of prediction which is probability the most popular uncertainty

measure in actuarial practice. Dahms [3] has derived the MSEP formula for the total

runoff uncertainty of the ultimate claims. In the present paper we derive the MSEP

formula for the one-year claims development uncertainty which is an important quantity

for solvency purposes.
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R. DAHMS - M. MERZ - M.V. WÜTHRICH 23

6 PRELIMINARIES

Lemma 6.1 Under Model Assumptions 2.1 we have

E
[
ĈI+1
i,J

∣∣∣DI] = CPa
i,I−i +Ri,I−ifI−i

+Ri,I−i

J∑
j=I−i+2

hI−i

j−2∏
k=I−i+1

(
(1− δk) ĥIk + δk hk

)(
(1− δj−1) f̂ Ij−1 + δj−1 fj−1

)
.

Note that if the true parameters were known successive ultimate claims predictions would

give a martingale sequence. Crucial for the proof of Lemma 6.1 will be the property that

different accident years i are independent. This will also play a crucial role in all further

developments below.

Proof of Lemma 6.1. Using (23) and (25) we have

E
[
ĈI+1
i,J

∣∣∣DI] = E

[
CPa
i,I−i+1 +Ri,I−i+1

J∑
j=I−i+2

j−2∏
k=I−i+1

ĥI+1
k f̂ I+1

j−1

∣∣∣∣∣DI
]

(47)

and applying (9) this leads to

E
[
ĈI+1
i,J

∣∣∣DI] = CPa
i,I−i +Ri,I−ifI−i +

J∑
j=I−i+2

E

[
Ri,I−i+1

j−2∏
k=I−i+1

ĥI+1
k f̂ I+1

j−1

∣∣∣∣∣DI
]
. (48)

Hence we need to analyze the last term on the right-hand side of (48). By means of (33)

we decouple the parameter estimators as follows

f̂ I+1
j =

∑I−j
i=0 X

Pa
i,j+1∑I−j

i=0 Ri,j

= (1− δj) f̂ Ij +
XPa
I−j,j+1∑I−j
i=0 Ri,j

.

Therefore, given DI , f̂ I+1
j is only random in the element XPa

I−j,j+1. Completely analogous

ĝI+1
j =

∑I−j
i=0 X

In
i,j+1∑I−j

i=0 Ri,j

= (1− δj) ĝIj +
XIn
I−j,j+1∑I−j
i=0 Ri,j

,

and similarly for ĥI+1
j = 1 + ĝI+1

j − f̂ I+1
j . Therefore, all terms in the product term on the

right-hand side of (48) are independent, conditional on DI , because the random variables
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belong to different accident years, given DI (see Model Assumptions 2.1), and, therefore,

we have

E

[
Ri,I−i+1

j−2∏
k=I−i+1

ĥI+1
k f̂ I+1

j−1

∣∣∣∣∣DI
]

= E [Ri,I−i+1| DI ]
j−2∏

k=I−i+1

E
[
ĥI+1
k

∣∣∣DI]E [f̂ I+1
j−1

∣∣∣DI]
= Ri,I−i hI−i

j−2∏
k=I−i+1

E
[
ĥI+1
k

∣∣∣DI]E [f̂ I+1
j−1

∣∣∣DI] . (49)

Note that

E
[
f̂ I+1
j

∣∣∣DI] = (1− δj) f̂ Ij +
1∑I−j

i=0 Ri,j

E
[
XPa
I−j,j+1

∣∣DI] = (1− δj) f̂ Ij + δj fj, (50)

and completely analogous for ĝI+1
j and ĥI+1

j . This implies the statement of the lemma.

2

For the decoupling of the covariance terms we use the following lemma.

Lemma 6.2 Assume that (Yi, Zi)i=1,...,I is a sequence of independent random vectors.

Hence

Cov

(
I∏
i=1

Yi,
I∏
i=1

Zi

)
=

I∏
i=1

E [Yi]E [Zi]

{
I∏
i=1

(
Cov (Yi, Zi)

E [Yi]E [Zi]
+ 1

)
− 1

}

≈
I∏
i=1

E [Yi]E [Zi]
I∑
i=1

Cov (Yi, Zi)

E [Yi]E [Zi]
,

for Cov(Yi,Zi)
E[Yi]E[Zi]

� 1.

Proof. The proof is a straighforward calculation with covariances and the linear approx-

imation is obtained as described in Merz-Wüthrich [7], formula (A.1).

2

7 PROCESS ERROR FOR SINGLE ACCIDENT YEARS

We do the following abbreviation because it will be constantly used in the sequel

F̂ I+1
i,j−1 =

j−2∏
k=I−i+1

ĥI+1
k f̂ I+1

j−1 . (51)
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This is the factor that is needed to get the predictor (X̂Pa
i,j )I+1 at time I + 1 (cf. (23)).

