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ABSTRACT 

Under the new regulatory standards Basel II and Solvency 2, many financial 
institutions adopt a Loss Distribution Approach (LDA) to estimate the operational risk 
capital charge.  

Such an approach requires the combination of internal and external data with expert 
opinion in an adequate manner. In this article we present a consistent and unified way how 
this task can be fulfilled. The simultaneous consideration of the three different sources of 
information is done in a Bayesian inference model.  

The main idea is to start with external market data which determines a prior 
estimate. This prior estimate is then modified according to internal observations and expert 
opinion leading to a posterior estimate. Risk measures as for instance Value-at-Risk and 
Expected Shortfall may then easily be inferred from this posterior knowledge.  

RÉSUMÉ 

En tenant compte des nouveaux standards de surveillance Basel II et Solvency 2, 
beaucoup d’assurances et de banques adoptent une Loss Distribution Approach (LDA) pour 
estimer le capital de risque opérationnel.  

Une telle approche exige une combinaison raisonnable des données internes, 
externes et l’opinion d’experts. Dans cet article, nous allons présenter une méthode 
cohérente et unifiée pour accomplir cette tâche. La considération simultanée des trois 
sources d’information est atteinte en utilisant un modèle d’inférence bayésienne.  

L’idée principale est de commencer par des données externes qui déterminent une 
estimation a priori. Cette estimation sera à modifier selon les observations internes et selon 
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l’opinion d’experts menant ainsi à une estimation a posteriori. Les mesures de risque, par 
exemple la Value-at-Risk et l’Expected Shortfall, peuvent ainsi facilement être inférées de 
cette connaissance a posteriori.   

Keywords: Advanced Measurement Approach, Basel II, Bayesian Inference, Loss 
Distribution Approach, Operational Risk, Quantitative Risk Management, Solvency 2.  

1. INTERNAL DATA, EXTERNAL DATA AND EXPERT OPINION 
The quantification of an operational risk capital charge under Solvency 2 or Basel II 

[3] is for all financial institutions a challenging task. Typically, many cells of the Basel II 
operational risk matrix contain very few internal data. This implies that it is difficult to find 
reliable risk estimates based on these observations solely. Therefore, there is a strong need 
for incorporating other sources of information such as expert opinion and relevant external 
data in order to achieve an adequate picture about the high severity, low frequency 
operational risk landscape.  

The Basel Committee, for example, mentions this concern explicitly; see for 
instance BIS [3], paragraph 675: “A bank must use scenario analysis of expert opinion in 
conjunction with external data to evaluate its exposure to high-severity events. This 
approach draws on the knowledge of experienced business managers and risk management 
experts to derive reasoned assessments of plausible severe losses. For instance, these 
expert assessments could be expressed as parameters of an assumed statistical loss 
distribution.”  

In industry practice ad-hoc methods are used for the combination of the different 
sources of information. Often this does not lead to satisfactory results and to consistent 
answers. Therefore, it is still an open issue to combine internal data with external data and 
expert opinion. This has also been emphasized by different leading risk managers; see, e.g., 
Davis [4], an interview with four industry’s top risk executives in September 2006: “[A] 
big challenge for us is how to mix the internal data with external data; this is something 
that is still a big problem because I don’t think anybody has a solution for that at the 
moment.”  

In our opinion classical actuarial concepts give answers to these questions. Recently, 
a Bayesian inference model focused on operational risk losses has been developed in 
Lambrigger et al. [5]. That model allows for the combination of the mentioned three 
sources of risk information simultaneously. The goal of this paper is to review that method 
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in an easily accessible overview.  
First we introduce the methodology to combine the three types of knowledge in the 

context of operational risk. Then this framework is used to quantify the severity distribution 
of operational risk losses. Finally, an example illustrates the robustness of this quantitative 
approach.  

2. THE BAYESIAN APPROACH 
The Basel Committee has established an operational risk matrix consisting of 8 7×  

risk cells (8 business lines, 7 risk types). In each of these 56 risk cells financial institutions 
model the corresponding loss frequency (e.g., by a Poisson distribution) and loss severity 
distribution (e.g., by a lognormal or Pareto distribution). Hereafter we concentrate only on 
one single risk cell and for the moment refrain from modeling the dependence structure 
between business lines and risk types.  

