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Abstract: 

Capital allocation is an instrument for managing risk in an insurance company, 

especially by showing the diversification effect between lines of business. Based on a 

practical application of game theory, this article proposes a practical mapping between 

coherent measure of risk and coherent capital allocation. In terms of risk measure, VaR and 

TVaR have been selected, from which quantile-based allocation formulae can be derived. 

These formulae require the use of simulation, and it is shown here that the algorithm of 

Ruhm, Mango and Kreps (RMK) is especially adapted. Capital allocation has been applied 

in this article in two solvency calculation internal models. In this case, internal modelling of 

risks may change from one model to another. However, VaR shows more consistent results 

over time than TVaR. It is suggested that not only (axiomatic) coherent allocation, but also 

consistent allocation needs to be considered.  
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Résumé : 

L'allocation du capital est un instrument de gestion du risque d'une compagnie 

d'assurance, en particulier parce qu'elle montre l'effet de diversification entre les lignes 

métiers. Fondé sur une application pratique de la théorie des jeux, cet article propose une 

correspondance entre la cohérence des mesures de risque et l'allocation cohérente de 

capital. En termes de mesures de risque, VaR et TVaR ont été sélectionnées, et les formules 

d'allocation en sont dérivées. Ces formules sous tendent l'utilisation de simulations, et on 
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montre ici que l'algorithme de Ruhm, Mango et Kreps est adapté. L'allocation du capital a 

été appliquée dans cet article sur deux modèles internes de calcul de solvabilité. Dans ce 

cas, la modélisation interne d'un modèle à un autre peut changer. Cependant, la VaR montre 

des résultats dans le temps plus cohérents dans le temps que la TVaR. Ainsi, non seulement 

l'allocation cohérente (dans le sens axiomatique) mais aussi l'allocation cohérente sur la 

durée doit être considérée.  
Mots-clés : Allocation du capital, Aumann-Shapley, VaR, TVaR, algorithme de 

Ruhm-Mango-Kreps, allocation de capital cohérente, mesure de risque cohérente, 

Solvabilité 2, modèle interne.   

1. INTRODUCTION 

Risk management is a concept that raise more and more interest in the financial 

industry. Not only in banking, in the wake of the financial crisis starting back in 2007-2008, 

but also in insurance, especially through the coming regulatory industry shake up in the 

European union, known as Solvency 2. One aspect of quantitative risk management we aim 

at dealing with in this paper is economic capital allocation. One aim of Solvency 2 is that 

economic capital calculation takes place by taking risk into account, unlike the current 

Solvency 1 regime. Computing economic capital, moreover on a risk-based approach is 

good. Managing risk by using the economic capital, by allocating it, is better. Some authors 

may not be totally convinced of the capital allocation approach, e.g. Gründl and Schmeiser 

(2007), Schradin and Zons (2003), Mango (2003), Venter (2002) or Venter (2007). 

However it constitutes the opportunity to embed risk management from the top to the risk 

taking people, i.e. the underwriters of the risk. Capital allocation is a field that has given 

rise to a relative extensive literature in the last 15 years, see references in Eling and 

Schmeiser (2010). This is still an active field of research, as there is no definitive consensus 

so as to choose a capital allocation method. We are not going to propose a new method. 

There are already a few, in addition to the one we are going to review, it is possible to 

mention proportional allocation, Myers-Read or covariance share methods. Reviews of 

methods are provided for instance by Scherpereel (2005), Kaye (2005), Balog (2010), 

Albrecht (2003), Albrecht and Koryciorz (2004), Venter (2004) or Cummins, Lin and 

Phillips (2006).  
The aimed contribution of this paper is then threefold:   

1. Coming back to one of the known background theory of capital allocation, 



FROM GAME THEORY TO SOLVENCY QUANTILE CALCULATION: CAPITAL ALLOCATION 
WITH USE IN NON-LIFE INSURANCE

7 

 

 

by using game theory. This provides an axiomatic theory for capital 

allocation;  
2. Mapping this axiomatic approach of capital allocation with a well known 

axiomatic approach on risk measurement;  

3. Showing how this theoretic and axiomatic approach can be used in a 

concrete setting.  

As far as our knowledge goes, there are not that many examples of step by step 

allocation to be seen in the literature, and this is one of the aims of this article to contribute 

on this. Another aim is also to see what the changes of modelling from one internal model 

to another for the same company would bring. The most akin study one may find has been 

presented by McCrossan, Manley and Lavelle (2006), whereby the authors vary several 

parameters in order to see their effect on the allocations in an internal model approach. To 

be noted that reflecting the current flow of the literature, and partly because it is 

compulsory from Solvency 2, this is solely the capital allocation on an economic capital 

internal model that has been investigated here. An interesting contribution for using capital 

allocation with Solvency 2 standard formula can be found in Derien and Le Floc’h (2011). 
This article is split as follows. Section 2 is dedicated to game theory background and 

risk measurement. Section 3 uses of this game theoretical background to derive an 

allocation principle. Section 4 and 5 provide capital allocation algorithms and illustrate 

them for a P&C UK insurer. This is followed by the conclusion.  

2. PRELIMINARIES ON GAME THEORY AND RISK MEASURE 

2.1 Game theory preliminaries 

2.1.1 Cooperative and non-cooperative games 

 Game theory dedicates its focus on reviewing decision-making when conflict and/or 

cooperation situations occur, and is regularly found in economics, finance and actuarial 

science see e.g. Borch (1962), Lemaire (1985), Lemaire (1991), Pollack (2006). It is 

commonly admitted that game theory dates back to Cournot (1838), his contribution in 

economics is indeed analysed in Daughety (1988) and Touffut (2007). 
As noted by Osborne and Rubinstein (1994), one taxonomy for game theory is to 

split it between noncooperative on the one hand and cooperative (or coalitional) games on 

the other hand, although they point out that this classification does not always ease the 
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differences between the models. Leyton – Brown (2008a) gives the following heuristic 

definition of the noncooperative and the coalitional games:  
- Noncooperative game theory is the mathematical study of interaction 

between rational, self-interested agents”. This is called noncooperative 

because “individual is the basic modelling unit, and that individuals pursue 

their own interests”. 
- whereas “cooperative/coalitional game theory has teams as the central 

unit, rather than agents. ( ) Given a set of agents, a coalitional game 

defines how well each group (or coalition) of agents can do for itself.” 
For the topic we are interested in, we shall relate exclusively to coalitional game theory. It 

seems to be more frequent to meet the cooperative game theoretic approaches in the context 

of allocation problem, however noncooperative allocation is reviewed by Scherpereel 

(2005). As Kaye (2005) explains, risk allocation can be well described by coalitional game 

theory, as a sub-portfolio should benefit from being part of a larger component, i.e. a 

diversified portfolio. This is not a one-way relationship since the sub-portfolio in question 

is giving a diversifying benefit to the other sub-portfolios constituting the whole diversified 

portfolio. There could be a potential conflict so as to solve the challenge of fairly allocating 

the overall diversification benefit to each sub-portfolio, subcomponent of the larger 

diversified portfolio. 
The two next paragraphs are dedicated to discrete and continuous noncooperative 

game theoretic settings, based on the contribution of Denault. Let us introduce the 

following notations:  
 : a firm, defined by a pair of variables (X,  ) defined below;  
F : a set of firms, whereby F),(= X ;  

 : set of bounded random variables on the probability space [ ,, ], whereby X 

 , X being defined below;  
n

nXXX ),...,(= 1 , where each iX  can be seen as the payoff per unit of an ith 

LOB, }{1,...,= nNi ;  
n

n ),...,(= 1   , where each i  can be seen as the number of units held of an ith 

LOB1;  

                                                           
1 Although   notation is introduced now, its use will make sense from Section 3.2. Its use in Section 

3.1.2 corresponds to the particular case of 1=i . 
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  : risk measure, which formally maps   into  ;  

ii
n

i
XX   1=

=)(  : future period net worth, or payoff, of firm  ;  

))((  X  : risk capital of the firm  . 