In this appendix we derive an estimator for the process error term in (29). Note that due

to the DI-measurability of ĈI
i,J we have

Var
(

ĈDRi(I + 1)
∣∣∣DI) = Var

(
ĈI+1
i,J

∣∣∣DI)
= Var

(
CPa
i,I−i+1 +Ri,I−i+1

J∑
j=I−i+2

F̂ I+1
i,j−1

∣∣∣∣∣DI
)

(52)

= Var
(
CPa
i,I−i+1

∣∣DI)+ Var

(
Ri,I−i+1

J∑
j=I−i+2

F̂ I+1
i,j−1

∣∣∣∣∣DI
)

+ 2
J∑

j=I−i+2

Cov
(
CPa
i,I−i+1, Ri,I−i+1 F̂

I+1
i,j−1

∣∣∣DI) .
We derive estimates for all the terms on the right-hand side of (52). For the first term we

obtain

Var
(
CPa
i,I−i+1

∣∣DI) = Var
(
XPa
i,I−i+1

∣∣DI) = Ri,I−i σ
1,1
I−i.

An estimator is obtained by replacing the parameter σ1,1
I−i by its estimator at time I, i.e.

V̂ar
(
CPa
i,I−i+1

∣∣DI) = Ri,I−i σ̂
1,1
I−i =

[
(X̂Pa

i,I−i+1)
I
]2 α̂I−i+1,I−i+1,I−i

Ri,I−i
. (53)

For the third term on the right-hand side of (52) we have (similar as in the proof of

Lemma 6.1 we use the independence of different accident years)

J∑
j=I−i+2

Cov
(
CPa
i,I−i+1, Ri,I−i+1 F̂

I+1
i,j−1

∣∣∣DI)

=
J∑

j=I−i+2

Cov
(
XPa
i,I−i+1, Ri,I−i+1

∣∣DI) j−2∏
k=I−i+1

E
[
ĥI+1
k

∣∣∣DI] E [f̂ I+1
j−1

∣∣∣DI]

=
J∑

j=I−i+2

Ri,I−i
(
σ1,2
I−i − σ

1,1
I−i
) j−2∏
k=I−i+1

E
[
ĥI+1
k

∣∣∣DI] E [f̂ I+1
j−1

∣∣∣DI] .
If we use now (50) and replace all the parameters by its estimators at time I we obtain

BULLETIN FRANÇAIS D’ACTUARIAT, Vol. 9, no18, juillet-décembre 2009, pp.5-39
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the following estimator

J∑
j=I−i+2

Ĉov
(
CPa
i,I−i+1, Ri,I−i+1 F̂

I+1
i,j−1

∣∣∣DI) = Ri,I−i
(
σ̂1,2
I−i − σ̂

1,1
I−i
) J∑
j=I−i+2

j−2∏
k=I−i+1

ĥIk f̂
I
j−1

= (X̂Pa
i,I−i+1)

I

J∑
j=I−i+2

α̂I−i+1,j,I−i

Ri,I−i
(X̂Pa

i,j )I . (54)

So there remains the treatment of the middle term on the right-hand side of (52). We get

Var

(
Ri,I−i+1

J∑
j=I−i+2

F̂ I+1
i,j−1

∣∣∣∣∣DI
)

=
J∑

j,m=I−i+2

Cov
(
Ri,I−i+1F̂

I+1
i,j−1 , Ri,I−i+1F̂

I+1
i,m−1

∣∣∣DI) .
(55)

We start with j = m. Then the last term in (55) is approximated with the help of Lemma

6.2 (note that F̂ I+1
j−1 is a product of independent random variables, given DI) by

Var
(
Ri,I−i+1F̂

I+1
i,j−1

∣∣∣DI) ≈ E [Ri,I−i+1| DI ]2
j−2∏

k=I−i+1

E
[
ĥI+1
k

∣∣∣DI]2E [f̂ I+1
j−1

∣∣∣DI]2

×

Var (Ri,I−i+1| DI)
E [Ri,I−i+1| DI ]2

+

j−2∑
k=I−i+1

Var
(
ĥI+1
k

∣∣∣DI)
E
[
ĥI+1
k

∣∣∣DI]2 +
Var

(
f̂ I+1
j−1

∣∣∣DI)
E
[
f̂ I+1
j−1

∣∣∣DI]2
 . (56)

The first term is treated as in (49)-(50) and if we replace all parameters by their estimators

we obtain

Ê [Ri,I−i+1| DI ]2
j−2∏

k=I−i+1

Ê
[
ĥI+1
k

∣∣∣DI]2 Ê [f̂ I+1
j−1

∣∣∣DI]2
= Ê

[
Ri,I−i+1

j−2∏
k=I−i+1

ĥI+1
k f̂ I+1

j−1

∣∣∣∣∣DI
]2

=

(
Ri,I−i

j−2∏
k=I−i

ĥIk f̂
I
j−1

)2

=
[
(X̂Pa

i,j )I
]2
.