After an appropriate choice of the frequency and severity distribution, the risk 
manager is required to estimate the parameters of these distributions in an appropriate way. 
We denote this (unknown) parameter vector for the insurance company under consideration 
by z , which is also referred to as the company’s risk profile. The parameter vector z  could 

for instance correspond to the location, shape or/and scale parameter of the severity 
distribution function. The company’s true (but unknown) risk profile z  needs to be 

estimated from the available (internal) information. If few internal data is available, a 
precise and robust estimation of z  becomes difficult. Therefore, the estimate needs to 

include other sources of information (external data and expert opinion). This is a well-
known problem in actuarial practice where, for example, certain lines of business have only 
a small volume or only few observations.  

In a Bayesian context the unknown risk profile z  is treated as a realization of a 

random vector Z  illustrating that we do not have perfect knowledge about the true 
underlying parameters. In our setup the distribution of Z  stems from market information 
(external data). That is, every company’s risk profile can be viewed as a realization of the 
market’s risk profile. Z  is therefore a random vector with known distribution. It models 
(after a possible scaling) the risk profiles over the whole financial industry.  

Before having any company specific information (internal data, expert opinion), we 
completely rely on the available industry data. The best prediction of our company specific 
risk profile z  would hence be based on the belief in this external knowledge only, 
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represented by the random vector Z . The distribution of Z  is called prior risk profile or 
prior distribution. The parameters of the prior distribution (so-called hyper-parameters) are 
estimated using industry (external) data or, if no industry data is available, defined by some 
“super expert” (e.g., regulator) that has an overview over the whole financial industry.  

 

Z  X ϑ,
⎯→  z  

• parameter representing the  
whole industry 

 • company specific parameter  
 

• considers external  
(market) data only  

 • considers internal data X  and  
expert opinion ϑ     

• random variable   • realization of Z , hence deterministic   
• with known distribution   • unknown, estimated by [ ]| ,E Z X ϑ    

Table 1. Internal data X  and expert opinion ϑ  transform the (prior) risk profile of the 
whole industry Z  into an individual company specific (posterior) risk profile z . 

A priori, before assessing any expert opinion (for instance inferred from scenario 
analysis) and observing any internal data, all companies have the same prior risk profile Z  
stemming from market information only. As time passes, we gather internal experiences 
like internal operational risk events ( )1X … X K= , ,X  and expert opinion (1) ( )( )M…ϑ ϑ= , ,ϑ . 

This additional information certainly influences our belief into the prior distribution of Z , 
inferred from market data only, and therefore the prediction of the company specific 
parameter vector z  is adjusted according to our internal observations; see Table 1.  

The more internal information X  and ϑ  we have, the better we are able to predict 
our company specific risk profile z  and the less credibility we give to the market 
information. That is, the internal data X  and the expert opinion ϑ  transform the risk 
profile of the overall market Z  into a conditional distribution of Z  given X  and ϑ , 
formally denoted by | ,Z X ϑ . The natural question we have to answer is: How does this 

company specific information X  and ϑ  change our view of the underlying parameter Z , 
i.e., what is the explicit distribution of | ,Z X ϑ ?  

Formally, this is described as follows. We denote the prior parameter density of Z  
by ( )π z

Z
. Given our risk profile =Z z , the observations X k  have density ( )1f X k | =Z z  

and the expert opinions ( )mϑ  have density ( )( )2
mf ϑ | =Z z . Under suitable independence 

assumptions, the posterior density of | ,Z X ϑ  can be calculated explicitly. Bayes’ Theorem 
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gives for the posterior density of | ,Z X ϑ   

 l ( )( ) ( ) ( ) ( )1 21 1

K M mc f X fkk m
π ϑπ ∏ ∏= | = | = ,| ,

= =
z z Z z Z zZX Zϑ  (2.1) 

where c  is the normalizing constant not depending on z . Given the distribution of | ,Z X ϑ , 

the company specific parameter z can then be estimated, e.g., by the posterior mean 
l[ ] ( ) dπ| , = ∫ | ,E Z X z z zZXϑ ϑ .  

3. A SIMPLE MODEL 
As an example, we consider a so-called lognormal-normal-normal model for loss 

severities. We assume that operational losses of an individual company have a lognormal 
distribution LN int( )σΔ,  with scale parameter intσ  and location parameter Δ . Δ  plays the 

role of the unknown risk profile z  of our company with given prior distribution. Moreover, 
we assume that the expert opinion about the parameter Δ  follows a normal distribution 

exp( )σΔ,N . As soon as internal operational losses and expert opinion are available, we 

calculate the posterior of Δ  under this additional information.  
For illustrative purposes, we only consider the lognormal-normal-normal loss 

severity model in this article. Note that these ideas can easily be translated to other 
situations, such as the Poisson frequency model or the Pareto loss severity model. For a 
detailed outline of other distributional model assumptions we refer to Lambrigger et al. [5].  

