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Abstract: 

Life tables are used to describe the one-year probability of death within a well 

defined population as a function of attained age. These probabilities play an important role 

in the determination of premium rates and reserves in life insurance. The crude estimates on 

which life tables are based might be considered as a sample from larger population and are, 

as a result, subject to random fluctuations. However, the actuary wishes most of the time to 

smooth these quantities to enlighten the characteristics of the mortality of the group 

considered which he thinks to be relatively regular. 

The present article discusses a non-parametric graduation method of experience data 

originating from life insurance. We introduce local univariate polynomial regression. We 

discuss the choices of the smoothing parameters and criteria used for models selection. We 

graduate the mortality data through the choice of the smoothing parameters. The graduation 

and corresponding confidence intervals are carried over the entire age range. Tests are used 

to compare the graduated rates obtained by local polynomial regression with those obtained 

by the Whittaker-Henderson smoothing. 

Résumé : 

Les tables de mortalité sont utilisées pour décrire la probabilité annuelle de décès 

d'une population en fonction de l'âge atteint. Ces probabilités jouent un rôle important dans 

la détermination des primes et réserves en assurance vie. Les estimations brutes, sur 

lesquelles se basent les tables de mortalité, peuvent être considérées comme un échantillon 

provenant d'une population plus importante et sont, par conséquent, soumises à des 
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fluctuations aléatoires. Toutefois, l'actuaire souhaite la plupart du temps lisser ces quantités 

afin de faire ressortir les caractéristiques de la mortalité du groupe considéré qu'il pense être 

relativement régulières. 

Cet article discute d'une méthode de graduation non-paramétrique de données 

d'expérience issues de l'assurance vie. Nous introduisons la régression polynomiale locale 

univariée. Nous discutons du choix des paramètres de lissage et des critères utilisés pour la 

sélection des modèles. Nous graduons les taux de mortalité à travers le choix des 

paramètres de lissage. Le lissage et les intervalles de confiance correspondants sont obtenus 

pour l'ensemble des tranches d'âge. Des tests sont utilisés pour comparer les taux lisses 

obtenus par la régression polynomiale locale avec ceux obtenus selon le modèle de 

Whittaker-Henderson. 

Keywords: Local Polynomials, Life insurance, Graduation, Whittaker-Henderson.  

JEL - Code: C14, G22. 

1. INTRODUCTION 

1.1 Life tables and graduation: The stochastic formalization of life time 

The age at which a person will decease is obviously unknown. At most we can 

evaluate, for a particular population, the risk of death in a given time interval. Death is then 

viewed as an event whose occurrence is probabilistic in nature and it is natural to resort to a 

mathematical framework and probabilities calculus to describe the life time of individuals. 

The purpose of measuring the life span or conversely the mortality is to enable 

inferences to be drawn about the likelihood of death occurring within a specific population 

during a specific period of time. It is natural, therefore, for the basic measure to be 

expressed in proportional terms as rate of mortality. The denominator of the rate (of which 

the numerator is the relevant number of deaths) is commonly referred to as population at 

risk or the exposed to risk. To be specific, let assume that we are given the number of 

deaths recorded, id , and the number of individuals initially exposed to the risk of death, il , 

all aged ix  last birthday, and that our experience is limited to this single age ix  where 

= 1, 2, ,i n . The crude estimate of the observed mortality rate, iq , is denoted by iq


,  

 = .i
i

i

d
q

l


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Then iq


 represents the one-year observed probability of death for a particular 

population at age ix  which lies above or below the true underlying value. In estimating 

mortality, the actuary knows that the past experience from which the observed mortality 

rates and the life table have been derived will never be exactly reproduced in the future. 

Thus a certain random element of fluctuation will be inherent in the observations and the 

smaller the group, the greater will be the relative random errors in the deaths and less 

reliable will be the resulting iq


. These deviations from the true underlying rates may be 

assumed to be random and to fluctuate from age to age both in size and sign. These 

irregularities in the progression of the observed rates of mortality could be reduced by 

increasing the number il  of persons observed. If the number of individuals in the group had 

been considerably larger, the set of observed probabilities iq


, would have displayed a much 

more regular progression with ix . In the limit, it would have exhibited a smooth 

progression explain Copas and Haberman (1983, p.136). 

The idea of a group of persons attaining age ix  and being gradually reduced in 

numbers, until they are all dead, by the operation of mortality in such a way that the rates of 

mortality at successive ages form a smooth series is a purely theoretical conception. It is 

nevertheless a very useful conception recalls Alistair (1989), from which forms the basis of 

the theory of life contingencies and has been shown by long use to be suitable for solving 

most actuarial problems in life insurance. This is not to suggest that measurement can be 

allowed to be inexact. On the contrary, as Benjamin and Pollard (1980) mention, if 

judgment has to be introduced in any final estimation, it is likely to be sounder when on the 

basis of adequate analysis of past experience. 

Provided these errors are random in nature, they may be reduced by increasing the 

size of the sample and thereby extending the scope of the investigation. A simpler, cheaper 

and more practicable alternative is often to use graduation to partly remove these random 

errors resume Bloomfield and Haberman (1987). 

Figure 1 displays the one-year transformed crude probabilities of death (year 2008), 

logit scale (see Section 2.2), for ages = 0,1, ,98ix   and each gender for the dutch 

population provided by the Human Mortality Database (2011). The Human Mortality 

Database (HMD) has been initiated by the Department of Demography at the University of 

California Berkeley, USA, and the Max Planck Institute for Demographic Research, 

Rostock, Germany. This international project provides detailed mortality and population 

data which can be accessed online for research purposes. 
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Figure 1: Transformed crude one-year probabilities of death 
t

iq


, logit scale, for Dutch 

Male (left panel) and Dutch females (right panel) in 2008. Source: HMD. 

From Figure 1, we recognize the typical shape of a mortality curve. Mortality is 

highest at the extremes of age. Once the newborn infant has survived the hazard of the first 

days of life, the rate of mortality falls rapidly. In adolescence, the impact and strain of 

industrial and urban life bring a rise in mortality. These and other factors, inherent in the 

social and economic environment and individual ways of life, reacting upon constitutional 

weakness, lead to a continuing increase in the risk of death as age advances. At later ages, 

the wearing out of the human frame rather than inimical qualities of the environment 

becomes the dominant cause of mortality, see Benjamin and Pollard (1980). 

We show in Figure 1 the difference in the patterns of mortality for the two genders. 

The death rates for females are lower than those for males at all ages. (Before 1890 there 

was an excess in the death rate of females at adolescence and early adult ages mainly 

associated with the heavier mortality from tuberculosis in girls). Briefly, the higher 

mortality of males may be explained by Benjamin and Pollard (1980) in medical terms as 

follows: 

- In infancy and early childhood, boys are generally more vulnerable to some 

birth hazards (prematurity, malformation, birth injury), to infection, 

possibly as a result of some biological factors, and to injuries, possibly as a 

result of more vigorous and venturesome activities. These are the principal 

causes of death at those ages.  

- In early and middle adult life, the principal causes of death are accidents 

and violence, heart diseases and cancers. The higher risk for accidents must 
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be regarded as occupational in the broader sense of including, as compared 

with females, more outdoor movement in traffic for instance, as well as 

greater industrial hazards.  

- At more advanced ages, the process of physical deterioration and lessening 

resistance to disease associated with general wear and tear appear to 

proceed faster in men. Age for age, cerebral hemorrhages, arterial diseases, 

cancers (especially of the lung) and bronchitis take a heavier toll of males 

than females. Some at least, of this excess mortality has been self inflicted 

by cigarette smoking. The contemporary increase in industrial countries of 

mortality cancer of the lung and coronary arterial disease (especially for 

men) has been exercising considerable influence on the shape of the curve 

of death rates with age and provides an example of the need for cause 

analysis.  

Thus, graduation aims to concentrate on the underlying mortality pattern (high 

mortality at birth, low infant mortality, accident hump, senescence effect) avoiding the 

erratic departures from it. Various approaches to graduation can be adopted. In particular, 

two broad categories can be recognized:   

- Parametric approaches, involving the use of mortality laws where 

Hannerz (2001) defines a mortality law as a mathematical expression that 

describes mortality as a function of age.  

- Non-parametric approaches.  

1.2 Getting out of a Procrustean bed 

Assume n  data points =1{( , )}n
i iix q


 have been collected, then the regression 

relationship can be modeled as  

 = ( ) , = 1,2, , ;i iiq f x u i n


  

with the unknown regression function f  and an error term iu , representing random 

errors in the observations or variability from sources not included in the ix . The aim of a 

regression analysis is to produce a reasonable analysis to the unknown response function  

f . This task of approximating the mean function can be done essentially in two ways. The 

quite often used parametric approach is to assume that the mean curve f  has some 

prespecified functional form, for instance, a line with unknown slope and intercept. As an 
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alternative one could try to estimate f  non parametrically without reference to a specific 

form. 

The first approach to analyze a regression relationship is called parametric since it 

assumed that the functional form (i.e. Thiele law, Perks laws, Gompertz-Makeham class of 

models, etc...) is fully described by a finite set of parameters. A tacit assumption of the 

parametric approach though is that the curve can be represented in terms of the parametric 

model or that, at least, it is believed that the approximation bias of the best parametric fit is 

a negligible quantity. Such laws simplify the calculation of mortality functions but to be 

useful, they have to reproduce closely the data. According to Alistair (1989) it is now 

thought that it is unlikely that a law can be found that represents the mortality rate over a 

large range of ages, although some complicated expressions have been used in the attempt 

such the approaches taken by Heligman and Pollard (1980) applied initially for graduating 

post-war Australian national mortality. The Heligman-Pollard model is an eight parameters 

model containing three terms, each representing a distinct component of mortality. The 

first, a rapidely declining exponential, reflects the fall in mortality during the early 

childhood. The third term in the formula is the well known Gompertz exponential. It 

reflects the near geometric rise in mortality at the adult ages. It is generally considered to 

represent the ageing or deterioration of the body, i.e, the senescent mortality. The remaining 

term, is a function similar to the log-normal. It reflects accident mortality for males and 

accident plus maternal mortality for the female population. Although the law may not 

always give a fit close enough for actuarial purposes, it does reproduce the three distinct 

features of mortality. The model is applicable over the entire age range. It has relatively few 

parameters, all of which have demographic interpretation and together fully describe the 

age pattern of mortality. See Keyfitz (1981) for an extensive review of the choice of 

functions for mortality analysis. 