Moreover we obtain the following estimators

V̂ar (Ri,I−i+1| DI) = Ri,I−i
(
σ̂1,1
I−i − 2σ̂1,2

I−i + σ̂2,2
I−i
)
.

The last term on the right-hand side of (56) is estimated by

V̂ar
(
f̂ I+1
j−1

∣∣∣DI) =

(
1∑I−j+1

i=0 Ri,j−1

)2

V̂ar
(
XPa
I−j+1,j

∣∣DI)
=

RI−j+1,j−1(∑I−j+1
i=0 Ri,j−1

)2 σ̂1,1
j−1 = δ2j−1

σ̂1,1
j−1

RI−j+1,j−1
,
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and analogously

V̂ar
(
ĥI+1
k

∣∣∣DI) = δ2k
σ̂1,1
k − 2σ̂1,2

k + σ̂2,2
k

RI−k,k
.

This gives for j = m the estimator

V̂ar
(
Ri,I−i+1F̂

I+1
i,j−1

∣∣∣DI) =
[
(X̂Pa

i,j )I
]2{ α̂j,j,I−i

Ri,I−i
+

j−1∑
k=I−i+1

δ2k
α̂j,j,k
RI−k,k

}
.

And in complete analogy we obtain for m > j or j > m

Ĉov
(
Ri,I−i+1F̂

I+1
i,j−1, Ri,I−i+1F̂

I+1
i,m−1

∣∣∣DI) = (X̂Pa
i,j )I(X̂Pa

i,m)I

 α̂j,m,I−iRi,I−i
+

min{j,m}−1∑
k=I−i+1

δ2k
α̂j,m,k
RI−k,k

 .

(57)

Collecting all the terms we obtain for (52) the following estimator

V̂ar
(

ĈDRi(I + 1)
∣∣∣DI) = V̂ar

(
ĈI+1
i,J

∣∣∣DI)
=

[
(X̂Pa

i,I−i+1)
I
]2 α̂I−i+1,I−i+1,I−i

Ri,I−i
(58)

+
I∑

j,m=I−i+2

(X̂Pa
i,j )I(X̂Pa

i,m)I

 α̂j,m,I−iRi,I−i
+

min{j,m}−1∑
k=I−i+1

δ2k
α̂j,m,k
RI−k,k


+ 2 (X̂Pa

i,I−i+1)
I

J∑
j=I−i+2

α̂I−i+1,j,I−i

Ri,I−i
(X̂Pa

i,j )I .

But from this the estimator (35) follows. This completes the derivation of Result 4.2.

8 PROCESS ERROR FOR AGGREGATE ACCIDENT YEARS

In this appendix we derive an estimator for the process error term given in (41). We

choose i < n Note that due to the DI-measurability of ĈI
i,J and ĈI

n,J we have

Cov
(

ĈDRi(I + 1), ĈDRn(I + 1)
∣∣∣DI) = Cov

(
ĈI+1
i,J , ĈI+1

n,J

∣∣∣DI) .
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Hence we need to calculate the covariance between ultimate prediction for different acci-

dent years i < n.

Cov
(
ĈI+1
i,J , ĈI+1

n,J

∣∣∣DI) = Cov
(
CPa
i,I−i+1, C

Pa
n,I−n+1

∣∣DI) (59)

+Cov

(
Ri,I−i+1

J∑
j=I−i+2

F̂ I+1
i,j−1 , Rn,I−n+1

J∑
m=I−n+2

F̂ I+1
n,m−1

∣∣∣∣∣DI
)

+Cov

(
CPa
i,I−i+1, Rn,I−n+1

J∑
m=I−n+2

F̂ I+1
n,m−1

∣∣∣∣∣DI
)

+Cov

(
CPa
n,I−n+1, Ri,I−i+1

J∑
j=I−i+2

F̂ I+1
i,j−1

∣∣∣∣∣DI
)
.

We derive estimates for all the terms on the right-hand side of (59). For the first term we

obtain

Cov
(
CPa
i,I−i+1, C

Pa
n,I−n+1

∣∣DI) = Cov
(
XPa
i,I−i+1, X

Pa
n,I−n+1

∣∣DI) = 0, (60)

because the two random variables correspond to different accident years. Analogously, we

have for i < n

Cov

(
CPa
n,I−n+1, Ri,I−i+1

J∑
j=I−i+2

F̂ I+1
i,j−1

∣∣∣∣∣DI
)

= 0. (61)

Therefore, only the two middle terms on the right-hand side of (59) need a treatment.