2.1.2 Discrete cooperative solution: the Shapley value 

In game theory terminology, the term discrete is aka atomic. Next subsection aims at 

defining what it means. This enables then to derive the Shapley value.  
Definition 2.1 (Coalitional game iro atomic game)  
A coalitional game ( ,c) consists of :  

- i) a finite set   of n players, and  

- ii) a cost (or characteristic) function c whereby a real number c(  ) is 

associated to each subset   of  , the former being called a coalition.   

is denoted a set of games with n players.  
The Shapley value has given rise to a lot of interest, partly because of its axiomatic 

definition. Shapley first of all gives three axioms and then proves that a unique value (in the 

sense of Definition 3.2 below), satisfies these three axioms. In order to better understand 
axioms, we define the cost difference )(i , the interchangeability and the symmetry.  

Definition 2.2    
- The symbol )(i  represents the difference of two cost functions, namely 

)(}){(  cic   for any set  i, .  
- Two players i and j are interchangeable in ),( c , in the case each of them 

is giving the same contribution to each coalition  , which includes neither 
i nor j, i.e. )(=)(  ji   for all subsets    with i, j  .  

- A player is a dummy if for each coalition   it gives the contribution  
})({ic . That means })({=)( ii   for all    with i  .  

From Definition 2.2, it is now possible to give the three axioms and the Shapley 

value  .  
Axiom 2.1 (Symmetry)  If players i and j are interchangeable, then 

ji cc ),(=),(   .  

Axiom 2.2 (Dummy player)  For a dummy player })({=),( icc i .  
Axiom 2.3 (Additivity over games)  Let us define the game ),( 21 cc   whereby 

  )()(=))(( 2121 cccc . 
For two games ),(),(=),(),,(and),( 212121 cccccc   .  
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Remark 2.1 Axiom 2.3 is ignored in respect of capital allocation.  
Just before the Shapley value, there is the following definition:  
Definition 2.3 (Unique value)  The Shapley value is the only value satisfying 

Axioms 2.1, 2.2 and 2.3.  
Definition 2.3 enables the statement that this value exists and is unique. Moreover 

this value has an explicit form given in the next definition.  
Definition 2.4 (Shapley value)  The Shapley value 

iShA ,  is defined as follows: 

 

   







iicc
n

sns
A

i

Sh
i ,}){\()(

!

)!(1)!(
=,  (1) 

where )(= Cards  and i  represents all coalitions of   containing i.  

A proof of Equation (1) can be found under Urban (2002), using material provided 

by Schlee (1999).  

2.1.3 Continuous cooperative solution: the Aumann-Shapley value 

The angle used by Denault (2001) is presented in this section, where it becomes 

clear that the Aumann-Shapley value constitutes a generalisation of the discrete (atomic) 

world to the continuous (non-atomic/fractional/divisible/continuous/ non-discrete) sphere. 

For a thorough review of this non-discrete approach and its roots in the theory of 

cooperative games with nonatomic players, the interested reader can refer to Urban (2002) 

or to the original source of Aumann and Shapley (1974). 
The portfolio to which it is aimed to allocate capital are the players, the risk 

measure is represented by the cost function. The values are the allocation principles. In 

this continuous context, the presence of each portfolio can be scalable, i.e. a coalition can 

be built from x% of a portfolio A and y% of a portfolio B. In other words the portfolios 

must neither only be in nor only be out of a coalition, they can be both. 
Aumann and Shapley use the interval [0,1] to represent the set of all players. The 

coalitions of fractional/non-atomic players are measurable subintervals, elements of a  -

algebra. Definitions 2.5 formalises the initial settings:  
Definition 2.5 (Non-discrete cooperative game)  
Theoric fractional players coalitional game (I,  ) is a measure set where I is a set 

and   a  -algebra of a measurable set of I. The components of I are the players and the 

components of   are the coalitions. A non-discrete cooperative game consists of a function 
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),(),(:  Iv  with 0=)(v .  

Set of all players When I=[0,1], the space of all functions is f(0)=0.  
Non-atomicity A measure   is non-discrete when for all 

 .|)(|<|)(<|0with,0|>)(|, TTT     is the space of non-atomic/non-

discrete measure.  
Remark 2.2 A non-discrete cooperative game is also known as a cooperative game 

with scalable players.  
The two first items of aforementioned Definition 2.5 clearly show the reference to 

the measure theory. A more intuitive presentation is introduced by Aubin (1979), Aubin 

(1981), Billera and Raanan (1981), Billera and Heath (1982) as well as Mirman and 

Tauman (1982). In order to make the framework of Definition 2.5 more understandable, 

some extra notations are needed. We need to introduce the vector n
   for the full 

participation of each of the n players. To make Definition 2.5 operational, the set I  is 

chosen so that }/0{=  xxI n  and that   is a Borel- -algebra. The cost function 

)(r  corresponds to ])[0,]([0, 1 nv   .  

Definition 2.6 (Practical fractional players coalitional game)  A coalitional game 

with scalable players (N, ,r) consists of:  
- a finite set N of players with )(NCard  = n,  

- a positive vector n
  , which is the value of the full participation of each 

of the n players,  
- a real-valued cost function r : )(:,  rrn   , defined on  0 .  

For a portfolio of LOBs,   gives the actual length of each of the LOBs. For 

instance   can represent the premium volume of a LOB.   can also be expressed in a 

relative way, whereby the size of the LOB is expressed in a reference unit. Then a real cost 

function r  is needed which is defined on  0 . So the n -dimensional vector n
  

is the so-called level of presence of each of n  players in the coalition, and is a function 

defined on a continuous interval. Powers explains that as in Aumann-Shapley the portfolio 

needs to be infinitely divisible, the level of presence or participation in a portfolio of a 

member i  is represented by  , whereas the full portfolio or full participation is 

represented by  . 
In the sequel, several theorems and definitions of the Aumann-Shapley value will be 

presented. The aim is to start with the most theoretical part to progress to the most practical 
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definition of the Aumann-Shapley value. The original definition is as follows:  
Theorem 2.1 (A first expression for the Aumann-Shapley value)  Let ),,( rN   be 

a cooperative game with fractional players. Then there is a value1  

 ,)(=),,(
1

0
dtt

r
rN

i

AS
i 




  
 

which is designated as the Aumann-Shapley value.  
It means that the costs per component for the ith portfolio are the average of the 

marginal costs, where the volume of all portfolios grows linearly from 0 to  .  
Proof  See e.g. Urban (2002).  
If a homogeneous risk measure is used, the calculation of the Aumann-Shapley 

value can be computed in an easier manner, thanks to the following lemma of mathematic 

analysis (see e.g. Simon and Blume (2008)).  
Lemma 2.1 ( k -homogeneous function)  Let )(,:  rr n    be a k -

homogeneous function, i.e. for   there is )(=)(  rr k , then 
i

r





 )(

 is a 1)( k  

homogeneous function.  
Proof  Assume n  and )(=)(  rr . Then the following calculations hold: 

 ).(=)(=)(and)(=)( 



















i

k

i

k

iii

rrrrr














  

From that follows:  

 ).(=)(1 





 




ii

k rr  

Theorem 2.2 (The Aumann-Shapley value for k -homogeneous function)   
Assume ),,( 1 nXX   a vector of random variables and   a partially differentiable 

homogeneous risk measure. Moreover ),,( rN   is a cooperative game with fractional 

players with a cost function )(=)(
1= ii

n

i
Xr   . The Aumann-Shapley value can be 

computed as follows:  

 ).(=),(=),,( 




i

AS
i

AS
i

r
XarN


  

Proof  From Lemma 2.1 and as r  is homogeneous, there is:  

                                                           
1 This expression implies that ii t= , where (0,1]t  stands for the participation or involvement 

proportion (terminology used by Powers) expressed by 
i

it



= . 
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
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AS
i

r
dt

r
dtt

r
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
 

2.2 Risk measures 

2.2.1 Definitions 

The following definition may be proposed:  
Definition 2.7 (Economic capital)  According to de Weert (2011), economic capital 

is the amount of capital that a financial institution needs to hold to cover the risks it is 

facing. This represents the amount of money that is needed to secure survival in a severely 

adverse scenario. This means that, if the available capital of a financial institution exceeds 

its economic capital, the financial institution is able to weather heavy shocks.  
Economic capital is generally valued through the computation of a risk measure. 