By contrast, non-parametric modeling of regression relationship does not project the 

observed data into a Procrustean bed of a fixed parametrization. A preselected parametric 

model might be too restricted or too low-dimensional to fit unexpected features, whereas 

the non-parametric approach offers a flexible tool in analyzing unknown regression 

relationship. The term non-parametric thus refers to the flexible functional form of the 

regression curve. Like parametric methods, they too are liable to give biased estimates, but 

in such a way that it is possible to balance an increase in bias with a decrease in sampling 

variation. 
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The question of which approach should be taken in data analysis was a key issue in a 

bitter fight between Pearson and Fisher in the 1920’s recalls Hardle (1990). Fisher pointed 

out that the non-parametric approach gave generally poor efficiency whereas Pearson was 

more concerned about the specification question. Both point of view are interesting in their 

own right. Pearson pointed out that the price we have to pay for pure parametric fitting is 

the possibly of gross misspecification resulting in too high model bias. On the other hand, 

Fisher was concerned about a too pure consideration of parameter-free model which may 

result in a more variable estimates, especially for small sample size. 

1.3 Natura non agit per saltum: The basic idea of smoothing 

We have previously seen that the crude rates, iq


, on which the model is based, can 

be seen as a sample from a larger population of lives and thus they contain some random 

fluctuations. If we believed that the true rates, iq , were independent, then the crude rates 

would be our final estimate of the true underlying mortality rates. However, a common 

prior opinion about the form of the true rates is that each true rate of mortality is closely 

related to its neighbors, that is the observations jq


 near iq


 should contain information 

about the value of f  at ix . Gavin et al. (1993) explain that this relationship is expressed 

by the belief that the true rates progress smoothly from one age to the next. Benjamin and 

Pollard (1980) recall the saying, Natura non agit per saltum, which expresses the fact that 

natural forces operate gradually and their effects become apparent continuously and not in 

sudden jumps. It follows that the data for several ages jx  on either side of age ix  can be 

used to augment the basic information we have at age ix , and an improved estimate of iq  

can be obtained by smoothing the individual estimates. 

So the next step is to graduate the crude rates in order to remove any random 

fluctuation. This procedure of approximation of the mean response curve ()f  is commonly 

called smoothing. Hence, the mortality is not summarized by a small number of parameters, 

but described by the n  annual probabilities of dying. It may be considered as a compromise 

between faith towards the data and reduced roughness caused by the noise. In the actuarial 

literature, the process of smoothing a mortality table was known as graduating the data, i.e., 

the little hills and valleys of the rough were to be graded into smoothness, just as in 

building a road over rough terrain. 

The concept of smoothness has been used in the previous paragraphs without 

actually being defined. It is a very difficult concept to define mathematically and we 
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deliberately avoid here a detailed presentation. The interested reader can have a look at 

Bizley (1958) and Diewert and Wales (2006). We all have an intuitive idea about what we 

mean by smooth, as for instance the road building analogy. Formal mathematical analysis 

may state the smoothness condition as a bound on derivatives of f . Bizley (1958) 

observes that smoothness is intimately concerned with predictability, and proposes the 

following definition of smoothness: a continuous curve is smooth at those points which are 

such that the absolute value of the rate of change of curvature with respect to distance 

measured along the curve is small. For Benjamin and Pollard (1980), the Bizley’s 

requirements of small change of curvature turns out to be equivalent in the mortality 

context to require that third-order differences are small, which is consistent with the widely 

held view that low-order polynomials are smooth. 

1.4 Smoothers and parameters selection 

Smoothing alone, however, is not graduation. Graduated rates must be 

representative of the underlying data. The two qualities, smoothness and goodness of fit, 

tend to conflict, in the sense that smoothness may not be improved beyond a certain point 

without some sacrifice of goodness of fit and vice versa. Thus, a graduation will often turn 

out to be a compromise between optimal fit and optimal smoothness. To be useful, a 

graduation method should allow the graduator some latitude in choosing the relative 

emphasis to place smoothness and fit. 

Special attention has to be paid to the fact that smoothers, by definition, average 

over observations with different mean values. The amount of averaging is controlled by a 

weight sequence which is tuned by a smoothing parameter, denoted  . This smoothing 

parameter regulates the size of the neighborhood around the target point ix . A local 

average over a too large neighborhood would cast away the good with the bad. In this 

situation an extremely oversmooth curve would be produced, resulting in a wrong estimate 
f . On the other hand, defining the smoothing parameter so that it corresponds to a very 

small neighborhood would not sift the chaff from the wheat. Only a small number of 

observations would contribute non negligibly to the estimate ( )if x  at ix  making it very 

rough and wiggly. In this case the variability of ( )if x  would be inflated. Finding the 

choice of smoothing parameter that balances the trade off between oversmoothing and 

undersmoothing is called the smoothing parameters selection problem. To give insight into 

the smoothing parameters selection problem consider figure 2 below.  
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Figure  2: Estimated curve and transformed crude mortality rates (dots), logit scale, for 
Dutch Male 2008. Source: HMD. 

The curves represent non-parametric estimates of the mortality rates. The more 

wiggly curve has been computed using a local polynomials estimate with a very small 

neighborhood. By contrast, the flatter curve has been computed using a very large 

neighborhood. Which smoothing parameter is correct? The question will be discussed in 

Section 4. 

1.5 Content of the paper 

This article begins by presenting, in Section 2, a general theory of local univariate 

polynomial regression, showing this method falls into the class of linear smoothers. Then 

Section 3 develops important properties, including bias and variance, which allow us in 

Section 4 to develop methods for statistical inference, model diagnostics and choices of the 

smoothing parameters. We emphasize on results that have immediate practical 
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consequences. To illustrate the discussion, we present two examples in Section 5. Section 6 

provides comparisons with the Whittaker-Henderson framework. Finally, Section 7 

summarizes the conclusions drawn in the paper. 

2. LOCAL POLYNOMIAL REGRESSION 

2.1 Premises 

The underlying model for local regression is  

 = ( ) , = 1, 2, , .i iiq f x u i n


  (1) 

The distribution of the iq


, including the means, ( )if x , are unknown. However, the 

iu  are assumed to be independently, identically distributed normal random variables, with 

zero mean and a constant, finite variance. 

In practice we must first model the data, which means making certain assumptions 

about f  and other aspects of the distribution of the iq


. For example, one common 

distributional assumption is that the iq


 have a constant variance, we need to ensure that 

these assumptions are reflected in the data and, if not, to make appropriate adjustments, see 

the following Section 2.2.  
For f , it is supposed that the function can be well approximated locally by a 

member of a parametric class, frequently taken to be polynomials of a certain degree. We 

refer to this as parametric localization. Thus, in carrying out local regression we use a 

parametric family just as in global parametric fitting, but we ask only that the family fit 

locally and not globally. Parametric localization is the fundamental aspect that distinguishes 

local regression from other smoothing methods such as smoothing splines, see Silverman 

(1985); or wavelets, see Donoho and Johnstone (1994); although the notion is implicit in 

these methods in a variety of ways. 

The estimation of f  that arises from the above modeling is simple. For each fitting 

point ix , we define a neighborhood in the design space of the independent variables. The 

size   of the neighborhood is an adjustable parameter that determines how local the fitting 

is; it is analogous to the length of the moving average in the time series case, and as the 

neighborhood size increases the estimate becomes smoother. 

Within this neighborhood, we assume f  is approximated by some member of the 

chosen parametric family. For example the family might be quadratic polynomials. Then, 
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estimate the parameters from observations in the neighborhood; the local fit at ix  is the 

fitted function evaluated at jx . Almost always, we will want to incorporate a weight 

function, (.)W , that gives greater weight to the jx  in the neighborhood that are close to ix  

and lesser weight to those that are further. 

In short, to use local regression, we must choose the weight function, the bandwidth, 

the parametric family, and the fitting criterion. The first three choices depend on 

assumptions we make about the behavior of f . The fourth choice depends on the 

assumptions we make about other aspects of the distribution of the iq


. In other words, as 

with parametric fitting, we are modeling the data. 

2.2 Transforming mortality data 

Before model (1) is applied, a key part of any data analysis is to consider 

transforming the data into a more tractable form that reflects the strengths of the model or 

that more clearly reveals the structure of the data. In parametric graduation, for example, it 

may be easier to transform the data and work with a linear model than to graduate the raw 

rates. The same philosophy applies in non-parametric graduation. If the transformed crude 

rates broadly follow a straight line, then this may lead to reduced bias over much of the age 

range, if the data are also evenly spaced. In the following part, we consider transforming 

the crude rates before graduating and then back-transforming to obtain our estimate of the 

true rates. 

The transformation considered satisfies the model,  

 = , for = 1, 2, , ;
t

i i iq q r i n
 

  

where t  denotes the transformation and the residuals ir  are assumed to be 

independently, identically distributed random variables, with zero mean and a constant, 

finite variance. Hence the graduation process is carried out on a transformed scale and 

model (1) becomes  

 = ( ) , for = 1, 2, , ;
t

i i iq f x i n


  (2) 

where i  are independently, identically distributed normal random variables with 

mean 0  and finite variance 2 . Once it is completed, the transformation is reversed to 

obtain the graduated rates on the original scale. A commonly used transformation, t , in 

binary analysis is the logit transformation. For our application,  
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 = log ,
1

t
i

i

i
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q

q

 
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  




  
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  |

|

exp ( )

= , for = 1,2, , .

1 exp ( )

t

j i j
j N j

i
t

j i j
j N j

s x q

q i n

s x q









 
 
 
 
 
 
 
 








  

By smoothing on a logistic scale and then back-transforming, we are guaranteed that 

the predicted values stay in an appropriate scale, 0 1iq  . Gavin et al. (1995, p.177-178) 

provide the motivation that this transformation also reflects the fact that small changes, 

when the mortality rate is near zero, are as important as larger changes, when the mortality 

rate is much higher. Note that binary data are often assumed to be independent, but this 

may not be the case for mortality data due to migration between ages during the period of 

investigation. This leads to look for smooth relations between neighboring rates by merging 

information from individuals with similar ages. 

Many other transformations are possible (Gompertz, Weibull, 1( )sin iq  

transformation), but their relative merits are beyond the scope of this paper. Overall, the 

choice of transformation remains subjective, and the relative success of a particular 

transformation seems to depend on the data set. 