We start with the third term. Note that i < n implies I − i + 1 > I − n + 1. Using the

independence between different accident years we get

J∑
m=I−n+2

Cov
(
CPa
i,I−i+1, Rn,I−n+1 F̂

I+1
n,m−1

∣∣∣DI)
=

J∑
m=I−i+2

E [Rn,I−n+1| DI ]
I−i−1∏

k=I−n+1

E
[
ĥI+1
k

∣∣∣DI]Cov
(
CPa
i,I−i+1, ĥ

I+1
I−i

∣∣∣DI)
×

m−2∏
k=I−i+1

E
[
ĥI+1
k

∣∣∣DI] E [f̂ I+1
m−1

∣∣∣DI]
+E [Rn,I−n+1| DI ]

I−i−1∏
k=I−n+1

E
[
ĥI+1
k

∣∣∣DI]Cov
(
CPa
i,I−i+1, f̂

I+1
I−i

∣∣∣DI) .
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If we calculate all the terms and replace the parameters by its estimators at time I we

obtain

J∑
m=I−n+2

Ĉov
(
CPa
i,I−i+1, Rn,I−n+1 F̂

I+1
n,m−1

∣∣∣DI) (62)

=
J∑

m=I−i+2

Rn,I−n

I−i−1∏
k=I−n

ĥIk δI−i
(
σ̂1,2
I−i − σ̂

1,1
I−i
) m−2∏
k=I−i+1

ĥIkf̂
I
m−1 +Rn,I−n

I−i−1∏
k=I−n

ĥIk δI−iσ̂
1,1
I−i

= (X̂Pa
i,I−i+1)

I

J∑
m=I−i+1

δI−i
α̂I−i+1,m,I−i

Ri,I−i
(X̂Pa

n,m)I .

It remains the second term on the right-hand side of (59) to be considered for i < n. Note

that if m− 1 < I − i then only different accident years are considered in the sums in the

next displayed formulas. Hence we obtain

Cov

(
Ri,I−i+1

J∑
j=I−i+2

F̂ I+1
i,j−1, Rn,I−n+1

J∑
m=I−n+2

F̂ I+1
n,m−1

∣∣∣∣∣DI
)

=
J∑

j,m=I−i+2

Cov
(
Ri,I−i+1F̂

I+1
i,j−1, Rn,I−n+1F̂

I+1
n,m−1

∣∣∣DI) (63)

+
J∑

j=I−i+2

Cov
(
Ri,I−i+1F̂

I+1
i,j−1, Rn,I−n+1F̂

I+1
n,I−i

∣∣∣DI) .
The second term on the right-hand side of (63) is straightforward and is estimated as

above by

J∑
j=I−i+2

Ĉov
(
Ri,I−i+1F̂

I+1
i,j−1, Rn,I−n+1F̂

I+1
n,I−i

∣∣∣DI)
=

J∑
j=I−i+2

(X̂Pa
i,j )I δI−i

α̂j,I−i+1,I−i

Ri,I−i
(X̂Pa

n,I−i+1)
I .

The first term on the right-hand side of (63) needs more care. We have

J∑
j,m=I−i+2

Cov
(
Ri,I−i+1F̂

I+1
i,j−1, Rn,I−n+1F̂

I+1
n,m−1

∣∣∣DI)
=

J∑
j,m=I−i+2

Cov
(
Ri,I−i+1F̂

I+1
i,j−1, ĥ

I+1
I−i F̂

I+1
i,m−1

∣∣∣DI)E [Rn,I−n+1| DI ]
I−i−1∏

k=I−n+1

E
[
ĥI+1
k

∣∣∣DI] .
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Note that it was our intention to decouple the product in the second argument of the

covariance function. This should now be compared to (55). We see that Ri,I−i+1 =

Ri,I−i + XIn
i,I−i+1 − XPa

i,I−i+1 in the second argument of the covariance function is now

replaced by

ĥI+1
I−i = 1 + (1− δI−i)

(
ĝII−i − f̂ II−i

)
+
XIn
i,I−i+1 −XPa

i,I−i+1∑i
l=0Rl,I−i

= 1 + (1− δI−i)
(
ĝII−i − f̂ II−i

)
+ δI−i

XIn
i,I−i+1 −XPa

i,I−i+1

Ri,I−i
.

Hence the stochastic terms only differ in the factor δI−i/Ri,I−i, given DI . Therefore we

may apply the same results as for (55) and obtain the following estimator

J∑
j,m=I−i+2

Ĉov
(
Ri,I−i+1F̂

I+1
i,j−1, Rn,I−n+1F̂

I+1
n,m−1

∣∣∣DI) (64)

=
I∑

j,m=I−i+2

(X̂Pa
i,j )I(X̂Pa

n,m)I

δI−i α̂j,m,I−iRi,I−i
+

min{j,m}−1∑
k=I−i+1

δ2k
α̂j,m,k
RI−k,k

 .