The following definition from Sandström (2011), Denuit, Dhaene, Goovaerts and Kaas 

(2005) or to some extent Cadoux, Loizeau and Partrat (2003) is given here:  
Definition 2.8 (Risk measure)  A risk measure is a functional   mapping a risk X  

to a nonnegative number )(X , which can be infinite. It represents the amount of extra 

cash added to X  in order to make the risk acceptable.  

Referring to Definition 2.6, let us show the link between the risk measure and the 

cost function, which has been only alluded to before. Indeed the cost function can be 

identified with a risk measure through:  

 .=)(
1=














 ii

n

i

Xr   

Ultimately, Sandström provides a general link between Definition 2.8 and the one 

for economic capital in following terms:  
Definition 2.9 (Economic capital function of a risk measure  )  Economic 

capital can be defined through the following equation:  
 0.>),(=pitalEconomicCa  X  (2) 

This definition is actually a consequence from the concept of solvency. Indeed 

insolvency is avoided, assuming a specified time horizon and given a tolerance level 1 , 

if the insurer holds at least )(X . This is the assumption that in )(1   % of the cases, 

economic capital will be enough to avoid insolvency. 1  is alaso known as confidence 

level. )(X  is valued via a risk measure.  
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2.2.2 Coherent risk measure 

There is a particular set of axioms known as coherent measure of risk (see Artzner, 

Delbaen, Eber, and Heath (1999) and Artzner (1999)), intended to be desirable for 

characterising a risk measure as good to effectively regulate or manage risks.  
Definition 2.10 (Coherent measure of risk)  A risk measure satisfying the 

following four axioms is called coherent:   
- Positive homogeneity: The risk of a multiple is the multiple of this risk:  

 0.),(=)(  XX  

- Subaddivity: Pooling together risk adds up to less than the sum of these 

risks taken one by one:  
 ).()()( YXYX    

- Translation invariance: Adding a constant to a risky position increases the 

risk by the amount of this constant:  
 .,)(=)(   XX  

- (Weak) monotonicity: Capital for a less risky position X  than a riskier 

position Y  is smaller for X  than for Y :  
 ).()( YXYX    

Let us explain in more depth positive homogeneity and subadditivity:  
Positive homogeneity is often required for technical reasons, e.g. in the case of a 

quota share reinsurance treaty. Koryciorz (2004) makes a very important note stating that 

this is often misinterpreted in the insurance context. While this is seen in finance as a 

simple proportional multiplier of the volume of a portfolio1, this interpretation is 

transposable to the insurance context only insofar as one deals with perfectly positively 

dependent risks, see e.g. Mildenhall (2004) or Mildenhall (2006). This has not to be 

confused with homogeneous risks in the insurance context, assumed not to be perfectly 

positively dependent and having the characteristic to diversify by virtue of the losses 

mutualisation. 
  

                                                           
1 So if 2= , the volume of the portfolio is multiplied by two. 
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Subadditivity: This property puts in formal terms the pooling of risks in the 

insurance industry. It allows for diversification effect (see e.g. Long and Whitworth 

(2004)), defined as follows:  

 .)(=ationDiversific
1=1=














  i

n

i

i

n

i

XX   

whereby Diversification 0  for subadditive risk measures. 

It can be noted that Tsanakas (2009) has tried to use convex risk measures in the 

context of capital allocation, but as the author concludes himself, further research is needed 

to make this explored framework more realistic.  

3. ALLOCATION PROBLEM USING GAME THEORY 

Definition 3.1 (Allocation principle)  Let the set of firms F  be defined as a set of 

pairs ),( X , where nX   and *
n . Let   be a given risk measure. An allocation 

principle is a function nA F:  mapping each allocation problem (X,  ) into a unique 

allocation on F :  

 )).((=),(where

),(
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.

.
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),(:
1=

2

1
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
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
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 XXA
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n
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
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










  (3) 

ii XA  )/,(  is called the per-unit risk contribution of position i .  

3.1 In the discrete case 

3.1.1 Atomic games 

Definition 3.2 (Value of an atomic game)  A value is a function n :  that 

maps each game ( ,c) into a unique allocation: 
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It is straightforward to identify that Equation (4) is the same, mutatis mutandis, as 

Equation (3). 
Let us explain the rationale of the two preceding definitions. Game theory studies 

situations where players adopt various strategies in order to reach in an optimal way their 

own goal. Further to Definition 2.1, the aim of each atomic player is to minimise their cost, 

measured by the cost function. Therefore their strategy is either to join or not to join a 

coalition. Henceforth one of the main questions for each participating part to the coalition is 

the amount allocated to each part, here atoms. This is actually formalised by the concept of 

value, as defined is Definition 3.2. 
Then, the next definition is crucial, introducing the idea of the core. If a player ends 

up getting allocated a share ),(  XAi  superior to its own cost }{ic , this player will 

rationally threaten to leave the coalition. More generally, if from coalitions    that 

ii

A
 is more than )(c  then every player i  in   may carry more allocated ),(  XAi  

than its cost function, i.e. carrying more economic capital than it has to pay to bear it. The 

core is then defined so that this kind of threat does not happen, neither for an isolated player 

i  nor for a coalition.  
Definition 3.3 (Core of a game)  The core of a coalitional game ),( c  is the set of 

allocation nA   whereby )(


cAii


  for all coalitions   .  

 The aim is then to find an allocation which satisfies the core, as it becomes clear 

from the explanation above that it is regarded as a good or desired allocation. Charpentier 

(2007) gives an expression of that by saying that the allocated capital has to be in that case 

lower than the stand-alone risk itself. Urban (2002), in the context of cooperative games, 

cites the three following solutions satisfying the core: the von Neumann-Morgernstern 

solution, the nucleolus and the Shapley value. 
The first two methods are reviewed in Kaneko and Wooders (2004) and Urban 

(2002). Scherpereel (2005) and Mandl (2005) also provide a description of the nucleolus. 



FROM GAME THEORY TO SOLVENCY QUANTILE CALCULATION: CAPITAL ALLOCATION 
WITH USE IN NON-LIFE INSURANCE

17 

 

 

The Shapley value, more workable than the two others is used in the next subsection. 

Indeed Urban stresses that one drawback of the von Neumann-Morgenstern solution is that 

there is either no imputation or an infinity of them. Moreover the interpretation of the 

nucleolus concept with its dissatisfaction function can be challenging.  

3.1.2 Discrete (or atomic) case: the Shapley value 

The allocation formula itself is derived from Definition 2.4 and is presented below:  
Definition 3.4 (Allocation as per the Shapley value)  Let us assume a vector of 

random variables ),,( 1 nXX   and a risk measure  . The allocation coefficients of the 

allocation according to Shapley using the risk measure   is then expressed by:  
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The intuition behind the Shapley value can be found under Scherpereel (2005), who 

uses material from Hamlen, Hamlen and Tschirhart (1977). Leyton-Brown (2008b) gives a 

useful insight as well. The idea is that a firm (the whole coalition) is built by a sequential 

addition of divisions (players). Each division joining the firm will get charged with the 
necessary risk capital it is adding, i.e.  }){\()( icc   . The key is that there is no 

particular order at which each division is joining the firm, each entry order is assumed 

equiprobable. So when a set of divisions (coalition) is fixed, the likelihood for the entry of a 

new division i  as  th division in the firm is expressed by the factor 
!