However transformations do not always achieve normality, neither lead to 

skewness zero or homoscedasticity. Moreover an unbiased estimator in the new scale is no 

longer unbiased when returning to the original scale, which follows from the Jensen’s 

inequality.  

For the remaining part, we note the dependent variable 
t

iq


 by iy  to lighten the 

notation. 

2.3 Theory 

We assume a model of the form of 2,  
 = ( ) , for = 1, , ;i i iy f x i n   

where ( )if x  is an unknown function and i  is an error term. The errors i  are assumed to 

be independent and identically distributed with mean 0 , [ ] = 0i , and have finite 

variance, 2 2[ ] = <i i   . 
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We now turn to non-parametric estimation of f . Globally, no strong assumptions 

are made about f . Locally around a point ix , we assume that f  can be well 

approximated by a member of a simple class of parametric functions. 
Assume that the function f  has ( 1)p  th continuous derivative at the point ix . 

For data points jx  in a neighborhood of ix , we approximate ( )jf x  via a Taylor 

expansion by a polynomial of degree p :  

 

( )

=0

( ) ( ( ) / !)( )
P

p p
j i j i

p

f x f x p x x   (3) 

 2 ( )1 1
= ( ) ( )( ) ( )( ) ( )( )

2 !
p p

i i j i i j i i j if x f x x x f x x x f x x x
p

         

 
=0

= ( )( ) .
P

p
p i j i

p

x x x   

We then carry through a weighted polynomial regression:  

 

2

,
=1 =0

( ) ,
n P

j ip
j i p j i

j p

x x
y x x W

h


   
    

  
   (4) 

where (.)W  denotes a non-negative weight function depending on the target value 

ix  and the measurement points jx , and in addition, it contains a smoothing parameter 

= ( 1) / 2h    which determines the sizes of the neighborhood of ix . A weight function 

( )W u  should require:   

i. ( ) > 0W u  for < 1u ;  

ii. ( ) = ( )W u W u  ;  

iii. ( )W u  is a non increasing function for 0u   ;  

iv. ( ) = 0W u  for 1u  .  

( )W u  is some weight function like those given in Table 1, below. The requirements for 

( )W u  described above are needed for the following reasons: (i) is necessary, of course, 

since negative weights do not make sense; (ii) is required since there is no reason to treat 

points to the left of ix  differently from those to the right; (iii) is required for it seems 

unreasonable to allow a particular point to have less weight than one that is further from 

ix . 
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Weight function   ( )W u   

Uniform or Rectangular  
 
1

( 1)
2

I u    

Triangular   (1 ) ( 1)u I u    

Epanechnikov  
 23

(1 ) ( 1)
4

u I u   

Quartic (Biweight)  
 2 215

(1 ) ( 1)
16

u I u   

Triweight  
 2 335

(1 ) ( 1)
32

u I u   

Tricube   3 3(1 ) ( 1)u I u   

Gaussian  
 21 1

exp( )
22

u


  

Table  1: Example of weight functions with =| | / .j iu x x h  

Figure 3 displays some of the weight functions presented above. For a weight 

function ( )W u , the weights decrease with increasing distance j ix x . The window-width 

or bandwidth   determines how fast the weights decrease. For small  , only values in the 

immediate neighborhood of ix  will be influential; for large  , values more distant from 

ix  may also influence the estimate. Such a weight function produces smoothed points that 

have a smooth appearance and it is widely appreciated in the literature that a smooth weight 

function results in a smoother estimate, see Cleveland and Loader (1996, p. 10-11). One 

alternative is a rectangular weight function, or uniform. With uniform weights, all 

observations within the window width receive weight 1/ 2 , those further away receive 

weight 0, and observations abruptly switch in and out of the smoothing window.  
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Figure 3: Weighting system shape of some weight functions. 

If { ( )}p ix  denotes the solution to the above weighted least squares problem (4), 

then it is clear from approximation (3) that ! ( )p ip x  estimates ( ) ( )p
if x , = 0,1, ,p P . 

The weighted sum of square can be written in matrix form as  
 ( ) ( ),T y Xb W y Xb  

with  
2

1 1 1
12

2 2 2
2

2

1 ( ) ( )

1 ( ) ( )

= , = ,

1 ( ) ( )

P
i i i

P
i i i

P
n i n i n i

n

x x x x x x
y

x x x x x x
y

x x x x x x
y

   
       
  
  

     
   




    



X y  

 
and W  is a diagonal matrix, with entries =1{ }n

j jw , such that  

 
( / ) if / 1,

=
0 otherwise.

j i j i
j

W x x h x x h
w

   



 

If WX  has full column rank, least squares theory gives the explicit expression for 

the minimizer  

  1( ) = ( ) ,T T
ix b X WX X W y  (5) 

and 0 1= ( , , , )P  b . Hence,  
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   1
0 1( ) = ( ) = ( ) .T T T

i ix f x e X WX X W y  (6) 

Here and throughout, we let ve  denote a column vector of length 1P   having 1  as 

its v th entry and all other entries equal to zero. 

It is important to note that, contrary to ordinary parametric least squares, this 

estimator varies with ix , as locally around the target value a polynomial of degree P  is 

fitted by using the familiar technique of least-squares fitting. Thus, local regression is 

conceptually quite simple. In order to get an estimate for the function ( )if x , one has to 

minimize (4) for a grid of target values ix . For each target value one gets specific 

parameter estimates ( )ixb . 

Also, the form of the estimate is simple in that it is linear in iy . Because local 

polynomial regressions, solve a least squares problem, ( )if x  is a linear estimate. That is, 

for each ix  there exists some smoothing weights 1 2( ), ( ), , ( )i i n is x s x s x  such that  

 
=1

( ) = ( ) ,
n

i j i j
j

f x s x y  (7) 

where the smoothing weights on the observed responses are given by  

 
=0

( ) = ( ) .
P

p
j i j p j i

p

s x w x x   (8) 

This is equivalent to the theorem originally from Henderson (1916) for local cubic 

fitting and reformulated by Loader (1999b), which provides a characterization of the 

smoother matrix for local polynomial regression: the smoother matrix for a local 

polynomial fit of degree P  has the form of least squares weights multiplied by a 

polynomials of degree P . This representation is unique, provided TX WX  is non-singular. 
As we can see in (8) the smoother weights ( )j is x  depends on   and X  in a highly 

non-linear way. The only linearity we have in equation (7) is linearity in y . This linear 

representation (7) provides a basis for the theoretical development of local regression 

estimation. Likewise in a matrix form,  

 







1 1

22

( )

( )
= ,

( ) n
n

f x y

yf x

yf x

                        

 S  

where S  is the smooth weight diagram, an n n  matrix  
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1 1 2 1 1

1 2 2 2 2

1 2

( ) ( ) ( )

( ) ( ) ( )

= ,

( ) ( ) ( )

n

n

n n n n

s x s x s x

s x s x s x

s x s x s x

 
 
 
 
 
 
  




   


S  

with rows  
   1

1 2 1( ) = ( ), ( ), , ( ) = ( ) .T T T T
i i i n ix s x s x s x s e X WX X W  (9) 

In the next section, we turn to the statistical properties of this smoother. As we will 

see, smoothing always means a compromise between bias and variance and the choice of 

the smoothing parameters will be driven by this trade-off. 

3. STATISTICAL PROPERTIES 

3.1 Bias, variance, influence and degree of freedom 

Contrary to linear model fitting, there is no exact expression for the variance in a 

general case, because local polynomial regression models involve a non linear (vector) 

function of the estimate ( )k b . On the other hand, we can approximate the non linear 

function using a first-order Taylor series expansion about b . Assuming the first order 

differentiability of (.)k , we have  

    ( )
( ) = ( ) .

T

k
k k o


   


b

b b b b b b
b

 

Then for  
0( ) = ( )i if x x , we obtain  

    
0

( )
( ) = ( ) ,i i T

k
f x f x o




   


b
b b b b  

and,  

  
0

( )
( ) = ( ) .i i T

k
f x f x


       

b
b b   

We obtain an approximation of the variance of the local polynomials estimate by  

   2

( ) ( ) ( )i i iar f x f x f x        
   

  
2

0

( )
T

k



        

b
b b  (10) 
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  2

00

( ) ( )
= ( ) ( ) .i iT

k k
x x


      

b b
b b  (11) 

 We still need to estimate   2

( ) = ( ) ( )i i iar x x x       
b b b  . However, standard 

weighted least squares theory provides explicit mean and variance expressions of the 

solution (5),  

  1 1( ) = ( ) = ( ) ,T T T T
ix     b X WX X Wf b X WX X We  (12) 

where 1 2= ( ( ), ( ), , ( ))T
nf x f x f xf  and =1= { } =n

j j e f Xb ; and,  

       2

( ) = ( ) ( ) = ( ) ( ) ( ) ( )
T

i i i i i i iar x x x x x x x               
b b b b b b b    

 1 1= ( ) ( )T T T T   X WX X Wee WX X WX  

 1 1= ( ) ( ) .T T T T   X WX X W ee WX X WX  (13) 

From (2), 2[ ] = ( )T
j nxee I . Using local homoscedasticity, namely that 

( ) ( )j ix x   for jx  in a neighborhood of ix , then equation (13) can be approximated by  

  2 1 2 1( ) = ( )( ) ( ) .T T T
i iar x x   

 b X WX X W X X WX  (14) 

Therefore,  

  2 1 2 1
1 1( ) = ( ) ( ) ( )T T T T

i iar f x x   
  e X WX X W X X WX e  (15) 

 2= ( ) ,T
ix SS  

since 0 1( ) / =T Tk  b e .  

Then by (9) we obtain compact forms for the mean and variance of the local 

regression estimate, similar to Loader (1999b, p. 288) 

 
=1

( ) = ( ) ( )
n

i j i j
j

f x s x f x 
    

  2 2 2 2

=1

( ) = ( ) ( ) = ( ) ( ) .
n

i i j i i i
j

ar f x x s x x x  
   s    (16) 

The variance reducing factor 2( )ixs   measures the reduction in variance due to the 

local regression. It usually decreases with the bandwidth. The above distributional results 

are the same as those for parametric least-squares except that for least-squares S  is 

replaced by the so called hat matrix, the projection operator onto the space spanned by the 

fitting variables. S  shares with the hat matrix the property that if z  is a vector in this space 

then =Sz z . In other words, the smooth weight diagram is constant preserving, the rows of 

S  sum to one. The result of this partial analogy with parametric least-squares is that, in a 
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few aspects, distributional results for local regression are the same as those for least-squares 

and, in most other aspects, statistical quantities for local regression that are defined in 

analogy with least-squares have distributions that are well-approximated by those for least-

squares argue Cleveland et al. (1988). This is good news because it means that familiar 

techniques can be used to make inferences based on the local-regression estimates. 