Hence we obtain the following estimator for the covariance terms for i < n

Ĉov
(

ĈDRi(I + 1), ĈDRn(I + 1)
∣∣∣DI) (65)

=
I∑

j,m=I−i+2

(X̂Pa
i,j )I(X̂Pa

n,m)I

δI−i α̂j,m,I−iRi,I−i
+

min{j,m}−1∑
k=I−i+1

δ2k
α̂j,m,k
RI−k,k


+

J∑
j=I−i+2

(X̂Pa
i,j )I δI−i

α̂j,I−i+1,I−i

Ri,I−i
(X̂Pa

n,I−i+1)
I

+(X̂Pa
i,I−i+1)

I

J∑
j=I−i+1

δI−i
α̂I−i+1,j,I−i

Ri,I−i
(X̂Pa

n,j )
I

=
I∑

j,m=I−i+1

(X̂Pa
i,j )I(X̂Pa

n,m)I

δI−i α̂j,m,I−iRi,I−i
+

min{j,m}−1∑
k=I−i+1

δ2k
α̂j,m,k
RI−k,k

 .

This and Result 4.2 provide Result 4.5.
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9 PARAMETER ESTIMATION ERROR, SINGLE ACCIDENT YEARS

We study the parameter estimation error term R2
i,I−i ∆i with the help of the conditional

resampling approach described in Wüthrich-Merz [10], Section 3.2.3. In the conditional

resampling approach one resamples always only the next observation in the time series

using the preceding observation as a deterministic volume measure. From Corollary 4.1

we see that we need to study

R2
i,I−i ∆i = R2

i,I−i

{(
f̂ II−i − fI−i

)
+

J∑
j=I−i+2

ZI−i,j−1

}2

, (66)

with

ZI−i,j−1 =

j−2∏
k=I−i

ĥIk f̂
I
j−1−hI−i

j−2∏
k=I−i+1

(
(1− δk) ĥIk + δk hk

)(
(1− δj−1) f̂ Ij−1 + δj−1 fj−1

)
.

We would like to apply the conditional resampling approach to the term in the brackets

in (66), i.e. ∆i. As in Wüthrich-Merz [10] we denote the measure for the conditional

resampling by P ∗DI
, the expectation, variance and covariance w.r.t. P ∗DI

by E∗DI
, Var∗DI

and

Cov∗DI
, respectively. For a detailed description of the choice of the conditional resampling

measure we refer to Section 3.2.3 in Wüthrich-Merz [10]. Under the conditional resampling

measure P ∗DI
we have the following properties (this is all that is needed for our derivations):

(1) any arbitrary collection of resampled estimates f̂ Ij and ĝIj with different indices are

independent under P ∗DI
.

(2) E∗DI

[
f̂ Ij

]
= fj and E∗DI

[
ĝIj
]

= gj for all j,

(3) Var∗DI

(
f̂ Ij

)
= σ1,1

j /
∑I−j−1

i=0 Ri,j and Var∗DI

(
ĝIj
)

= σ2,2
j /

∑I−j−1
i=0 Ri,j for all j,

(4) Cov∗DI

(
f̂ Ij , ĝ

I
j

)
= σ1,2

j /
∑I−j−1

i=0 Ri,j for all j.

(5) the weights δj, j = 0, . . . , J − 1, are constants under P ∗DI
.
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These properties imply that E∗DI

[
∆

1/2
i

]
= 0. Therefore, the term in (66) is estimated by

R2
i,I−iE

∗
DI

[
∆i

]
= R2

i,I−iVar∗DI

(
∆

1/2
i

)
under the conditional resampling approach. Therefore

we get the estimation

R2
i,I−iVar∗DI

(
∆

1/2
i

)
= R2

i,I−iVar∗DI

((
f̂ II−i − fI−i

)
+

J∑
j=I−i+2

ZI−i,j−1

)
. (67)

The variance term in (67) is equal to

Var∗DI

(
f̂ II−i +

J∑
j=I−i+2

ZI−i,j−1

)
= Var∗DI

(
f̂ II−i

)
(68)

+2
J∑

j=I−i+2

Cov∗DI

(
f̂ II−i, ĥ

I
I−i

) j−2∏
k=I−i+1

hk fj−1 + Var∗DI

(
J∑

j=I−i+2

ZI−i,j−1

)
.

The first two terms on the right-hand side of (68) are straightforward

Var∗DI

(
f̂ II−i

)
= σ1,1

I−i

/ i−1∑
n=0

Rn,I−i, (69)

and
J∑

j=I−i+2

Cov∗DI

(
f̂ II−i, ĥ

I
I−i

) j−2∏
k=I−i+1

hk fj−1 =
J∑

j=I−i+2

σ1,2
I−i − σ

1,1
I−i∑i−1

n=0Rn,I−i

j−2∏
k=I−i+1

hk fj−1. (70)

The last term on the right-hand side of (68) requires more work. If we extract the sum

out of the variance operator we see that we need to study the covariances under the sum

Var∗DI

{
J∑

j=I−i+2

ZI−i,j−1

}
=

J∑
j,m=I−i+2

Cov∗DI

{
ZI−i,j−1, ZI−i,m−1

}
.