)!(1)!(

n

sns 
.  

3.2 Continuous case: the Aumann-Shapley value 

Let us define, in the same way as in Definition 3.2, mutatis mutandis, the value in 

the context of a non-atomic game.  
Definition 3.5 (Fuzzy value)  A (fuzzy) value is a function   mapping a coalitional 

game ),,( rN   to a unique per-unit allocation vector na  , i.e. arN =),,(  , such that 

)(=  raT . 

The latter can be written as )(=),(
1=

 rXaii
n

i
 , where the dependence of a  on 

),( X  is stressed.  

It is referred here to the fuzzy set theory of Zadeh (1965). The fuzzy sets are sets of 
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which the components have degrees of membership. This is an extension of the notion of 

set, whereby the membership of an element is assessed on a binary basis, either the element 

is in or out of the set. The fuzzy set notion enables a gradual membership of the element in 

a set. This generalises the classical set, which takes indeed the values 0 or 1 only. 
As Denault notes, Definition 3.5 gives an allocation principle, that can be 

generalised when we make use of Theorem 2.1 for scalable players. Following Theorem 

2.2, it is possible to define the capital allocation using Aumann-Shapley method.  
Definition 3.6 (Allocation coefficients according to Aumann-Shapley)  Let a 

vector of random variables ))(,),(( 11 nnXX    be the payoff of each LOB, whereby 

),,(=  ni   is the length of each LOB, and   is a risk measure that is partially 

differentiable by nii ,1,=for  . 

Let ))((=)(
1= ii

n

i
Xr   . Then the allocation coefficients of the allocation 

according to Aumann-Shapley using the risk measure   is defined as:  
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When   is a homogeneous risk measure and )(=)(
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4. COHERENT CAPITAL ALLOCATION 

4.1 Coherent allocation 

4.1.1 Definition of coherent allocation 

The seminal paper of Denault (2001) takes an axiomatic approach to the capital 

allocation problem. Three other capital allocation axiomatics can be enumerated, which 

have not been extensively reviewed in the literature as opposed to the one introduced by 

Denault: Kalkbrener (2005), Kim (2007) and Gourieroux and Monfort (2011). It has been 

chosen to stick to the one of Denault, aiming at the outcomes of Section 4.2. The idea is of 

course to allocate economic capital, the latter being reflected by a risk measure. The 

viewpoint is here to have desirable properties for having a reasonable risk measure. The 

axiomatic translation of reasonable is here coherent. The starting point is therefore the 
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(axiomatic) coherent risk measure principle presented above in Definition 2.10. Denault 

assumes in his paper all risk measures to be coherent. We will therefore stick to this 

assumption for the rest of this section. 
It is aimed to obtain a reasonable risk capital allocation. The same idea as for a 

reasonable risk measure applies to a reasonable risk capital allocation. Denault introduces 

in his article three axioms necessary for a capital allocation to be coherent. We use below 

the definitions of Buch and Dorfleitner (2008).  
Definition 4.1 (Coherent allocation principle)  An allocation principle A  on F  

is coherent if the following properties hold for all F),(= X :   

- No undercut: 
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- Symmetry: Joining the subsets NM   and },{ ji , if portfolios i  and j  

are interchangeable, then they both make the same contribution, i.e.  
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- Riskless allocation: If Xn is a riskless instrument worth 1, then  

 .=)(=),( nnn XA    

Let us explain the rationale behind each of the sub-axioms given in the above 

definition as per Denault. 
The no-undercut property ensures that a portfolio cannot get more capital allocated 

as it would have if this portfolio were a separate entity. This property ties up actually with 

the subadditivity axiom of a risk measure introduced above. If a portfolio is joining the 

company, it cannot be allocated more risk capital than what it could have brought to this 

company. In other words the total risk capital of the company should not increase more 

than the new entrant's portfolio own risk capital. The justification of this property is 

twofold, the next two arguments being intimately linked:  
- Firstly it is consistent with the subadditivity axiom, reflecting the 

diversification benefit of merged portfolios (“a merger does not create 

extra risk” Artzner et al. (1999));  
- Secondly the whole rationale of capital allocation is aiming at a fair 

allocation of risk capital, and the no-undercut property ensures that the 
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fairness rationale is respected. 
The symmetry principle is there to ensure that the allocation to one portfolio 

depends exclusively on its risk contribution to the company. 
The riskless allocation axiom tells that a portfolio without risk should be allocated 

exactly its risk measure. This risk measure is negative, therefore all other things being 

equal, when one portfolio sees its cash position increasing, its allocated capital decreases by 

exactly the same amount. 
Denault introduces a fourth axiom of non-negativity:  
Definition 4.2 (Non-negativity of the allocation)  A coherent allocation is non-

negative if NiXAi  ,0),(  .  

It means that an allocation satisfying Definitions 4.1 and 4.2 is a so called non-

negative coherent allocation of risk capital. Denault requires this axiom, which is 

traditionally overviewed in the materials using the axiomatic he introduced, because it may 

lead otherwise to some difficulties from a practical point of view for Risk Adjusted 

Performance Metric (in short, a risk adjusted return ratio) (RAPM) (see e.g. Doff (2007)) 

computation, where return may be divided by negative allocated capital, quantity which 

would not be straightforward to interpret.  

4.1.2 Application to the discrete case, relating to the Shapley value 

The link between the Shapley value and the axiomatic approach developed under 

Definition 4.1 is the following. Two of the three coherence axioms have been already 

gathered, namely symmetry (Axiom 2.1) and riskless allocation, the latter corresponding to 

the dummy player (Axiom 2.2). There is one coherent allocation axiom missing, which is 

(strong) subadditivity. Therefore a custom assumption is to consider the cost function to be 

strongly subadditive, i.e.:  
 ).()()( 2121  ccc   

This assumption is used in the following definition:  
Definition 4.3 (Strongly subadditive game)  A coalitional game is strongly 

subadditive if based on a strongly subbadditive cost function:  
 .and)()()()( 21212121   cccc  

What leads to the needed strong subadditivity theorem:  
Theorem 4.1 (The Shapley value and the core)  If a game ),( c  is strongly 

subadditive, the Shapley value is in the core.  
Proof  See Shapley (1971-1972).  
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As explains Scherpereel (2005), the core-compatibility of the Shapley value as per 

Theorem 4.1 is equivalent to the no-undercut of the coherent allocation of Definition 4.1. 

As a result, the Shapley value, under the condition of Theorem 4.1 represents the value of a 

coherent allocation. However, there is an important caveat, coming from Theorem 4.1, in 

the form of Theorem 4.2.  
Theorem 4.2 (Linearity of the risk measure)  Let us assume   a positively 

homogeneous risk measure, so that 0=(0) . Assuming c  to be defined over the set of 

subsets of random variables in L , implies:  
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Then when c is strongly subadditive,   is linear.  