As in linear models, a quantity of interest is the influence function, closely related to 
the variance. The influence values, infl( )ix , are the diagonal elements ( )i is x  of the smooth 

weight diagram,  
 1

1 1infl( ) = ( ) .T T
ix e X WX e  

These measure the sensitivity of the fitted curve ˆ ( )if x  to the individual data points. 

Although the notion of degrees of freedom does not really apply to smoothers, the 

usefulness of the degrees of freedom is in providing a measure of the amount of smoothing 

that is comparable between different estimates applied to the same dataset. Among the 

several possible definitions, we denote  

 1
=1

= infl( ) = tr( )
n

i
i

x  S  

 
2

2
=1

= ( ) = tr( ).
n

T
i

i

x  s SS  (17) 

2  is the equivalent degrees of freedom of ( )if x . For locally-weighted regression, as the 

bandwidth increases or as the degree of polynomial reduces, 2  tends to decrease, so we 

are using more equivalent degrees of freedom to explain the data. More extensive 

discussion of the degrees of freedom of a smoother can be found in Cleveland and 

Devlin (1988). 

3.2 Assessment of bias and variance and construction of pointwise confidence 

intervals 

The bias and variance in equations (12) and (13) are not directly accessible, as they 

depend on unknown quantities, the residual e  and 2 ( )ix . Finite sample estimates are 

needed to gain access to a smoothing parameter selection procedure and construction of 

pointwise confidence intervals. We now provide an estimate for the bias and variance of the 

local polynomial fit based on an idea introduced Fan and Gijbels (1995a, p. 218-219) and 

Fan and Gijbels (1995b, p. 376-378). 

The bias of the estimator b  comes from the approximation error in the Taylor 
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expansion. Recall the bias vector given in (12) and let  

 ( )

=0

( ) = ( ) ( )( ) / !,
P

p p
j j i j i

p

x f x f x x x p    

denote this approximation error at the point jx . Assume that the ( 1)p a  th 

derivative of the function f  exists at the point ix  for some > 0a . Then, a further 

expansion of ( )jf x  gives an approximation to the approximation error  

 1
1( ) ( ) ( ) ,p p a

j p j i p a j i jx x x x x    
        (18) 

where ( )= ( ) / !k
k if x k  and a  denotes the order of the approximation. The choice of a  

has an effect on the performance of the estimated bias. A discussion of the choice of a  can 

be found in Fan and Gijbels (1995b, p. 376) who recommend using = 2a  for practical 

implementation. 

 
The unknown parameters in 1 2= ( , , , )T

n     can be estimated from a local 

polynomial fit of order p a  with a bandwidth h . Let  
1, ,p p a 

 

   be the resulting 

estimated regression coefficients and denote the weighted residual sum of squares by  

  2
2

1 2
=1

1
( ) = ( ) ,

tr( ) tr(( ) )

n
j i

i j jT T
j

x x
x y y W

h




        

 
    


W X W X X W X

 (19) 

where  jy  are the fitted values from the ( )p a th order local polynomial fit. 

Moreover, X  and W , similar to X  and W , denote respectively the design matrix and 

weight matrix for the local ( )p a th order polynomial fit with bandwidth h . 

Substitution of the estimates for 1, ,p p a    into the vector   gives  , leading to 

an estimated bias vector  

  1bias ( ) = ( )T T
p ix  X WX X W

 

 

 

1 1
1

1 2 1 2

= ( ) ,
p p ap p a

p p ap p a

t t

t t

 

 

 

  


 

  

 
 
 
 
 
 






T  (21) 

where = TT X WX  is a ( 1) ( 1)p p    matrix whose ( , )j k th  element is 2j kt    with  

 
=1

= ( ) .
n

j ik
k j i

j

x x
t x x W

h

 
  

 
  (22) 

The variance matrix of the estimator (13) can be estimated by substituting 
2
( )ix


, 

defined in (19), into (14). This provides an estimated variance matrix  
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   2 1 2 1var ( ) = ( )( ) ( ) .T T T
p i ix x

  X WX X W X X WX  (23) 

Expressions (21) and (23) give the estimated bias and variance not only for ( )if x  

but also for 
( )

( ) = ! ( ), = 0,1, ,
v

i v if x v x v P  . 

The estimated bias for 
( )

( )
v

if x  is the ( 1)v  th element of (20), denoted by 


,bias ( )p v ix , multiplied by !v . Its estimated variance is given by ( 1)v  th diagonal element 

of (23), denoted by  ,var ( )p v ix , times 2( !)v . For instance,  

  1
1( ) ( ) = ( ) ,T T T

i if x f x    
e X WX X W  (24) 

and,  

   2
1 2 1

1 1( ) = ( ) ( ) ( )T T T T
i iar f x x

   
  e X WX X W X X WX e  

  2 2= ( ) ( ) .i ix x


s   (25) 

Recall that the approximated bias (12) and variance (13) depends respectively on the 

quantities 1, , n   and 2 ( )ix , which are unknown. These quantities will be estimated by 

fitting a local polynomial of degree p a  locally via equation (4), using a pilot bandwidth 

h . This gives estimates   
0 1, , , p a  
  

  and  2
( )ix


, which are then substituted 

respectively into expressions (18), yielding estimates 1 2, , , n      of 1 2, , , n   , and (23) 

leading to the estimated variance. Finally, the estimated bias is computed by substituting 

the estimates 1 2, , , n      into (20). 

As recommended by Fan and Gijbels (1995b, p. 377) we modify the bias estimate in 

expression (21) to improve its finite sample performance, especially in case of higher order 

fits ( 2p  ). This slight modification consists of replacing the higher order terms 

1 2 2, , ,p a p a p at t t      in (21) by 0 .  

Fan and Gijbels (1995b, p. 377) argue that it reduces collinearity effects among 

monomials {( ) }k
j ix x  such as 2{( ) }j ix x  and 4{( ) }j ix x . This operation has no effect 

on the asymptotics properties, since it only concerns the higher order terms and no leading 

terms. 

Having estimates of the bias and variance, we are now able to compute pointwise 

confidence intervals for ( )if x  and to adjust the intervals to allow for bias. 

By (25) a local polynomial estimate ( )if x  has the distribution  

 
  ( ) ( )

(0,1).
( ) ( )
i i

i i

f x f x
N

x x


s




 
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If ( ) = ( ) ( )i i ib x f x f x    , an estimated bias corrected confidence interval is  

     ( ) = ( ) ( ) ( ) ( ) , ( ) ( ) ( ) ( ) ,i i i i i i i i iI x f x b x c x x f x b x c x x 
 

     s s     (26) 

where c  is the appropriate quantile of the standard normal distribution ( = 1.96c  for 95%  

confidence) and ( )ib x  is a bias estimate as defined in (24). 

Remark that this approach based on a plug-in principle has been criticized in the 

literature. Loader (1999b, p. 168)  argue that plug-in bias estimates simply amount to 

increasing the order of the fit. For example, a double smoothing bias correction converts a 

local constant estimate into a local quadratic. In this case an estimated ( )iI x  is just a 

construction of an undersmoothed interval centered around the local quadratic estimate 
( ) ( )i if x b x  . 

Other authors have expressed the bias and the variance in other fashions, see Section 

4.2 or Cleveland et al. (1988, p. 100) however we do not provide here any comparisons 

between the approaches. 

3.3 A bias and variance trade-off 

The bias measures the distance that the curve is away from the data points. We do 

not want this too large obviously, and too small would be an interpolation, so somewhere in 

between is desirable. 

The variance measures how much the model depends on that one sample. Again, it 

is fairly obvious that we do not want this to be too big or too small. 

The compact form obtained for the bias (24) and variance (25) espressions are 

suitable for our applications. However, they only give limited view of the behavior of the 

bias and variance functions when the design, sample size or neighborhood change. 

Here we provide some simple asymptotic approximations to the bias and variance 

functions based on the derivations of Loader (1999b, p. 38-42) and Fan and Gijbels (1996, 

p. 101-107). These results stated below for one independent variable are not new. Tsybakov 

(1986) and Muller (1987) were among the first to derive these for local regression, although 

similar expressions for kernel regression and density estimation have been known for much 

longer. 

Let suppose ( )if x  is a local polynomial fit of degree p . Assuming that ( )if x  is 

2p   times differentiable, we can expand (.)f  in a Taylor series around ix :  
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( ) ( )

( ) = ( ) ( ) ( ) ( )
!

p
p i

j i j i i j i

f x
f x f x x x f x x x

p
      

 
( 1) ( 2)

1 2( ) ( )
( ) ( )

( 1)! ( 2)!

p p
p pi i

j i j i

f x f x
x x x x

p p

 
     

 
  

As an application of Henderson’s theorem, we know that the row sums to 1 , 

=1
= 1

n

jj
s  and 

=1
( ) ( ) = 0

n k
j i j ij

s x x x  for 1 k P  . This leads to,  

 
( 1)

1

=1

( )
( ) ( ) = ( ) ( )

( 1)!

p n
pi

i i j i j i
j

f x
f x f x s x x x

p


        

 
( 2)

2

=1

( )
( ) ( )

( 2)!

p n
pi

j i j i
j

f x
s x x x

p


  

    (27) 

The bias has a leading term involving the ( 1)p  st derivative 
( 1)

( )
p

if x


. We keep 

the 
( 2)

( )
p

if x


 term in (27) because in our case the design points are equally spaced, the 

rows of the smooth weight diagram are symmetric around the fitting point ix . Then, if p  is 

even, 1p   is odd and 1

=1
( ) ( ) = 0

n p
j i j ij

s x x x   by symmetry, similarily to Muller 

(1987, p. 234 Corollary 3) for kernel regression. Thus the first term in the bias expansion 

disappears. In this case the second term is dominant. 