We first study this covariance terms for j = m. Then we obtain

Var∗DI

{
ZI−i,j−1

}
= Var∗DI

{
j−2∏
k=I−i

ĥIk f̂
I
j−1

}

−2h2I−iCov∗DI

{
j−2∏

k=I−i+1

ĥIk f̂
I
j−1,

j−2∏
k=I−i+1

(
(1− δk) ĥIk + δk hk

)(
(1− δj−1) f̂ Ij−1 + δj−1 fj−1

)}

+h2I−iVar∗DI

{
j−2∏

k=I−i+1

(
(1− δk) ĥIk + δk hk

)(
(1− δj−1) f̂ Ij−1 + δj−1 fj−1

)}
.
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To decouple these covariance terms we use Lemma 6.2. The first term is therefore ap-

proximated by

Var∗DI

{
j−2∏
k=I−i

ĥIk f̂
I
j−1

}
≈

j−2∏
k=I−i

h2k f
2
j−1

 j−2∑
k=I−i

Var∗DI

(
ĥIk

)
h2k

+
Var∗DI

(
f̂ Ij−1

)
f 2
j−1


=

j−2∏
k=I−i

h2k f
2
j−1

[
j−2∑
k=I−i

(σ1,1
k − 2σ1,2

k + σ2,2
k )/h2k∑I−k−1

l=0 Rl,k

+
σ1,1
j−1/f

2
j−1∑I−j

l=0 Rl,j−1

]
.

Furthermore, for the second term we obtain

Cov∗DI

{
j−2∏

k=I−i+1

ĥIk f̂
I
j−1,

j−2∏
k=I−i+1

(
(1− δk) ĥIk + δk hk

)(
(1− δj−1) f̂ Ij−1 + δj−1 fj−1

)}

≈
j−2∏

k=I−i+1

h2k f
2
j−1

[
j−2∑

k=I−i+1

(1− δk)
(σ1,1

k − 2σ1,2
k + σ2,2

k )/h2k∑I−k−1
l=0 Rl,k

+ (1− δj−1)
σ1,1
j−1/f

2
j−1∑I−j

l=0 Rl,j−1

]
,

and for the last term Lemma 6.2 leads to

Var∗DI

{
j−2∏

k=I−i+1

(
(1− δk) ĥIk + δk hk

)(
(1− δj−1) f̂ Ij−1 + δj−1 fj−1

)}

≈
j−2∏

k=I−i+1

h2k f
2
j−1

[
j−2∑

k=I−i+1

(1− δk)2
(σ1,1

k − 2σ1,2
k + σ2,2

k )/h2k∑I−k−1
l=0 Rl,k

+ (1− δj−1)2
σ1,1
j−1/f

2
j−1∑I−j

l=0 Rl,j−1

]
.

Hence this provides for j = m the following estimator, if we replace all parameters by

their estimators at time I[
j−2∏
k=I−i

ĥIk f̂
I
j−1

]2 [
α̂j,j,I−i∑i−1
l=0 Rl,I−i

+

j−1∑
k=I−i+1

δ2k
α̂j,j,k∑I−k−1

l=0 Rl,k

]
, (71)

and for j > m or m > j we obtain in the same manner the estimator

j−2∏
k=I−i

ĥIk f̂
I
j−1

m−2∏
k=I−i

ĥIk f̂
I
m−1

 α̂j,m,I−i∑i−1
l=0 Rl,I−i

+

min{j,m}−1∑
k=I−i+1

δ2k
α̂j,m,k∑I−k−1
l=0 Rl,k

 . (72)
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Collecting all the terms and replacing all parameters by their estimators we obtain the

following estimator for (66)

R2
i,I−i ∆̂i

= R2
i,I−i

{(
f̂ II−i

)2 α̂I−i+1,I−i+1,I−i∑i−1
l=0 Rl,I−i

+ 2
J∑

j=I−i+2

f̂ II−i

j−2∏
k=I−i

ĥIk f̂
I
j−1

α̂I−i+1,j,I−i∑i−1
l=0 Rl,I−i

+
J∑

j,m=I−i+2

j−2∏
k=I−i

ĥIk f̂
I
j−1

m−2∏
k=I−i

ĥIk f̂
I
m−1

 α̂j,m,I−i∑i−1
l=0 Rl,I−i

+

min{j,m}−1∑
k=I−i+1

δ2k
α̂j,m,k∑I−k−1
l=0 Rl,k

}

=
J∑

j,m=I−i+1

(X̂Pa
i,j )I(X̂Pa

i,m)I

 α̂j,m,I−i∑i−1
l=0 Rl,I−i

+

min{j,m}−1∑
k=I−i+1

δ2k
α̂j,m,k∑I−k−1
l=0 Rl,k

 . (73)

This provides Result 4.3.