Proof  See Denault (2001).  
The assumption of homogeneity of the risk measure is necessary if it is aimed to 

stay in the framework of consistency of the risk measure and the capital allocation. Indeed 

Definition 2.10 is clearly imposing a positively homogeneous measure of risk. And because 

of Theorem 4.2, it comes out that the cost function (game theory viewpoint) is strongly 

subbadditive i.e. the risk measure (capital allocation viewpoint) is linear, as Denault proves 

in his paper. As a result, the risk is fully additive, whereas it would have been preferred to 

have a subadditive one. This is a very stringent consequence, because a linear risk measure 

means that there is no possibility for a diversification effect. Denault concludes that a 

convincing proof of coherent allocation falls short. He proposes however to stick to the 

game theoretic approach using a slightly changed definition of a coherent allocation, as 

exposed under Section 4.1.3. 
Before moving to the next section, the Shapley value calculation is explicitly 

reviewed in the literature, some saying even that it is one with a widespread use (e.g. Zhang 

(2008)). However, on top of the theoretical drawbacks of the Shapley value, a practical one 

is repeatedly found in the literature (e.g. Urban (2002), Balog (2010), Scherpereel (2005), 

D’Arcy (2011) or Diers (2007)). It is argued that for more than three players/coalitions, 

which is a fairly small number when one thinks about the numbers of LOBs in an insurance 

company, the computation can become quite complicated. Namely a company with n  

LOBs ends up with 12 n  possible coalitions. Moreover Scherpereel explains that the 

complicated computation of the Shapley value leads the latter generally not to be in the 

core, which in turn is a major drawback from an axiomatic argument point of view. Shapley 
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turns around this critical point by using convex games, which are core compatible. 

However capital allocation is not always convex, otherwise the underlying risk measure 

should be comonotonic (cf. Delbaen (2002)), which is not a condition that is always given. 
In order to finish up on the drawbacks, Kaye (2005) mentions that the fact that 

players have to be atomic can constitute a problem. He gives a very simple example taking 

three LOBs BA,  and C . If A  is split into two parts, the Shapley has to be recomputed. By 

doing that, the allocation to B  and C  will change, what may seem odd as a property 

everything else being taken constant.  

4.1.3 Application to the continuous case relating to the Aumann-Shapley value 

The definition of the coherence of fuzzy values is introduced under Definition 4.4. 

This represents the technical condition for the coherence of capital allocation in coalitional 

games with scalable players.  
Definition 4.4 (Coherence of fuzzy values)  Let r  be a coherent risk measure. A 

fuzzy value narN  ),,(:  is coherent if:  

-   satisfies the five properties below and,  
- a  is an element of the fuzzy core.  

The five properties are indeed:   
- Aggregation invariance property: assumes the risk measures r  and r  

satisfy )(=)(  rr  for some nm  matrix   and every   so that 

 0  then  
 ).,,(=),,( rNrN T   

- Continuity property: the mapping   is continuous over the normalised 

vector space nM  of continuously differentiable functions  
nr :  

vanishing at the origin.  
- Monotonicity property (aka non-negativity under r  non-decreasing): If r  

is non-decreasing, i.e. )()( * rr   whenever  *0  , then  
 0.),,(  rN  

- Dummy player allocation property: if i  is a dummy player, i.e.   
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- Fuzzy core property: the allocation principle ),,( rN   is in the fuzzy 

core of the game ),,( rN   if for every  ,  0 ,  

 )(),,(  rrNT   

or  
 ).(=),,(  rrNT  

The idea linked to Definition 4.4 is to prepare the path towards a coherent allocation 

principle, as disclosed in Table 1.  

 
Coherent fuzzy value Coherent allocation of risk capital 
aggregation invariance symmetry 

continuity N/A 
monotonicity N/A 

dummy player allocation riskless allocation 
fuzzy core no undercut 

not in Definition 4.4 full allocation 

Table  1: Mapping between coherent fuzzy values and coherent allocation of risk capital 

Interestingly, the first three properties of Definition 4.4 are not especially in line 

with the principle of coherent capital allocation. In the bottom part of Table 1, two 

necessary properties are provided by the definition above useful for a coherent allocation, 

whereas a last one is still missing but will be introduced soon in the sequel; taken one by 

one:  
- Aggregation invariance is like the symmetry property, because equivalent 

risks should be allocated the same amount of capital. However Buch and 

Dorfleitner (2008) as well as Balog (2010) show that symmetry, although 

an axiom, is not a desirable property. This is because assuming a linear risk 

measure is equivalent not to account for diversification, where capital 

allocation aims at the opposite: to account for diversification.  
- Continuity, which does not correspond to a specific property for capital 

allocation coherence, but is nevertheless desirable for ensuring that similar 

risk measures give similar allocations.  
- Monotonicity, which is not required for a coherent capital allocation either, 

but is simply there to satisfy the requirement that the more risky a business 

is, the more it receives capital (See for instance Rafels (2006)).  
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- The dummy player property represents the riskless portfolio, whereby a 

LOB without risk (e.g. constituted only of cash) should attract a negative 

allocation. This position may seem theoretic, but is there to ensure that 

when the cash amount arising from a LOB increases, its capital allocation 

should decrease accordingly.  
- The fuzzy core property, obtained from Definition 3.5 allows neither 

undercut from any player nor coalition with fractional players. This is a 

critical property for enabling a fair allocation.  
- The full allocation principle is not embedded in any of the properties of 

Definition 4.4. To make the allocation to non-atomic players 

comprehensive, this is indeed the Aumann-Shapley value which fills this 

necessary gap as it will be seen below.  

4.2 Links between coherent risk measure and coherent allocation 

From Definition 3.6, using the notion of a homogeneous function, it is now possible 

to complete Table 1 satisfactorily under the form of Table 2. 

  
Coherent risk measure Coherent allocation of risk capital 

positive homogeneity full allocation 
subadditivity no undercut 

translation invariance riskless allocation 
linearity symmetry 

monotonicity N/A 

Table 2: Mapping between coherent risk measures and coherent allocation of risk capital 

The idea behind this table is the one of Denault, i.e. offering a consistent axiomatic 

approach for capital allocation. Buch and Dorfleitner (2008) explicitly show this 

relationship, which is rather underlying in the article of Denault. Now that coherent risk 

measurement and coherent allocation are mapped, let us apply the Aumann-Shapley value 

to two well known risk measures.  

4.3 Application using tail-based measures 

As seen in Definition 3.6, Aumann-Shapley allocation principles applied to our 

context require a differentiable risk measure. Henceforth the aim of this section is to review 

the differentiability of the two well known risk measures, which can be used in economic 
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capital calculation, Value at Risk (VaR) and Tail Value at Risk (TVaR). It can be 

interesting to note that in relation to a broader notion of differentiability than the one 

presented here, Fischer (2003) or Fischer (2004) has defined weakened differentiability 

properties. It allows him to use an alternative to the quantile-based risk measures exposed 

here, focusing on one-sided moments, and even to work not only on continuous 

distributions but also discrete ones. His findings are developed in the same framework as 

just explained in the preceding Section 3.2.  

4.3.1 VaR and capital allocation 

In this subsection our aim is to compute the risk contribution associated with VaR 
via differentiation. However Tasche1 points out that the quantile function VaR )(  Z  is 

generally not differentiable in  . This is why some technical assumptions on the joint 

distribution of the vector ),,( 1 nXX   have to be taken. Among them there is one which 

really matters: at least one among the random variables iX  has to have a continuous 

distribution density.  
Assumption 4.1  Let us take the vector of random variables ),,( 1 nXX   where 

2n  and some constant 0>t ,  
 ),,,(),[0,: 2

1
n

n xxtF    
is the density of the conditional distribution of 1X  given ),,( 2 nXX   and (0,1) . Then 

),,( 1 nXX   satisfies the following four conditions:  
- For fixed nxx ,,2   the function ),,,( 2 nxxtFt   is continuous in t.  

- The expression  
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has finite values and is continuous.  
- For all 1{0}\  n  there is  
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has finite values and is continuous.  
Assumption 4.1 then given, it is now possible to give the formal expression of the 

VaR's partial derivative.  
Lemma 4.1 (Partial derivative of )  Let a vector of random variables ),,( 1 nXX   

satisfy the Assumption 4.1 and (0,1) . In addition let 1{0}\=  nU   and 

ii
n

i
XZ   1=

=  for U . Then with VaR UZ :)(   and  

 UzZzZVaR   for }][|{inf=)(   
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 (5) 

Proof  See Tasche (2000).  
Another representation is Jorion who calls it Marginal VaR and shows a relation to 

the Beta and hence the CAPM. Historically Equation (5) is presented by Hallerbach where 
the differentiability of VaR )(  Z  is not reviewed. This is different to Lemma 4.1 where it 

is specifically addressed. Moreover, Tasche points out that in the event that Assumption 4.1 

does not hold, Equation (5) used as a support for a risk contribution computation might still 

have a good chance to remain suitable to the risk measure. Gourieroux have also presented 
Equation (5) with a joint density for the vector ),,( 1 nXX  .  