3.1 Model assumptions (Lognormal-normal-normal)  

Let us assume the following loss severity model:  
• Market Profile: Let ( )ext extμ σΔ ,∼ N  be a normally distributed random 
variable with parameters ext extμ σ, , which are estimated from (external) market 
data, i.e., ( )π z

Z
 in (1) follows the density of ext ext( )μ σ,N .  

• Internal Data: The losses 1k … K= , ,  from the concerning institution are 
assumed to be conditionally (on Δ ) i.i.d. lognormally distributed: 1X … X K, , | Δ  
i i d. . .

∼  LN( )intσΔ, , where intσ  is assumed to be known. That is, ( )1f ⋅ | Δ  in (1) 

corresponds to the density of a LN( )intσΔ,  distribution.  

• Expert Opinion: We assume that the company has M  experts with 

opinion ( )mϑ , 1 m M≤ ≤ , about the parameter Δ  with 
i i d

(1) ( )
exp( )M…ϑ ϑ σ

. . .

, | Δ Δ,∼ N , where expσ  denotes the expert uncertainty. That is, 

2 ( )f ⋅ | Δ  corresponds to the density of a exp( )σΔ,N  distribution.  
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Furthermore, we assume that expert opinion ϑ  and internal data X  are 

conditionally independent given a realization of the risk profile Δ ; that is, the distributional 
representation (1) holds.  In order to get an accurate estimate for the true company specific 
risk profile, the market profile Δ  is adjusted to the individual companies by internal data 
and expert opinion. Note that such a procedure is closely related to hierarchical credibility 
models discussed for instance in Bühlmann and Gisler [2].  

The hyper-parameters extμ  and extσ  for the market profile distribution are estimated 

from external data, e.g., by maximum likelihood or by the method of moments. For 2M ≥ , 
the parameter expσ  is, e.g., estimated by the sample standard deviation of ( )mϑ :  

1 2
( ) 2

exp
1

1 ( )
1

M
m

mM
σ ϑ ϑ

/⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

=⎝ ⎠

= − ,
− ∑  

with averaged expert opinion ( )1
1

M m
M m

ϑ ϑ
=

= ∑ , or can be defined externally by the 
regulator.  

When the assumption of independent expert opinion is too restrictive, one could 
think of one panel of dependent experts or a pooling of scenarios. Consequently we would 
set 1M =  and the corresponding standard deviation expσ  has to be calculated taking into 

account the dependence structure between experts. The assumption that expert opinion and 
internal data are conditionally independent given the risk profile Δ  may be disputable if the 
experts are unable to specify their opinion regardless of the internal data observed. It is 
hence crucial that expert opinion is based on scenario analysis and stress tests 
independently from internal events.  

4. CREDIBILITY WEIGHTED AVERAGE 
Under Model Assumption 3 the posterior distribution can be calculated analytically. 

We have the following theorem.  
Theorem 4.1: credibility weighted average 

Under Model Assumptions 3 and with the notation 1
1

log logK
kK k

X X
=

= ∑ , the 

posterior distribution Δ | ,X ϑ  is a normal distribution l l( )N μ σ,  with parameters  

 l
1

2
2 2 2
ext int exp

1 K M
σ σ σ σ

−
⎛ ⎞

= + + ,⎜ ⎟⎜ ⎟
⎝ ⎠

 (4.1) 

and  
 l

1 ext 2 3[ ] log Xμ ω μ ω ω ϑ= Δ | , = + + ,E X ϑ  (4.2) 
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where the so-called credibility weights are given by l 2 2
1 extω σσ= / , l 2 2

2 intKω σσ= /  and 
l 2 2

3 expMω σσ= / . A proof is given in Lambrigger et al. [5].   

Theorem 4.1 gives a consistent and unified way to combine the different sources of 
information. It shows how internal observations, relevant external data and expert opinion 
are weighted using credibility weights 1ω , 2ω  and 3ω . These are numbers between 0 and 1 

that sum up to 1. Note that these credibility weights are provided by the model in a natural 
way, that is, there is no ad-hoc choice of the credibility weights. The less credible the 
information of one of the three data sources, the smaller the corresponding credibility 
weight iω , {1 2 3}i∈ , , , in (4.2). If one information source is highly inaccurate (e.g., 

ext intσ σ,  or expσ →∞ ), then the corresponding credibility weight will be close to 0. If 

however, the information about one data source is very precise (e.g., many observations, 
small variance of expert opinion or small variation in the parameters of external data), then 
the corresponding iω , {1 2 3}i ∈ , , , will be close to 1.  