 From expression (22), the matrix TX WX  has components kt  of the form 

=1
( )

n k
j j ii

w x x . Under mild conditions, in particular nh  ,  

 
=1

( )1
= ( ) ( ) (1),

kn
j il l k

j ik
j

x x
w W v v f x hv dv o

nh h


    (28) 

This result is valid for fixed h . Under the additional assumption 0h  , (28) 

simplifies to  

 
=1

( )1
= ( ) ( ) (1).

kn
j il l k

j ik
j

x x
w f x W v v dv o

nh h


   (29) 

For regular design, the limit (29) follows from the theory of Riemann sums, see 

Loader (1999b, p. 38-39). Applying (28) and (29) to the matrix T lX W X  gives  

 1 11 T l

nh
 H X W X H  

 

( ) ( ) ( ) ( ) (1) hfixed

= ( ) ( ) ( ) ( ) (1) h 0,

l T
i

l T
i

W v v v f x hv dv o

f x W v v v dv o

  

  






c c

c c  (30) 
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where H  is a diagonal matrix with elements 1, , , Ph h  and ( )vc  is the vector of the fitting 

functions, ( ) = (1, , , / !)p Tv v v pc . 

Asymptotic approximations to quantities such as the bias and variance are now 

easily derived. Under the small bandwidth limits, the variance (25) has the following 

asymptotic approximation  

 
2

1 1 1
1 1 2 1 1

( )
( ) = (( ) ),

( )
Ti

i
i

x
ar f x o nh

nh f x

 
         e e  (31) 

where 1 = ( ) ( ) ( ) .l T
l W v v v dv  c c  

Substituting (30) into expression (6) for the local regression estimate leads  

  1 1
1 1

1
( )

( )
T T

i
i

f x
nhf x

  e H X Wy  

 
=1

1
= ,

( )

n
j i

j
ji

x x
W y

nhf x h

 
 
 

   

where  
 1

1 1( ) = ( ) ( ).TW v v W v e c  (32) 

The weight function ( )W v  is the asymptotically equivalent kernel. Its depends on 

the degree of fit and the original weight function ( )W v . Often equivalent kernels provide 

poor approximations but their merit is to simplify theoretical computations considerably, 

see Loader (1999b, p. 40) and Fan and Gijbels (1996, p. 101-107) 

The asymptotic variance (31) becomes  

 
2

2( )
( ) ( ) .

( )
i

i
i

x
ar f x W v dv

nh f x

 

       

The first term of the bias expansion (27) is approximated by  

 
1 ( 1)

1 1( )
( ) = ( ) ( ).

( 1)!

p p
p pi

i

h f x
b x v W v dv o h

p

 
 

    

If p  is even and ( )W v  is symmetric, 1 ( ) = 0pv W v dv  . The dominant bias arises 

from the second term of (27), which has size 2( )po h  . For p  even, we obtain  

 
( 1) ( 2)

2 2 2( ) ( ) ( )
( ) = ( ) ( ).

( 1)! ( ) ( 2)!

p p
p p pi i i

i p
i

f x g x f x
b x h v W v dv o h

p g x p

 
   

    
   

For more details and additional assumptions see Ruppert and Wand (1994), Loader 

(1999b, p. 38-42) and Fan and Gijbels (1996, p. 101-107) among others.  

When we look at the asymptotic bias and variance, we find interesting features. In 

the leading term of the bias the smoothing parameter is found in the numerator while for the 
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variance it is found in the denominator. Thus, for 0   the variance becomes large 

whereas the bias becomes low. 

As an illustration, Figure 4 shows the squared bias, variance and MSE  into one 

graph. We see that the bias-variance trade-off is evident as well as the fact that the 

minimization of the mean squared error is a compromise between the two. 

The intuition is as follows. When the local polynomial does not fit well, i.e. the 

bandwidth is too large, the bias is large and hence also the residual sum of squares. When 

the bandwidth is to small, the variance term tends to be larger. So the MSE  quantity 

protects against both extreme choices.  
 

 

Figure  4: Squared bias (thin dashed), variance (thin solid) and mse (thick solid) of a local 
polynomial fit for the Dutch male population, 2008. Source: HMD. 

In addition, there is a difference between p  odd and p  even, leading to the same 

order of the bias for = 0p  (constant) and = 1p  (local linear), as well as = 2p  (local 

quadratic) and = 3p  (local cubic), and so on. For instance, for = 0p  as well as for = 1p , 

the leading term of the bias contains 2h , whereas for = 2p  and = 3p  one obtains 4h . 

One last feature as is seen in the formulas, for p  odd the bias does not depend on 

the density ( )ig x ; in this sense the estimate is design adaptive to use the terminology of 

Fahrmeir and Tutz (2001). For p  even, the term contains the density ( )ig x  in the 

denominator, meaning that bias is lower if the density ( )ig x  is high. 

To give an illustration on how the trade-off between bias and variance works in 

practice, consider Figures 5 and 6. 
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Figure 5 shows fits for Dutch Male data (year 2008) and age range from 0 to 36 

where the curvature is the most pronounced. Each column contains fits for one value of   (

= 9  to 41 ). The rows show the fits for degrees 4  to 0 . The fits have been computed 

using a triweight weight function. 

Figure 6 shows the residuals for each of the 20  fits in Figure 4, but for the all age 

range, from 0  to 98 . Superposed on each plot is a loess smooth. 

 

Figure 5: Fits for four bandwidths and five local fitting methods for the Dutch male 
population, 2008. Source: HMD. 
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Figure  6: Transformed Residuals plots for the fits in the left panel for the Dutch male 
population, 2008. Source: HMD.  

 

For local constant fitting, = 0p , a small   is needed to capture the dependence 

of the probability of death on age without introducing an undue distortion. Even for = 9 , 

the plot of residuals suggests a lack of fit at the youngest age, that is, at the left boundary, 

where there is a large curvature. Local constant fitting can neither capture a quadratic effect 
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at the left boundary, nor the hump around 18  years old. A similar remark can be done for a 

local linear fitting, when = 1p , even for small values of  .  

As we increase   to get a smoother fit, the local constant and linear fits introduce a 

major distortion, and misses completely the mortality patterns. As   increases the 

neighborhood size increases, the bias tends to increase, and the variance tends to decrease. 

However, one can observe that a high polynomial degree will usually provide a better 

approximation than a low polynomial degree. 

Thus as we increase the polynomial degree, we reduces the bias and the curvature at 

youngest ages is capture as it is illustrated in Figure 6. 

To some extents, the effects of the polynomial degree and bandwidth are 

confounded. For example, if a local quadratic and a local linear estimate is computed using 

the same bandwidth, the local quadratic estimate is more variable. But the variance increase 

can be compensated by increasing the bandwidth. 

For mortality data there is a pronounced dependence of the response on the 

independent variable, illustrated by valleys and peak at youngest ages. Therefore we might 

expect that locally, a small   and a quadratic or cubic family provides a reasonable 

approximation. This, however, must be done judiciously, since there must be a sufficient 

number of observations to support the extra degrees of freedom. 

The issue is how do we choose the value of the smoothing parameters to get the 

right balance of bias and variance? The answer is to try and satisfy some optimality criteria 

and it is discussed in the following section. 

4. FITTING CRITERIA AND CHOICE OF THE SMOOTHING 

PARAMETERS 

Where do we look to make the choices of the smoothing parameters ? The answer is, 

as we have emphasized, to treat choices of bandwidth, polynomial degree and weight 

function as modeling the data and use formal model selection criteria and graphical 

diagnostics to provide guidance. 

The development of methods of parametric regression has had a long history of 

using model selection criteria and diagnostic methods for parametric models fitted to 

regression data argue Cleveland and Loader (1996). 

From parametric regression, we shall think about two families of criteria 

respectively based on prediction error and on estimation error. 
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4.1 Criteria based on prediction error 

To evaluate the performance of the estimator we may focus on the prediction 

problem: 

- If the fitted regression curve is used to predict new observations, how good 

will the prediction be ?  

- If a new observation is made at 0=ix x , and the response 0y  is predicted 

by  
00 = ( )y f x , what is the prediction error?  

One measure is  

  2

0 0ˆ .y y    

The method of cross-validation ( CV ) can be used to estimate this quantity. In turn, 

each observation  ,i ix y  is omitted from the dataset, and is predicted by smoothing the 

remaining 1n   observations. 

This leads to the CV  score  

  2

=1

1
= ( ) .

n i

i i
i

CV y f x
n


  (33) 

where  ( )
i

if x


 denotes the smoothed estimate when the single data point  ,i ix y  are 

omitted from the dataset; only the remaining 1n   data points are used to compute the 

estimate. 

The leave-one-out cross validation criteria was introduced for parametric models as 

the PRESS procedure (prediction error sum of squares). Formally computing each of the 

leave-one-out regression estimates  (.)
i

f


 would be highly computational, and so at a first 

sight computation of the CV  as in (33) looks prohibitively expensive. But there is a 

remarkable simplification, valid for all common linear smoother, by correcting the weights 

computed for the full set of n  data points. We can calculate all the leave-one-out smooths 

from the original smooth weight diagram S . 

Actually, it is not clear what 'leave-one-out' means in the context of smoothing. In 

general there is no necessary relationship between a smoother for n  data pairs and a 

smoother for 1n   data pairs. One method of finding such relationship is to note that any 

reasonable smooth weight diagram is constant preserving. Thus if we want to use the same 

smooth weight diagram with the i -th row and column deleted to be an ( 1) ( 1)n n    

smooth weight diagram, we must renormalize the rows to sum to one. 
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Let recall that ( )i is x  denote the diagonal elements of the original n n  smooth 

weight diagram S . When we delete the i -th column, then the i -th row sums to 1 ( )i is x . 

So that's what we divide by to renormalize. For linear smoothers ( ) = ( )i j i jj
f x s x y , one 

may choose  

 
=1

1
( ) = ( ) ,

1 ( )

ni

i i j j
ji i
j i

f x s x y
s x




   (34) 

where the modified weights ( ) / (1 ( ))i j i is x s x  now sum to 1 . Thus, one gets the simple 

form  

   ( )1
( ) = ( ) .

1 ( ) 1 ( )

i i
i i

i i i
i i i i

s x
f x f x y

s x s x

 


 
 

Then the essential term  ( )
i

i iy f x


  in (33) is given by  

   ( )
( ( )) = ,

1 ( )

i
i

i i
i i i

i i

y f x
y f s x

s x


 




 

and may be computed from the regular fit ( )if x  based on n  observations and weights 

( )i is x . By using (34) one gets the criterion  

 
 2

=1

( )1
= .