4.3.2 On the non-coherence of VaR 

VaR is often seen as not coherent (see e.g. Scherpereel (2005), Koryciorz (2004) or 

Haugh (2010)), i.e. violating the axioms seen under Definition 2.10 as introduced by 

Artzner2. This is because VaR is not deemed to respect the subadditivity axiom. That is to 
say VaR )( YX   might be higher than VaR )(X  + VaR )(Y , which violates the principle 

asserted by Artzner et al. (1999) that “a merger does not create extra risk”. In other words, 

the merged risks X  and Y  should lead to risk mitigation from these risks added together, 

also named as risk diversification. Artzner et al. do see here a “natural requirement”, 

although not recognised by some authors who argue subadditivity is nothing more than a 

nice mathematical property because not observable in reality, see for instance Rootzén and 

Klüpperberg (1999). Moreover Heyde, Kou and Peng (2009) do not see any contradiction 

between VaR and subadditivity. Their criteria, based on a tail argumentation is developed 

below as follows: 
- Not too heavy tail: if the risks have not too heavy tails, the authors see 

diversification as valid and VaR satisfies subadditivity in the tail; 
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- Heavy tail: if the risks have heavy tails, diversification may not be 

privileged and VaR may not be subadditive. 
Finally, some authors point out that subadditivity (or its pendant for capital 

allocation, no undercut) may not be desirable, see Laeven and Goovaerts (2004) and Kim 

and Hardy (2009). 
However, this argument that has been sometimes used to reject VaR for the benefit 

of TVaR has to be put into perspective, as researchers show that this is not that simple. One 

simple counter argument is that VaR is subadditive for elliptical distribution, as shown by 

Mc Neil, Frey and Embrechts (2005). However this is a limited argument as normality is 

not mainstream both in actuarial science (see e.g. Sauvet (2006), Heep-Altiner, Kaya, 

Krenzlin and Welter (2010) or Boland (2007) and in finance (see e.g. Mandelbrot and 

Hudson (2009), Walter and de Pracontal (2009) or Walter (2010)). 
More appealing is the practical argument that in the tail region, typically at a level 

around 99%= , VaR is roughly subadditive. This important rehabilitating argument for 

the use of VaR is developed by Denuit, Dhaene, Gooveaerts, Kaas and Laeven (2006) or 

Verlaine (2008) referring to the fact that VaR is subadditive for the relevant tail of heavy 

tail distributions, provided that these heavy tails are not too super heavy. Inui, Kijima and 

Kitano (2005) demonstrate that VaR has a considerable bias when used with heavy-tailed 

distributions. They show that the bias is increased at higher confidence level, heavier tails 

and smaller sample sizes. Danielsson, Samorodnitsky, Sarma, Jorgensen and Vries (2011) 

explore the potential violation of subaddivity by VaR, not only in theoretical terms but also 

through simulations. They conclude that VaR is deemed to be subadditive for a majority of 

applications, henceforth making unnecessary the research for an alternative risk measure 

solely because of the subadditivity argument. 
Heyde et al. (2009) insist that VaR can be seen as a valid risk measure especially in 

the context of satisfying the regulatory needs, which is one of the angles of this work in the 

context of Solvency 2 regime. They however leave the choice to a company to use it for 

internal management purposes, whereby VaR might not seem to correspond to their 

preference.  

4.3.3 TVaR and capital allocation 

In order to derive the result of this subsection, two main sources may be identified in 

the literature. On the one hand Tasche (2000) may be used again like for the preceding 
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subsection. Tasche identifies that he finds the same result as the one of Overbeck and Stahl 

(1998) albeit Tasche's form is slightly more general. On the other hand the axiomatic of 

Kalkbrener (2005) is another mean to arrive at the same derivative for TVaR, of which a 

presentation can also be found in Urban (2002). In the following Tasche's approach is 

presented only. Like for VaR, the quantile function may not be differentiable. Nonetheless 

Lemma 4.2 uses the same Assumption 4.1 stated before.  
Lemma 4.2 (Partial derivative of )  Let ),,( 1 nXX   and   be as in Lemma 4.1 

and assume  
 .,1,=,<|][| niXE i   
Define ZU ,  and VaR )(  Z  as in Lemma 4.1 and set )(TVaR  Z  so as to:  
 .for)](|[=)( UZVaRZZEZTVaR    
Then )(  ZTVaR  is continuous and partially differentiable in nii ,1,=,   with 

continuous derivatives 

 .,1,=for)](|[=)(
)(

niZVaRZXE
ZTVaR

i
i


 







 (6) 

Proof  See Tasche (2000).  

4.3.4 On the coherence of TVaR 

As seen above, VaR is in most of the cases not subadditive, and thus not coherent in 

the axiomatic set of Arztner et al.. This is why some authors propose to work with measures 

like TVaR, because it fulfills the missing axiom of subadditivity unlike VaR and is 

therefore a coherent risk measure. Then TVaR is coherent, see e.g. Zhang and Rachev 

(2006), Acerbi and Tasche (2002), Scherpereel (2005) or Haugh (2010).  

5. ECONOMIC CAPITAL AND SOLVENCY: IMPLEMENTING CAPITAL 

ALLOCATION 

Aim of article 120 of the Solvency 2 Directive (2009) is that the internal model 

should not only enable to compute the regulatory economic capital, but also to be widely 

used by the company. The necessity to show how embedded an internal model is, has hence 

to be demonstrated by each company and is called the use test of an internal model. Capital 

allocation is one of them. 
Moreover, as documented by Equation (2), economic capital for solvency 

calculation is derived from a risk measure. Under Solvency 2, the calculation are deemed to 

use VaR, however TVaR is not excluded when a company chooses to use an internal 
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model, e.g. in Swiss Solvency Test (SST). In the coming section, practical allocation using 

the game theoretic settings given so far is going to be shown for VaR and TVaR.  

5.1 A practical example of economic capital allocation in non-life insurance 

5.1.1 Ruhm-Mango-Kreps algorithm adapted to quantile-based capital allocation 

As Equations (5) and (6) show, computing the allocation for these tail-based 

measures are conditional expectations. Regarding VaR, the interpretation of Equation (5) 

can be seen as the average loss value of portfolio number i  when cumulated losses of the 

overall portfolio reach the quantile at level 1 . For TVaR, Equation (6) can be seen as 

the average loss value of portfolio number i  when cumulated losses of the overall portfolio 

are over the quantile at level 1 . 

Clark (2005) identifies that the procedure given by Ruhm and Mango (2003), 

Mango (2003) and Kreps (2005) is well-adapted to compute conditional expectation, hence 

Equations (5) and (6). The aim of this contribution is to demonstrate the link between 

Ruhm-Mango-Kreps algorithm and the Aumann-Shapley formula. In other words, to show 

the formal equivalence of the RMK algorithm with the Aumann-Shapley allocation, as 

D’Arcy (2011) or Kaye (2005) alludes to without explicitly showing it. 
A heuristic presentation of the algorithm may be:   

1. simulation of the possible outcomes of results by LOB, where the aggregate 

result of all LOBs by each simulation number represents the result of the 

company. As implicitly outlined by Table 4, these sums are the results of 

aggregation techniques like correlation matrix and/or copulae;  
2. sort out all the aggregates of the LOBs, from the best to the worst result;  
3. if VaR has been selected as a risk measure, compute the )(1  -quantile 

among the aggregates of LOBs, and select the negative outcomes only for 

the LOBs where there is a negative outcome. If TVaR is the selected risk 

measure, select all the simulation outcomes beyond )(1   for the 

aggregates of LOBs, and select the negative outcomes only for the LOBs 

where there is a negative outcome;  
4. allocation of the capital by LOB: averaging the selected losses for the LOB 

in terms of aggregated losses of the sum of all LOBs, leading in effect to 

the capital allocation by LOB. This exercise is done for each LOB.  
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This is the heuristic presentation, as presented by Ruhm, Mango and Kreps. It is 

interesting to give the algorithm of Holden (2008) for VaR and Tsanakas (2013) for TVaR.  
Algorithm 5.1 (RMK algorithm for VaR)  Consider an company with n  LOBs. 