10 PARAMETER ESTIMATION ERROR, AGGREGATE ACCIDENT

YEARS

From Lemma 6.1 and (43) we see that we need to study

∆i,n
def.
= ∆

1/2
i ∆1/2

n , (74)

where ∆i is given in (66). As above we estimate ∆i,n using the conditional resampling

approach and the corresponding resampling measure P ∗DI
, that is, the covariance terms

are estimated by

Ri,I−i Rn,I−n Cov∗DI

(
∆

1/2
i ,∆1/2

n

)
.

This implies that we need to calculate the following four terms: For i < n terms 1 and 2

are given by:

Cov∗DI

(
f̂ II−i, f̂

I
I−n

)
= Cov∗DI

(
f̂ II−n,

J∑
j=I−i+2

ZI−i,j−1

)
= 0.

However, the terms 3 and 4, that are given by

Cov∗DI

(
f̂ II−i,

J∑
j=I−n+2

ZI−n,j−1

)
and Cov∗DI

(
J∑

j=I−i+2

ZI−i,j−1,
J∑

m=I−n+2

ZI−n,m−1

)
,
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require more analysis.

We start with term 3: note that

Cov∗DI

(
f̂ II−i,

J∑
j=I−n+2

ZI−n,j−1

)

= Cov∗DI

(
f̂ II−i, ZI−n,I−i

)
+

J∑
j=I−i+2

Cov∗DI

(
f̂ II−i, ZI−n,j−1

)

=
I−i−1∏
k=I−n

hk

[
δI−i Var∗DI

(
f̂ II−i

)
+

J∑
j=I−i+2

δI−i Cov∗DI

(
f̂ II−i, ĥ

I
I−i

) j−2∏
k=I−i+1

hk fj−1

]

=
I−i−1∏
k=I−n

hk

[
δI−i

σ1,1
I−i∑i−1

l=0 Rl,I−i
+

J∑
j=I−i+2

δI−i
σ1,2
I−i − σ

1,1
I−i∑i−1

l=0 Rl,I−i

j−2∏
k=I−i+1

hk fj−1

]
.

Therefore we estimate this term by

Ri,I−iRn,I−nĈov
∗
DI

(
f̂ II−i,

J∑
j=I−n+2

ZI−n,j−1

)
= (X̂Pa

i,I−i+1)
I

J∑
j=I−i+1

(X̂Pa
n,j )

IδI−i
α̂I−i+1,j,I−i∑i−1

l=0 Rl,I−i
.

So finally, there remains term 4 which satisfies

Cov∗DI

(
J∑

j=I−i+2

ZI−i,j−1,
J∑

m=I−n+2

ZI−n,m−1

)
(75)

=
J∑

j,m=I−i+2

Cov∗DI
(ZI−i,j−1, ZI−n,m−1) + Cov∗DI

(
J∑

j=I−i+2

ZI−i,j−1, ZI−n,I−i

)
.

The second term on the right-hand side of (75) is estimated by

Ri,I−iRn,I−nĈov
∗
DI

(
J∑

j=I−i+2

ZI−i,j−1, ZI−n,I−i

)

= (X̂Pa
n,I−i+1)

I

J∑
j=I−i+2

(X̂Pa
i,j )IδI−i

α̂j,I−i+1,I−i∑i−1
l=0 Rl,I−i

.
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Moreover, for the first term on the right-hand side of (75), we first treat the case j = m

Cov∗DI

{
ZI−i,j−1, ZI−n,j−1

}
=

I−i−1∏
k=I−n

hk

[
Var∗DI

{
j−2∏
k=I−i

ĥIk f̂
I
j−1

}

−h2I−iCov∗DI

{
j−2∏

k=I−i+1

ĥIk f̂
I
j−1,

j−2∏
k=I−i+1

(
(1− δk) ĥIk + δk hk

)(
(1− δj−1) f̂ Ij−1 + δj−1 fj−1

)}

−Cov∗DI

{
j−2∏
k=I−i

ĥIk f̂
I
j−1,

j−2∏
k=I−i

(
(1− δk) ĥIk + δk hk

)(
(1− δj−1) f̂ Ij−1 + δj−1 fj−1

)}

+h2I−iVar∗DI

{
j−2∏

k=I−i+1

(
(1− δk) ĥIk + δk hk

)(
(1− δj−1) f̂ Ij−1 + δj−1 fj−1

)}]
.