1 ( )

n
i i

i i i

y f x
CV

n s x

 
   

  

Generalized cross-validation ( GCV ), as introduced by Craven and Wahba (1979), 

replaces ( )i is x  by the average ( ) /i ii
s x n .  

The resulting criterion  
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

   

 is easier to compute as it is the single average squared error corrected by a factor. The 

generalized cross validation can be seen as a special case of minimizing  
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  2
log( ) ( ),  S  

where (.)  is a penalty function that decreases with increasing smoothness of f  and 

 2
2= (1/ ) ( ( ))i ii

n y f x   is the average squared residuals, see Hurvich et al. (1998, 

p. 273). 
The choice  ( ) = 2log 1 tr( / )n  S S  yields the GCV  criterion, while 

( ) = 2 tr( / )n S S  yields the AIC  criterion  

  2
log( ) 2 tr( ) / .n  S  (35) 

The usual form of the AIC  criterion is given by  = 2 log( )AIC L p  , where 

log( )L  is the maximal log-likelihood and p  stands for the number of parameters. Under 

the assumption of normally distributed response 2( , )i iy N   , one obtains apart from 

additive constants  2 2
= log( )AIC n p

n
  

 
. In (35) the trace tr( )S  plays the role of the 

effective numbers of parameters used in the smoothing fit, see Loader (1999b). Thus, 

replacing p  by tr( )S  yields to (35). If  ( ) = log 1 2 tr( ) / n  S S  is chosen, one obtains 

the criterion suggested by Rice (1984). 

A last alternative can be mentioned. Hurvich et al. (1998, p. 88) proposed to use the 

criterion AICC , a corrected version of the AIC ,  

 2 21 ( ) / 2(tr( ) 1)
ˆ ˆ= log( ) = log( ) 1 .

1 ( ( ) 2) / tr( ) 2

tr n
AICC

tr n n
  

  
   

S S

S S
 (36) 

The first term in (36) measure the quality of the adjustment while the second term 

evaluate the model complexity. 

It follows from Hardle et al. (1988, p. 88) that all the so-called 'classical' selectors 

considered here are asymptotically equivalent. Given this, we might wonder why they 

might exhibit noticeably different performances in practice. The reason, exposed in Hurvich 

et al. (1998, p. 277) is that the asymptotic theory assumes tr( ) 0S , a situation that is not 

consistent with a small smoothing parameter  . 

Figure 7 makes this distinction clear. It gives the penalty functions ( ) S  as a 

function of tr( )S  for GCV , Rice's T  statistic, the AIC  and 1AICC   (subtracting 1 from 

AICC  makes it comparable with the other selectors, and does not affect its smoothing 

parameter choices; since AICC  depends on n , its curve is given for = 100n ). 
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Figure 7: (.)  penalties for various selectors as a function of  tr / nS . 

All four functions become indistinguishable at the left-hand end of the plot, which 

corresponds to tr( ) / 0n S  and the usual asymptotics. The criteria differ markedly for a 

small smoothing parameter (large tr( ) / nS ), however, with a sharper rise corresponding to 

a heavier penalty against undersmoothing. The AIC  and GCV  have relatively weak 

penalties; this accounts for their tendencies to lead to undersmoothing. The Rice's T  

statistic, in contrast, has a very strong penalty, as it is effectively infinite for tr( ) / 0.5n S . 

This means that The Rice's T  must lead to oversmoothing when a very small smoothing 

parameter is appropriate. AICC  occupies a position between these two extremes, being 

less susceptible to both the undersmoothing of the AIC  and GCV  and the oversmoothing 

of the Rice's T  statistic. 

In consequence, we would use AIC  and GCV  selector when the data present a 

relatively smooth pattern as we are more likely to look for an undersmooth fit. While The 

Rice's T  statistic and AICC  would be used reciprocally, as they lead to an oversmooth fit 

which is satisfactory when the data are relatively volatile. 

4.2 Criteria based on estimation error 

Alternatively, one can consider methods motivated by estimation error: how well 

does ( )f x  estimate the true mean ( )f x  ? A risk function measures the distance between 

the true regression function and the estimate; for example,  

   2

2
=1

1
( , ) = ( ) ( ) .

n

i i
i

R f f f x f x


     (37) 
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Ideally, a good estimate would be one with low risk. But since f  is unknown, 

( , )R f f  cannot be evaluated directly. Instead, the risk must be estimated. Focusing on the 

squared-error risk, we have the bias-variance decomposition  

    2
2

=1 =1

( , ) = ( ) ( ) ( ) .
n n

i i i
i i

R f f ar f x f x f x            

Cleveland et al. (1988, p. 100) compute the expected value of the residual sum of 

squares of ( )if x  as  

     22

=1 =1 =1

( ) = ( ) ( ) ( ) .
n n n

i i i i i i
i i i

y f x ar y f x f x f x
              
      

Likewise in matrix notation, knowing that  

   =ar ar     y f I S y   

   2=
T  I S I S  

  2= ' ,T   I S S SS  

where y  the vector of the response value and I  is the matrix identity, we have  

   
2

2= tr T T T       
y f I S S SS b b  

  2= 2 tr( ) tr( )T Tn   S SS b b  

 2
1 2= ( 2 ) ,Tn     b b  

with b  being the bias vector. Hence Cleveland et al. (1988, p. 100) estimate of the bias 

term Tb b  as  

  2
2

1 2( 2 ).n        
y f  (38) 

With (25) and (38), and making the propers arrangements, an unbiased estimate of (37) is  

    2

12
=1

1
( , ) = ( ) 2 .

n

i i
i

R f f y f x n 


    

This statistic is known as the Cp  criterion, and has been introduced by Mallows 

(1973) for parametric regressions. It provides an unbiased estimate of ( , )R f f . This 

statistic was extended to local regression by Cleveland and Devlin (1988). To implement 

the Cp  criterion (or unbiased risk estimate) one needs to known an estimate 2 . However 

in practice, we do not know 2 , the recommendation of Cleveland et al. (1988) is to 

replace it by an estimate from a local fit for which it seems reasonable to suppose the bias is 

small, this means estimating, 
2

 , where   is small by  
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=11 2

1
= ( ) .

2

n

i i
i

y f x
n


 


    

4.3 Plug-in methods and theoretical bandwidth 

Since the choice of the smoothing parameters is of crucial importance to the 

performance of the estimator, this has been a topic of extensive research. The work has 

been most predominantly in the setting of kernel density estimation, see Loader (1999a). 

The bandwidth selection methods can be divided into two broad classes, the classical and 

plug-in methods. 

Classical methods are Cp , CV , GCV  and AIC  and variations, introduced in 

Section 4.1 and 4.2. We have seen these are more or less natural extensions of methods 

used in parametric modeling. 

On the other hand, plug-in methods rely on an approximation of the bias via Taylor 

series expansions. The bias of an estimate f  is written as a function of the unknown f , 

and is approximated through Taylor series expansions. A pilot estimate of f  is then 

plugged in to derive an estimate of the bias and hence an estimate of the mean squared 

error. The optimal bandwidth minimizes this estimated measure of fit. 

    2
2

, , ,( , ) = ( !) bias ( ) var ( ) .p v p v p vi i iMSE x h v x x  (39) 

With the estimated MSE , Fan and Gijbels (1995b, p.378) formulate a bandwidth 

selection rule as follows: Fit a polynomial of order p a  (choosing = 2a ) and find the 

pilot bandwidth h  that minimizes the integrated residual squares criterion,  

 ( ) = ( , ) ,IRSC h RSC t h dt  

with the RSC  defined as  

   
2

( , ) = ( ) 1 ( 1) / ,i iRSC x h x p N


   (40) 

where 1N   is the first diagonal element of the matrix 1 2 1( ) ( )T T T X WX X W X X WX  and 
 2

( )ix


 is the normalized weighted residual sum of squares after fitting locally a ( )p a th 

order polynomial defined as expression (19). Note that N  reflects the effective number of 

local data points since  2( ) = ( ) /i iar x x N 
 b  by equation (14). 

The intuition behind statistic (40) is that when the local polynomial does not fit well 

(the bandwidth is too large), the bias is large and hence also the residual sum of squares 

 2
( )ix


. When the bandwidth is to small, the variance term N  tends to be larger. So the 

RSC  quantity protects against both extreme choices. 
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Thus, having the optimal bandwidth h  for estimating 1p  , obtain estimates 


1( )p ix


 ,  2 ( )p ix


  and 
2
( )ix


. With these estimated parameters, compute the estimated 

bias  ,bias ( )p v ix  and variance  ,var ( )p v ix  of  v , which are respectively the ( 1)v  th 

element of vector (20) and the ( 1)v  th diagonal element of the estimated expression (23). 

Combining these estimates yield to the estimated MSE  (39). This leads to the bandwidth 

selector  

   , ,= arg ( , ) .minp v p v
h

h MSE t h dt  

The key problem here is the bias estimation. The current approach makes it possible 

to assess the bias without going into deep asymptotics. It differs from the usual plug-in 

procedure (see for instance Park and Marron (1990), Sheather and Jones (1991), and Gasser 

et al. (1991) in the sense that the kt , defined by expression (22), are not further replace by 

their asymptotics counterparts. The quantities kt  are already known, and Fan and Gijbels 

(1995b) argue that replacing them by their corresponding asymptotic quantities introduces 

not only some extra approximation but also extra unknown parameters such as the marginal 

density ( )X if x .  

However, for higher order fit ( 2p  ) such as local quadratic or cubic fits, bias 

estimation essentially amounts to estimating fourth order derivatives about which the data 

contains little or no information indicate Cleveland and Loader (1996, p. 33). Hence plug-in 

bandwidth selection alone does not solve the bandwidth problem, but replaces the problem 

with the problem of choosing pilot bandwidths. 

4.4 Graphical diagnostics and heuristics 

In practice one needs to choose   and the fitting variables to balance the trade-off 

between bias and variance. To find such constellation, we can compute the criteria 

presented in Section 4.1 and 4.2 for different fits and select the fit with the lowest score. 

However, as argue strongly by Cleveland and Devlin (1988), this discards much of 

the information about the trade-off between the contributions of variance and bias to the 

mean-square-error that the statistics provided by the whole profile of the selectors curves. 

Cleveland and Devlin introduced then graphical tools for displaying these statistics. 