Let j
iX  be the j th simulated result for the i th LOB for mj ,1,=  . Let jX  be the j th 

simulated company-wide result and ii
n

i
XZ   1=

= . For a confidence level 

mm )(1=,     is an integer such that m
X  is an estimator of VaR )(  Z .  

Let  md  .   

1. Sort aggregate results to get )((1) ,, mXX  .  

2. Estimate the VaR by m
X .  

3. Compute  
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which estimates )](=|[  ZVaRZXE i .  
For a way to determine d , see e.g. Korn, Korn and Kroisandt (2010).  

Algorithm 5.2 (RMK algorithm for TVaR) Consider an company with n  LOBs. 

Let j
iX  be the j th simulated result for the i th LOB for mj ,1,=  . Let jX  be the j th 

simulated company-wide result and ii
n

i
XZ   1=

= . For a confidence level 

mm )(1=,     is an integer such that m
X  is an estimator of VaR )(  Z .  

Let  md  .   

1. Sort aggregate results to get )((1) ,, mXX  .  

2. Estimate the VaR by m
X .  

3. Set )(
:

mjX  be the selection of )((2)(1) ,,, mXXX   exceeding m

X .  

4. Compute  

 )(
:

1=

1 
mj

m

mmj

X
mmm 


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


 

which estimates )](|[  ZVaRZXE i  .  

5.1.2 Scope of the study: internal models as per ICA and Solvency 2 

We are going to present capital allocation computations as per the algorithm 

presented above. They are based on the data of a anonymized company in non-life 

insurance. This company is based in the UK, and used to compute the economic capital 
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through the Internal Capital Assessment (ICA) regulation until 2010; see Sandström (2005) 

for a presentation of the UK-solvency regime. The company has used its Solvency 2 

internal model for computing is economic capital in 2011. These calculations are only 

relating to underwriting risk, at 99,5%=1  . The quantile is estimated as a result of 

10,000 simulations of the underwriting result. In order to estimate VaR, 30 simulation 

around the 99,5% mark are used, as recommended by Parry et al. (2009). Regarding TVaR 

estimation, exceeding 99,5% mark means using 50 simulations. The comparison between 

underlying modelling of underwriting risk between the ICA and Solvency 2 internal models 

for the sample company are provided in the Appendix under Table 4. 
The following computations have been made:   
Case 1: Calculation under the ICA using a 5-year horizon;  
Case 2: Calculation under the ICA using a 1-year horizon;  
Case 3: Calculation under the Solvency 2 using a 1-year horizon;  
Case 4: Calculation under the ICA using a 5-year horizon (rescaled);  
Case 5: Calculation under the ICA using a 1-year horizon (rescaled);  
Case 6: Calculation under the Solvency 2 using a 1-year horizon (rescaled).  
The rescaling is achieved by removing the mean result from the calculations. In 

practical terms the mean of each year for all simulations is computed, then subtracted from 

the minimum result. The idea is to rescale from the short term volatility observed in the 

result. In a longer term view, the idea is to concentrate on a mean result, rescaled from the 

short term volatility.  
For the ICA internal model, simulations have been provided by Simulum (Microsoft 

Excel add-on provided by the company Watson Wyatt), whereas for the Solvency 2 internal 

model, simulations come from Risk Explorer (edited by the company Ultimate Risk 

Solutions).  

5.1.3 Results 

A breakdown of detailed result are provided in Table 5 in the Appendix. They are 

the net technical results in £  million. Figures 1 and 2 below compare graphically the 

results per case, as per described for the eight LOBs of the company.  
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Figure  1: Comparison of allocation coefficients depending on underlying internal 

modelling assumption for VaR 

 

 
Figure  2: Comparison of allocation coefficients depending on underlying internal 

modelling assumption for TVaR 

Next two Figures 3 and 4 plot the same results as the two preceding graphs, but 

aggregated by macro-LOBs. The macro-LOBs are as follows: Personal lines are the sum of 

Personal Motor, Household and Other Personal Lines, Commercial Lines are the sums of 

Commercial Lines, Property, Liability and Other Commercial.  
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Figure  3: Comparison of allocation coefficients depending on underlying internal 

modelling assumption for VaR (macro-LOBs) 

 
Figure  4: Comparison of allocation coefficients depending on underlying internal 

modelling assumption for TVaR (macro-LOBs) 

  Interpretation of these graphs are given in the next section.  

5.2 Coherent allocation with a practical insight 

Figures 1 and 2 highlight the fact that Household, especially under TVaR can get a 

very high allocation under the ICA modelling, reflecting the high volatility of the business. 

This is linked to fact that Household is catastrophe prone. The dichotomy between 

catastrophe prone and non-catastrophe prone in allocation context is also recognised by 

Vaughn (2007). Yet this statement does not totally hold under the Solvency 2 modelling 
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(cases 3 and 6), whereby each LOB gets an allocation closer to its share in the business in 

terms of gross written premium. These shares are disclosed in Figure 5 of the Appendix. 

This shows that a careful attention has to be paid to modelling changes when it comes to 

capital allocation, as ICA modelling is not in this case exactly the same as the Solvency 2 

calculation. Stölting (2003) recognises in particular for TVaR-based allocation that 

although it takes into account non-linear dependency and respects capital allocation 

coherency axioms, it may be sensitive to even small changes of modelling. In this respect 

Schmock and Strautmann (1999) remind how delicate it may be to manipulate TVaR for 

small portfolios and discrete distributions. Nonetheless, looking at the allocation between 

Personal and Commercial lines (Figures 3 and 4), there is no real transfer at the aggregated 

LOBs level, rather a reallocation within the aggregated LOBs. This is an important 

consideration at a management level, as even if it is assumed that Household and Personal 

Motor Directors ought to have in mind these patterns when underwriting, Personal lines 

Director may still enjoy the benefit of the diversification between the two LOBs. 
A second comment is on practical considerations. There may be some struggle to 

internally communicate why Household gets such a high capital charge in one modelling, 

and less in a reviewed modelling. The general issue of communication in relation to capital 

allocation is stressed by Roberts (2006), chief actuary of RSA at the time of his 

presentation. Decupère (2011) highlights also this point. This may indicate a shift in the 

risk profile of the company and hence needs to be further investigated. So more generally it 

is always necessary to perform sanity checks on the results of the capital allocation and to 

link it to the risk profile of the company when explaining capital allocation results. 
Another comment in the light of Figures 1 and 3 that the allocation coefficients are 

relatively stable regardless of the underlying internal model for VaR. This phenomenon is 

not reproduced for TVaR. In other words the coefficients seem more stable with VaR than 

with TVaR. This is an appealing argument in favour of VaR, which leads to more 

consistent results over time and whatever the model may be. This consistency argument is 

not to be neglected again in the perspective of internal communication with the 

management. Furthermore, it ties up neatly with other consistency arguments, as VaR as 

risk measure may be also used:  
- for the total company's economic capital calculation. Holden (2008) 

recommends to use for the allocation the same risk measure as the one used 

for the economic capital calculation;  
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- for the modelling underlying the catastrophe reinsurance purchase decision;  
- for the risk appetite of the sample company. 