Note that Theorem 4.1 does not only provide us with the company’s expected risk 
profile lμ , but with the whole distribution l l( )X Nϑ μ σΔ | , ,∼ . Therefore, the parameter 

uncertainty and the model risk can be quantified.  

Example 4.2 

Assume that a financial company models its risk severities according to Model 
Assumptions 3 with scale parameter int 4σ =  and the regulator provides external prior data 
with hyper-parameters ext 2μ =  and ext 1σ = . Moreover, the company’s internal expert 

opinion is 6ϑ =  with standard deviation exp 3 2σ = /  and we observe the internal 

operational risk losses (sampled from a LN int int( 4 4)μ σ= , =  distribution) given in 
Figure 1. Note that the company under consideration does worse ( int 4μ = ) than the 
industry average ( ext 2μ = ). However, the company’s experts even have a worse opinion 

about their own institution ( 6ϑ = ).  
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Figure 1. 70 loss severities (upper panel) and their corresponding logarithmic values 
centered around 0 (lower panel), sampled from a LN int int( 4 4)μ σ= , =  distribution. 

 

Figure 2. The Bayes estimator l
kμ  including expert opinion ( D ) is compared to the Bayes 

estimator l SW

kμ  without expert opinion (+ ) and to the maximum likelihood estimator 

l MLE

kμ  ( + ). The straight line stands for the true company specific parameter int 4μ = . 

In Figure 2 we compare the classical maximum likelihood estimator (corresponding 
to (4.2) with 0M =  and extσ →∞ )  

 l MLE

1

1 log 1
k

ik
i

X k K
kμ

=

= , ≤ ≤ ,∑  

to the estimator proposed in Shevchenko and Wüthrich [6] without expert opinion 
(corresponding to (4.2) with 0M = )  
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 l SW
1[ ] 1kk

X … X k Kμ = Δ | , , , ≤ ≤ ,E  

and to the Bayes estimator given by (4.2)  
 l lMLE

1 1 ext 2 3[ ] 1kk k
X … X k Kϑ ω μ ω ω ϑμ μ= Δ | , , , = + + , ≤ ≤ .E  

Figure 2 shows the high volatility of the maximum likelihood estimator, for small 
numbers of observations k . It is very sensitive to newly arriving losses. However, the 

Bayes estimator discussed in this paper shows a much more stable behavior around the true 
value int 4μ = , also when few data are available. This is due to the smaller variance of the 

Bayes estimator; see equation (4.1). Moreover, it performs better than the estimator l SW

kμ  

due to the fact that the expert opinion has an additional smoothening effect.   
In this example we see that relevant external data and well-specified expert opinion 

stabilize and smoothen the estimator, even when the input data (as for example the expert 
opinion) over- or underestimates the true company specific value. In that sense, Bayesian 
inference yields a suitable framework to combine several different data sources. For more 
numerical examples we refer to Lambrigger et al. [5].  

5. CONCLUSION 
To meet the operational risk regulatory requirements, one needs to incorporate 

internal data, relevant external data and expert opinion. We present a Bayesian framework 
that leads to a natural credibility weighted combination of the different sources of 
information.  

To achieve this, we start with a general risk profile representing the whole financial 
industry (prior distribution) and then gradually incorporate the internal information based 
on loss data and expert opinion (yielding the posterior distribution). This is done by the 
specification of the underlying distribution and then by applying Bayes’ theorem. A 
criticism often voiced against Bayesian statistics is that the choice of the prior distribution 
is somewhat arbitrary. In the present approach however, the choice of a prior distribution is 
based on statistically meaningful external market data (pure empirical Bayes approach).  

The novelty of our approach in contrast to classical Bayesian inference is that we 
combine simultaneously three different risk information sources instead of only two. Under 
our model assumptions the posterior distribution is then calculated in an analytically closed 
form; see Theorem 4.1. There are various other examples that lead to closed analytical 
posterior distributions. If the posterior distribution can not be obtained in a closed form 
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then one either applies linear credibility models (see, e.g., Bühlmann and Gisler [2]) or 
numerical methods like Markov chain Monte Carlo (MCMC) methods (see, e.g., Asmussen 
and Glynn [1]). MCMC methods have the advantage (over linear credibility methods) that 
they give information over the whole posterior distribution which allows for the calculation 
of any risk measure.  

For a single risk cell of an individual company, risk measures as for instance VaR 
have to be inferred. One feature of our approach is that the parameter uncertainty and the 
model risk can be quantified, because the entire distribution function (and not only the 
expected value) of the parameters is known.  
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