As an illustration, Figure 8, below, displays the AIC  scores against the fitted 

degrees of freedom tr( )TSS . We use the fitted degrees of freedom, rather than the 

smoothing parameter, as the horizontal axis. This aids interpretation: 10 degrees of freedom 



40 J. TOMAS  

 

represents a smooth model with very little flexibility while 30 degrees of freedom 

represents a noisy model showing many features. It also aids comparability as we can 

compute criteria scores for other polynomial degrees or for other smoothing methods and 

added to the plot. 

 

Figure  8: AIC  scores for various polynomial degrees and triweight weight function for 
Dutch Male population, 2008. Source: HMD. 

From Figure 8, the lowest score corresponds to a quartic fit with 2 = 47, 41 , 

leading to a smoothing window of 11 points. Following Loader (1999b, p. 33), any model 

with a score near the minimum is likely to have a similar predictive power. The flatness of 

the plot reflects the uncertainty in the data, and the resultant difficulty in choosing the 

smoothing parameters. Hence Cleveland and Devlin (1988) elect to use a larger   and 

recommend to choose the smoothing parameters at the point when the criterion reaches a 

plateau after a steep descent. In consequence, we would select a cubic fit with 2 = 18,46 , 

corresponding to a bandwidth of 19 observations. 

In parallel, we shall use fitting and corresponding residuals plots. Figure 9 shows 

the fits and corresponding residuals plot for the constellation picked by the lowest AIC  

score and the one elected by aid of our graphical diagnostic. Both of the fits have been 

computed with a triweight weight function. 

One always has to look at residual plots in conjunction with looking at plots of the 

fits. Superposed on the residual plot is a loess smooth with local quadratic fitting and 
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= 19 . The smooths help for search for clusters of residuals that may indicate lack of fit. 

Such residual plots provide an exceedingly powerful diagnostic that nicely complements 

the selection criteria. The diagnostic plots can show lack of fit locally, and we have the 

opportunity to judge the lack of fit based on our knowledge of both the mechanism 

generating the data and our knowledge of the performance of the smoothers used in the 

fitting. Here, the process is not to judge a fit adequate if a smooth curve on its residual plot 

is flat. A flat curve means simply that no systematic, reproducible lack of fit has been 

detected. The fit may well be too noisy as we can see from the fit computed with the lowest 

AIC  score. It stays too close to an interpolation since trends in small parts of the data are 

interpreted as more widespread trends. Then, for small dataset, the fit is very nearly 

interpolating the data which results in unacceptably high variance. 

 

Figure 9: Fits and residuals plots elected by the AIC  score with a triweight weight 
function for Dutch Male population, 2008. Source HMD. 

Loader (1999a) has emphasized the importance of not relying blindly on any 

bandwidth selector to produce the right bandwidth automatically. If one applies a 

bandwidth selector, plots the fit, one gets a one-sided view of the bias-variance trade-off, 

seeing the variance but not the bias. It is extremely important to use appropriate residual 

diagnostics to look for lack of fit. Likewise, plotting the AIC  or variations, provides 

valuable diagnostic information as to how difficult the bandwidth selection is; a flat plot 

suggests that different features of the data may be competing for attention at different 

bandwidths. Plug-in approaches discard this information. 
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Plug-in approaches make substantial prior assumptions about the required 

bandwidth through the specification of tunning parameters for pilot estimates. They will 

fail if this information is wrong. The plug-in methods obtain much of their information 

from the data through the use of higher order pilot estimates. If classical approaches are 

also allowed to consider higher order methods, better estimates result. Loader (1999a) does 

not claim that classical approaches such as AIC  and variations will produce the best 

estimates, but rather that, used properly, the results will often be more informative than 

other bandwidth selection. 

To conclude, note that exclusive reliance in practice on a global criterion is unwise 

because a global criterion does not provide information about where the contributions to 

bias and variance are coming from the design space. 

In the next section, we use two examples to graduate the mortality data through the 

choices of the weight function, the bandwidth, and the parametric family. We use the fitting 

criteria and graphical diagnostics to guide the modeling. 

5. LOCAL POLYNOMIALS METHOD FOR GRADUATION 

5.1 The data 

In this section we present two applications of local polynomial fitting method for 

graduation. The computations are carried out with the help of the software R, R 

Development Core Team (2011). The scripts are available on request. Figure 10 displays 

the observed statistics of the two datasets. 

- The data for the first application are reported by the Human Mortality 

Database (2011). The dependent variable is the measurements in a logit 

scale of the one-year probability of death for the Dutch Male population for 
the year 2008 at age ix ; ix  being the independent variable.  

- The data for the second application are the Female counterpart.  
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Figure  10: Observed statistics for Dutch Male and Female population, 2008.  
Source: HMD. 

5.2 Choice of the constellation of the smoothing parameters 

We graduate the mortality data through the choices of the weight function, the 

bandwidth and the parametric family. In practice one needs to choose   and the fitting 

variables to balance the trade-off between bias and variance. To find such constellation, we 

use the criteria presented in Section 4 and graphical diagnostics to guide our modeling. 

Both datasets present a relatively wiggly pattern. For these applications we picked 

the optimal constellation selected by the Rice’s T  statistic and AICC  as the final fit. Due 

to strong penalties on ( ) /tr S n , these criteria have tendencies to lead to oversmoothing, 

which, considering the underlying pattern of the data, is satisfactory. However, the selected 

bandwidth should not be too large to capture the structure at the left boundary and the 

accident hump which we believe as true. 

Table 2 displays the elected optimal constellation of smoothing parameters for the local 
polynomials method together with the fitted degrees of freedom. Recall = (2* ) 1h  . 

 

   Degree (.)W  Fitted DF 

Dutch Male  19 3 Triweight  18,46 

Dutch Female  21 3 Triweight  16,76 

Table 2: Elected optimal constellation of smoothing parameters and  
fitted degrees of freedom 
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A local cubic fit is needed to capture the mortality patterns. The choice differ by the 

elected bandwidth. The weight function has much less effect on the bias-variance trade-off 

than the two others smoothing parameters. However, it influences the visual quality of the 

fitted regression curve. 

The mortality patterns for the Dutch female population are less pronounced than for 

the male. An higher   is then needed to smooth the structure at the left boundary and the 

accident hump which we believe less accentuated than the Male population. The 

corresponding fitted degrees of freedom for the female population are lower than the ones 

for the male, indicating that we have applied more smoothing. 

Table 3 presents the theoretical optimal bandwidth provided by the plug-in method 

developed in Section 4.3. We fit a polynomial of degree 3 and use the corresponding 

optimal weight functions elected in Table 2. The values of   are reported below. 

 

    Pilot bandwidth Optimal bandwidth 

Dutch Male  = 19  = 17  

Dutch Female  = 32  = 21  

Table 3: Pilot and optimal bandwidths selected by the plug-in method 

The optimal bandwidths confirmed our choices presented in Table 11, being 

relatively close and agreeing with our ranking. 

5.3 Plots of the fits on the transformed scale 

Figure 11 presents the mortality rates (logit scale) graduated by our local 

polynomials method with the optimal constellation of smoothing parameters displayed in 

Table 2. 
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Figure  11: Graduated mortality rates by local polynomial (logit scale) with 95% pointwise 
confidence intervals and corresponding transformed residuals plots for Dutch Male and 

Female population, 2008. Source: HMD. 

In conjunction of the plots of the fits, we display the residuals plots. Superposed on 

the responses residuals is a loess smooth curve which helps for search of clusters of 

residuals that may indicate a lack of fit locally. This loess smooth curve has not detected 

any systematic and reproducible lack of fit. However, it shows an important lack of fit at 

the left boundary. Due to the underlying structure of the mortality data; high curvature at 

the youngest ages and relatively linear trend after 30 years old; it is normal to get higher 

residuals at the left boundary than to the rest of the curve. It shows us where the observed 

mortality rates differ from what we think relatively regular. 

 A last feature is shown by examining the confidence intervals in Figure 11. The 

width of the interval reveals the uncertainty associated with the graduated series. These 

widths are much larger for youngest ages, when the number of death is relatively low 

compared to the highest ages, as they depend on the variance of the estimates and hence on 

the volume of data available for graduation. 

5.4 Plots of the smoothers 

The weight function associated with the i -th point is used to compute the weights in 

the i -th row, ( )ixs , of the 99 x 99 smoother S  and is shown in Figures 12 and 13, below, 

with the influence values. 
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Figure 12: Smoother ijS : left panel: , = 0, , 49i j  , center panel: , = 50, ,98i j   and 

influence values for the Dutch Male population, 2008. Source: HMD. 

  
 

Figure 13: Smoother ijS : left panel: , = 0, , 49i j  , right panel: , = 50, ,98i j   and 

influence values for the Dutch Female population, 2008. Source: HMD. 

The weights are shown as the height along the i -th row of the surface. For values in 

the central region, the weights form a triweight kernel. But as the point, at which we are 

estimating the true curve, moves towards the boundaries, the kernel overlaps the boundary, 

becomes asymmetric and some weights are negative. Moreover, the height of the kernel 

increases because fewer observations are available. 

We deliberately avoid here a presentation on the boundary correcting kernel. The 

interested reader is invited to look at Tomas (2011b) for a detailed presentation. However, 

for our applications, the boundary correcting kernel always uses   observations wherever 

the target point is. For instance, for a target point at the left boundary, we use all the 

observations available k  at the left side, and 2*h k  at the right side of the point. 

Reciprocally for the right boundary. This type of correction is found in most smoothing 

software such as the loess() or locfit() functions in R, R Development Core Team (2011). 

Note that the criteria used for model selection have been computed over a restricted number 

of observations. Restricting the sum helps to reduce the boundaries effects argue Fan et 
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al. (1998). At the boundaries, the residuals sum of squares, RSC criterion and estimated 

derivatives can be too large because of numerical instabilities and scarcity of the data, see 

Tomas (2011b).  

The influence values measure the sensitivity of the fitted curves ( )if x  to the 

individual data points. It show us the amount of smoothing applied locally. For instance, in 

Figure 12 right panel, 7 91infl( ) = infl( ) 0,18x x  , indicating that the observed values 

constitute about 18%  of the fitted values while the influence values for observations in the 

central region ( 0, 21 ) shows that the observed values constitute about 21%  of the fitted 

values. It illustrates that locally we have applied more smoothing at age 7  and 91  than to 

the rest of the curve. 