Similar as in (71) we obtain the following estimator for j = m

I−i−1∏
k=I−n

ĥIk

[
j−2∏
k=I−i

ĥIk f̂
I
j−1

]2 [
δI−i

α̂j,j,I−i∑i−1
l=0 Rl,I−i

+

j−1∑
k=I−i+1

δ2k
α̂j,j,k∑I−k−1

l=0 Rl,k

]
,

and for j > m or m > j we obtain similarly the estimator

I−i−1∏
k=I−n

ĥIk

j−2∏
k=I−i

ĥIk f̂
I
j−1

m−2∏
k=I−i

ĥIk f̂
I
m−1

δI−i α̂j,m,I−i∑i−1
l=0 Rl,I−i

+

min{j,m}−1∑
k=I−i+1

δ2k
α̂j,m,k∑I−k−1
l=0 Rl,k

 .
Collecting all the terms we obtain the following covariance terms for the estimation error,
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i < n,

Ri,I−iRn,I−n∆̂i,n (76)

= (X̂Pa
i,I−i+1)

I

J∑
j=I−i+1

(X̂Pa
n,j )

IδI−i
α̂I−i+1,j,I−i∑i−1

l=0 Rl,I−i

+(X̂Pa
n,I−i+1)

I

J∑
j=I−i+2

(X̂Pa
i,j )IδI−i

α̂j,I−i+1,I−i∑i−1
l=0 Rl,I−i

+
J∑

j,m=I−i+2

(X̂Pa
i,j )I(X̂Pa

n,m)I

δI−i α̂j,m,I−i∑i−1
l=0 Rl,I−i

+

min{j,m}−1∑
k=I−i+1

δ2k
α̂j,m,k∑I−k−1
l=0 Rl,k


=

J∑
j,m=I−i+1

(X̂Pa
i,j )I(X̂Pa

n,m)I

δI−i α̂j,m,I−i∑i−1
l=0 Rl,I−i

+

min{j,m}−1∑
k=I−i+1

δ2k
α̂j,m,k∑I−k−1
l=0 Rl,k

 .
This and Result 4.3 provides Result 4.6.

11 DATA

i/j 0 1 2 3 4 5 6 7 8 9

0 1’216’632 1’347’072 1’786’877 2’281’606 2’656’224 2’909’307 3’283’388 3’587’549 3’754’403 3’921’258

1 798’924 1’051’912 1’215’785 1’349’939 1’655’312 1’926’210 2’132’833 2’287’311 2’567’056

2 1’115’636 1’387’387 1’930’867 2’177’002 2’513’171 2’931’930 3’047’368 3’182’511

3 1’052’161 1’321’206 1’700’132 1’971’303 2’298’349 2’645’113 3’003’425

4 808’864 1’029’523 1’229’626 1’590’338 1’842’662 2’150’351

5 1’016’862 1’251’420 1’698’052 2’105’143 2’385’339

6 948’312 1’108’791 1’315’524 1’487’577

7 917’530 1’082’426 1’484’405

8 1’001’238 1’376’124

9 841’930

Figure 6: Observed cumulative payments CPa
i,j .
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i/j 0 1 2 3 4 5 6 7 8 9

0 3’362’115 5’217’243 4’754’900 4’381’677 4’136’883 4’094’140 4’018’736 3’971’591 3’941’391 3’921’258

1 2’640’443 4’643’860 3’869’954 3’248’558 3’102’002 3’019’980 2’976’064 2’946’941 2’919’955

2 2’879’697 4’785’531 4’045’448 3’467’822 3’377’540 3’341’934 3’283’928 3’257’827

3 2’933’345 5’299’146 4’451’963 3’700’809 3’553’391 3’469’505 3’413’921

4 2’768’181 4’658’933 3’936’455 3’512’735 3’385’129 3’298’998

5 3’228’439 5’271’304 4’484’946 3’798’384 3’702’427

6 2’927’033 5’067’768 4’066’526 3’704’113

7 3’083’429 4’790’944 4’408’097

8 2’761’163 4’132’757

9 3’045’376

Figure 7: Observed claims incurred CIn
i,j .

0 1 2 3 4 5 6 7 8

f̂Ij 0.1174 0.0922 0.1114 0.1764 0.2424 0.3002 0.3271 0.4279 0.8923

ĝIj 0.9761 -0.1896 -0.2026 -0.0802 -0.0501 -0.0663 -0.0564 -0.0548 -0.1077

ĥIj 1.8586 0.7182 0.6860 0.7434 0.7075 0.6335 0.6165 0.5173 0.0000

σ̂1,1
j 4’241 5’560 5’103 2’796 16’724 9’625 18’536 26 0.04

σ̂2,2
j 48’855 10’044 11’535 856 300 1’025 567 345 210

σ̂1,2
j 1’931 2’771 1’403 -175 -47 -895 -3’130 -95

Figure 8: Estimated parameters, see Table 3 in Dahms [3].
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[10] Wüthrich, M.V., Merz, M. (2008). Stochastic Claims Rerserving Methods in Insurance.

Wiley.
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