However it has to be kept in mind, that VaR results are based on a 1 in 200 years 

event only (corresponding to 99,5%). TVaR takes the mean of all large losses above this 

99,5% point. We would therefore not dismiss TVaR, as it is possible to find many 

arguments and counter-arguments either for VaR or TVaR, see e.g. Sandström (2011) or 

Zec (2012). Moreover, SCOR use internal model to compute the Solvency Capital 

Requirement (SCR), whereas TVaR for the allocation, cf. Busse (2013). We propose 

additional arguments on VaR versus TVaR from a capital allocation perspective, 

synthetised in Table 3. The tick between brackets recalls that in some cases the property 

may be met. Obviously, these conclusions very much depend on the risk profile and 

historical technical results of the underlying portfolio used for the computation.   

 
  VaR TVaR 
Coherent measure of risk   ()  
Coherent allocation of economic (risk) capital  ()  
Consistent allocation of economic (risk) capital   

Table  3: Coherencies and consistencies of VaR and TVaR through risk measure and 
allocation spectra 

There is hence an interest to have a mixed approach in terms of risk measure, even if 

a preference may emerge for the use of VaR. A last comment binding with the preceding 

one is that we compare VaR and TVaR for the level 1 . It is known for a normal 

distribution that the two measures are comparable for different level of 1 . Comité 

Européen des Assurances (CEA) reports that a 99,5% VaR is equivalent to a 98,7% TVaR, 

and that a 99% TVaR is equivalent to a 99,62% VaR, cf. CEA (2006). The difference 

between the 1  of VaR and TVaR would be higher for more skewed distributions than 

the normal one. As we are not dealing with a normal distribution but with a mix of 

distributions in the internal model, a capital allocation model development could be to find 

where the comparable point is to be set, if we seek to enhance the TVaR aspect of it.  

6. CONCLUSION 

The purpose of this paper is to give new theoretical and practical insights on capital 

allocation. We highlight the relationship between a coherent risk measure and a coherent 
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capital allocation by using cooperative game theory and concept of risk measures. This is 

enabled by the Aumann-Shapley value, as highlighted by Denault, unlike the Shapley 

value. Although Denault sketched the relationship with coherent measure of risk, Buch and 

Dorfleitner have made this relationship clear. Then, when it comes to application, it is 

possible to use tail-based measures, commonly used for computing economic capital. Such 

an application can be done through simulation techniques, and in this perspective RMK 

algorithm can be used. The study laid out here show that although VaR is not commonly 

known as a coherent measure of risk, and such a statement may be discussed, TVaR may 

not be the perfect alternative. This may be down to the risk profile of the portfolio used, but 

it comes out that from an allocation viewpoint, VaR is more consistent through the time. 

This is indeed important when one has to think about change in internal modelling and the 

effect on capital allocation, which has been investigated in this paper.  
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7. APPENDIX 

7.1 Underlying modelling for the ICA and Solvency 2 internal models of the sample 

company 

Please see Table 4 hereunder.  

 
Part ICAa Solvency 2 

Modelled 
classes  

Corresponds to the company's 
granularity (e.g. Private Car, 
Motorcycle, Commercial 
Vehicle)  

Can correspond to Company's 
granularity. However, regulation 
can be more prescriptive, e.g. 
Motor classes have to be split 
between Third Parties' Liability 
and Own Damages 

Attritional 
claims  

Frequency/severity approach. 
Claim frequencyb: normal 
distribution, claim size: gamma 
distribution  

Aggregate loss ratio distribution 
(lognormal) 
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Large claims  Frequency/severity approach 
(collective model). Claim 
frequency: Poisson distribution, 
claim severity: Pareto 
distribution  

Frequency/severity approach 
(collective model). Claims 
frequency: negative binomial 
distribution and claim severity: 
generalised Pareto distribution 

Reserve 
variability  

Mack model associated with a 
loss distribution assumption  

Merz and Wüthrich model 
associated with a loss 
distribution assumption 

Discounting 
present valuec  

May be applied according to the 
regulation, however there is an 
option not to do so, explicitly 
allowing for an investment 
result  

Must be applied, i.e. all cash 
flows are present valued, using 
risk free rate curve (market 
value basis) 

Other insurance
risk  

Catastrophe risk, inflation 
shock, bodily injury surge  

Catastrophe risk (more granular 
than the ICA model), inflation 
shock, bodily injury surge 

Correlations  Internal design (correlation 
matrices between LOBs)  

Follows a more prescriptive 
approach according to the 
regulation (mix of correlation 
matrices -from standard 
formula- and copulae), with 
different levels of aggregation 

Horizon  Business written in year 1, and 
then run off ; computation up to 
a 5 year time horizon  

Business earned in year 1 only; 
computation over 1 year time 
horizon 

[a] Example for Personal Motor. 

[b] Expressed as a percentage and not as a number. 

[c] The general principle is that insurance risk can be reduced by investment income that will be earned 

on assets held (cf. e.g. Lloyd’s in Parry et al. (2009)). Under Solvency 2, the best estimate technical provisions are 

discounted, before adding up risk margin on it.   

Table  4: Comparison of ICAS and Solvency 2 internal models 
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7.2 Allocation percentages by LOB for each underlying modelling 

Please see Table 5 hereunder. Subscripts of VaR and TVaR designate the case, i.e. 
VaR1  means "allocation coefficients for case 1 for VaR".   

 
 Personal lines Commercial lines PMI Total 
 

Motor House- hold Other Pers. Motor Prop. Liab. 
Other 
Com. 

  

VaR 1  35,6% 17,3% 3,4% 15,5% 11,6% 13,0% 0,1% 3,5% 100% 

56,3% 40,2%   

TVaR 1  23,8% 37,1% 2,4% 10,4% 15,4% 8,1% 0,1% 2,6% 100% 

63,3% 34,0%   

VaR 2  37,8% 19,7% 1,2% 15,8% 11,0% 11,8% 0,2% 2,5% 100% 

58,7% 38,8%   

TVaR 2  18,7% 48,7% 0,8% 7,1% 16,5% 7,0% 0,0% 1,3% 100% 

68,1% 30,6%   

VaR 3  46,4% 11,0% 3,7% 13,5% 11,7% 9,2% 1% 3,5% 100% 

61,1% 35,4%   

TVaR 3  37,4% 22,0% 2,7% 10.2% 16,7% 7,9% 0,8% 2,3% 100% 

62.1% 35.6%   

VaR 4  36,8% 15,7% 4,6% 14,0% 7,2% 18,7% 0,9% 2,1% 100% 

57,1% 40,8%   

TVaR 4  24,7% 36,6% 3,4% 9,1% 12,2% 11,8% 0,9% 1,4% 100% 

64,6% 34,0%   

VaR 5  33,0% 20,2% 2,5% 16,5% 9,0% 15,4% 1,1% 2,3% 100% 

55,7% 42%   

TVaR 5  15,8% 49,6% 1,7% 7,3% 15,3% 8,6% 0,5% 1,2% 100% 

67,1% 31,7%   

VaR 6  43,3% 15,2% 2,7% 10,8% 14,7% 8,6% 1,1% 3,5% 100% 

61,3% 35,2%   

TVaR 6  28,9% 31,7% 2,0% 7,2% 21,8% 5,7% 0,7% 2% 100% 

62,6% 35,4%   

 

Table  5:  Breakdown of allocation coefficients for the six cases for VaR and TVaR (per 
case, first row for each LOB, second row for macro-LOBs) 
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7.3 LOB part as a share of gross written premiums 

The pie chart of Table 5 shows the share of each LOB in terms of gross written 

premium for the company (average of the history 2006-2011).  

   
Figure  5: LOB part as a share of gross written premiums 
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