5.5 Plots of the graduated series and diagnostic checks 

Having produced estimates on the transformed scale, we now back-transform the 

graduated rates. Figure 14 presents the mortality rates graduated on the original scale by our 

local polynomials method. 

 

Figure  14: Graduated mortality rates by local polynomials (original scale) with 95% 
pointwise confidence intervals and corresponding residuals plots for Dutch Male and 

Female population, 2008. Source: HMD. 

After graduating the crude rates and back transforming, one diagnostic mentioned by 

Gavin et al. (1995, p.183) makes the use of the mean and variance of the binomial 

distribution to calculate the standardized deviation between the observed and expected 

deaths,  
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Figure 15 displays the expected number of death with the statistic described above. 

We notice that most values are less than two and the statistic has a mean close to zero for 

both population, indicating that the assumptions made by the model are valid. Several other 

diagnostic plots and non-parametric test could be considered, see Gavin et al. (1995, p.183) 

and Cleveland et al. (1988).  

 
 

Figure 15: Expected number of death with 95% pointwise confidence intervals and 
deviation between actual and expected death for Dutch Male and Female population, 2008. 

Source: HMD. 

6. WHITTAKER-HENDERSON SMOOTHING 

It is interesting to compare the local polynomials approach with classical graduation 

methods. Among the classical methods we can mention the splines approach or the 

Whittaker-Henderson smoothing. As shown by Taylor (1992) and Planchet and Winter 

(2007) both approach lead to very similar results. 

Taylor (1992, p.15) shows that natural spline graduation can be regarded as 

approximately Whittaker-Henderson graduation with statistically insignificant terms 

removed, and concluding that the general spline function is preferable to Whittaker-

Henderson graduation due to his greater flexibility. 
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In this section we choose to use the Whittaker-Henderson model which is simpler to 

implement. 

6.1 The Whittaker-Henderson model as a linear smoother 

We show that the Whittaker-Henderson model falls into the class of linear 

smoothers. it will allow us to use the methodology develops in Section 4 for model 

diagnostic and choice of parameters. 

The Whittaker-Henderson model is non-parametric and forms a relatively simple 

and natural version of Bayesian smoothing, see Taylor (1992). The method relies on the 

combination of a fit and smoothness measure. The chosen parameters minimize a linear 

combination of these two criteria,  

 = * ,M F h S  

where F  and S  denote the fit and smoothness measures respectively and h  a parameter 

allowing more emphasis on the smoothness criterion. The fit and smoothness measures are  

  2 2

=1 =1

= ( ) and = ( ) ,
n n z

z
i i i i

i i

F v y y S y


    

where iv  represents the weight for observation i , taken generally as the ratio / max( )i il l ; 

and z  being an other parameter representing the polynomial degree. 

For this optimization problem, we solve the n  equations given by the partial 

derivatives of M  with respect to each of the iy  such that,  

 = 0, = 1, , .
i

M
i n

y




  

With 1= ( )i i ny  y ,  
1= ( ) i niy  y  and 1= diag( )i i nv  V , F  can be written in matrix notation 

as  

  = ( ) ( ).TF  y y V y y  

For the smoothness criterion, writing 1= ( )z z
i i n zy    y , yields to = ( )z T zS  y y . 

To find z y , we introduce a matrix denoted zK , of dimension ( )n z z  , where the 

terms are binomial coefficients of order z  and where the sign of the coefficients alternates 
and starts positively for z  even, = *z

zK y y . 

The M  criterion can finally be written as  

  = ( ) ( )T T T
z zM h K K  y y V y y y y  

   = 2 .
T

T T T T
z zh K K  y Vy y Vy y Vy y y  
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It leads to = 2 2 2 T
z z

M
hK K


 


Vy Vy y

y
. Solving / = 0M y  leads to the 

expression:  

  1= ( ) .T
z zhK K y V Vy  (41) 

We see that the form of the estimate is simple in that it is linear in the iy . In 

consequence, similarly to the local polynomials method, we can apply the criteria presented 

in Section 4.1 to find the optimal value of parameters h  and z . 

6.2 Comparisons 

We picked the constellation, = 5h  and = 3z  for the male, and = 20h  and = 3z  

for the female population, given by the Rice's T  criterion, leading to 20,99  and 17,06  

fitted degrees of freedom respectively. 

Figures 16 and 17 present graphical comparisons of the local polynomials approach 

and the Whittaker-Henderson model.  

 

Figure  16: Graphical comparisons between the local polynomials approach (full line) and 
the Whittaker-Henderson smoothing (dotted line) for the Dutch Male and Female 
population, 2008: Graduated series and standardised residuals. Source: HMD. 

In Figure 16, the top left panel presents the graduated mortality rates (logit scale) for 

the Dutch Male population. The graduated series by local polynomials displays a smoother 

pattern. The corresponding degrees of freedom are lower than the ones obtained by the 

Whittaker-Henderson model, illustrating that the model is showing less features. 

 



UNIVARIATE GRADUATION OF MORTALITY BY LOCAL POLYNOMIAL REGRESSION 51 

 

 

The bottom left panel shows the graduated mortality rates (logit scale) for the Dutch 

Female population. The graduated series are relatively identical. The fitted degrees of 

freedom are very close, illustrating that the models show the same amount of features. 

The right panels display the standardised residuals. The circles represent the 

residuals from the local polynomials approach and the crosses the ones from the Whittaker-

Henderson smoothing. The standardised residuals are mainly in the interval [ 2;2]  which 

indicates that the models adequately model the variability of these datasets. 

 

Figure  17: Graphical comparisons between the local polynomials approach (full line) and 
the Whittaker-Henderson smoothing (dotted line) for the Dutch Male and Female 

population, 2008: Influence values and relative difference between the graduated series. 
Source: HMD. 

In Figure 17, the influence values, obtained by the local polynomials for the male 

population are, up to age 80, below the ones computed with Whittaker-Henderson model, 
1infl ( ) = (( ) )T

WH i z zx diag hK K V V , top left panel. It indicates that, up to age 80, more 

smoothing has been applied by the local polynomials approach. For instance, 

20infl ( ) 0, 21LP x  , indicating that the observed value constitute about 21 % of the fitted 

value, while the influence value obtained by the Whittaker-Henderson model for the same 

observation ( 20infl ( ) 0,26WH x  ) shows that the observed value constitute about 26% of the 

fitted value. 

The relative difference between the two approaches for the male population is more 

important at the boundaries, where the Whittaker-Henderson model does not need special 

treatment. 
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The influence values for the female population, bottom left panel, stay close. The 

relative difference is very low and, as for the male population, is larger in the boundaries. 

We end the comparisons by applying the tests proposed by Forfar et al. (1988, p. 56-

58) and Debon et al. (2006, p. 231). We have also obtained the values of the mean absolute 

percentage error MAPE  and 2R  used in Felipe et al. (2002). We compare the crude 

mortality rates to the graduated series to see whether the two approaches lead to similar 

graduation. Table 4 presents the results. 

     Local Polynomial Whittaker-Henderson 

    Male Female Male Female 

Degree of freedom  18, 46  16,76  20,99  17,06  

Computation time (sec)  0,857  0,860  0,008  0,008  

Standardised > 2  5  5  4 4  

Residuals > 3  2 2 2 2  

Signs ( )   54(45)  48(51)  51(48)  48(51)  

Test p-value 0, 4215  0,8408  0,8408  0,8408  

Runs Nb of runs 59  67  59  63  

Test Value 1,8152  3,3460  1,7281  2,5371  

 p-value 0,0695  0,0082  0,0840  0,0112  

Kolmogorov Value 0,0303  0,0404  0,0303  0,0404  

Smirnov test p-value 1 1 1 1  
2  Value 129,06  93,15  103,39  94,62  

Test p-value 0,0194  0,6196  0,3352  0,5779  

2R  Value 0,9983  0,9986  0,9985  0,9986  

MAPE  (%)   10, 41  9,61 9,05  8,99  

Table  4: Comparisons between the local polynomials approach and the Whittaker-
Henderson smoothing for the Dutch Male and Female population, 2008. Source: HMD. 

The two approaches display favorable results making it difficult to choose one of 

them. As an advantage for the Whittaker-Henderson, we observe that is not necessary to 

give a special treatment for the observations in the boundary and the computation time is 

100 times smaller. However we have used a prototype implementation in R to perform the 

local polynomials approach. This can be improved on by at least a factor of 10, if a lower 

level language such as C is used. 



UNIVARIATE GRADUATION OF MORTALITY BY LOCAL POLYNOMIAL REGRESSION 53 

 

 

7. DISCUSSION AND RELATED WORK 

Local regression is a popular form of non-parametric regression, combining 

excellent theoretical properties with conceptual simplicity and flexibility to find structure in 

many datasets. It is very adaptable, and it is also convenient statistically since a lot is 

known about least squares theory, which is helpful when looking at bias and variance. 

We have seen how local polynomial regression can be used to model the relation 

between the crude death rates and attained age with sufficient exposures. However, for the 

purpose of graduating series originating from life insurance, the transformation of the data 

is a real problem for two reasons. 

On one hand, due to the transformation, a high curvature appears in the left 

boundary. In consequence, the selection of the smoothing parameters may be mainly driven 

by minimizing the residuals sum of squares in the boundaries rather than for the whole data 

points. It may force the criteria to select a smaller bandwidth at the boundary to reduce the 

bias, but this may lead to undersmoothing in the middle of the table. 

One the other hand when the volume of data is not sufficiently high, the datasets 

might present zero response for youngest and oldest ages and hence the logit transform can 

not be applied. We should point out that many authors achieve better fittings by eliminating 

the early ages due to their irregular profile, which they justify by arguing that actuarial 

operations begin at more advanced age. We have decided to include the young age groups 

to show the applicability and relevancy of the approach to find structure in presence of 

irregular profile. Moreover, as pointed by a referee, it is worth remembering that the double 

exponential which appears in Heligman and Pollard (1980) and related to parametric 

models, has been introduced to deal specifically with the difficulty of adjusting the younger 

ages. 

Finally, it would be desirable to model situations where a non Gaussian likelihood is 

appropriate. In local polynomial regressions, the response variable was assumed to be 

approximately Gaussian. If the response is binary or given by counts, the technique 

considered there is no longer applicable, because binary or count data have an expectation-

variance structure that is different from the continuous, normally distributed responses. In 

Tomas (2011a), the concepts of Sections 2 and 3 are incorporated and extended within the 

framework of local likelihood and localized Generalized Linear Models. 
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